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The calculation of AC loss due to the control currents in ITER is a cumbersome task. The reason is that control
transients require small field changes (0.1 T or less) at moderate frequency (up to 10 Hz), where effects of partial
penetration of the filaments and shielding are important and need to be taken into account to produce sound AC
loss estimates. In this paper we describe models developed for AC loss calculation, in particular hysteresis and
coupling current loss, that are suitable for the above regime. Both hysteresis and coupling loss models are adapted
to the conductor analyzed through few parameters (the effective filament diameter and time constants) that can be
derived from measurement of loss on short samples. We report an example of calculations of AC loss in the ITER
TF and PF coils for two vertical control scenarios (VS1 and VS2) during high beta operation at flattop.
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Abstract—The calculation of AC loss due to the control 

currents in ITER is a cumbersome task. The reason is that 
control transients require small field changes (0.1 T or less) at 
moderate frequency (up to 10 Hz), where effects of partial 
penetration of the filaments and shielding are important and 
need to be taken into account to produce sound AC loss 
estimates. In this paper we describe models developed for AC 
loss calculation, in particular hysteresis and coupling current 
loss, that are suitable for the above regime. Both hysteresis and 
coupling loss models are adapted to the conductor analyzed 
through few parameters (the effective filament diameter and 
time constants) that can be derived from measurement of loss on 
short samples. We report an example of calculations of AC loss in 
the ITER TF and PF coils for two vertical control scenarios (VS1 
and VS2) during high beta operation at flattop. 
 

Index Terms—AC loss, Coupling currents, Hysteresis, Pulsed 
superconducting magnets 

I. INTRODUCTION 
C loss in superconducting magnets is usually dominated 
by two contributions that originate within the 

superconducting strands and cables: 
 

• hysteresis loss in the superconducting filaments;  
• coupling loss within strands and among strands in a 

cable or composite. 
 
The first component, hysteresis loss, is caused by persistent 

currents induced within the filament by field changes. 
Persistent currents produce a magnetization of hysteretic 
nature. Hysteresis loss involves thus the superconducting 
filaments only. The second component, coupling loss, is 
originated by electromagnetic coupling among filaments in a 
strand, and among strands in a cable. Coupling currents flow 
partially in the superconductor, partially in resistive contacts 
among them, and they dissipate power in the resistive 
transition. Coupling loss thus involve the cable as a whole 
unit. The next sections deal with each component separately, 
proposing a flexible calculation algorithm to cope with most 

practical situations in a superconducting magnet. 
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II. HYSTERESIS LOSS CALCULATION 
The calculation of hysteresis loss in a superconducting 

filament can be a complex task, especially when the magnetic 
field variation is arbitrary. The calculation method proposed 
below is based on tracking the magnetic and electric field 
profiles inside the filament. This allows, at each time, to 
compute the instantaneous, local heat density given by the 
product of electric field and current density. The average 
power and the total energy dissipation in the superconductor 
are then obtained by integrals in space and time of the local 
heating power density. As we wish to achieve reliable and fast 
calculation, we obviously aim at having analytic solutions for 
the field profiles inside the superconducting filament, which is 
a non-trivial task. Here we follow an approximate approach, 
based on the following assumptions: 

 
• the filaments are round, and are not coupled; 
• the change of the magnetic field components in each 

space direction k (k = 1…3) is treated separately, that is 
the effect of variation of each component is considered 
as independent from the variation of the other two 
components. The only coupling between field 
components arises through the value of the critical 
current density, which depends on the field module; 

• the critical current density is uniform in the filament 
cross section; 

• transport current effects are neglected. 
 

Thanks to these simplifying assumptions, the magnetic and 
electric field profiles inside the filament can be computed in 
closed form for a cylindrical filament in parallel field [1]. In 
the case of a cylindrical filament in transverse field, however, 
only approximations are available [2],[3]. Therefore, in 
addition to the assumptions above, we choose to approximate 
a cylindrical filament in a transverse field with a slab of 

A 

TABLE I 
NORMALIZATION FOR HYSTERESIS LOSS CALCULATION 

effective filament diameter D 
normalized space co-ordinate x = X / D/2 
critical current density at zero field Jc0=Jc(0) 
virgin penetration field Hp0=Jc0 D / 2 
normalized critical current density j = Jc(B) / Jc0

normalized magnetic field h = H / Hp0

normalized electric field e = E / μ0 Hp0 D/2 
normalized power p = P / μ0 Hp0

2



2LW04 
 

2

suitably scaled thickness (see later for the scaling), for which 
a closed form solution of the field profiles is available. In the 
sections below we report the expressions strictly necessary for 
the loss calculation in the case of an arbitrary field change. 
Throughout, we use the normalized quantities as defined in 
Tab. I. Note that the variable x spans the slab thickness or the 
cylinder radius, while the indexes of field and current density 
components are not indicated as all vectors have a single 
component, z for the magnetic field and y for the current 
density and electric field. 

A. Slab solution 
The field profile in a superconducting slab subjected to an 

external field change is piecewise linear, starting from the 
external value he at x=1 (the slab boundary in normalized 
coordinates). The outermost layer, being penetrated by the 
external field change, has a normalized field: 

 
h = he ± j 1− x( ) (1) 

 
where the sign of the current density on the right hand side 

in Eq. (1) is determined by the direction of the field change. 
The depth at which the field profile penetrates inside the slab 
depends on the state of the superconductor, and two cases are 
possible: a virgin portion of the slab (no previous shielding 
current layer), or a portion of the slab with frozen field (a 
previously established shielding layer). The normalized 
penetration depth xp in the two cases is: 

 

xp =
1−

he

j
virgin

1−
he

2 j
non virgin

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (2). 

 
The normalized electric field in the outermost layer, being 

penetrated (i.e. for up ≤ x ≤ 1) is given by: 
 

e =
∂he

∂t
x − x p( ) (3) 

 
and is zero elsewhere. The local value of the dissipated 

power density is the product of the electric field (given by Eq. 
(3)), and the current density in the penetration layer. The 
average normalized power density in the slab is then: 

 

p = ∂he

∂t
j x − xp( )

x p

1

∫ dx =
∂he

∂t
j

1− xp( 2

2
)  (4). 

 
The above expressions are sufficient to solve the general 

case of arbitrary variation of the external field, keeping track 
of the shielding layers and their appearance/disappearance as 
the external field changes. To this aim, the magnetic field 
changes are subdivided in time in piecewise linear portions. 
The information needed by the tracking process consists, for 
each of the linear field swings, in the penetration depth xp of a 

shielding current layer, the magnetic field he that caused it, 
and the direction of the shielding currents. 

B. Scaling of the slab solution 
The solution presented in the previous section for a slab can 

be scaled to represent the penetration of a cylinder in 
transverse field. The scaling is done so that the asymptotic 
behaviors of the equivalent slab and cylinder are the same for 
small and large field changes. To this aim we use the 
following known expressions [2] for the energy lost per cycle 
and per unit volume Q in the case of a slab in a parallel 
alternating field with total field swing BBm (peak to peak 
amplitude of the field change): 

 

Qs =

Bm
2

2μ0

β
3

for β ≤ 1

Bm
2

2μ0

1
β

−
2

3β 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ for β > 1

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (5) 

 
and for a cylinder in the same transverse alternating field: 
 

Qc =

Bm
2

2μ0

2
3

2β − β 2( ) for β ≤ 1

Bm
2

2μ0

2
3

2
β

−
1

β 2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ for β > 1

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (6). 

 
The parameter β above is the ratio of the field swing to the 

penetration field 2B Bp: 
 

β =
Bm

2Bp

 (7) 

 
where we recall that the (first) penetration field is given by: 
 

slab: Bp = μ0Jc
Ds

2
 (8) 

cylinder: Bp = μ0Jc
Dc

π
 (9) 

 
with Ds and Dc respectively slab thickness and cylinder 

diameter. Inspecting Eqs. (5) and (6), we can obtain the same 
dissipated energy per cycle in the limits β → 0, and β → ∞ if 
we use a slab effective thickness Ds =

8
3πF

Dc
, and scale the 

energy per cycle by a factor F=2.309. 

C. Cylinder in parallel field 
A cylinder in parallel field is described by equations that 

are very similar to those of a slab, treated previously. The 
magnetic field profile is indeed the same as in the case of the 
slab, so that Eqs. (1) and (2) hold in both cases. The electric 
field contains terms that are originated from the rot 
differential operator in cylindrical symmetry, and in the 
outermost layer, being penetrated, it is given by: 
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e = −
1
2

∂he

∂t
x 2 − xp

2

x
 (10). 

 
From Eq. (10) we compute the average power density in the 

cylinder: 
 

p = 1
π

j
2

∂he

∂t
x 2 − x p

2

x
2πx

x p

1

∫ dx =
j
3

∂he

∂t
1− 3x p

2 + 2x p
3( ) (11). 

 

III. COUPLING LOSS CALCULATION 
The calculation of coupling currents in the complex cabling 

geometry of a large size Cable-in-Conduit Conductor (CICC) 
can be just as daunting as an exact calculation of hysteresis in 
an arbitrary filament. Here, also, we make simplifying 
assumptions: 

 
• the cable can be described macroscopically by three 

time constants ⎮k and three demagnetization shape 
factors nk [2]. Each time constant and demagnetization 
factor ⎮k and nk refer to a space direction k in the cable; 

• as for hysteresis loss, we consider the three cable 
directions as completely independent, and solve for 
each direction independently from the other; 

• the cable is not saturated, and coupling currents can 
flow unperturbed in the cable. 

 
We stress that we use the same algorithm for field changes 

in all directions, and we do not treat the loss due to field 
changes along the axis of the cable (parallel loss) separately. 
The reason is that there is no recent experimental evidence 
that parallel field loss in a CICC has a significant impact.  

The first step in the calculation of the coupling current loss 
is the integration of the equation governing the internal field 
in the cable [1]: 

 
∂Bi

∂t
+

Bi

τ
=

Be

τ
 (12) 

 
where BBi is the field in the composite and BeB

]

 is the external, 
changing field. Note that, as we treat the three space direction 
in the same way, we drop indices from here on. To obtain an 
analytical solution, we assume that the external field changes 
piecewise linearly in time. During each time interval we can 
hence write that B . If we indicate with  the 
initial value of the internal field at the beginning of the time 
interval considered, we can solve Eq. (3.1), leading to the 
following integral: 

e = Be
0 + Be

1t Bi
0

 

Bi = Be
0 + Be

1 t − τ( )+ Bi
0 − Be

0 − Be
1τ( )[ e

−
t
τ  (13) 

 
The last term in Eq. (13) is a decaying exponential with 

time constant ⎮ that describes the shielding phase for fast field 
changes. Once the exponential has decayed, the contribution 

of the third term is negligible, and the internal field is equal to 
the external field delayed by ⎮. 

Equation (13) provides the evolution of the field internal to 
the composite, once the initial condition is known (see later), 
and can be derived to give the internal field change rate: 

 

∂Bi

∂t
= Be

1 −
Bi

0 − Be
0 − Be

1τ( )[ ]
τ

e
−

t
τ  (14). 

 
This is the desired result, used to calculate the instantaneous 

power dissipated as: 
 

P =
nτ
μ0

∂Bi

∂t
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2
 (15) 

 
and finally the energy during a time interval (generically 

indicated below as [0...T]) with linear field swing: 
 

E = Pdt
0

T

∫ =
nτ
μ0

Be
12T −

n
2μ0

Bi
0 − Be

0 − Be
1τ( )[ ]2

e
−2T

τ −1
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +

2nτ
μ0

Be
1 Bi

0 − Be
0 − Be

1τ( )[ ] e
−

T
τ −1

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 (16). 

 
The coupling loss calculation algorithm uses the above 

equations for each field direction k, in turn. The internal field 
during a time interval with a linear field swing is tracked 
using Eq. (13), which gives in particular the value at the end 
of the swing to be used for the following time interval. 
Equations (15) and (16) are then used to compute 
instantaneous power and energy dissipated during the field 
swing. Following this logic, the calculation must keep track, 
for each cable, of the internal field at the end of the swing, 
that is used as initial condition for the following swing. 

 

IV. EXAMPLE OF APPLICATION 

 
Figure 1. Model of the coil geometry of the ITER coils for the study of AC 
loss in vertical stabilization scenarios. 
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As an example of the use of the above algorithms, we report 
the results of calculations of AC loss in the ITER TF and PF 
coils for two vertical plasma stabilization scenarios (VS1 and 
VS2) during high beta operation at start of burn (SOB). The 
magnetic model built to this aim includes all CS, PF and TF 
coils, as well as some 60 axisymmetric passive circuits that 
represent the conductive wall of the vacuum vessel. A 3-D 
rendering of the model is shown in Fig. 1. The coil and 
conductor data have been taken from the reference design 
reported in [5]. In particular, for loss calculations, the 
effective filament diameter of Nb3Sn is 30 μm, while for NbTi 
it is 6 μm. The coupling loss time constant is 25 ms in all 
space directions for all conductors. The current variation 
during the vertical control scenarios has a wide frequency 
spectrum (typically up to 10 Hz), and produces field changes 
of relatively small amplitudes (few 10’s of mT on the PF 
coils, up to 0.1 T in the CS coils). 

The AC loss calculation requires the knowledge of the three 
magnetic field components at each conductor location in the 
coil winding. This calculation has been done using standard 
linear magnetostatic techniques. 

We report in Fig. 2 a summary of the overall results of 
these two simulations. The bars represent the total loss, split 
among each of the three main coil systems, and further 
subdivided in the different mechanism (coupling and 
hysteresis). Loads are reported as average power during the 
time simulated, 10 s. The calculation provides a quick means 
to qualify the controller scenarios in terms of the cryogenic 
load, as we see a clear distinction in the loss at the level of the 
CS and PF system. We note further that the contribution of the 
two loss mechanisms in the CS and PF coil systems is 
massively different in the two scenarios. This is due to the 
combined effect of the different current amplitudes as well as 
the different dynamic characteristics of the current waveforms 
in the CS and PF coils, affecting both hysteresis and coupling 
loss. Interestingly enough, the situation on the TF coil (close 
to the plasma) is essentially unaffected by the control 
scenario, as we should have expected. 

To complete our example, we have performed sensitivity 
studies on the effect of a change in the loss parameters of the 
conductors. Figure 3 shows in particular the effect of a 
parametric change of τ by a factor 1/5 to 5 (i.e. from 5 ms to 
125 ms) on the coupling loss in scenario VS1. As a side 
remark, this range of variation is representative for the spread 
measured on the large-scale ITER cables. The scaling of the 
coupling loss in the CS coil system is approximately linear, 
which indicates negligible shielding in the range of time 
constants explored for the specific scenario analyzed (low 
frequency regime). In the PF coil system, on the other hand, 
we clearly see the effect of shielding at high values of τ, 
which results in a coupling loss significantly smaller than 
would be expected by the low-frequency regime, linear 
extrapolation. 

 

V. CONCLUSION 
We have presented a calculation method for AC loss in 

pulsed superconducting magnets that is suitable over a wide 
regime of field changes (from partial to full penetration) and 
frequencies (from the low frequency limit to shielding). The 
example reported, vertical control scenarios in ITER, provides 
a measure of the flexibility in dealing with complex geometric 
and powering conditions. The model can be useful for other 
applications of similar nature, e.g. pulsed accelerator magnets 
requiring loss optimization. 
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