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integration with respect to the non-holomorphic dependence of the amplitudes, and relies

on the interplay between non-holomorphicity and modularity properties of the topological

string amplitudes. We develop a formalism valid for any Calabi-Yau manifold and we study

in detail two examples, providing closed expressions for the amplitudes at low genus, as

well as a discussion of the boundary conditions that fix the holomorphic ambiguity. The

first example is the non-compact Calabi-Yau underlying Seiberg-Witten theory and its

gravitational corrections. The second example is the Enriques Calabi-Yau, which we solve

in full generality up to genus six. We discuss various aspects of this model: we obtain a

new method to generate holomorphic automorphic forms on the Enriques moduli space, we

write down a new product formula for the fiber amplitudes at all genus, and we analyze in

detail the field theory limit. This allows us to uncover the modularity properties of SU(2),

N = 2 super Yang-Mills theory with four massless hypermultiplets.
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1. Introduction

Topological string theory has played an important role in the quest for a better understand-

ing of both physical and mathematical aspects of string theory. There are two different

topological string theories related to each other by mirror symmetry, and known as the A

and B-model. They are obtained from an N = 2 superconformal field theory, twisted in two

distinct ways to become type A or type B topological sigma models that are then coupled

to gravity. The physical relevance of these theories lies in their intimate connection to type

II superstring theory. In particular, the topological string on a given Calabi-Yau manifold

computes higher derivative F-terms in the 4d effective action of the corresponding type

II theory. From a mathematical point of view, the topological string partition function

provides a generating functional for Gromov-Witten invariants in enumerative geometry.

It is therefore desirable to solve the topological string on a given Calabi-Yau manifold,

that is to say, to compute all the topological amplitudes F (g) in the genus expansion of the

partition function. While this problem is completely solved for the case of non-compact

toric Calabi-Yau manifolds thanks to the techniques of localization and the topological

vertex, it remains a challenge for the compact case. One of the main tools in solving

topological string theory, which also applies to compact Calabi-Yau manifolds, is the holo-

morphic anomaly equations for the B-model found in [7]. In this work we present a new

approach to solving these equations. We make use of the fact that for each Calabi-Yau

manifold there exists a target space symmetry group which provides a symmetry of the

topological partition function [1] and thereby drastically reduces the space of candidate

solutions. The topological string amplitudes F (g) turn out to be polynomials in a finite

set of generators which transform in a particularly simple way under the space-time sym-

metry group. Moreover, it can be shown that all non-holomorphic dependence in these

amplitudes arises through a very special set of generators that are suitable generalizations

of the non-holomorphic Eisenstein function E2(τ, τ̄ ). The remaining generators are holo-

morphic. Keeping track of these non-holomorphic contributions we will be able to directly

integrate the holomorphic anomaly equations. This method turns out to be very efficient

and gives us rich new information about the remaining holomorphic generators. A similar

approach to the holomorphic anomaly equations was sketched in [7], in the analysis of

toroidal orbifolds. For the quintic Calabi-Yau manifold a more complicated method was

outlined in [62]. Other related approaches have been used before in [31, 32] to analyze
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rational elliptic surfaces, and in [49, 50] to study noncritical strings and N = 4 super

Yang-Mills theory.

The direct integration of the holomorphic anomaly equations can be performed for a

generic Calabi-Yau manifold, as we will show in the final section of this work. However,

in order to fully exploit the interplay of the holomorphic anomaly with the space-time

symmetry, we will intensively discuss specific examples. To illustrate the general ideas we

first study the local Calabi-Yau manifold associated to the Seiberg-Witten curve. Here

the target-space symmetry group is a subgroup of Sl(2, Z) and the generating modular

functions are well-known.

Applying these methods to a compact Calabi-Yau manifold is far more involved. In

the main part of the paper we will focus on the specific example of the Enriques Calabi-

Yau [23], arguably the simplest Calabi-Yau compactification with nontrivial topological

string amplitudes [41, 48]. This manifold can be obtained as the free quotient (K3×T
2)/Z2,

where Z2 acts as the Enriques involution on the K3 fibers. The target space duality group

of the Enriques Calabi-Yau is shown to be the discrete group Sl(2, Z) × O(10, 2, Z), with

the factors corresponding to the T
2 base and Enriques fiber, respectively. The generating

modular forms for Sl(2, Z) are well-known, therefore we will be particularly concerned with

the contributions from the Enriques fiber and specially their mixing with the T
2 base.

After integrating the holomorphic anomaly equations the only problem remaining is

to fix the holomorphic ambiguities, i.e. the boundary conditions in the integration of the

equations. These ambiguities are constrained by information coming from boundaries of

the moduli space where the F (g) are known explicitly. In the Enriques case one can use

the fiber limit, where all amplitudes can be determined by heterotic-type II duality [41],

and a field theory limit where the manifold degenerates to give rise to SU(2), Nf = 4

Seiberg-Witten theory. By making use of these boundary conditions we determine the

full topological string amplitudes up to genus 6, improving in this way previous results

in [41]. As a bonus of our analysis, we clarify the modularity properties of the conformal

Nf = 4 theory and its gravitational corrections described in [52]. At present the available

boundary conditions are not enough to completely solve topological string theory on the

Enriques Calabi-Yau, but we provide efficient tools to analyze the amplitudes at all genus

with the method of direct integration.

The organization of this paper is as follows. In section 2 we review the derivation of

the holomorphic anomaly equations. Section 3 gives a first simple example of the method

of direct integration and the fixing of holomorphic ambiguities by application to Seiberg-

Witten theory. Section 4 reviews what will be our main focus, the Enriques Calabi-Yau.

We introduce modular and automorphic forms which will be relevant later and discuss the

topological amplitudes on the Enriques fiber. Also an all-genus product formula for the

fiber partition function will be introduced. Section 5 constitutes the core of this work. We

show explicitly how one can solve for F (g) up to genus six and present the general recursive

formalism. Furthermore, boundary conditions and a reduced Enriques model where part of

the moduli space is blown down are investigated. In section 6 we analyze the field theory

limit corresponding to Nf = 4 SYM and we relate it in detail to the Enriques Calabi-Yau.

In section 7 we present a formalism for direct integration on generic Calabi-Yau manifolds.
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Section 8 contains conclusions and an outlook on further directions of investigation. Ap-

pendix A reviews some special geometry. Appendix B collects some useful formulae for

theta functions and modular forms. Appendix C reviews the heterotic computation of the

amplitudes in [46, 41] and presents improved formulae for their antiholomorphic depen-

dence. Finally, appendix D presents the holomorphic anomaly equations on the so-called

big moduli space.

2. The holomorphic anomaly equations

In this section we will briefly recall some basics about topological string theory to set

the stage for the following sections and to fix our conventions. This will force us to in-

troduce some world-sheet notations and techniques. However, for the rest of this work

we will mostly need only the explicit form of the holomorphic anomaly equations. For a

more detailed introduction to topological string theory the reader might want to consult

references [30, 60, 51, 44, 39].

Type II string theory on Calabi-Yau threefold Y yields a superconformal field theory

with left and right moving (2, 2) supersymmetry on the world-sheet. This structure ad-

mits two topological string theories: the A-and the B-model. The key quantity in these

topological theories is their all genus partition function

Z = exp

∞∑

g=0

g2g−2
s F (g) . (2.1)

This formal expansion in the string coupling gs contains the topological string amplitudes

F (g) for maps from genus g Riemann surfaces into a target Calabi-Yau manifold. The

topological string amplitudes of the A– and B-model are identified by mirror symmetry,

which maps one theory on Y to its dual on the corresponding mirror Calabi-Yau.

We will now briefly recall the B-model definitions of the free energies F (g). The B-model

describes constant maps from a world-sheet Riemann surface Σg to points in the Calabi-

Yau space Y . Therefore, the B-model definition of the F (g) involves only the integration

over the moduli space Mg of the world-sheet and not over the moduli space of maps. More

precisely, let us denote by (m,m) coordinates on Mg and abbreviate the correlators of the

world-sheet CFT by
〈
·
〉
g
. The free energies F (g) are then defined by

F (g) = 〈1〉g =

∫

Mg

〈
3g−3∏

k=1

βkβ̄k〉g [dm ∧ dm] . (2.2)

Here we inserted the operators βk =
∫
Σg

G−µk and their complex conjugates to obtain

the correct measure on the moduli space. βk and β̄k contain the the world-sheet Beltrami

differentials µk ∈ H1(TΣg) and the world-sheet supersymmetry generators G−, Ḡ−. The

contraction of [dm ∧ dm] with the (βk, β̄k) factor is antisymmetric due to the presence of

G−, Ḡ− and yields a top form on the complex 3g − 3 dimensional moduli space Mg. The

fact that one has to integrate only over the moduli space of the world-sheet makes the
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B-model far simpler to solve than the A-model. Therefore, it is often easier to use the

B-model and the mirror map to determine A-model quantities.

From the point of view of the four-dimensional effective action, one is interested in

the dependence of the F (g) on the complex moduli ti, t̄i in the vector multiplets. These

parametrize marginal deformations, which in the B-model correspond to complex structure

deformation of the Calabi-Yau manifold. Infinitesimally the world-sheet action is perturbed

by the ti, t̄i as follows

S = S0 + ti
∫

Σg

O(2)
i + t̄i

∫

Σg

Ō(2)
i , (2.3)

where the sums run over i = 1, . . . , h1(Y, TY ) = h(2,1)(Y ). Here the marginal two-form

operators are obtained using the descent equations as

O(2)
i = {G−

0 , [Ḡ−
0 ,O(0)

i ]}dzdz̄ , O(2)
ı̄ = {G+

0 , [Ḡ+
0 , Ō(0)

ı̄ ]}dzdz̄ , (2.4)

where G+
0 , G−

0 are the zero modes of the twisted world-sheet supersymmetries G+, G−. In

these equations we denoted by O(0)
i the zero-form cohomological operators, which are in

one-to-one correspondence with the H1(Y, TY ) cohomology of the target space.

From the point of view of the target space Calabi-Yau the complex fields ti, t̄i provide

a set of local coordinates on the moduli space of complex structure deformations M. This

space is shown to be a special Kähler manifold with Kähler potential

K(t, t̄) = − log i

∫

Y
Ω(t) ∧ Ω̄(t̄) , (2.5)

where Ω(t) is the holomorphic three-form on Y varying holomorphically with a change of

the complex structure. Ω(t) is only unique up to rescalings by a holomorphic function and

hence should be viewed as a section of the line bundle L over the moduli space M. In

appendix A we review how the special geometry of M can be entirely encoded by a single

holomorphic section of L2, the prepotential F (0) = F(t). From a world-sheet point of view

one does not obtain F (0) directly, but rather finds the three-point function

C
(0)
ijk = 〈O(0)

i O(0)
j O(0)

k 〉g = −
∫

Y
Ω(t) ∧ ∂i∂j∂kΩ(t) , (2.6)

where ∂i are derivatives with respect to ti.

At higher genus a more involved world-sheet analysis can be applied to investigate the

properties of the higher F (g). It turns out that the higher genus topological string ampli-

tudes F (g) are not holomorphic, but rather fulfill specific holomorphic anomaly equations.

These equations are recursive in the genus and determine the anti-holomorphic derivative

of F (g). Therefore, even if the genus zero data are given they determine F (g) only up to a

holomorphic ambiguity. We will now briefly state the essential features and results of the

work of Bershadsky, Cecotti, Ooguri and Vafa [7], who have shown that

i.) The F (g) transform as section of L2−2g with the connection (A.3).

ii.) The topological B-model correlation functions

C
(g)
i1...in

=





〈
∫
Σg

O(2)
i1

· · ·
∫
Σg

O(2)
in

〉g = Di1 . . . DinF (g) for g ≥ 1

〈O(0)
i1

O(0)
i2

O(0)
i3

∫
Σg

O(2)
i4

· · ·
∫
Σg

O(2)
in

〉g = Di4 . . . DinC
(0)
i1i2i3

for g = 0
(2.7)
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can be obtained using the covariant derivatives (A.3) and obey

C
(g)
i1...in

= 0 for 2g − 2 + n ≤ 0 . (2.8)

iii.) The anti-holomorphic derivative ∂ı̄ = ∂
∂t̄i

of the F (g),

∂̄ı̄F
(g) =

∫

Mg

∂̄ı̄µg =

∫

Mg

∂m∂̄m̄λı̄,g =

∫

∂Mg

λı̄,g, (2.9)

receives only contributions from the complex codimension one locus in the moduli space

of Riemann surfaces corresponding to world-sheets which are degenerate with lower genus

components. These boundary contributions can be worked out and yield recursive equa-

tions for the F (g). For g > 1 one gets

∂̄ı̄F
(g) =

1

2
C̄

(0)jk
ı̄

(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)

)
(2.10)

and for g = 1 a generalisation of the Quillen anomaly

∂i∂̄̄F
(1) =

1

2
C

(0)
ikl C̄

(0)kl
̄ −

(
χ

24
− 1

)
Gi̄ . (2.11)

Here we defined

C̄
(0)kl
̄ = e2KGkk̄Gll̄C̄

(0)

̄k̄l̄
, (2.12)

where Gkk̄ = ∂k∂̄k̄K is the Weil-Petersson metric of the Kähler potential (2.5).

These are the recursive holomorphic anomaly equations, which we want to integrate

directly in this paper. Note that there is no holomorphic anomaly at genus zero. C
(0)
ijk

has no world-sheet moduli dependence, hence no boundaries, and is therefore holomorphic.

The genus zero data thus have to be provided from the outset. They can be determined

from the period integrals of the manifold Y .

It is further shown in ref. [7] that (2.10) can be integrated recursively. With an iterative

procedure of complexity growing exponentially with the genus, one rewrites (2.10) as

∂k̄F
(g)(t, t̄) = ∂̄k̄Γ

(g)(∆̂ij , ∆̂i, ∆̂, C
(r<g)
i1...in

) , (2.13)

and integrates it to

F (g)(t, t̄) = Γ(g)(∆̂ij , ∆̂i, ∆̂, C
(r<g)
i1...in

) + f (g)(t) . (2.14)

Here Γ(g) is a functional of some propagators ∆̂ij, ∆̂i, ∆̂ and the lower genus vertices C
(r)
i1...in

with r < g. The holomorphic ambiguity f (g)(t) arises as an integration constant. To

prove that the functional Γ(g) exists at every genus, [7] show that it is the disconnected

Feynman graph expansion of an auxiliary action with the above vertices and propagators,

whose partition function fulfills a master equation equivalent to (2.10) and (2.11). The

propagators can be defined using the genus zero data as follows. Since

D̄ı̄ C̄
(0)

̄k̄l̄
= D̄̄ C̄

(0)

ı̄k̄l̄
(2.15)
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one can integrate

C̄
(0)

̄k̄l̄
= −1

2
e−2KD̄ı̄D̄̄∂̄k̄∆̂ (2.16)

as

Gı̄j∆̂
j =

1

2
∂̄ı̄∆̂ , Gı̄k∆̂

kj = ∂̄ı̄∆̂
j , C̄

(0)jk
ı̄ = ∂̄ı̄∆̂

jk . (2.17)

Note that the propagators are defined by these equations only up to holomorphic ambigui-

ties arising in the integration steps. Fixing these ambiguities directly affects the definition

of the holomorphic functions f (g)(t) in (2.14). It turns out that a preferred choice for this

ambiguity is provided by relating the propagators in a canonical way to F (1)(t, t̄) [1].

The combinatorics of the Feynman graph expansion are useful to establish some general

properties of the F (g), but its complexity grows exponentially with the genus. However, the

F (g) are invariant under space-time modular transformations which are a symmetry of the

full string compactification. As we will discuss later, they generically admit a split into a

universal factor times a modular form. Here the weights of the modular forms grow linearly

with the genus. Since the ring of modular forms is finitely generated, the complexity of

modular invariant expressions grows only polynomially with the genus. The method of

direct integration that we develop in this paper uses this connection with modular forms

such that its complexity also grows only polynomially with the genus. It has the advantage

that the modular properties of the amplitudes are manifest in all steps of the derivation.

3. Solving Seiberg-Witten theory by direct integration

Local Calabi-Yau geometries provide simple and instructive examples for the interplay be-

tween holomorphicity and modular invariance in topological string theory. In this section

we will explain the key features using the simplest example, namely the local Calabi-Yau

corresponding to SU(2) Seiberg-Witten theory with no matter [54]. In section 3.1 we first

recall the geometry of Seiberg-Witten theory. We show that all genus zero data can be

expressed in terms of a finite set of holomorphic modular forms. All higher amplitudes

F (g) are invariant under the modular group. In section 3.2 we directly integrate the holo-

morphic anomaly equations, determining all F (g) up to a holomorphic modular ambiguity.

Modularity restricts this ambiguity so much that simple boundary conditions set by the

effective action near special points in the moduli space allow one to reconstruct all F (g). We

review such a convenient set of boundary conditions in section 3.3. The general philosophy

presented in this section will be later applied to the more complicated case of compact

Calabi-Yau manifolds.

3.1 The Seiberg-Witten geometry

Seiberg-Witten theory with no matter [54] can be obtained in the A-model as a limit of

the local Calabi-Yau geometry O(−2,−2) → P
1 × P

1 [36]. The mirror B-model geometry

of this limit is the Seiberg-Witten elliptic curve E

y2 = (x − u)(x − Λ2)(x + Λ2) , (3.1)

– 7 –
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whose modular group is Γ(2). This subgroup of Sl(2, Z) acts on the period integrals

t =

∫

a
λ , tD =

∫

b
λ , (3.2)

where λ =
√

2
2π

y
x2−1dx is the Seiberg-Witten meromorphic differential. In the limit described

above, λ is obtained as a reduction of the holomorphic (3, 0) form of the Calabi-Yau

manifold. Rigid special geometry guarantees the existence of a prepotential F (0) = F(t)

with the properties

tD =
∂F
∂t

, τ = − 1

4π

∂2F
∂2t

. (3.3)

These conditions are obtained as the rigid limit of the special geometry relations presented

in appendix A. Note that τ is precisely the complex structure parameter of the torus

and hence parametrizes the upper half-plane. In particular, Imτ > 0 is guaranteed by the

Riemann inequality consistent with the fact that Imτ is the gauge kinetic coupling function

of Seiberg-Witten theory. Moreover, a modular transformation acts on τ as

τ 7→ aτ + b

cτ + d
. (3.4)

The genus zero data are functions of τ and transform in a particularly simple way un-

der (3.4). They can be expressed in terms of a finite set of modular generators, which we

will specify in the following.

A modular function f(τ) of weight m is defined to transform as f(τ) 7→ (cτ +d)mf(τ)

under (3.4). Focusing on the modular group of the Seiberg-Witten curve, we note that the

ring of modular functions of Γ(2) can be expressed as powers of the Jacobi θ-functions. Rel-

evant properties of the Jacobian θ-functions are summarized in appendix B. We introduce

two generators

K2 = ϑ4
3 + ϑ4

4, K4 = ϑ8
2 , (3.5)

which are of modular weight two and four respectively. The modular transformation prop-

erties follow from (B.3). K2,K4 generate the graded ring of holomorphic modular forms

M∗(Γ(2)) of Γ(2), which we will also denote by C[K2,K4]. It turns out to be useful to also

introduce

h = K2 , E4 =
1

4
(K2

2 + 3K4) . (3.6)

As we will see when we develop the method of direct integration, it is natural to take h,

E4 as the generators of the ring M∗(Γ(2)).

Let us now express the genus zero data in terms of modular forms. The connection

with the geometry of the Seiberg-Witten curve is given by the following relation

u(τ) =
K2√
K4

. (3.7)

The combination z(τ) = 1/u2(τ) is modular invariant and can be viewed as the analog of

the mirror map for this non-compact Calabi-Yau manifold. The analog of the holomorphic

triple coupling is

C ≡ C
(0)
ttt =

∂τ

∂t
=

32K
1/4
4

K2
2 − K4

(3.8)

– 8 –
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Note that C2 is a form of weight −6 under the modular transformations in Γ(2). The

modular group Γ(2) also determines the periods t, tD as weight 1 objects1

t(τ) =
E2(τ) + K2(τ)

3K
1/4
4 (τ)

, tD(τD) = −i
2E2(τD) − K2(τD) − 3K

1/2
4 (τD)

3

(
2K2(τD) − 2K

1/2
4 (τD)

)1/2
, (3.9)

where τD = − 1
τ and E2 is the second Eisenstein series defined in (B.9). It is natural to give

the periods in the above parameters. In the electric phase of Seiberg-Witten theory the

q = e2πiτ series converges and t is the physical expansion parameter, while in the magnetic

phase the qD = e2πiτD series converges and tD is the physical expansion parameter. Of

course tD(τ) and t(τD) can be obtained by performing an S-duality transformation on E2

and the Jacobi theta functions.

3.2 Direct integration

Having discussed the genus zero geometry, let us now turn to the higher genus free energies

F (g) and their holomorphic anomaly. Starting with F (1), we note that the holomorphic

anomaly equation (2.11) specializes to

∂t∂t̄F
(1) =

1

2
C

(0) tt
t̄

C
(0)
ttt . (3.10)

where the indices are raised with the Weil-Petersson metric Gtt̄ = 2Imτ . This equation

integrates immediately to

F (1) = −1

2
log Imτ − log |Φ(τ)| , (3.11)

where ∂τ/∂t is evaluated using (3.8). The holomorphic object Φ(τ) is the ambiguity

at genus one. It is determined from modular constraints and the physical requirement

that F (1) should only be singular at the discriminant of E . Note that under a modular

transformation (3.4) one finds that Imτ 7→ |cτ + d|−2Imτ . Together with the invariance

of F (1) this implies that Φ(τ) must be a modular form of weight 1. The only modular form

of weight 1 which has only poles at the discriminant of E is the square of the η function

given in (B.7). This fixes the ambiguity at genus one as Φ(τ) = η2(τ).

At genus one the non-holomorphic dependence was induced through the appearance

of Imτ . As dictated by the holomorphic anomaly equations, all higher F (g) also depend

on t̄. We now show that this dependence arises through the propagator ∆̂tt only. ∆̂tt is

obtained in the local limit of (2.17) and thus obeys

∂t̄∆̂
tt = C

(0) tt
t̄

. (3.12)

All other propagators vanish in this limit. To integrate this condition, we first multiply

both sides in (3.12) by C
(0)
ttt . The result is easily compared to the holomorphic anomaly

1They can be calculated likewise using the Picard-Fuchs equation.
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equation (3.10) of F (1). Changing derivatives by inserting ∂τ/∂t = C
(0)
ttt one evaluates with

the help of (B.12)

∆̂tt = 2∂τF (1)(τ, τ̄ ) = − 1

12
Ê2(τ, τ̄ ) , ∂τ = (2πi)−1 ∂

∂τ
(3.13)

The occurrence of the non-holomorphic extension of the second Eisenstein series E2(τ)

Ê2(τ, τ̄ ) = E2(τ) − 3

πImτ
. (3.14)

is forced by modular invariance. Since F (1)(τ, τ̄) is a modular function of weight zero, its

derivative must be a modular form of weight 2 which is not holomorphic. The only form

with these properties is the almost holomorphic form Ê2(τ, τ̄ ). This form is the canonical,

almost holomorphic extension of the second Eisenstein series E2, where E2 is the unique

holomorphic quasimodular form of weight 2 transforming as

E2(τ) 7→ (cτ + d)2E2(τ) − 6

π
ic(cτ + d) (3.15)

under a modular transformation (3.4). The shift in the transformation of the anholomor-

phic piece in (3.14) cancels precisely the shift in (3.15). More generally the ring M̂∗ of

almost holomorphic forms of Γ(2) is generated as C[Ê2, h,∆].

Using the propagator and general properties of the Feynman graph expansion one can

extract the fact that the higher genus F (g) are weight 0 forms with the structure

F (g)(τ, τ̄) = C2g−2
3g−3∑

k=0

Êk
2 (τ, τ̄ )c

(g)
k (τ) , g > 1 , (3.16)

where we defined C = C
(0)
ttt . Modular invariance implies then that the holomorphic forms

c
(g)
k (τ) are modular of weight 6(g − 1) − 2k in C[h,∆]. We will show next that all forms

c
(g)
k (τ) with k > 0 are very easily determined by direct integration of the holomorphic

anomaly equation. The form c
(g)
0 (τ) is not determined in this way and corresponds to a

holomorphic modular ambiguity.

In order to analyze the holomorphic anomaly equations in the local case, it turns out

to be very useful to discuss some general properties related to modular transformations.

Let us first discuss how derivatives transform under the modular transformation (3.4).

Denoting by fk a modular form of weight k it is elementary to check that its derivative

transforms under (3.4) as

∂τfk 7→ (cτ + d)k+2∂τfk +
k

2πi
c(cτ + d)k+1fk . (3.17)

Similarly, we can evaluate ∂tfk = C−1∂τfk, where as above C = C
(0)
ttt . In order to cancel

the shift in (3.17) we will now introduce covariant derivatives. There are two possible ways

to achieve this.2 Firstly, one can cancel the shift against the shift of (Imτ)−1 and set

Dtfk =

(
∂t −

kC

4πImτ

)
fk , Dτfk =

(
∂τ − k

4πImτ

)
fk . (3.18)

2We thank Don Zagier for explaining us several manipulations involved in the following.
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Here Dt is the covariant derivative to the Weil-Petersson metric Gtt̄ and Dτ is the so-

called Mass derivative. Dt maps almost holomorphic forms of Γ(2) of weight k into almost

holomorphic forms of weight k − 1, while Dτ increases the weight from k to k + 2. Note

that both derivatives in (3.18) are non-holomorphic due to the appearance of Imτ . There

is however a second possibility to cancel the shift (3.17) which is manifestly holomorphic.

More precisely, one can cancel the shift against the shift (3.15) of E2(τ) and define

D̂tfk =

(
∂t −

1

12
kCE2

)
fk , D̂τfk =

(
∂τ − 1

12
kE2

)
fk . (3.19)

In this case D̂τ is known as the Serre derivative. Both D̂t and D̂τ are holomorphic. They

map holomorphic modular forms of weight k to holomorphic modular forms of weight k−1

and k + 2 respectively. It is easy to check that the following identity holds

Dtfk = D̂tfk +
1

12
kCÊ2 fk , Dτfk = D̂τfk +

1

12
kÊ2 fk . (3.20)

These equations also imply that whenever fk is holomorphic all the non-holomorphic de-

pendence of Dtfk and Dτfk lies in a term involving the propagator. In other words, once

again all anti-holomorphic dependence arises through the propagator Ê2 only. The gener-

alizations of the modular derivatives (3.18) and (3.19) will reappear in later sections of this

work. For the Enriques Calabi-Yau they are given in (A.3),(4.11) and (5.31), while in the

general discussion of compact Calabi-Yau manifolds they appear in (7.4),(7.18) and (7.42).

Here we will us the covariant derivatives (3.18) and (3.19) to rewrite the holomor-

phic anomaly equations (2.10). Firstly, we will apply modularity and the fact that

all non-holomorphic dependence arises through the propagator Ê2(τ, τ) to convert anti-

holomorphic derivatives into derivatives with respect to Ê2. Using (3.20) we will be able

to carefully keep track of the Ê2 dependence in the holomorphic anomaly equations. Even-

tually, a solution will be simply obtained by direct integration of a polynomial in Ê2.

To begin with, note that the holomorphic anomaly equations specialize in the local

limit to

∂t̄F
(g) =

1

2
C

(0)tt
t̄

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)

)
. (3.21)

Using the fact that all non-holomorphic dependence arises only through the propagator

Ê2(τ, τ̄ ), this equation can be rewritten as

∂F (g)

∂Ê2

=
1

48

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)

)
. (3.22)

Here we used (3.12) to substitute C
(0)tt
t̄ with the derivative ∂t̄Ê2, which then cancels with

the same factor arising on the left-hand side of this equation. Let us now manipulate the

right-hand side of (3.25) and split off the derivative of F (1) in the second term

∂F (g)

∂Ê2

=





1
48

(
Dt∂tF

(1) + (∂tF
(1))2

)
g = 2 ,

1

48

(
(Dt + 2∂tF

(1))∂tF
(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)

)
g > 2 ,

(3.23)
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where the sum now runs from r = 2 to r = g−2. One then notes that ∂tF
(1) can be replaced

by − 1
24CÊ2 by using (3.13). Furthermore, we replace the non-holomorphic derivative Dt

with its holomorphic counterpart D̂t via (3.20). Altogether, one evaluates

∂F (2)

∂Ê2

= − 1

48 · 24

(
D̂t(CÊ2) −

1

8
(CÊ2)

2

)
(3.24)

for genus two and for g > 2

∂F (g)

∂Ê2

=
1

48

((
D̂t −

1

6
CÊ2

)
∂tF

(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)

)
. (3.25)

We are now in the position to make the dependence on Ê2 explicit. This can be done

by rewriting the right-hand side of (3.25) using (3.19). We also define d̂t and d̂τ as covariant

derivatives Dt, D̂τ not acting on the propagators Ê2, such that e.g. d̂τ (Êk
2 c

(r)
k ) = Êk

2 D̂τ c
(r)
k .

Applying the chain rule we find

∂tF
(r) =

[
d̂t + (D̂tÊ2)∂ bE2

]
F (r) = C

[
d̂τ − 1

12
(E4 + Ê2

2)∂ bE2

]
F (r) , (3.26)

where (3.14), (3.19) and (B.13) are applied to evaluate the derivative of E2. The Eisenstein

series E4 arises naturally in rewriting the derivatives. We will therefore work with the ring

C[Ê2, h,E4] introduced in (3.6).

Similarly, we rewrite the second derivative

D̂t∂tF
(g−1) =

1

122
C2

(
122d̂2

τ + 62hd̂τ + 2E4(Ê2∂ bE2
+ Ê2

2∂2
bE2

)

−(3h + 12d̂τ )Ê2
2∂ bE2

+ 2Ê3
2∂ bE2

+ Ê4
2∂2

bE2
(3.27)

+(−9E4h + 2h3 − 12E4d̂τ )∂ bE2
+ E2

4∂2
bE2

)
F (g−1) ,

where we have used that the derivative of C is given by D̂τC = 1
4hC. This is how the

holomorphic modular form h defined in (3.6) arises in the direct integration.

We can now actually perform the direct integration. This is done by inserting the

expressions (3.26) and (3.27) for ∂tF
(r) and D̂t∂tF

(g−1) into the holomorphic anomaly

equation (3.25). Replacing all F (r) for 1 < r < g with their propagator expansion (3.16), it

is then straightforward to keep track of the number of propagators Ê2 in each term of the

right-hand side of (3.25). Finally, F (g) is determined up to a Ê2−independent ambiguity

by integrating the resulting polynomial in Ê2. Without much effort this procedure can be

repeated iteratively up to the desired genus.

Note that the equation (3.24) for F (2) is particularly simple to integrate. Using (3.19)

and (B.13) one evaluates

D̂t(CÊ2) −
1

8
(CÊ2)

2 =
1

24
C2

(
− 5Ê2

2 + 6Ê2h − 2E4

)
. (3.28)

– 12 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
8

Inserted into (3.25) it is straightforward to integrate this quadratic polynomial in Ê2 to

derive F (2) as

F (2)(τ, τ̄ ) =
1

2 · 243
C2

(
5

3
Ê3

2 − 3hÊ2
2 + 2E4Ê2

)
+ C2c

(2)
0 , (3.29)

where c
(2)
0 (h,E4) is the holomorphic ambiguity which can be fixed by additional boundary

conditions as we discuss in the next section. For genus up to 7 the expressions for F (g) were

calculated in [33] using the Feynman graph expansion. The direct integration using (3.25)

provides a far more effective method to solve Seiberg-Witten theory and confirms the results

of [33]. Furthermore, the modular properties of the expressions are manifest at each step.

As we will discuss in the later sections, similar constructions will provide us with a powerful

tool to determine the set of candidate modular generators for more complicated Calabi-

Yau manifolds. In particular, holomorphic modular forms are needed to parametrize the

holomorphic ambiguity. In case we know the ring of holomorphic modular forms, fixing

the ambiguity reduces to a determination of a finite set of numerical factors at each genus.

For Seiberg-Witten theory this can be done systematically, as we will discuss in the next

section.

3.3 Boundary conditions

To systematically fix the c
(g)
0 we have to understand the boundary behavior of the F (g). As

it is well known, there are three distinguished regions in the moduli space of pure SU(2)

N = 2 SYM which correspond to the geometrical singularities of E . We will parametrize

the moduli space by the vacuum expectation value u = 〈TrΦ2〉 of the scalar Φ in the

N = 2 vector multiplet. The first region occurs at u ∼ 1
2 t2 → ∞, and it corresponds

physically to the semiclassical regime. The monopole region occurs near u → Λ2, where

a magnetic monopole of charge (e,m) = (0, 1) becomes massless and the electric SU(2)

theory with gauge coupling Imτ is strongly coupled. At the point u → −Λ2 a dyon of charge

(e,m) = (−1, 1) becomes massless. However, this point is identified with the monopole

point by a Z2 exact quantum symmetry. For this reason there are no independent boundary

conditions at u → −Λ2 and we focus on u → Λ2 and u ∼ ∞. In both cases the elliptic

curve acquires a node, i.e. a local singularity of the form ξ2 + η2 = (u±Λ2), where a cycle

of S
1 topology shrinks. In string theory, a point in the moduli space where a node in the

target geometry develops is called a conifold point.

The natural physical parameter in the magnetic monopole region u → Λ2 is tD.

We get first a convergent expansion for the F (g) in the variable qD = exp(2πiτD) for

τD = − 1
τ → i∞, which corresponds to tD → 0. This is obtained by an S- transformation

of the modular expressions for the F (g)(τ, τ̄ ) such as (3.29), which converge in the semiclas-

sical region. The holomorphic magnetic expansions F (g)
D (τD) can be obtained by formally

taking the limit τ̄D → ∞, while keeping τD fixed. Finally we obtain the expansion in tD
by inverting (3.9). In these magnetic expansions, a gap structure was observed near the

monopole (or conifold) point [33]. One finds that the leading behavior of F (g)
D (τD) is of the

form

F (g)
D =

B2g

2g(2g − 2)t̃2g−2
D

+ k
(g)
1 t̃D + O(t̃2D) , (3.30)
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where the Bn are the Bernoulli numbers and we used a rescaled variable t̃D = i tD
2 . The

knowledge of the leading coefficients and the absence of the remaining 2g − 3 sub-leading

negative powers in the t̃D expansion imposes 2g − 2 conditions. Since dimM6g−3(Γ(2)) =
[

3g−1
2

]
this overdetermines the c

(g)
0 , e.g. for g = 2 we find c

(2)
0 = − 1

2·243

(
1
2E4 h + 1

30h3

)
.

It is very easy to integrate (3.25) using (3.26), (3.27) and the gap condition, which fixes

the ambiguity to arbitrary genus. This solves the theory completely. One finds moreover

a pattern in the first subleading term in the magnetic expansion

k
(g)
1 =

((2g − 3)!!)3

g!27g−2
. (3.31)

The gap can be explained by using the embedding of Seiberg-Witten theory into type

IIA string theory compactified on a suitable Calabi-Yau manifold. The most generic sin-

gularity of a d complex dimensional manifold is a node where an S
d shrinks. The codi-

mension one locus in the moduli space where this happens is called the conifold. It was

argued in [56, 58] that at the conifold a RR-hypermultiplet becomes massless. This hy-

permultiplet is charged and couples to the U(1) vector multiplets. Its one loop effect on

the kinetic terms of the vector multiplets in the effective action is captured by the local

expansion of F (0) [56]. A gravitational one-loop effect yields the moduli dependence of the

R2
+ term in the effective action and is given by local expansion F (1) [58]. Using further

one-loop arguments it was shown that the F (g), which capture the moduli dependence of

the coupling of the self-dual part of the curvature to the self-dual part of the graviphoton

R2
+ F 2g−2

+ , have the following gap structure

F
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D), (3.32)

where tD is a suitable coordinate transverse to the conifold divisor [34]. The Seiberg-

Witten gauge theory embedded in type IIA string theory inherits this structure, and the

massless hypermultiplet at the conifold is identified as a monopole becoming massless at

the monopole point. In this way, (3.32) explains the field theory result (3.30) and extends

it to the full supergravity action.

Once the Seiberg-Witten amplitudes F (g) have been determined in terms of modular

functions, these can be expanded around every point in the moduli space. For example, in

the semiclassical regime τ → i∞, u → ∞ one finds the holomorphic amplitudes

F (g) =
(−1)gB2g

g(2g − 2)(2t)2g−2
+

l
(g)
2g+6

t2g+6
+ O(t2g+10) . (3.33)

The higher order terms in this expansion correspond to gauge theory instantons and have

been computed in [52].

4. A first look at the Enriques Calabi-Yau

In this section we review some basic properties of topological string theory on the Enriques

Calabi-Yau. We begin by reviewing the N = 2 special geometry of the classical moduli
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space of Kähler and complex structure deformations in section 4.1. The first world-sheet

instanton corrections arise from genus one Riemann surfaces as shown in refs. [23, 29, 41].

The holomorphic higher genus free energies, restricted to the K3 fiber, can be also derived

by using heterotic-type II duality [41]. We briefly summarize these results in section 4.2.

In understanding and deriving the expression for the full F (g) an important hint is given

by their transformation properties under the symmetry group of the full topological string

theory on the Enriques Calabi-Yau. More precisely, generalizing the results of the previous

section, one expects that all F (g) are built out of functions transforming in a particularly

simple way under the group Sl(2, Z)×O(10, 2, Z). In section 4.4 we review some essentials

about these modular and automorphic functions and forms.

4.1 Special geometry of the classical moduli space

The Enriques Calabi-Yau can be viewed as the first non-trivial generalization of the product

space T
2 × K3. It is defined as the orbifold (T2 × K3)/Z2, where Z2 acts as a free invo-

lution [23]. This involution inverts the coordinates of the torus and acts as the Enriques

involution on the K3 surface. The cohomology lattice of T
2 × K3 takes the form [5]

Γ6,22 = Γ2,2 ⊕ [Γ1,1 ⊕ E8(−1)]1 ⊕ [Γ1,1 ⊕ E8(−1)]2 ⊕ Γ1,1
g ⊕ Γ1,1

s , (4.1)

where the inner products on the sublattices E8(−1) and Γ1,1 are given by

(Cαβ) = −CE8 , (Cij) =

(
0 1

1 0

)
. (4.2)

with α, β = 1, . . . , 8 and i, j = 1, 2. Here CE8 is the Cartan matrix of the exceptional

group E8. The lattice (4.1) splits into H1(T2) ⊕ H1(T
2) = Γ2,2 and H∗(K3) = Γ4,20.

Under heterotic-type II duality it can be identified with the Narain lattice of the heterotic

compactification on T
6. The Z2 involution on the Enriques Calabi-Yau acts on the five

terms of the lattice (4.1) as [23]3

|p1, p2, p3, p4, p5〉 → eπiδ·p5 | − p1, p3, p2,−p4, p5〉 , (4.3)

where pi is an element of the i-th term in (4.1) and we denoted δ = (1,−1) ∈ Γ1,1
s .

The Enriques Calabi-Yau has holonomy group SU(2) × Z2. This implies that type

II string theory compactified on the Enriques Calabi-Yau will lead to a four-dimensional

theory with N = 2 supersymmetry. Nevertheless, due to the fact that it does not have the

full SU(3) holonomy of generic Calabi-Yau threefolds, various special properties related to

N = 4 compactification on T
2 × K3 are inherited.

As an example of the close relation of the Enriques Calabi-Yau to its N = 4 counterpart

T
2×K3 one notes that the moduli space of Kähler and complex structure deformations are

simply cosets. The complex dimensions of these moduli spaces are given by the dimensions

h(1,1) and h(2,1) of the cohomologies H(1,1) and H(2,1). They can be determined constructing

a basis of H(p,q) of forms of K3 and T
2 invariant under the free involution. One obtains [23]

h(2,1) = h(1,1) = 11 , (4.4)

3The effect of the phase factor on the type II side was interpreted as turning on a Wilson line [23].
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while H(0,0), H(3,3) as well as H(3,0) are one-dimensional. Moreover, one can show that the

Enriques Calabi-Yau is self-mirror and that both the Kähler and complex structure moduli

spaces are given by the coset

M =
Sl(2, R)

SO(2)
×N8 , (4.5)

where

Ns =
O(s + 2, 2)

O(s + 2) × O(2)
. (4.6)

The actual moduli space is obtained after dividing M by the discrete groups Sl(2, Z) ×
O(10, 2; Z). M is a simple example of a special Kähler manifold. We will discuss its

properties in the following.

It is a well-known fact that the geometric moduli space of a Calabi-Yau manifold

consists of two special Kähler manifolds corresponding to Kähler and complex structure

deformations. A summary of some of the basic definitions and identities of special geometry

can be found in appendix A. Essentially all information is encoded in one holomorphic

function, the prepotential F . Let us for concreteness consider the moduli space of Kähler

structure deformations of the Enriques Calabi-Yau which is of the form (4.5). Denoting by

ω̂ the harmonic (1, 1)-form in the T
2-base and by ωa the (1, 1) forms in the Enriques fiber,

we obtain complex coordinates S, ta by expanding the combination

J + iB2 = S ω̂ + ta ωa , a = 1, . . . , 10 , (4.7)

where J is the Kähler form on the Enriques Calabi-Yau and B2 is the NS-NS two-form.

Note that in our conventions ReS > 0 and Re ta > 0 such that the world-sheet instantons

arise as series in qS = e−S and qta = e−ta in the large radius expansion. We note that

these complexified Kähler parameters ta can be regarded as a parametrization of the coset

N8. The parametrization we are using here is the one suitable for the conventional large

radius limit and corresponds to what was called in [41] the geometric reduction. In terms

of (4.7), the prepotential takes the form

F = − i

2
Cabt

atbS . (4.8)

For the Enriques Calabi-Yau the cubic expression for the genus zero free energy F (0) = F
is exact and world-sheet instanton corrections will only arise at higher genus. This is

precisely the reason for the simple form (4.5) of the moduli space. The symmetric matrix

Cab in (4.8) encodes the intersections in the Enriques fiber E such that

Cab =

∫

E
ωa ∧ ωb . (4.9)

The inverse matrix Cab ≡ C−1ab can be calculated explicitly and coincide in an appropriate

basis with the intersection matrix of the Z2 invariant lattice of the second and the third

factor in (4.1), i.e.

ΓE = Γ1,1 ⊕ E8(−1) , (Cab) =

(
0 1

1 0

)
× (−CE8). (4.10)
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Here CE8 is the Cartan matrix of the exeptional group E8. The lattice ΓE is identified

with the second cohomology group of the Enriques surface.

The prepotential for the Enriques Calabi-Yau encodes the classical geometry of the

moduli space (4.5). The Kähler potential is derived using equation (A.8) to be of the form

K = − log

[
Y (S + S̄)

]
, Y =

1

2
Cab(t

a + t̄a)(tb + t̄b) . (4.11)

Note that K as given in (A.8) contains a term − log |X0|2, with X0 being the fundamental

period. Such a term can be removed by a Kähler transformation K → K − f − f̄ , where f

is a holomorphic function, such that our expression (4.11) corresponds to a certain Kähler

gauge. In general, all objects we will consider below are sections of a line bundle L which

parametrizes such holomorphic rescalings V → efV . As an example e−K is a section of

L ⊗ L̄. Such Kähler transformations do not change the Kähler metric which is obtained

by evaluating the holomorphic and anti-holomorphic derivative of K. The Kähler metric

splits into two pieces

GSS̄ =
1

(S + S̄)2
, Gab̄ = −Cab

Y
+

Cac(t + t̄)cCbd(t + t̄)c

Y 2
, (4.12)

with all other components vanishing. The Christoffel symbols for this metric are easily

evaluated to be

ΓS
SS = 2KS , Γc

ab = KeC
edΓ̂c

ab|d , (4.13)

where KS and Ka are the first derivatives of the Kähler potential (4.11) and we have

defined

Γ̂b
ac|d =

(
δb
cCad + δb

aCcd − δb
dCac

)
. (4.14)

It is also easy to derive the holomorphic Yukawa couplings C
(0)
ijk defined in (A.12). In

coordinates S, ta one uses the prepotential (4.8) to show

C
(0)
Sab = Cab . (4.15)

In general C
(0)
Sab is a section of L2⊗Sym3(T ∗M). In the case of the Enriques Calabi-Yau

it is constant in the Kähler gauge and coordinates chosen above, and covariantly constant

in a general gauge. The covariant derivative, acting on a section of Lm ⊗ L̄n, is (A.3)

Da = ∂a + mKa, Dā = ∂ā + nKā, (4.16)

and includes the Christoffel symbols when acting on tensors. Applied to C
(0)
Sab one shows

DcC
(0)
abS = −Γd

caCdb − Γd
cbCad + 2∂cKCab = 0 , (4.17)

which vanishes by means of the equation (4.13) for the Christoffel symbols. A similar

equation holds for the covariant derivative DSC
(0)
abS , showing that C

(0)
abS is indeed covariantly

constant. Once again, this special property of the Yukawa couplings is immediately traced

back to the fact that the prepotential F receives no instanton corrections.
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The space M has two different types of singular loci in complex codimension one on

the moduli space [23, 4] which lead to conformal field theories in four dimensions. The first

degeneration comes from the shrinking of a smooth rational curve e ∈ ΓE with e2 = −2.

The shrinking P
1 leads to an SU(2) gauge symmetry enhancement together with a massless

hypermultiplet, also in the adjoint representation of the gauge group. We then obtain for

this point the massless spectrum of N = 4 supersymmetric gauge theory. In terms of the

complexified Kähler parameters introduced in (4.7) this singular locus occurs along

t1 = t2. (4.18)

In order to understand the second singular locus, we first point out that the coset N8 can be

parametrized in many different ways. In [41] it was noticed that there is a parametrization

of this coset in terms of some coordinates taD, a = 1, · · · , 10 which are related to what was

called there the BHM reduction. By using the formulae in [41] it is easy to see that the

coordinates ta and taD are related by the following simple projective transformation,

t1 = t1D − 1

4t2D

10∑

i=3

(tiD)2,

t2 =
2π2

t2D
,

ti = −πi
tiD
t2D

, i = 3, · · · , 10.

(4.19)

The second singular locus occurs when

t1D = t2D. (4.20)

On this locus one gets as well an SU(2) gauge symmetry enhancement. In addition one gets

four hypermultiplets in the fundamental representation of SU(2), and the resulting gauge

theory is N = 2, SU(2) Yang-Mills theory with four massless hypermultiplets. In figure 1

we represent schematically the two singular loci in moduli space, related by the projective

transformation (4.19). In sections 5 and 6 of this paper we will explore in some detail the

field theory limit of the topological string amplitudes and we will verify this picture of the

moduli space.

4.2 Genus one and the free energies on the Enriques fiber

So far we have discussed the classical moduli space of the Enriques Calabi-Yau Y . We

introduced the prepotential F which is cubic in the Kähler structure deformations and

receives no worldsheet instanton corrections. One expects that such a simple structure will

no longer persist at higher genus. This is already true at genus one as was shown in [29, 41].

Heterotic-type II duality can also be used to determine all higher genus free energies on

the K3 fibers of the Enriques Calabi-Yau [41]. In this section we will summarize some

results of [41] and present a closed expression for the fiber free energies also including the

anti-holomorphic dependence.
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N = 4 enhancement

t
1

= t
2 t

1

D
= t

2

D

Nf = 4 enhancement

N8

Figure 1: The singular loci in the moduli space N8, leading to two different gauge theories in the

field theory limit.

Let us begin with a brief discussion of the free energies for the Enriques fiber. The

fiber limit of the topological string amplitudes corresponds to blowing up the volume of

the base space by taking

S → ∞ , qS ≡ e−S → 0 . (4.21)

In what follows we will need to distinguish the full topological string amplitudes F (g) from

their fiber limits as well as from their holomorphic limits. We will denote,

F
(g)
E (t, t̄) = lim

S→∞
F (g)(t, t̄) (4.22)

and

F (g)
E (t) = lim

t̄→∞
F

(g)
E (t, t̄). (4.23)

The fiber limit F
(g)
E (t, t̄) can be calculated using heterotic-type II duality [3, 46, 41]. In the

heterotic string they are given by a one-loop computation of the form

F
(g)
E (t, t̄) =

∫
dτ Θ

g
Γ(τ, v+)fg(τ, τ̄ )/Y g−1 (4.24)

where Y is defined in (4.11), and Θg
Γ(τ, v+) is a theta function with an insertion of 2g − 2

powers of the right-moving heterotic momentum. We will not need the precise definitions

of Θg
Γ and fg here. However, it is important to note that these amplitudes can be evalu-

ated in closed form by using standard techniques for one-loop integrals. The holomorphic

limit (4.23) was determined in [41] and it is given by

F (g)
E (t) =

∑

r>0

cg(r
2)

[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
, (4.25)

where Lin is the polylogarithm of index n defined as

Lin(x) =
∞∑

d=1

xd

dn
. (4.26)
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In formula (4.25) we have also set r2 = Cabrarb and r · t = rat
a. We will sometimes write

r = (n,m, ~q). (4.27)

The restriction r > 0 means n > 0, or n = 0,m > 0, or n = m = 0, ~q > 0. Finally, we

need to define the coefficients cg(n). They can be identified as the expansion coefficients

of a particular quasi-modular form

∑

n

cg(n)qn = −2
Pg(q)

η12(2τ)
, (4.28)

with Pg(q) given by (
2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q). (4.29)

The definition of η(τ) and the theta-function ϑ1(λ|τ) can be found in appendix B. From

the definition (4.29) and the identities summarized in appendix B one also infers that the

Pg are quasimodular forms of weight 2g and can be written as polynomials in the Eisenstein

series E2, E4, E6. We have for example

P1(q) =
1

12
E2(q) , P2(q) =

1

1440
(5E2

2 + E4) . (4.30)

In general, as we will see in section 5, it is very hard to include the T
2-base in order to

obtain the expressions F (g) for the full Enriques Calabi-Yau. It turns out that only F (1)

factorizes nicely, namely we can write the A-model free energy F (1) as [29, 41]

F (1)(S, t) = F (1)
base + F (1)

E , (4.31)

where F (1)
base and F (1)

E are the contributions from the T
2 base and the K3 fiber. F (1)

base is the

torus free energy given by [6]

F (1)
base = −12 log η(S) , (4.32)

where η(S) is defined in (B.7), while

F (1)
E = −1

2
log Φ(t), (4.33)

where Φ(t) is the infinite product

Φ(t) =
∏

r>0

(
1 − e−r·t

1 + e−r·t

)2c1(r2)

. (4.34)

This infinite product first appeared in the work of Borcherds [10]. As we will discuss in

more detail later on, Φ(t) is the key example of a holomorphic automorphic form for the

Enriques Calabi-Yau. It is also convenient to introduce,

Φ(S, t) = η24(S)Φ(t), (4.35)
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so that we can write

F (1)(S, t) = −1

2
log Φ(S, t). (4.36)

We presented above formulae for the holomorphic limit of F
(g)
E (t, t̄), but heterotic-type

II duality can be used as well to obtain the antiholomorphic dependence on t̄. At genus

one, one finds [28, 46]

F
(1)
E (t, t̄) = −2 log Y − log

∣∣∣∣Φ(t)

∣∣∣∣. (4.37)

The antiholomorphic dependence on S̄ is the usual one for the torus [6] and one has

F (1)(S, S̄, t, t̄) = F
(1)
E (t, t̄) − 6 log

(
(S + S̄)|η2(S)|2

)
. (4.38)

Equivalently, we can write

F (1)(S, S̄, t, t̄) = −2 log

[
(S + S̄)3Y

]
− log

∣∣∣∣Φ(S, t)

∣∣∣∣. (4.39)

As a consistency check one shows that this anti-holomorphic dependence can also be in-

ferred from the holomorphic anomaly equation (2.11) for F (1).

The antiholomorphic dependence in the heterotic calculation at higher genus is much

more complicated, but was written down for the STU model in [46]. As we show in

appendix C, this computation can be considerably simplified and adapted to the Enriques

case. We find that the non-holomorphic free energy F
(g)
E (t, t̄) can be cast into the form

F
(g)
E (t, t̄) =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(
2g − 3 − l

C

)
(t + t̄)a1 . . . (t + t̄)al−C ∂a1 . . . ∂al−C

F (g−l)
E (t)

(l − C)!2l Y l

− 1

2g−2(g − 1)Y g−1
, (4.40)

where F (r)
E (t) is the holomorphic fiber expression given in (4.25). It is easy to check that

the F
(g)
E (t, t̄) fulfill the holomorphic anomaly equation on the fiber.

So far we have discussed the heterotic results for the fiber limit by using the Kähler

parameters (4.7) appropriate for the large radius limit. As shown in [41], one can also

compute them in the coordinates taD introduced in (4.19). This was called the BHM

reduction in [41], and leads to the holomorphic couplings,

F (g)
E (tD) =

∑

r>0

dg(r
2/2)(−1)n+mLi3−2g(e

−r·tD) (4.41)

where the coefficients dg(n) are defined by

∑

n

dg(n)qn =
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
, (4.42)
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and in (4.41) we regard r as a vector in Γ1,1⊕E8(−2). Note that in comparison to (4.10) we

now need to include the lattice E8(−2) with inner product given by −2 times the Cartan

matrix of E8, such that r2 = 2nm − 2~q 2. One has, in particular,

F (1)
E (tD) = −1

2
log ΦB(tD) , (4.43)

where

ΦB(tD) =
∏

r>0

(
1 − e−r·tD

)(−1)n+mcB(r2/2)

(4.44)

with coefficients
∑

n

cB(n)qn =
η(2τ)8

η(τ)8η(4τ)8
. (4.45)

This is the modular form introduced by Borcherds in [9], and the above expression for F1

agrees with that found by Harvey and Moore in [29] (up to a factor of 1/2 due to different

choice of normalizations).

4.3 An all-genus product formula on the fiber

As we have already mentioned, the infinite product (4.34) was first considered by Borcherds

in [10]. Borcherds also noticed that (4.34) is the denominator formula for a generalized

Kac-Moody (or Borcherds) superalgebra (see [25, 28] for a review of Borcherds algebras).

The root lattice of this superalgebra is Γ1,1 ⊕ E8(−1) (i.e. the cohomology lattice of the

Enriques surface), and the simple roots are the positive, norm 0 vectors. Each simple

root appears also as a superroot, both with multiplicity 8, and this is why the product

of (4.34) has a “supersymmetric” structure: the numerator is a trace over fermionic degrees

of freedom, while the denominator traces over bosonic degrees of freedom. Both have the

same multiplicity 2c1(r
2). In addition, the fact that c1(−1) = 0 is equivalent to the absence

of tachyons in the spectrum.

We will now write down a formula for the total partition function of topological string

theory, restricted to the fiber, and we will show that it preserves the structure found by

Borcherds for (4.34). As a first step, we define a generating functional ξ(q, gs) closely

related to (4.29),

ξ(q, gs) =
∞∏

n=1

(1 − qn)2

1 − 2qn cos gs + q2n
. (4.46)

We have the identity

∞∑

g=0

Pg(q)g
2g−2
s =

(
2 sin

gs

2

)−2

ξ2(q, gs), (4.47)

Let us now define the Enriques degeneracies ΩE(r, ℓ) as

∑

r,ℓ

8ΩE(r, ℓ)qr2
qℓ
s =

2

(q
1
4
s − q

− 1
4

s )2

1

η12(2τ)
(ξ2(q, gs/2) − ξ2(−q, gs/2)), (4.48)
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where

qs = eigs (4.49)

The r.h.s. of (4.48) only involves integer powers of q±1
s . We can collect the Enriques

degeneracies in the generating polynomials

Ωn(z) =
∑

r2=2n,ℓ≥0

ΩE(r, ℓ)zℓ, (4.50)

which are of degree n in z. We have for the first few:

Ω0(z) = 1,

Ω1(z) = 12 + 2z,

Ω2(z) = 90 + 24z + 3z2,

Ω3(z) = 520 + 180z + 36z2 + 4z3,

Ω4(z) = 2538 + 1040z + 270z2 + 48z3 + 5z4,

Ω5(z) = 10944 + 5070z + 1560z2 + 360z3 + 60z4 + 6z5.

(4.51)

Notice that the constant terms of Ωn(z) are closely related to the Euler characteristics of

the Hilbert schemes of the Enriques surface, but there are “deviations” which become more

and more important as the degree increases. Finally, notice that

∑

ℓ

ΩE(r, ℓ)qr2
qℓ
s = Ωn(qs) + Ωn(q−1

s ) − Ωn(0). (4.52)

We now define

FE =

∞∑

g=1

g2g−2
s F (g)

E (t), ZE = e−2FE . (4.53)

Notice that, as gs → 0, ZE is precisely the Borcherds product Φ(t). It is now an easy

exercise to evaluate it for finite gs from (4.25), and we find

ZE(gs, t) =
∏

r,ℓ

(
1 − qℓ

se
−r·t

1 + qℓ
se

−r·t

)8ΩE(r,ℓ)

. (4.54)

As in the g = 1 case, (4.54) has a supersymmetric structure, with the same degeneracies for

fermionic and bosonic states. This formula in fact suggests the existence of a superalgebra

structure for the all-genus result as well. By including gs we have extended the lattice to

Γ1,1 ⊕ E8(−1) → Γ1,1 ⊕ E8(−1) ⊕ Z (4.55)

which is reminiscent of the growth of an eleven-dimensional direction associated to the

string coupling constant. The fact that the all-genus heterotic results seem to lead to an

extra direction in the heterotic lattice has been pointed out in [17, 38]. It would be very

interesting to see if there is indeed a superalgebra associated to the all-genus result (4.54).

If this was the case, the quantities 8ΩE(r, ℓ) would correspond to root multiplicities.
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Finally, we mention that according to the conjecture in [47] and the results

of [48], (4.54) is essentially the generating functional of an infinite family of Donaldson-

Thomas invariants on the Enriques surface (written already in the right variables). Such

product formulas for Z exist generically if the latter is expressed in terms of of Gopakumar-

Vafa invariants [40]. Our comments above indicate that the Donaldson-Thomas theory on

this manifold has a highly nontrivial algebraic structure (see section 3.2.6 in [48] for a

related observation).

4.4 Automorphic forms

The free energies F
(g)
E (t, t̄) on the fiber turn out to be automorphic forms on the coset space

N8. Here we will study in some detail automorphic forms on the space Ns. We will say

that a function on the moduli space Ns is automorphic if it has well-defined transformation

properties under the discrete subgroup O(s + 2, 2; Z).

The transformation properties are easier to understand if we consider explicit gen-

erators of the symmetry group. We consider the explicit parametrization of the coset

space (4.5) induced by a reduction

Γs+2,2 = Γs+1,1 ⊕ Γ1,1, (4.56)

and let t ∈ C
s+1,1 be the vector of complex coordinates parametrizing the coset. Our

conventions are such that t has positive real part. For an element ta ∈ C
s+1,1 we define the

inner product

t2 =
1

2
Cabt

atb, (4.57)

where Cab is the intersection matrix.

The generators of the symmetry group are taken to be [28]:

• t 7→ t + 2πiλ, λ ∈ Γs+1,1.

• t 7→ w(t), w ∈ O(s + 1, 1; Z).

• The automorphic analog of an S-duality transformation

ta 7→ t̃a =
ta

t2
. (4.58)

We say that a function Ψ(t) is an automorphic function of weight k if it is invariant

under the first two transformations above, and if under (4.58), it behaves as follows:

Ψk(t̃) = t2kΨk(t). (4.59)

We can also have automorphic forms of weight (k, k̄) which transform as

Ψk,k̄(t̃) = t2k t̄ 2k̄Ψk,k̄(t). (4.60)

Although we have not indicated it explicitly, these functions might have a non-holomorphic

dependence on t̄. Automorphic forms are in general non-holomorphic. Some automorphic
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forms are meromorphic (they have poles at divisors). If they do not have poles, they are

called holomorphic.

Notice that (4.58) transforms the metric Y = (t + t̄)2 on the “upper half plane” as

follows:

Y 7→ t−2 t̄−2Y . (4.61)

Following the definition (4.60) this identifies Y as an automorphic form of weight (−1,−1).

Recalling the form of the Kähler potential for the classical moduli space (4.11) this is

nothing but a Kähler transformation [43]

K 7→ K + log t2 + log t̄2 . (4.62)

in special coordinates where X0 = 1. Note that, if we keep X0, this shift can be absorbed

by the transformation of X0

X0 7→ t2X0 . (4.63)

This can be traced back to the fact that K as given in (A.8) is a scalar under the full

symplectic group.

In order to understand how the automorphic properties mix with taking derivatives,

it is useful to derive the Jacobian Jb
a of the change of coordinates (4.58). We immediately

find,

∂t̃a

∂tb
≡ (J−1)ab =

1

t4

(
δa

bt
2 − taCbet

e

)
,

∂ta

∂t̃b
= Ja

b = δa
bt

2 − taCbet
e . (4.64)

Notice that Jb
a obeys the following useful identities

Jb
a = t4(J−1)ba , Cab = t−4CcdJ

c
aJd

b , CabJc
aJd

b = t4Ccd . (4.65)

Let us now assume that Ψ is an automorphic form of weight (k, 0). We want to determine

the transformation behavior of DaΨ and DaDbΨ under the dualities (4.58). Da are here

the derivatives covariant both with respect to Christoffel connection and the canonical

connection on the vacuum bundle L, as introduced in section 4.1. Therefore,

DaΨ = (∂a − kKa)Ψ . (4.66)

Notice that, since K transforms as given in (4.62), its first derivative Ka shifts as

Ka 7→ Jb
a

(
Kb + t−2Cbct

c

)
. (4.67)

Combining this with the transformation of the automorphic form Ψ itself we conclude

DaΨ 7→ t2kJb
aDbΨ . (4.68)

Similarly, we show that the second derivative of Ψ transforms as

DbDaΨ 7→ t2kJb
dJc

aDbDcΨ , (4.69)
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where we have used that the Christoffel symbols in the second connection transform as

Jd
b ∂dJ

c
a − Γ̃d

baJ
c
a = Γd

baJ
c
a . (4.70)

Hence, we have shown that the covariant derivatives Da of Ψ transform with a factor t2k

but are also rotated by the Jacobian Ja
b containing another factor of t2. Note however, that

we can easily obtain automorphic forms containing the derivatives DaΨ. More precisely, if

Ψ and Ψ′ are automorphic forms of weight (k, 0) and (k′, 0) we find by using (4.65) that

CabDaDbΨ , CabDaΨDbΨ
′ (4.71)

are automorphic forms of weight k + 2 and k + k′ + 2 respectively. Such automorphic

combinations arise in the derivation of all F (g)(S, S̄, t, t̄), g > 1. More precisely, we will

argue in the next sections that as function of t, t̄, F (g)(S, S̄, t, t̄) itself is an automorphic

form of weight (2g − 2, 0) such that

F (g) 7→ t4g−4F (g) for g > 1 . (4.72)

An important example of an automorphic form is the heterotic integral (4.24). It is easy to

show from the properties of the Narain-Siegel theta function that it has weight (2g − 2, 0).

Since this integral gives the fiber limit F
(g)
E , we obtain a check of the general property (4.72)

from heterotic/type II duality. Note that it is straightforward to define amplitudes F (g)

invariant under automorphic transformations by

(X0)2−2g F (g) . (4.73)

The invariance of this combination is readily checked by using (4.63) and (4.72). The

expressions (4.73) are shown to be invariant under the full target space symmetry group

Sl(2, Z) × O(10, 2). They are the direct analogs of the invariant free energies encountered

in the Seiberg-Witten example in section 3.

A particularly important and simple example occurs at g = 1. Since F
(1)
E is invariant,

one deduces from (4.37) and (4.61) that Φ(t) is an automorphic form of weight (4, 0) i.e.

Φ(t̃) = t8 Φ(t) , t̃a =
ta

t2
. (4.74)

One can also show that Φ(t) is holomorphic. This is proved in [10], and it is in fact a

consequence of the regularity of F (g)
E (t) at the singular locus (4.18), which will be discussed

in more detail in section 5.4. In addition, Φ(t) is what is called a singular automorphic

form (see [8], section 3, for a definition). Singular automorphic forms are known to satisfy

a wave equation

Cab ∂2

∂ta∂tb
Φ(t) = 0. (4.75)

Equivalently, they have Fourier expansions involving only vectors of zero norm. It follows

that F (1)
E (t) satisfies

Cab∂a∂bF (1)
E = 2Cab∂aF (1)

E ∂bF (1)
E . (4.76)

This is equivalent to the recursive relation found in [48] for genus one invariants on the fiber,

and proves that the expression for F (1)
E (t) obtained in [41] agrees with the Gromov-Witten

calculation of [48].
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5. Direct integration on the Enriques Calabi-Yau

In this section we illustrate the power of the method of direct integration by studying the

topological string amplitudes F (g) on the Enriques Calabi-Yau. Our approach will follow

and generalize the strategy developed for the Seiberg-Witten example in section 3. To begin

with, we perform a direct integration along the T
2−base in section 5.1. Using the fiber

results obtained in the previous section as additional input, the first six free energies F (g)

can be determined in a closed form. We then present a more general formalism combining

direct integration in base and fiber directions. In section 5.2, we introduce the relevant

holomorphic and non-holomorphic O(10, 2, Z) forms. A closed recursive expression for F (g)

will be derived in section 5.3. It determines the F (g) up to a holomorphic ambiguity and we

will briefly discuss possible boundary conditions in section 5.4. Finally, in section 5.5 we

consider a reduced Enriques model with three parameters only, which was already studied

in [41]. This model has the advantage that the mirror map can be determined explicitly.

We also study in more detail the boundary conditions (such as the gap condition), which

lead to valuable conclusions also applying to the full model.

5.1 A simple direct integration and F (g) to genus six

Let us now perform the direct integration along the T
2 base and derive the first few

amplitudes F (g). In order to do that we carefully keep track of their dependence of on

the base direction S, S̄. As in the case of Seiberg-Witten theory studied in section 3,

it is easy to see from the structure of the holomorphic anomaly equations that the only

antiholomorphic dependence of F (g) on S̄ appears through Ê2(S, S̄). By taking derivatives

with respect to S we will also generate in the holomorphic anomaly equations the modular

forms E4(S), E6(S), and by keeping track of the modular weight one immediately finds

that F (g) is an element of weight 2g − 2 in the ring generated by

Ê2(S, S̄), E4(S), E6(S) . (5.1)

Our only assumption here is that the holomorphic ambiguity for F (g) is also a modular form

of weight 2g−2 in this ring. This assumption (as well as the details of the direct integration)

can be checked in a highly nontrivial way by comparing the resulting expressions to the

field theory limit in the Nf = 4 locus of figure 1. This check will be performed in section 6.

To perform the direct integration let us first rewrite the holomorphic anomaly equation

for the base direction S̄. The general expression (2.10) reduces to

∂S̄F (g) = −1

2

Cab

(S + S̄)2

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)

)
. (5.2)

We now convert the derivative ∂S̄ into a derivative with respect to Ê2. The definition of

Ê2 was already given in (3.14). Since we now consider an expansion in qS = e−S it takes

the form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) . (5.3)
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Using the above assumption that the dependence of F (g) on S̄ is only through this quantity,

we can rewrite the anomaly equation as

∂F (g)

∂Ê2

= − 1

24
Cab

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)

)
. (5.4)

Here the covariant derivatives Da are only taken with respect to the fiber directions and

do not depend on the base due to the simple special geometry of the Enriques Calabi-Yau.

This implies that all dependence on Ê2 arises directly through the F (r). We thus expand

F (g) in powers of Ê2 by writing

F (g) =

g−1∑

k=0

Êk
2 (S, S̄) c

(g)
k , g > 1 . (5.5)

We see that (5.4) determines all the coefficients c
(g)
k for k = 1, . . . , g−1 in terms of quantities

at lower genera. Explicitly, we have the solution

c
(g)
k = − 1

24k
Cab

(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
, (5.6)

where we have set

c
(1)
0 = F (1) , c

(1)
i = 0 , i 6= 0 . (5.7)

The Ê2-independent term c
(g)
0 arises as an integration constant and hence cannot be de-

termined by the holomorphic anomaly equation. However, given our assumptions, we can

fix it up to genus 6 as follows. Let us denote the coefficients in the fiber limit by

c
(g)
E| k = lim

S,S̄→∞
c
(g)
k . (5.8)

By also taking the fiber limit of (5.5) we find

g−1∑

k=0

c
(g)
E| k = F

(g)
E (t, t̄). (5.9)

The free energies F
(g)
E (t, t̄) are known from the heterotic computation and given in (4.40).

Together with the fact that all c
(g)
E| k for k ≥ 1 are uniquely determined by the direct

integration we can use (5.9) to derive c
(g)
E| 0 i.e. the fiber limit of the integration constant.

But the condition that c
(g)
0 is a modular form in the ring generated by (5.1) and does not

involve Ê2 fixes it uniquely in terms of c
(g)
E| 0 as

c
(2)
0 = 0 , c

(3)
0 = c

(3)
E| 0 E4 , c

(4)
0 = c

(4)
E| 0 E6 ,

c
(5)
0 = c

(5)
E| 0 E2

4 , c
(6)
0 = c

(6)
E| 0 E4 E6 ,

(5.10)

where E4(S) and E6(S) are the two holomorphic generators in (5.1). This can be checked

by noting that the definition (B.9) of the Eisenstein series implies that

E2 , E4 , E6 → 1 , (5.11)
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in the fiber limit S, S̄ → ∞. For g ≥ 7, the number of possible modular forms is greater

than one and c
(g)
E| 0 is no longer uniquely determined in terms of its fiber limit. For example,

at genus seven c
(7)
0 can contain terms proportional to E3

4 as well as E2
6 .

Let us now write down some explicit formula for lower genera. For g = 2 we find,

F (2)(S, S̄, t, t̄) = Ê2(S, S̄) c
(2)
1 , (5.12)

where we use (5.10) and apply (5.6) to derive

c
(2)
1 = − 1

24
Cab

(
DaDbF

(1)
E + DaF

(1)
E DbF

(1)
E

)
. (5.13)

Consistency of the fiber limit requires that c
(2)
1 = F

(2)
E (t, t̄). This can be checked by using

the heterotic expression (4.40) for F
(2)
E (t, t̄), the property (4.76), and the identity [41]

F (2)
E = − 1

16
Cab∂a∂bF (1)

E , (5.14)

which follows directly from (4.24). In the holomorphic limit we find,

F (2)(S, t) = E2(S)F (2)
E (t) , (5.15)

in agreement with the results of [41, 48]. In the following sections we will also need a

slightly different form of F (2). Namely, it is straightforward to apply (4.76) to write

F (2) = −1

8
Cab∂aF

(1)∂bF
(1) . (5.16)

Let us now consider the g = 3 case. The amplitude F (3) can be expanded by using (5.5)

and (5.10) as

F (3) = Ê2
2(S, S̄) c

(3)
2 + E4(S) c

(3)
E| 0 . (5.17)

Using the result of the direct integration (5.6) we obtain

c
(3)
2 = − 1

48
Cab

(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
. (5.18)

To determine c
(3)
E| 0 we use (5.9), which gives

c
(3)
2 + c

(3)
E| 0 = F

(3)
E (t, t̄) . (5.19)

On the other hand, one finds that

F
(3)
E (t, t̄) = − 1

24
CabDaDbF

(2)
E . (5.20)

This can be derived in the holomorphic limit by using (4.24), and it is similar to (5.14).

The antiholomorphic part can be checked with (4.40). Using all this, we finally obtain the

following simple expression for F (3)(S, S̄, t, t̄),

F (3) = − 1

24
E4 CabDaDbF

(2)
E − 1

48
(Ê2

2 − E4)C
ab

(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
, (5.21)

– 29 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
8

with the holomorphic limit

F (3)(S, t) = − 1

24
E4 Cab∂a∂bF (2)

E − 1

48
(E2

2 − E4)C
ab

(
∂a∂bF (2)

E + 2∂aF (2)
E ∂bF (1)

E

)
. (5.22)

Note that the second term in these expressions vanishes identically in the fiber limit where

E2, E4 → 1. As we will discuss in more detail in section 5.4, this is the first F (g) where the

inclusion of the base yields a behavior near the singular loci that differs significantly from

the fiber limit.

Explicit calculations at genus 4 proceed in the same way. Modular invariance with respect

to S gives

F (4)(S, S̄, t, t̄) = Ê3
2 c

(4)
E| 3 + Ê2E4 c

(4)
E| 1 + E6 c

(4)
E| 0. (5.23)

Once again, the general equation (5.48) allows us to determine the coefficients as

c
(4)
E| 3 = − 1

72
Cab

(
DaDbc

(3)
E| 2 + 2DaF

(1)
E Dbc

(3)
E| 2 + DaF

(2)
E DbF

(2)
E

)
,

c
(4)
E| 1 = − 1

24
Cab

(
DaDbc

(3)
E| 0 + 2DaF

(1)
E Dbc

(3)
E| 0

)
.

(5.24)

The ambiguity c
(4)
E| 0 is again determined by the heterotic computation in the fiber limit.

More precisely, one specializes (5.9) to

c
(4)
E| 0 + c

(4)
E| 1 + c

(4)
E| 3 = F

(4)
E (t, t̄) , (5.25)

and solves for c
(4)
E| 0 by inserting the fiber result (4.40). This determines the free energy

F (4). A similar analysis also applies to g = 5, 6. As already discussed above, the main

obstacle that has to be overcome in order to proceed to higher genus is the difficulty

to fix the ambiguities c
(g)
0 . We will discuss possible additional boundary conditions in

sections 5.4, 5.5 and 6.

5.2 Propagators and homolomorphic automorphic forms

In the previous section we calculated the first free energies F (g) by a direct integration

along the base direction. The results were expressed in terms of the holomorphic fiber

energies F (g)
E , which are known from heterotic-type II duality. Even though the results

were rather compact and transparent, the information we have extracted is somewhat

partial, since we have not used the holomorphic anomaly equations for the fiber moduli.

In order to exploit the information they contain, we will construct building blocks for the

automorphic forms in the fiber which enable us to perform the direct integration of the

remaining holomorphic anomaly equations. Recall that we argued in the previous sections

that the almost holomorphic modular form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) , E2(S) = ∂S log Φ , (5.26)

contains all non-holomorphic dependence of F (g) along the base direction S. It will be the

task of this section to introduce the analog of Ê2 for the fiber directions ta. Furthermore we
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will define the fiber analogs of the holomorphic modular forms E4(S) and E6(S). This will

lead us to the definition of a new class of holomorphic automorphic forms of O(10, 2, Z).

Eventually, in section 5.3 we will argue that a direct integration along the fiber direction

allows us to express all F (g) in terms of these almost holomorphic and holomorphic forms

of O(10, 2, Z).

Let us now introduce the fiber analog of the almost holomorphic modular form

Ê2(S, S̄). This can be done by recalling that the genus one free energy F (1) is an in-

variant of the full symmetry group Sl(2, Z) × O(10, 2, Z) and hence its first derivatives

transform in a particularly simple way. For the derivative with respect to S one finds

∂SF (1) = 1
2Ê2. The derivative with respect to ta we denote by ∆a = −1

2Cab∂bF
(1) and

evaluate

∆a =
ta + t̄a

Y
+ ǫa(t) = ǫa(t) − Kb(t)C

ba , ǫa(t) =
1

4
Cab∂tb log Φ , (5.27)

where Y = 1
2Cab(t + t̄)b(t + t̄)b and Φ is given in (4.34). The function ǫa(t) is holomorphic

in the coordinates ta and is the fiber analog of E2(S), while ∆a plays the role of Ê2. To

see this note that ǫa transforms with a shift under the duality ta 7→ ta/t2:

ǫa 7→ t4(J−1)ab (ǫ
b + t−2tb) . (5.28)

This shift is precisely canceled by the shift of the non-holomorphic term in (5.27) such that

∆a simply transforms as

∆a 7→ t4(J−1)ab∆
b(t) . (5.29)

Note that Ê2 and ∆a are sufficient to parametrize all propagators ∆̂ij, ∆̂i, ∆̂ introduced

in (2.17). Indeed, one has

∆̂ab = − 1

12
CabÊ2 , ∆̂aS = ∆a , (5.30)

∆̂S = −1

2
Cab∆

a∆b , ∆̂a =
1

12
Ê2∆

a , ∆̂ = − 1

12
Ê2Cab∆

a∆b .

Using the explicit form of Ê2 and ∆a it is straightforward to check that these propagators

fulfill the defining conditions (2.17). The fact that all ∆̂−propagators can be expressed

as polynomials in Ê2 and ∆a will be used in the next section to argue that all non-

holomorphic dependence of F (g) only arises through Ê2,∆
a. However, we also have to

extract the non-holomorphic dependence in the covariant derivatives Da defined in (A.3).

Following the logic of section 3 we will show that each derivative can be split into a

holomorphic covariant derivative D̂a plus holomorphic terms times the propagators ∆a.

As an important byproduct, the definition of D̂a will also allow us to find an interesting

construction of holomorphic automorphic forms.

Let us now construct a holomorphic covariant derivative D̂a, which has the same

properties as Da under automorphic transformations (4.58). More precisely, given an

automorphic form Ψ of weight k we define its first derivative as

D̂aΨ ≡
(

∂a − kCabǫ
b

)
Ψ , (5.31)
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where ǫa is defined in (5.27), and note that D̂a = Da − kCab∆
b. D̂a can be viewed as the

analog of the Serre derivative (3.19) for modular forms of subgroups of Sl(2, Z). It is not

hard to check that it transforms under (4.58) exactly as Da. This transformation property

was given in (4.68). Note however, that D̂a maps holomorphic forms into holomorphic

forms, while Da contains an anti-holomorphic contribution. Moreover, by definition of ǫa

one has

D̂aΦ(t) = 0 , (5.32)

for the automorphic form Φ(t) given in (4.34). In order to evaluate second derivatives we

need to introduce the holomorphic analog of the Christoffel symbol in the definition (A.3)

of Dk. To do that, let us consider a section Ψa which transforms as Ψa 7→ t2kJb
aΨb under

the action (4.58). The covariant derivative is then defined to act as

D̂aΨb =

(
∂a − kCacǫ

c

)
Ψb − Γ̂c

abΨc . (5.33)

Here we have included the holomorphic Christoffel symbol

Γ̂c
ab = Γ̂c

ab|dǫ
d =

1

2
Ĉcd

(
∂bĈda + ∂aĈdb − ∂dĈab

)
, (5.34)

where Γ̂b
cd|a is defined in (4.14) and related to Γb

cd by Γb
cd = Γ̂b

cd|aC
aeKe. We also have

introduced the holomorphic ‘metric’ Ĉab. Explicitly, Ĉab is defined as

Ĉab = Φ1/2Cab , Ĉab 7→ Jc
aJd

b Ĉcd , (5.35)

where Φ is given in (4.34) and we have also displayed the transformation behavior of Ĉab

under (4.58) as inferred from (4.74) and (4.65). Once again we evaluate the transformation

behavior of D̂aΨb under (4.58) and finds the holomorphic analog of (4.69). It is now easy

to show that every non-holomorphic derivative Da can be split as

DaΨb = D̂aΨb + kCac∆
c Ψb + Γ̂c

ab|d∆
d Ψc . (5.36)

In other words, whenever Ψb is holomorphic the non-holomorphic dependence in DaΨb

arises through the propagators ∆a only.

Let us now discuss a second interesting application of the holomorphic covariant deriva-

tive D̂a. Namely, we will now show how it can be used to construct new holomorphic

automorphic forms. To start with let us note that ǫa = Cabǫ
b transforms in (5.28) similarly

to a vector field. We can use this analogy and define a field strength

ǫ4
ab = ∂aǫb −

1

2
Γ̂c

abǫc = ∂aǫb − ǫaǫb + Cabǫ
2 , ǫa = Cabǫ

b , (5.37)

which transforms covariantly, ǫ4
ab 7→ Jc

aJd
b ǫ4

cd, under automorphic transformations (4.58).

Note that by using the wave-equation (4.76) one shows that ∂aǫ
a = −4Cabǫ

aǫb such that

Cabǫ4
ab = 0 . (5.38)
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Nevertheless, we can use ǫ4
ab to construct holomorphic automorphic forms. To do that, we

define

ǫ2k
a1...ak

= D̂ak
. . . D̂a3

ǫ4
a2a1

, (5.39)

which is shown to be totally symmetric in the indices. Holomorphic automorphic forms

are now constructed by contraction with Cab. For example, forms of weight 4 and 6 are

given by

weight 4 : CabCcdǫ4
acǫ

4
bd , (5.40)

weight 6 : CacCbeCdf ǫ4
abǫ

4
cdǫ

4
ef , CacCbeCdf ǫ6

abdǫ
6
cef .

It is tempting to conjecture that holomorphic automorphic forms of this type are sufficient

to parametrize the holomorphic ambiguity of F (g). The fact that there is no holomorphic

weight 2 automorphic form of this type due to (5.38) matches nicely the fact that there is

no holomorphic ambiguity for F (2). Also the forms in (5.40) can be shown to be sufficient

to parametrize the ambiguities of F (3) and F (4). This will be analyzed in further work.

5.3 Direct integration of the holomorphic anomaly

We will now use the material developed in the previous section to perform the direct

integration in both fiber and base directions. This will allow us to give closed expressions

which determine the F (g) up to a holomorphic ambiguity. To begin with, we show that

each F (g) can be written as

F (g) =

g−1∑

k=0

2g−2∑

n=0

Êk
2∆a1 . . . ∆anc

(g)
k | a1...an

, g > 1 (5.41)

where c
(g)
k | a1...an

are holomorphic functions of S, ta and all anti-holomorphic dependence

arises through the propagators ∆a and Ê2 introduced in (5.26) and (5.27). Note that by

using the transformation properties of F (g) and ∆a given in (4.72) and (5.29) one infers

that

c
(g)
k | a1...an

7→ t4g−4−4nJb1
a1

. . . Jbn
an

c
(g)
k | b1...bn

(5.42)

under automorphic transformations (4.58).

Let us now show that each F (g) for g > 1 can indeed be written as (5.41) by using

induction. We first note that F (2) is of the form (5.41),

F (2) = −1

2
Ê2Cab∆

a∆b , (5.43)

as is immediately inferred from (5.16) and (5.27). So let us assume that (5.41) is true for

all r < g and show that this implies that (5.41) is true for g. In order to do that we use the

Feynman graph expansion (2.14) of F (g) [7], which states that each F (g) can be written as

an expansion with propagators ∆̂ij, ∆̂i, ∆̂ and vertices C
(r)
i1...in

with r < g. We have already

shown that the ∆̂-propagators are polynomials in Ê2 and ∆a in (5.30). Hence, it remains

to show that also the vertices C
(r)
i1...in

are polynomials in Ê2 and ∆a. By definition (2.7)

and our assertion, the vertices are defined as the covariant derivatives of amplitudes F (r)
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of the form (5.41). Using (5.36) each of these covariant derivatives Da can be split into

a holomorphic covariant derivative D̂a and an expansion in ∆a. So we only have to show

that D̂a∆
b admits again an expansion into ∆’s. A straightforward computation shows that

D̂a∆
b = Cbdǫ4

da −
1

2
Γ̂b

cd|a∆
c∆d , (5.44)

where ǫ4
ab and Γ̂b

cd|a are defined in (5.37) and (4.14). Altogether one infers that all vertices

and ∆̂-propagators are polynomial in ∆a and hence that F (g) is of the form (5.41).

Having shown that every F (g) is of the form (5.41) we will now derive a closed expression

for F (g) by direct integration of the holomorphic anomaly equation (2.10). Applying the

definition (2.17) of the propagators we can write the holomorphic anomaly equation as

∂ı̄F
(g) =

1

2
∂ı̄∆̂

ik

(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)

)
. (5.45)

This equation captures the anti-holomorphic derivatives ∂S̄F (g) along the base as well as

the derivative ∂āF
(g) along the fiber of the Enriques Calabi-Yau. Recall that the only

non-vanishing propagators are ∆̂ab = − 1
12CabÊ2 and ∆a = ∆̂aS . As we have shown, they

contain all anti-holomorphic dependence such that we can rewrite (5.45) as

∂F (g)

∂Ê2

= − 1

24
Cab

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)

)
, (5.46)

∂F (g)

∂∆a
= DaDSF (g−1) +

g−1∑

r=1

DaF
(r)DSF (g−r) . (5.47)

As we have seen above, the first equation is already very powerful and can be integrated

easily. We can write the solution (5.6) as

F (g) = − 1

24

∞∑

k=1

1

k
Êk

2Cab

(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
+ c

(g)
0 , (5.48)

where c
(1)
m is defined in (5.7). Note that c

(g)
0 (∆, S, t) arises an integration constant of the

Ê2 integration and hence can be a function of the propagators ∆a but not Ê2.

Let us now determine a second closed expression for F (g) by integrating the second

anomaly equation (5.47). Since F (1) is not of the form (5.41) we first split off terms

involving F (1). Inserting the definitions of the propagators ∆a and Ê2 we find for g > 2

that

∂F (g)

∂∆a
=

(
DS +

1

2
Ê2

)
DaF

(g−1) − 2Cac∆
cDSF (g−1) +

g−2∑

r=2

DaF
(r)DSF (g−r). (5.49)

To make the dependence on the propagators ∆a explicit we expand the covariant derivative

DaF
(g). The covariant derivative Da can be split into a holomorphic derivative D̂a defined
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in (5.33) plus a propagator expansion using (5.36). Moreover, using the chain rule one

rewrites

D̂a = d̂a + (D̂a∆
b)∂∆b , (5.50)

where d̂a is the covariant holomorphic derivative not acting on the propagators, i.e. we set

d̂a

(
∆a1 . . . ∆anca1...an

)
= ∆a1 . . . ∆anD̂aca1...an . (5.51)

Combining (5.36), (5.50) and (5.44) we immediately derive

DaF
(g) =

[
d̂a + ǫ4

acC
cb∂∆b + (2g − 2)Cad∆

d − 1

2
Γ̂b

cd|a∆
c∆d∂∆b

]
F (g) . (5.52)

This expansion makes the dependence of Da on the propagators ∆a explicit. We note

that the d̂a term on the right-hand side of this expansion does not change the number of

propagators. The second term lowers the number of propagators by one, while the two

last terms raise the number of propagators by one. Inspecting the holomorphic anomaly

equation we note that only the first derivative along the fiber direction appears on the right-

hand side of (5.49). Hence, at least for the integration of (5.49) it will not be necessary to

evaluate the second derivative DaDbF
(g) as a propagator expansion.

To integrate expressions such as (5.52) for DaF
(g) we also need to keep track of the

number of propagators in the expansion of F (g). Therefore, we introduce the following

short-hand notation

F (g) =
∑

n

c
(g)
(n) , c

(g)
(n) =

g−1∑

k=0

Êk
2∆a1 . . . ∆anc

(g)
k | a1...an

, (5.53)

where each c
(g)
(n)

contains n propagators ∆a. By counting the number of propagators one

finds
∫

DaF
(g)d∆a =

∑

n

{
1

n + 1
∆ad̂a +

1

n
∆aǫ4

acC
cb∂∆b +

4g − 4 − n

n + 2
∆2

}
c
(g)
(n) , (5.54)

where as defined above ∆2 = 1
2Cab∆

a∆b. This integral together with similar ones for the

remaining terms in (5.49) yields a closed expression for F (g) of the form

F (g) =

(
DS +

1

2
Ê2)

∑

n

{
1

n + 1
∆ad̂a +

1

n
∆aǫ4

acC
cb∂∆b +

4g − 8 − n

n + 2
∆2

}
c
(g−1)
(n)

−
∑

n

4

n + 2
∆2DSc

(g−1)
(n) +

g−2∑

r=2

∑

n

∑

k+l=n

DSc
(g−r)
(l)

{
1

n + 1
∆ad̂a (5.55)

+
1

n
∆aǫ4

acC
cb∂∆b +

4r − 4 − n

n + 2
∆2

}
c
(r)
(k) + c

(g)
(0) .

Here c
(g)
(0)(Ê2, S, t) is the integration constant of the ∆a integration and hence can depend

on Ê2 but not on ∆a.

– 35 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
8

Before turning to the discussion of an explicit example, let us consider the fiber limit

of (5.55). We therefore apply (B.13) and (5.11) to show that

lim
S,S̄→∞

DSF (g) = 0 . (5.56)

We also denote by c
(g)
E (k) the fiber limit of the coefficients c

(g)
(k) in (5.53). Inserting (5.56)

into the formula (5.55) for direct integration along the fiber direction one finds

F
(g)
E =

1

2

∑

n

(
1

n + 1
∆ad̂a +

1

n
∆aǫ4

acC
cb∂∆b +

4g − 8 − n

n + 2
∆2

)
c
(g−1)
E (n) + c

(g)
E (0) , (5.57)

where c
(g)
E (0)(t) is a holomorphic ambiguity in the fiber. Recall that the full expression (4.40)

for F
(g)
E (t, t̄) is known from heterotic-type II duality. Therefore, verifying that this closed

expression fulfills the differential equation (5.57) provides a non-trivial check of our deriva-

tions.

Let us end this section by presenting the first non-trivial solution to the closed ex-

pressions (5.48) and (5.55) for F (g). More precisely, one derives that the free energy F (3)

admits the following propagator expansion

F (3) = − 1

48
Ê2

2

(
14∆4 + 10ǫ4

ab∆
a∆b − ǫ4

acǫ
4
bdC

abCcd

)

− 1

48
E4

(
− 2∆4 + 2ǫ4

ab∆
a∆b − ǫ4

acǫ
4
bdC

abCcd

)
, (5.58)

where ǫ4
ab is defined in (5.37). Note that the last term in the first line has to be deter-

mined by the direct integration with respect to Ê2 by using (5.48). Moreover, the purely

holomorphic term

f (3)(S, t) =
1

48
E4ǫ

4
acǫ

4
bdC

abCcd (5.59)

is the holomorphic ambiguity at genus 3, determined by the fiber limit. In other words,

applying (5.11) one easily derives

F
(3)
E = −1

4
ǫ4
ab∆

a∆b − 1

4
∆4 +

1

24
ǫ4
acǫ

4
bdC

abCcd , (5.60)

which is readily compared with the general expression (4.40) for the fiber free energies. It

is straightforward to derive all F (g) for g < 7 by evaluating (5.48) and (5.55) and fixing the

ambiguity by comparison with the fiber result (4.40). Clearly, at genus greater than 6 we

will encounter the same difficulties as in section 5.1. Only additional boundary conditions

can help to fix the ambiguities in these cases. In the next section we will summarize possible

additional conditions.

5.4 Boundary conditions

One important feature of the formalism of direct integration is that modular and holo-

morphic properties of the F (g) are manifest. In particular the ambiguity is holomorphic,

modular invariant and for given genus expressible in terms of a modular form of finite
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weight. This implies that a finite number of data will fix it. The latter must be pro-

vided from additional information at the boundaries of the moduli space of the Calabi-Yau

manifold. Let us give a short overview over the the nature of these boundary conditions.

In the large radius limit the holomorphic limit of the F (g) has an expansion in terms

of Gromov-Witten invariants N
(g)
β . Since the an-holomorphic part is fixed, the F (g) can

be completely determined by calculating a finite number of Gromov-Witten invariants.

The reorganisation of the expansion in terms of Gopakumar-Vafa invariants n
(g)
β is useful

here, because the latter vanish if the degree is higher then the maximal degree for which a

smooth curve exists in a given class.

For K3-fibered Calabi-Yau threefolds, the limit of large base volume corresponds gener-

ically to a perturbative heterotic string theory on K3×T
2. If the heterotic theory is known

one can calculate the dependence of the F (g) on the fiber moduli by calculating a BPS

saturated one loop amplitude in the heterotic string [46, 41]. In the Enriques CY case this

yields most of the information and is the reason that one can tackle an 11 parameter model

at all. Even if the heterotic dual is not known, one may get all the holomorphic F (g) in

the fiber from the modular properties of the B-model on the K3 and the formula for the

cohomology of the Hilbert scheme of points on the fiber [40].

If the Calabi-Yau admits controllable local limits, e.g. to toric Fano varieties with anti-

canonical bundle, then the F (g) can be unambiguously calculated using the topological

vertex [2].

One can also find boundary conditions by looking at the behavior of the topological

string amplitudes near the conifold point, as we discussed in section 3.3. When there is

only one hypermultiplet becoming massless at the conifold point, the amplitudes behave

like (3.32), where tD is a suitable coordinate transverse to the conifold divisor. This yields

2g − 2 independent conditions on the holomorphic ambiguity.

In contrast to generic N = 2 compactifications, the four dimensional massless spectrum

at singularities of the Enriques Calabi-Yau is conformal, which requires hyper- and vector

multiplets to become simultaneously massless. The leading behavior of the corresponding

effective action is less characteristic. We will find a partial gap in the reduced model

considered in section 5.5, which is similar to the partial gap structures that were found

in [34] at a point where likewise several RR states become massless. The determination

of the subleading behavior is possible in the field theory limit and yields conditions on

the anomaly. We will consider here only the complex codimension singularities that we

discussed in section 4. The nontrivial information about the F (g) comes from the Nf = 4

locus: as we will show in section 6, the residue of the leading singularity near (4.18) can

be computed using instanton counting in field theory.

Let us now analyze the leading singularity of F (g) near the singular loci in the fiber

limit. This can be done with the heterotic computations of [41] reviewed in section 4.

These computations give us expansions around two special regions in moduli space, the

large radius limit (where ta are large) and the region appropriate to the BHM reduction

(where taD are large). As in [3, 46], we can use the computation at large radius to obtain

the leading behavior of the fiber amplitudes near (4.18), and the computation in the BHM

reduction to obtain the behavior near (4.20).
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Let us first look at the behavior near (4.18). A possible singular behavior there must

come from the vector r = (1,−1) in (4.25), since this leads to a polylogarithm which, when

expanded at the singular locus (4.18),

Li3−2g(e
−z) =

(2g − 3)!

z2g−2
+ O(z0), g ≥ 2, (5.61)

exhibits a pole. Here, z = t1 − t2. However, since cg(−2) = 0, the coefficient of this

polylogarithm vanishes and we conclude that the amplitudes are regular at (4.18). This is

indeed consistent with the fact that the field theory limit of this model at (4.18) is massless

SU(2), N = 4 super Yang-Mills theory, which has F (g) = 0 for all g ≥ 2 [52, 53, 12].

Let us now look at the behavior near (4.20). To understand this, we look at the

heterotic result for the holomorphic couplings in the BHM reduction (4.41). Again, the

singular behavior comes from the vector r = (1,−1). Since the coefficients are defined now

by (4.42), we find

dg(−1) =
4g − 1

2g−2

|B2g|
2g(2g − 2)!

. (5.62)

If we set

µ = t1D − t2D, (5.63)

and we take into account the behavior of the polylogarithm (5.61), we find that the singular

behavior of F (g)
E (tD) near (4.20) is given by

F (g)
E (tD) → 4g − 1

2g−2

|B2g|
2g(2g − 2)

1

µ2g−2
+ O(µ0) (5.64)

for g ≥ 2, while for g = 1 we have a logarithm singularity

−1

2
log µ. (5.65)

Since the full F (g)(S, tD) can be written for g ≤ 6 in terms of (4.41), as we showed in

section 5.1, we can compute its leading singular behavior at the locus (4.20). This will

be useful in section 6 to compare to the field theory limit. The above computation shows

that along the fiber direction the topological string amplitudes F (g)
E show the gap behavior

discovered in [33, 34]. In order to see if the gap also holds in the mixed directions, it is

clear from the formulae above that we need a precise knowledge of the regular terms in

µ in the expansion of F (g)
E . Unfortunately, this is something we cannot extract from the

heterotic expressions. We will however be able to do this in the reduced model introduced

in [41] and studied in more detail below. We will see that indeed the strong gap condition

obtained for the fiber direction in (5.64) does not hold for the mixed directions.

5.5 The reduced Enriques model

In this section we discuss a reduced model for the Enriques Calabi-Yau introduced in [41].

The main advantage of this model is that the target symmetry group becomes much simpler,

and one can easily parametrize the holomorphic functions which appear in the expansion of

F (g) in the propagators ∆a(t, t̄) and Ê2(S, S̄). In particular, the holomorphic ambiguity can
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be parametrized in terms of a finite number of coefficients at each genus. Also the mirror

map is known explicitly and can be used to translate the F (g) into a simple polynomial

form. In these aspects, the reduced model is very closely related to the Seiberg-Witten

theory studied in section 3.

5.5.1 Special geometry and the mirror map

We begin with a brief discussion of the reduced special geometry and recall the mirror

map derived in [41]. Out of the eleven special coordinates S, ta the reduced model is only

parametrized by three parameters. More precisely, it is obtained by shrinking 8 out of the

10 cycles in the Enriques fiber as

(S, ta) = (S, ti, tα) → (S, ti, 0) , i = 1, 2 , α = 3, . . . , 10 . (5.66)

We denote the reduced moduli space spanned by the remaining coordinates S, t1, t2 by Mr.

Explicitly, the full coset (4.5) reduces in this limit to

Mr =
Sl(2, R)

SO(2)
×

(
Sl(2, R)

SO(2)

)2

, (5.67)

inducing a split of the full target space symmetry group as

Sl(2, Z) × O(10, 2, Z) → Sl(2, Z) × Γ(2) × Γ(2) . (5.68)

The generators of Sl(2, Z) are precisely the Eisenstein series Ê2(S, S̄), E4(S), E6(S) as

already introduced for the full model in (5.1). The generators for Γ(2) have been intro-

duced in the Seiberg-Witten section 3. More precisely, we will generate the ring of almost

holomorphic modular forms of Γ(2) by Ê2(t, t̄), K2(t) and K4(t) explicitly defined in (5.3)

and (3.5). In the following we will simplify expressions by abbreviating

E2 = E2(t
1) , K2 = K2(t

1) , K4 = K4(t
1) ,

Ẽ2 = E2(t
2) , K̃2 = K2(t

2) , K̃4 = K4(t
2) . (5.69)

Whenever not stated otherwise, we will keep the S-dependence explicit. Let us also note

that the matrix Cab splits as

Cab =

(
Cij 0

0 Cαβ

)
, Cij =

(
0 1

1 0

)
, (5.70)

as already given in (4.10). Hence, the holomorphic prepotential (4.8) and the fiber Kähler

potential Y = (t + t̄)2 reduce to

Fr = iSt1t2 , Yr = (t1 + t̄1)(t2 + t̄2) . (5.71)

As we have already noted in section 4.1 this prepotential and fiber potential are exact and

receive no instanton corrections.

Let us now turn to a discussion of the mirror map for the reduced Enriques model.

In order to determine this duality map we first note that the reduced Enriques has an
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algebraic realization. Applying standard techniques, one can thus derive the three Picard-

Fuchs equations for the holomorphic three-form Ω(z) as

L1Ω(z) = 0 , L2Ω(z) = 0 , L3Ω(z) = 0 , (5.72)

where zi(t), z3(S) with i = 1, 2 are the mirror coordinates of ti, S respectively. The Picard-

Fuchs operators are found to be

Li = θ2
i − 4(4θi + 4θj − 3)(4θi + 4θj − 1)zi , i, j = 1, 2 , i 6= j , (5.73)

L3 = 36(z3 − 1)2(z3 − 2)θ2
3 + 36z3(z3 − 1)θ3 + z3

(
8z3 − 4(z3)2 − 31

)
, (5.74)

where θi = zi ∂
∂zi . The Picard-Fuchs equations (5.72) can be solved to determine the mirror

maps zi(t), z3(S). This was done in [41] and we will only quote the result here. We first

abbreviate

z(qi) =
K4(t

i)

K2
2 (ti)

. (5.75)

Using this shorthand notation the fiber mirror map reads

z1(t) = z(q1)

(
1 − z(q2)

)
, z2(t) = z(q2)

(
1 − z(q1)

)
. (5.76)

These coordinates are related by a factor of 64 to z1, z2 used in ref. [41]. In the base one

evaluates

z3(S) = 1 − E
−3/2
4 E6 . (5.77)

Compared to [41] we have rescaled z3 by a factor 864. Using these explicit expressions for

z1, z2 and z3, one immediately verifies their invariance under the target space symmetry

group Sl(2, Z) × Γ(2) × Γ(2). Also the fundamental period X0 can be obtained from the

Picard-Fuchs system (5.72) and reads

X0 = x0X̂0 , (X̂0)2 =
1

4
K2K̃2 , (x0)4 = E4 . (5.78)

We immediately verify that X0 is not invariant under the symmetry group Sl(2, Z) ×
Γ(2) × Γ(2). The S-duality transformation (4.58) reads for the reduced model t1 7→ 1/t2

and t2 7→ 1/t1. Applied to X0 this yields precisely the transformation behavior given

in (4.63). Before turning to the higher genus amplitudes in the next section let us also note

that the discriminant of the reduced model is given by

∆(z1, z2) D(z3) , (5.79)

where ∆(z1, z2) is the discriminant along the fiber and D(z3) is the discriminant along the

base. Explicitly, we find in the coordinates (5.75) and (5.76) that

∆(z1, z2) =

(
1 − z(q1) − z(q2)

)2

(5.80)

= 1 − 2(z1 + z2 + z1z2) + (z1)2 + (z2)2 . (5.81)
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The second discriminant D(z3) is given by

D(z3) =
1

2633

(
(z3)2 − z3

)
. (5.82)

In the next section we will use the mirror coordinates z1, z2 to express the reduced free

energies F
(g)
r . Since along the base direction all equations are expressed in terms of simple

Eisenstein series E2n(S) we choose to keep this S-parametrization also in the following

discussions.

5.5.2 Reduced free energies and direct integration

Let us now discuss the free energies F
(g)
r and their holomorphic limits F (g)

r for the reduced

model. In the limit (5.66) they are simply defined as

F (g)
r (S, t1, t2) = F (g)(S, t1, t2, tα = 0) . (5.83)

The reduced form of F (1) can be derived by direct computation as was already discussed

in [41]. Explicitly one finds

F (1)
r = −2 log

[
(S + S̄)3(t1 + t̄1)(t2 + t̄2)

]
− log |Φr(S, t)| , (5.84)

where

Φr(S, t1, t2) = η24(S)
∏

m,n

(
1 − qnqm

1 + qnqm

)cr1(2mn)

. (5.85)

The coefficients cr
1(n) are given through the modular form

∑

n

cr
1(n)qn = − 64

3η6(q)ϑ6
2(q)

E2(q)E4(q
2) . (5.86)

Note that in comparison with the expression (4.28) for the full Enriques model the Eisen-

stein series E4(q
2) appears in (5.86). This extra factor arises due to the summation over

the E8 vectors in (4.34) and precisely counts their degeneracy. It was further shown in [41]

that the following denominator formula holds

Φr(S, t1, t2) =
1

16
η24(S) δ = η24(S)(X̂0)4∆1/2 (5.87)

where

δ(t1, t2) = K2
2K̃2

2 − K4K̃
2
2 − K2

2K̃4 . (5.88)

Here the Γ(2) generators K2, K̃2 as well as K4, K̃4 are defined in (5.69), while the funda-

mental period X̂0 and the discriminant ∆ were given in (5.78) and (5.80).

The holomorphic reduced amplitudes restricted to the Enriques fiber can also be com-

puted directly by reducing the heterotic expressions (4.25) and (4.41). The result reads [41]

F (g)
r,E(t) =

∑

r>0

cr
g(r

2)

[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
,

F (g)
r,E(tD) =

∑

r>0

dr
g(r

2/2)(−1)n+mLi3−2g(e
−r·tD) ,

(5.89)
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where the coefficients cr(n), dr
g(n) are defined by

∑

n

cr
g(n)qn = −2E4(q

2)
Pg(q)

η12(2τ)
,

∑

n

dr
g(n)qn = E4(q

2)
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
.

(5.90)

Once again we recognize the additional factor E4(q
2) counting the degeneracies of the E8

lattice. Clearly, also the expressions F (g)
r,E(t) and F (g)

r,E(tD) can be expressed in terms of the

holomorphic generators (5.69) depending on ti and tiD respectively.

Let us now turn to the discussion of the complete reduced amplitudes including the base

and the non-holomorphic dependence. In order to do that we describe the direct integration

for the reduced model focusing on the essential differences to the considerations presented

in section 5.3. To begin with, note that the propagators of the full model reduce as

∆i → @
i , ∆α → 0 , (5.91)

where @
i is obtained from (5.27) by setting tα = 0 and using (5.85). That ∆α reduces to

zero arises from the fact that in summation over the E8 lattice the vectors cancel pairwise.

In order to perform the direct integration we first have to find recursive relations which are

valid for the reduced free energies F
(g)
r . Recall that in the full Enriques model we found

two sorts of recursive relations (5.46) and (5.47) capturing the properties F (g) in the base

and in the fiber of the Enriques. It turns out that only the second anomaly equation (5.47)

admits a simple reduction. More precisely, it can be rewritten for the reduced model as

∂F
(g)
r

∂@i
= DSDiF

(g−1)
r +

g−1∑

r=1

DiF
(r)
r DSF (g−r)

r , (5.92)

since performing the reduction tα = 0 interchanges with the differentiation with respect

to t1, t2. Note that this is no longer true for derivatives with respect to tα. In particular,

the first equation (5.46) involves a summation over the α indices and one shows that the

resulting terms do not vanish under the reduction tα = 0. Nevertheless, one can directly

integrate (5.92) for the reduced free energies

F (g)
r =

2g−2∑

n=1

@
i1 . . . @

in ĉ
(g)
i1...in

+ ĉ(g) , g > 1 . (5.93)

The function ĉ(g) is holomorphic in ti and generally depends on Ê2(S, S̄), E4(S), E6(S).

Note that due to (5.91) the coefficients of the full and reduced model are related by ĉ
(g)
i1...in

=

c
(g)
i1...in

(tα = 0). The direct integration is performed in analogy to the integration in the full

model and results in a closed expression similar to (5.55). The important difference is that

the ǫ4
r ij as well as the covariant derivatives D̂r

a are not obtained from the full ǫ4
ab and D̂a

by simply restricting to the i, j indices and setting tα = 0. Both ǫ4
r ij as well as D̂r

a have to

be defined with respect to a new holomorphic metric Ĉr
ij = Φ

1/2
r Cij but otherwise analog

– 42 –



J
H
E
P
0
8
(
2
0
0
7
)
0
5
8

to (5.37) and (5.33). If one had been using the old connection, an additional summation

over the α indices would arise and yield extra contributions. Applied to the specific free

energy F (3) one finds the reduction of the holomorphic ambiguity (5.59)

f (3)
r (S, t) =

1

48
E4

(
ǫ4
r ikǫ

4
r jlC

ijCkl +
1

8
(ǫ4

r ijC
ij)2

)
(5.94)

After these considerations it is not surprising that the contraction of the new ǫ4
r ij with Cij

does not vanish as it is the case in the full model (5.38).

5.5.3 The free energies F (g) on the mirror

So far the reduced free energies F
(g)
r were expressed as functions of the variables ti, S or

tiD, S. In the reduced model we know the mirror map explicitly and thus will be able to

translate the expansion (5.93) of F
(g)
r into a function of the complex coordinates zi. We will

show that the holomorphic coefficients become polynomials in zi divided by an appropriate

power of the discriminant. Since the dependence of F
(g)
r is rather transparent we chose to

keep this variable and do not replace it by its mirror counterpart z3.

The F (g) transform non-trivially under the reduced automorphic transformations. We

already discussed the actually invariant combination in (4.73). In the coordinates zi, S we

thus set

F (g)(z, z̄, S, S̄) = (X̂0)2−2g F (g)(t, t̄, S, S̄) . (5.95)

This definition is consistent with the fact that the zi(t) are invariant under the target

space group (5.68), while (X̂0)2g−2 transforms exactly as F (g)(t, S). To rewrite the ex-

pansion (5.93) we first note that the propagator @
i can be written in the zi coordinates

as

@
i = (X̂0)2

∂ti

∂zj
@

zj

, @
zi

= −Czizj

(
K̂zj − 1

8
∂zj log ∆

)
, (5.96)

where @
zi

is a function of zi, z̄i and we have used

Cij = (X̂0)−2Czkzl

∂zk

∂ti
∂zl

∂tj
, K̂(z, z̄) ≡ − log

[
|X̂0|2Yr(z, z̄)

]
. (5.97)

It is not hard to use the expressions (5.76) for z1 and z2 to evaluate Czizj explicitly as

Cz1z2 =
1

z1z2∆
(1 − z1 − z2) , Cz1z1 =

1

z1z2∆
2z2 , Cz2z2 =

1

z1z2∆
2z1 . (5.98)

Once again (5.96) and (5.97) are in accordance with the transformation behavior of the @
i

and Cij given in (5.29) and (4.65). Similarly, we transform the coefficients ĉ
(g)
i1...in

in (5.93)

and set

ĉ
(g)
i1...in

= (X̂0)2g−2−2n ∂zj1

∂ti1
. . .

∂zjn

∂tin
ĉ
(g)

zj1 ...zjn
(z) , (5.99)

which is consistent with (5.43). It is also straightforward to rewrite the direct integration

expression for F
(g)
r by using the zi coordinates. Let us once again only discuss the appearing
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building blocks. We begin by noting that the holomorphic covariant derivative transforms

as

D̂iVj = (X̂0)2k ∂zl

∂ti
∂zm

∂tj
D̂zlVzm , (5.100)

where the covariant derivative D̂zi is given by

D̂ziVzj = ∂ziVzj − k

8
(∂zi log ∆)Vzj + Γ̂zl

zizjVzl . (5.101)

The holomorphic Christoffel symbol in this expression is defined by

Γ̂zl

zizj =
1

2
Ĉzlzm

(
∂ziĈzmzj + ∂zj Ĉzizm − ∂zmĈzizj

)
, Ĉzizj = ∆1/4Czizj . (5.102)

The second important object in the general equation for the direct integration is the auto-

morphic form ǫ4
r ij . One shows that it can be decomposed as

ǫ4
r ij =

1

z1z2∆2

∂zl

∂ti
∂zm

∂tj
ǫ4
zlzm . (5.103)

where for i = 1, 2, i 6= j one finds that

ǫ4
zizi = − 1

16
zj

(
(zi)2

(
1 + 3 zj

)
+

(
−1 + zj

)2 (
1 + 3 zj

)
− 2 zi

(
1 − 5 zj + 3 (zj)2

) )
,

ǫ4
zizj =

3

16
zi zj

(
−2 + zi + (zi)2 + zj + (zj)2 − 2 zi zj

)
. (5.104)

Note that ǫ4
zizi is polynomial due to the fact that we extracted the denominator z1z2∆2

in (5.103). This turns out to be possible for all the coefficients ĉ
(g)

zi1 ...zin
appearing in (5.99).

We thus define

P
(g)
i1...in

(z, Ê2, E4, E6) = (z1z2∆)g−1 ĉ
(g)

zi1 ...zin
, (5.105)

where P (g) are polynomials in zi as well as Ê2, E4, E6. The reduced free energies are thus

of the form

F (g)
r (z, z̄, S, S̄) =

1

(z1z2∆)g−1

∑

n

@
zi1

. . . @
zin

P
(g)
i1...in

, g > 1 . (5.106)

In particular, this implies that at each genus the holomorphic ambiguity is parametrized

by a polynomial P (g)(z,E4, E6) holomorphic in zi and S. As it was the case before the

coefficients in P (g) have to be determined by boundary conditions. For the lower genera this

can be done explicitly by using the fiber limes. At higher genus additional information are

needed and we will discuss in the next section the possible input from a small gap condition.

We believe that essentially all results on the mirror rewriting can be generalized to the full

model in case one is able to determine the full mirror map. For the ten parameters along

the fiber this is however a technically challenging task.
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5.5.4 Boundary conditions and the small gap

As we have seen in (5.68), the automorphism group acting on the fiber variables is simply

Γ(2) × Γ(2) , (5.107)

where these groups act on t1,2, respectively, plus the exchange t1 ↔ t2. Moreover, we see

from (4.19) that the {ti = 0 : i = 3, · · · , 10} locus maps to the {tiD = 0 : i = 3, · · · , 10}
locus. If we now define

2πiτ1,2 = −t1,2, 2πiτ1,2
D = −t1,2

D . (5.108)

we see that the transformation (4.19) relating the geometric and the BHM expressions

reduces to

τ1
D = τ1, τ2

D = −1

2

1

τ2
. (5.109)

By using the explicit expressions for F (g)
r,E(t) in terms of modular forms (which can be

obtained for example by direct integration), one finds that under (5.109)

F (g)
r,E(t) → 21−gF (g)

r,E(tD), (5.110)

where the factor of 2 is inherited from the factor of 2 in (5.109) and F (g)
r,E(tD) are also given

in (5.89). Therefore, one can obtain expressions for the amplitudes in the BHM reduction

in terms of modular forms by simply applying the transformation (5.109) to the results of

the direct integration in the reduced model (which are valid for the geometric reduction).

These expressions for the BHM amplitudes can also be used to study in detail the

behavior near the singularity (4.20), and in particular to calculate the subleading terms.

One can verify that the discriminant (5.80) transforms under (5.109) as

∆(t1, t2) 7→ ∆(t1D, t2D) = (z(q1
D) − z(q2

D))2, (5.111)

which vanishes at the locus (4.20). This leads to the singular behavior of F (g)
r (tD), and

one can now verify the behavior (5.64) by expanding the expressions in terms of modular

forms. One finds,

F (1)
r,E(tD) = −1

2
log(µ) − 1

2
log

[
1

128
K2K4(K

2
2 − K4)(q

2
D)

]
+ O(µ),

F (2)
r,E(tD) =

1

16µ2
− 80E2

2K2
2 − 16K4

2 + 3K2
2K4 + 9K2

4 + 16E2(K
2
2 + 3K2K4)

9216K2
2

(q2
D) + O(µ),

F (3)
r,E(tD) =

1

32µ4
+

1

53084160K4
2

(
−800E4

2K4
2 + 214K8

2 − 726K6
2K4 + 1431K4

2K2
4

+405K4
4 − 320E3

2 (K5
2 + 3K3

2K4) + 120E2
2 (10K6

2 − 15K4
2K4 + 9K2

2K2
4 )

−540K2
2K4 − 40E2(14K

7
2 − 54K5

2K4 + 27K3
2K2

4 − 27K − 2K3
4 )

)
(q2

D) + O(µ).

However, if one includes the base directions, the gap is “partially filled” starting at genus

three (for F (2)(S, tD), the gap property away from the fiber limit is trivially satisfied).
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Indeed, one finds that the term Cab∂aF (1)
E (tD)∂bF (2)

E (tD), leads, in the reduced model, to

the expansion

∂1F (1)
r,E(tD)∂2F (2)

r,E(tD) + ∂2F (1)
r,E(tD)∂1F (2)

r,E(tD) =

= − 1

8µ4
− 20E2

2K2 + 17K3
2 + 3K2K4 + 4E2(K

2
2 + 3K4)

9216K2
(q2

D)
1

µ2
+ · · ·

(5.112)

Although there are some nontrivial cancellations (for example, there is no term in µ−3),

generically one finds, for finite S, singular terms in µ beyond the leading one.

6. The field theory limit

As we reviewed in section 4, there is a line of enhanced symmetry in the moduli space of

the Enriques Calabi-Yau which leads in the field theory limit to SU(2), N = 2 QCD with

four massless hypermultiplets. This occurs at the locus (4.20). Similarly to what happens

for other K3 fibrations [35], we expect that near this locus the leading singularities of the

topological string partition functions become field theory amplitudes of the Nf = 4 theory.

At genus zero one should recover the prepotential, and at higher genus the gravitational

amplitudes introduced by Nekrasov in [52] by using instanton counting techniques. In this

section we will explain this in some detail, and as spin-off we will obtain some new results

on the modularity properties of the Nf = 4 theory and its gravitational corrections.

We first note that the behavior of the amplitudes near (4.18), in the fiber limit, has been

already determined with heterotic techniques in (5.64). The results of section 5 including

the base were obtained in principle in the large radius limit, in terms of the “electric”

coordinates t. However, the calculations of F (g) performed there are also valid in the tD
coordinates, due to general covariance. In particular, the holomorphic limit F (g)(S, tD)

can be expanded in polynomials in E2(S), E4(S), E6(S) as explained before (5.1), and we

can write

F (g)(S, tD) =
∑

k

pg
k(S)f g

k (tD). (6.1)

Near the locus (4.20) the f g
k should show display a singular behavior of the form

f g
k (tD) =

bg
k

µ2g−2
+ · · · , (6.2)

as we checked in the fiber limit in (5.64). How does this compare to the field theory?

The prepotential and gravitational corrections of the massless Nf = 4, SU(2) N =

2 Yang-Mills theory depend on the vector multiplet variable a and on the microscopic

coupling τ0. They can be put together into a generating functional

FYM(a, τ0, ~) =

∞∑

g=0

~
2gFYM

g (a, τ0), (6.3)

where FYM
0 (a, τ0) is the N = 2 prepotential and the higher g amplitudes are the gravita-

tional corrections. The statement that the type II theory on the Enriques Calabi-Yau has
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this gauge theory as its field theory limit near the locus (4.20) implies that the leading

singularity of the topological string amplitudes is given by

F (g)(S, tD) → 1

µ2g−2

∑

k

bg
kp

g
k(S) = FYM

g (a, τ), (6.4)

where S is related to the coupling constant of the theory τ0, and µ is related to the a variable

of Seiberg and Witten in a way that we will make precise in a moment. Let us first look

at the prepotential. While it has been originally assumed [55] that the prepotential of the

self-dual theories with N = 2, gauge group SU(N) and 2N flavors is classically exact, it

was found in [20] that it does get instanton corrections. Those can however be absorbed

in the following redefinition of the coupling [21],

τ0 → τ =
1

2

∂2

∂a2
FYM

0 (a, τ0) = τ0 +
∑

k

ckq
k
0 , (6.5)

where

q0 = exp(2πiτ0). (6.6)

We then have for the instanton-corrected prepotential

FYM
0 (a, τ0) =

1

2
τa2, (6.7)

in terms of the renormalized coupling τ . This is needed in order to match the type II

prepotential (4.8), which does not exhibit instanton corrections. We will then express the

FYM
g obtained by instanton computations not as functions of q0, but of q = e2πiτ .

The computation of the field theory amplitudes proceeds as follows. The func-

tional (6.3) has the structure

FYM(a, τ0, ~) = FYM
pert(a, ~) − ~

2 log Z(a, τ0, ~), (6.8)

where

FYM
pert,g(a, ~) = − 2B2g

4(g−1)2g(2g − 2)
(1 − 4g)

1

a2g−2
(6.9)

is the perturbative piece computed in [53], and

Z(a, τ0, ~) =
∑

k

Zk(a, ~)qk
0 (6.10)

is an instanton sum. Nekrasov’s formula for the k-instanton contribution to the partition

sum Zk(a, ~) can be written as [12]

Zk(a, ~) =
∑

{Yλ}

N∏

λ

∏

s∈Yλ

ϕλ(s)4∏
λ̃ E(s)2

. (6.11)

The sum runs over sets {Yλ} of Young diagrams labeled in the SU(2) case by λ = 1, 2. For

massless flavors,

ϕλ(s) = aλ − (sj − si)~, (6.12)
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s

ν1

ν2

ν ′
1 ν ′

2

ν9

ν ′
10

ν̃1

ν̃2

ν̃9

ν̃ ′
1 ν̃ ′

2 ν̃ ′
10

Figure 2: A sample pair of Young diagrams Yλ, Y
λ̃

contributing to (6.11).

where si, sj are the coordinates of the cell s inside the Young diagram Yλ. We also have

E(s) = aλλ̃ − ~(h(s) − v(s) − 1), h(s) = νsi
− sj, v(s) = ν̃ ′

sj
− si, (6.13)

where νsi
is the length of row si in Yλ, ν̃ ′

sj
the length of column sj in Yλ̃ and h(s), v(s) are

the number of boxes to the right of s inside Yλ respectively above s inside Yλ̃, see figure 2.

The constants aλ = (a1, a2) are set to (−a, a).

The relative normalizations between the results in [52] and the Calabi-Yau case can be

obtained from the limit q → 0, which is the limit S → ∞. The only remaining singularity

on the Enriques is then (5.64), while in the Yang-Mills case we are left with the perturbative

piece (6.9). Comparing this to (5.64) and taking into account the relative sign in (6.4) we

find

(−2)g−1 a2g−2

µ2g−2
= 1, (6.14)

and one can immediately read off the normalization of a with respect to µ = t1D − t2D:

a =
µ

i
√

2
. (6.15)

We notice the following factorization,

FYM
g (q0, a) =

1

a2g−2
Ξg(q0), (6.16)

where Ξg(q0) is a power series in q0. The relation between q0 and q is defined by

q = q0 exp[Ξ0(q0)], (6.17)

which can be inverted to obtain the relation between q0 and q. The explicit power series

one finds is

q0 = q − q2

2
+

11q3

64
− 3q4

64
+

359q5

32768
− 75q6

32768
+

919q7

2097152
− 41q8

524288
+ O(q9). (6.18)
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If we now plug this series into FYM
g (a, q0) we find that all gravitational couplings are

functions of q2, that is to say, there are no odd instanton contributions, as it should be

since those are forbidden by a Z2-symmetry of the theory [55]. The power series (6.18)

should be given by a mirror map, corresponding to some algebraic realization of an elliptic

curve. Indeed, when expressed in terms of

q = 24q
1
2
S , qS = e−S , (6.19)

we find

q0 = 16 q
1
2
S − 128 qS + 704 q

3
2
S − 3072 q2

S + · · · =
ϑ4

2(qS)

ϑ4
3(qS)

, (6.20)

which is (up to an overall factor 16) the Hauptmodul of Γ0(4). This equality between q0

and the Hauptmodul has only be checked for the first few terms of the instanton expansion,

and we don’t have a general proof.

We can now express the couplings FYM
g (a, q0), computed from (6.11), in terms of qS , µ.

Due to the connection to the Enriques results and the field theory limit (6.4), we expect

them to be (up to an overall factor µ2−2g) quasi-modular forms in qS of weight 2g− 2, and

belonging to the ring generated by E2(S), E4(S) and E6(S). The results obtained with

the instanton expansion are in perfect agreement with this. We find at g = 2

µ2FYM
2 =

1

16
− 3qS

2
− 9q2

S

2
− 6q3

S − 21q4
S

2
− 9q5

S + 18q6
S + O

(
q7
S

)

=
1

24
E2(qS) .

(6.21)

Proceeding in the same way we find,

µ4FYM
3 =

1

25

(
2

3
E2

2 +
1

3
E4

)
, (6.22)

µ6FYM
4 =

1

26

(
11

12
E3

2 +
4

3
E2E4 +

7

12
E6

)
,

µ8FYM
5 =

1

27

(
17

9
E4

2 +
97

18
E2

2E4 +
32

9
E2

4 +
14

3
E2E6

)
,

µ10FYM
6 =

1

28

(
619

120
E5

2 +
218

9
E3

2E4 +
427

9
E2E

2
4 +

4501

144
E2

2E6 +
4337

144
E4E6

)
,

µ12FYM
7 =

1

29

(
1418

81
E6

2 +
52837

432
E4

2E4 +
12848

27
E2

2E2
4 +

22631

108
E3

2E6

+
5423

9
E2E4E6 +

6529

54
E2

6 +
352069

1296
E3

4

)
,

We point out that we have not proved these equalities, but rather verified them by using the

instanton expansion up to high order. It is however highly non-trivial that this expansion

can be matched to a quasimodular form of the required weight. In addition, one can
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verify that the coefficients of the above combinations agree with the Enriques results. For

example, if we look at the singular behavior of (5.22) by using (5.64), one finds,

F (3)(S, tD) → 1

32µ4
E4(S) +

1

48µ4
(E2

2(S) − E4(S)) =
1

96
(2E2

2(S) + E4(S)), (6.23)

in agreement with the result above. We have checked that the above polynomials are

in accordance with the field theory limit of the Enriques model also for g = 4, 5, 6. For

higher genus the instanton results for the Nf = 4 theory provide a boundary condition

for the holomorphic anomaly equation, since they determine the coefficient of the leading

singularity near (4.20) as a function of S, and generalize the heterotic result (5.64) away

from the fiber.

In summary, we have verified with the instanton computations of [52] our general re-

sults about the structure of the topological string amplitudes in the Enriques Calabi-Yau

(in particular our assumption after (5.1) about the modular properties of the holomor-

phic ambiguity). Conversely, the results on the Enriques side have been instrumental in

clarifying the modularity structure of the massless Nf = 4 theory.

7. Direct integration on generic Calabi-Yau manifolds

In this section we present a general formalism which allows for direct integration of the

holomorphic anomaly equation (2.10) for a generic Calabi-Yau manifold. In order to do

that we will first have to rewrite these equations by using new coordinates and introduce

the so-called big moduli space M̂ in section 7.1. The holomorphic anomaly equations on

the big moduli space have been also discussed in [18, 59]. The target space symmetry

group acts naturally on the coordinates of this extended moduli space and we will briefly

discuss modular forms on M̂ in section 7.2. This has been also studied in [1], see also [27].

Alternatively to the direct integration, the higher genus amplitudes can be derived using

a Feynman graph expansion in generalization of [7, 59, 1]. We introduce the appropriate

propagators and vertices in section 7.3. Finally, in section 7.4 we derive a closed expression

for the F (g) using direct integration. This can be viewed as the generalization of the

discussion of the Seiberg-Witten example in section 3 for compact Calabi-Yau manifolds

with an arbitrary number of moduli.

7.1 The recursive anomaly for F (g)

In this section we rewrite the holomorphic anomaly equations (2.10) for an enlarged moduli

space in which the 2h(2,1) coordinates ti, t̄i on M are promoted to 2h(2,1) + 2 coordinates

Y K , Ȳ K . From a geometric point of view, this amounts to working on the moduli space of

complex normalized (3, 0)-forms Ω on the Calabi-Yau manifold under consideration. We

denote this moduli space by M̂ and call it the big moduli space. The coordinates Y K on

M̂ are defined as functions of tk by using the homogeneous coordinates XK(t) arising in

the expansion (A.6) of the holomorphic three-form Ω. Explicitly, we define

Y I = λ−1XI(t) , I = 0, . . . , h(2,1) , (7.1)
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where λ is the complex string coupling. The big moduli space M̂ is shown to be a rigid

special Kähler manifold with Kähler potential K̂ and Kähler metric K̂IJ̄ given by

K̂ =
i

2

(
Y KF̄K(Ȳ ) − Ȳ KFK(Y )

)
, K̂IJ̄ = ∂I∂J̄K̂ = ImτIJ , (7.2)

where ∂I ≡ ∂Y I and ∂Ī ≡ ∂Ȳ I are the derivatives with respect to the coordinates on

M̂ and τIJ = ∂I∂JF is the second derivative of the prepotential. Note that the Kähler

metric ImτIJ is not positive definite, but rather has complex signature (h2,1, 1), i.e. has

one complex negative direction. The metric connection is shown to be

ΓI
JK = K̂IM̄∂JK̂KM̄ = − i

2
C I

JK , (7.3)

where CIJK(Y ) = ∂I∂J∂KF is the third derivative of the prepotential F . This implies that

the covariant derivative of a tensor VK on M̂ is given by

DIVK ≡ ∂IVK − ΓJ
IKVJ = ∂IVK +

i

2
C J

IK VJ . (7.4)

Here and in the following, we will raise and lower indices using the metric K̂IJ̄ = ImτIJ . For

a more exhaustive discussion of rigid special geometry we refer to the existing literature [14,

15, 24].

Let us now lift the holomorphic anomaly equations (2.10) for the free energies F (g)

to the big moduli space M̂. In order to do that, we evaluate F (g)(t, t̄) as functions of

the homogeneous coordinates XK . As reviewed in section 2, they transform as sections of

L2−2g such that

F (g)(Y, Ȳ ) = λ2g−2F (g)(X, X̄) , Y K∂KF (g) = (2 − 2g)F (g) . (7.5)

Rewriting the holomorphic anomaly equations (2.10) using the Y K coordinates and the

functions F (g)(Y, Ȳ ) we find

∂ĪF
(g) = − i

8
C̄ JK

I

(
DJ∂KF (g−1) +

g−1∑

r=1

∂JF (r)∂KF (g−r)

)
. (7.6)

A detailed derivation of (7.6) can be found in appendix D.1. We can also lift the equa-

tion (2.11) for F (1) to the big moduli space M̂ in a way similar to the lift of the holomorphic

anomaly equations for g > 1. First recall that F (1) is a section of L0 and hence as a func-

tion of the homogeneous coordinates XK(t) homogeneous of degree 0 as seen in (7.5). This

implies that

Y K∂Y K ∂Ȳ M F (1) = Ȳ K∂Ȳ K ∂Y M F (1) = 0 . (7.7)

Using this property and the special geometry identities summarized in appendix A, one

derives the holomorphic anomaly for F (1)(Y, Y ) on the big moduli space (see appendix D.2)

∂I∂J̄F (1) =
1

8
CILM C̄ LM

J −
(

χ

24
− 1

)
KIJ̄(Y, Ȳ ) , (7.8)
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where the second derivative of the Kähler potential (2.5) is shown to be

KIJ̄ ≡ ∂Y I∂Ȳ J K(Y, Ȳ ) = 2eKK̂IJ + 4e2K ȲIYJ , (7.9)

and indices were lowered by contraction with the metric (7.2). Note that the last term

in the expression for KIJ̄ ensures that the holomorphic anomaly (7.8) also implies (7.7).

In this big moduli space formulation, it is straightforward to integrate the holomorphic

anomaly equation (7.8) for F (1). One thus shows that the genus one free energy is locally

of the form

F (1)(Y, Ȳ ) = −1

2
log det(ImτIJ) −

(
χ

24
− 1

)
K(Y, Ȳ ) − ln |Φ| + f (1) + f̄ (1) , (7.10)

where Φ(Y ) and f (1)(Y ) are holomorphic functions arising as integration constants. For

reasons which will become clear later, we introduced the seemingly artificial split of the

holomorphic ambiguity into Φ and f (1). The expression (7.10) provides the direct gen-

eralization for F (1) in Seiberg-Witten theory (3.11) and also reduces to the Enriques re-

sult (4.39). Clearly, the holomorphic anomaly does not determine Φ, f (1) which were

derived in the Seiberg-Witten and Enriques example by using additional information due

to modularity and string dualities. In the next section we will briefly discuss modularity

from the point of view of the big moduli space M̂.

7.2 Monodromy, symplectic group and modular forms

In this section we discuss the action of the target space symmetry group on the coordinates

of the big moduli space M̂ and introduce some basic modular forms and modular deriva-

tives. To begin with, let us note that there is a natural symplectic action on the periods

(FJ , Y I) of the holomorphic three-form given by
(

a b

c d

)(
F
Y

)
=

(
F ′

Y ′

)
, (7.11)

where a, b, c and d are real integer-valued matrices obeying

aT c = cT a , bT d = dT b , aT d − cT b = 1 . (7.12)

These transformations change the basis of the third cohomology of the Calabi-Yau manifold

and form the symplectic group Sp(H3, Z). Note that in general only a subgroup ΓM of

Sp(H3, Z) provides a true symmetry of the topological string theory. ΓM is the monodromy

group. We encountered specific examples for ΓM in the sections on Seiberg-Witten theory

and the Enriques Calabi-Yau: ΓM (SW) = Γ(2) and ΓM (E) = Sl(2, Z) × O(10, 2, Z). The

monodromy group ΓM is a symmetry of all higher genus amplitudes F (g)(Y, Ȳ ).

Given the action of Sp(H3, Z) on the periods, we can also investigate its induced action

on the geometrical objects on M̂. First note that both Kähler potentials K and K̂ are

invariant under (7.11) since they contain the symplectic scalars Y KF̄K − Ȳ KFK . The

second derivative τIJ = ∂Y IFJ of the prepotential transforms as

τ 7→ (aτ + b)(cτ + d)−1 . (7.13)
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This implies that τIJ transforms as a modular parameter and is the higher-dimensional

analog of (3.4). Once again one easily shows that the inverse of ImτIJ transforms with a

shift

Imτ IJ 7→ (cτ + d)IK(cτ + d)JLImτKL − 2icIK(cτ + d)JK . (7.14)

On the other hand, the third derivative CIJK of the prepotential F transforms without

such a shift

CIJK 7→ (cτ + d)−1 M
I (cτ + d)−1 N

J (cτ + d)−1 P
K CMNP (7.15)

This is precisely the transformation property of a modular form of weight −3. In general,

we say that a modular form is of weight −n if it transforms as

MI1...In 7→ (cτ + d)−1 J1
I1

. . . (cτ + d)−1 Jn

In
MJ1...Jn . (7.16)

The holomorphic form Φ appearing in (7.10) has no indices, but nevertheless transforms

under the modular group ΓM . It is chosen such that F (1) as well as f (1) are invariant. This

implies that it has to transform as

Φ 7→ det(cτ + d) Φ (7.17)

to compensate the transformation of det(ImτIJ) in (7.10). A major challenge is to find

the appropriate Φ for a given Calabi-Yau manifold and show that it can be expressed as

a function of τIJ only. In order to do that one can change f (1) by holomorphic modular

invariant combinations. Φ(τIJ) can be explicitly derived for the Enriques Calabi-Yau. It

is desirable to explore further examples such as the quintic Calabi-Yau.

As we have seen before, the derivative ∂I0MI1...In of a modular form M is no longer a

modular form, since the derivative also acts on the matrices (Cτ + D)−1 Ji

Ii
. However, this

action can be compensated by using covariant derivatives on M̂. One easily shows that the

Christoffel symbols (7.3) shift under (7.11) such that the covariant derivative DI0MI1...In

of a modular form is again a modular form of weight reduced by one. If we express MK as

a function of τIJ , we can also take derivatives

DIJMK ≡ ∂τIJ
MK − i

2
δ
{J
K Imτ I}LML , DI = CIJKDJK , (7.18)

where {IJ} indicates symmetrization in the indices I and J with symmetry factor 1
2 . In

order to relate DI and DJK we have used that ∂IτKL = CIKL. Since CIKL has weight −3

this also implies that DIJ raises the weight of the modular form by 2. Let us note that

DI and DIJ are the higher-dimensional analogs of the derivatives Dt and Dτ displayed

in (3.18).

7.3 Feynman rules for F (g): vertices and the propagators

Let us now come back to the discussion of the holomorphic anomaly equations (7.6). As

argued in [7] and briefly recalled in section 2, the traditional way of finding a solution

to equations of the form (7.6) is via a Feynman graph expansion. In this section we will

derive the vertices and propagators to describe such an expansion in the large moduli space.
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This can be done by first directly solving (7.6) for the smallest possible genus g = 2. The

resulting section F (2) can be identified as a sum over Feynman graphs counting degeneracies

of Riemann surfaces. This example allows us to identify the vertices and propagators, which

can be used to systematically construct every solution F (g). The generating functional

encoding these Feynman rules is then derived and can be shown to be equivalent to the

generating functional of Bershadsky, Cecotti, Ooguri and Vafa [7].

In order to extract the solutions for the free energies F (g) we first define complex

tensors

C
(g)
I1...In

(Y, Ȳ ) ≡
{

DI1 . . . DInF (g)(Y, Ȳ ) for g ≥ 1

iDI1 . . . DInCIn−2In−1In for g = 0
. (7.19)

and demand

C
(g)
I1...In

= 0 for 2g − 2 + n ≤ 0 . (7.20)

These two equations are the big moduli space equivalents of (2.7) and (2.8). They imply

that C
(g)
I1...In

is a section of L2−2g−n such that we can infer the homogeneity relation

Y KC
(g)
KI1...In

= (2 − 2g − n)C
(g)
I1...In

. (7.21)

In equation (7.10) we already displayed the general local form of solutions for the free

energy F (1). The next function to determine is F (2)(Y, Ȳ ). Evaluating (7.6) for g = 2 one

obtains

∂Ȳ I F (2) = − i

8
C̄ JK

I

(
DJ∂KF (1) + ∂JF (1)∂KF (1)

)
, (7.22)

As we discuss in appendix D.1 such an equation can be solved by an integration by parts

method. This amounts to writing the right-hand side of (7.22) as an anti-holomorphic

derivative of some expression Γ(2)(Y, Ȳ ). The solution to (7.22) is then given by F (2) =

Γ(2)(Y, Ȳ ) + f (2)(Y ), where f (2) is the holomorphic ambiguity at genus two. This method

of solving (7.22) is equivalent to the one used in ref. [7] to solve the holomorphic anomaly

equations (2.10) for F (g)(t, t̄). However, in contrast to [7] it will be sufficient to introduce

one type of propagator denoted by ∆IJ . The propagator ∆IJ has to be chosen such that

∂K̄∆IJ =
i

4
C̄ IJ

K . (7.23)

Clearly, this fixes the form of ∆IJ only up to an holomorphic function. As for the examples

discussed in the previous sections this ambiguity can be fixed by modular invariance and

compatibility with the solution F (1).

In order to derive an explicit expression for the propagator ∆IJ we note that a solution

to (7.23) is always of the form

∆IJ = −1

2
Imτ IJ + EIJ(Y ) , (7.24)

where EIJ(Y ) is a holomorphic function, which compensates the shift transformation (7.14)

of Imτ IJ . As in the Seiberg-Witten and Enriques example we want to express EIJ as a

derivative of the holomorphic part of F (1) given in (7.10). In order to do that, let us assume
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that we can express Φ(Y ) as a function of τIJ itself. To achieve this, it might be necessary to

appropriately split the holomorphic ambiguity of F (1) into Φ(τ) and an additional function

f (1)(Y ). f (1) is a modular invariant function which might not be expressible as a function

of τIJ . We then identify the holomorphic part in (7.24) to be

EIJ = − i

Φ

∂Φ(τ)

∂τIJ
. (7.25)

From this definition one can immediately conclude that ∆IJ is a modular form of weight

2 under the target space symmetry group ΓM . To see this, note that since F (1) and K are

invariant under ΓM also the section

F̃ (1) = −1

2
log det(ImτIJ) − ln |Φ(τ)| + f (1) + f̄ (1) , (7.26)

is trivially invariant under ΓM . But evaluating the first derivative on the weight zero forms

F̃ (1) and f (1) one finds

∂I F̃
(1) = −1

2
C

(0)
IJK∆JK + ∂If

(1) , (7.27)

and infers from the discussion of section 7.2 that ∆IJ is of weight 2 and does not shift

under ΓM .

Now that we have discussed the propagator ∆IJ , let us turn to the definition of the

vertices. We do that by continuing the evaluation of the F (2) example. In appendix D.1

we determine by the partial integration method of [7] that F (2)(Y, Ȳ ) to be

F (2)(Y, Ȳ ) = f (2) − ∆JK

(
1

2
C̃

(1)
JK +

1

2
C̃

(1)
J C̃

(1)
K

)
− ∆JK∆LM

(
1

8
C

(0)
KLMJ +

1

2
C

(0)
JLM C̃

(1)
K

)

−∆JK∆LM∆QP

(
1

12
C

(0)
KMQC

(0)
PLJ +

1

8
C

(0)
KJQC

(0)
PML

)
, (7.28)

where f (2)(Y ) is the holomorphic ambiguity. Note that in this expansion we introduced

the shifted F (1) vertices

C̃
(1)
JK = C

(1)
JK +

(
χ

24
− 1

)
KJKK , C̃

(1)
K = C

(1)
K +

(
χ

24
− 1

)
KK . (7.29)

It is not hard to interpret the resulting F (2) as being obtained from a Feynman graph

expansion. Each term in (7.28) corresponds to one Feynman diagram representing a de-

generation of a genus 2 Riemann surface. The vertices are C
(0)
IJK, C

(0)
IJKL and C̃

(1)
I , C̃

(1)
IJ

which are connected by propagators ∆IJ . The whole Feynman sum is shown in figure 3.

From this example we can also infer the general Feynman rules which generate the

solutions F (g)(Y, Ȳ ) to the holomorphic anomaly equation (7.6). The propagator is defined

in (7.24) and (7.27) as the derivative of F̃ (1). The vertices take the form

C̃
(g)
I1...In

= C
(g)
I1...In

for g 6= 1 , C̃(1) = 0 . (7.30)

C̃
(1)
I1...In

= C
(1)
I1...In

+ (n − 1)!

(
χ

24
− 1

)
KI1 . . . KIn for n > 0 , (7.31)
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= 1−
2

1−
12

1−
8

+

1−
2

+1−
2

+

1−
8

+ +

Figure 3: The Feynman graph expansion for F (2).

where KI = ∂Y I K(Y, Ȳ ) are the first derivatives of the Kähler potential (2.5). It is straight-

forward to check that by using KI = −K̂I/K̂ and DIK̂J = 0 one finds

C̃
(1)
I1...In

= DI1 . . . DInF̃ (1) , (7.32)

where F̃ (1) is defined in (7.26). This Feynman graph expansion can be obtained as a saddle

point expansion of the formal integral

Ẑ

[
Y

]
=

∫
dZ

√
det∆ exp

(
− 1

2
g−2
s ∆−1

IJ ZIZJ + W [Z; Y, Ȳ ]

)
, (7.33)

where gs is the expansion constant playing the role of ~. Here W [Z; Y, Ȳ ] contains the

vertices (7.30) and reads

W [Z; Y, Ȳ ] =

∞∑

g=0

∞∑

n=0

1

n!
g2g−2
s C̃

(g)
I1...In

ZI1 . . . ZIn (7.34)

=
∞∑

g=0

∞∑

n=0

1

n!
g2g−2
s C

(g)
I1...In

ZI1 . . . ZIn −
(

χ

24
− 1

)
ln

(
1 − ZIKI

)
.

Note that the holomorphic anomaly equations on the big moduli space together with (7.19)

and (7.20) imply that the integrand of (7.33) transforms as a wavefunction [61, 18, 59,

1]. Moreover, following [7, 59] one shows that Ẑ[Y ] is actually holomorphic in Y I . One

thus concludes that each coefficient of g2g−2
s in the saddle point expansion of log Ẑ is

a holomorphic ambiguity f (g)(Y ). On the other hand, each coefficient is of the form

F (g)(Y, Ȳ ) − Γ(g)(Y, Ȳ ), where Γ(g) are the Feynman graphs described above. We thus

solve for F (g) = Γ(g)(Y, Ȳ ) + f (g)(Y ) and find the desired result. In the remainder of this

section, we will argue that the big moduli space formulation is indeed completely equivalent

to the results obtained in [7].

Let us now turn to the comparison of the big moduli space formalism with the standard

results of [7] reviewed in section 2. Firstly, note that we only needed one type of propagator

∆IJ . This propagator is related to the propagators ∆̂ij, ∆̂i and ∆̂ introduced in (2.17) by

∆IJ = χI
i ∆̂

ijχJ
j − χI

i ∆̂
iXJ − XI∆̂iχJ

i + XI∆̂XJ ,

=
(

XI χI
i

) (
∆̂ −∆̂j

−∆̂i ∆̂ij

)(
XJ

χJ
j

)
, (7.35)
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where χI
i is defined in (A.6). To check this identity, we can evaluate the t̄i-derivative of

∆IJ . Clearly, from the form (7.24) we find

∂t̄i∆
IJ =

i

4
λ−1χ̄K

ı̄ C̄ IJ
K . (7.36)

Precisely the same equation is obtained by using the identification (7.35) the special ge-

ometry identities (A.13) and the derivatives (2.17) of the small propagators ∆̂ij , ∆̂i and

∆̂. In other words, we found a non-holomorphic lift of the small propagators ∆̂ to M̂ such

that ∆IJ takes the simple form (7.24). Even though we did not completely specify the

holomorphic dependence of ∆IJ we already notice that all non-holomorphic dependence

entirely arises through the inverse of ImτIJ . This already hints to the fact that in the

formulation on M̂ we have much better control over the Ȳ I dependence of each F (g)(Y, Ȳ ).

In section 7.4 we will show that this fact can be used to directly integrate the holomorphic

anomaly equations, which provides an efficient and direct method to find F (g). In order to

show that expressions such as (7.28) are completely equivalent to the ones of [7], we also

need the projection of the vertices C̃
(g)
I1...In

. These vertices are related to the correlation

functions C
(g)
i1...in

defined in (2.7) by

C
(g)
i1...in

(t, t̄) = λ2−2g−nχI1
i1

. . . χIn

in
C̃

(g)
I1...In

(Y, Ȳ ) . (7.37)

In order to derive this equation we have used the special geometry relations (A.13) as well

as the scaling behavior of C
(g)
I1...In

when inserting Y K = λ−1XK(t). This equation also

holds for C̃
(1)
I1...In

since due to (D.11) the additional terms are zero under the contraction

with χI
i . They are however of importance once one contracts C̃

(g)
I1...In

by Y K yielding

Y KC̃
(g)
KI1...In

= (2 − 2g − n) C̃
(g)
I1...In

. (7.38)

By using these identities and the identification (7.35) of the propagators the expan-

sion (7.28) on M̂ gets transformed into the known result of [7]. Moreover, also the gener-

ating function (7.34) reduces to the one found in [7] if we identify

ZI = −ϕY I + xiχI
i (Y, Ȳ ) . (7.39)

This proves that the solutions for F (g) are actually identical in the formulation of section 2

and the big moduli space formalism presented here. As already mentioned above, the

advantage of this new formulation is that all non-holomorphic dependence arises entirely

through Imτ IJ in the unified propagator ∆IJ and the covariant derivatives DI . We will

use this fact in the next section to perform a direct integration and to derive a closed

expression for F (g).

7.4 Direct integration of the holomorphic anomaly

In this section we make use of the special properties of the big moduli space formulation to

directly integrate the holomorphic anomaly equations (7.6). To begin with, we will argue
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that every F (g) for g > 1 can be expressed as a finite power series in the propagators ∆IJ

as

F (g)(Y, Ȳ ) =

3g−3∑

k=0

∆I1J1 . . . ∆IkJk c
(g)
I1J1...IkJk

, (7.40)

where c(g) without indices is the holomorphic ambiguity at genus g. Due to modular

invariance of F (g) the coefficients c
(g)
I1J1...IkJk

(Y ) are shown to be holomorphic modular

forms of weight −2k on the big moduli space M̂. All non-holomorphic dependence of F (g)

arises entirely through Imτ IJ appearing in the propagators ∆IJ defined in (7.24), It is this

fact which will allow us to directly integrate the holomorphic anomaly equations (7.6).

First of all, we have to show that indeed each F (g) for g > 1 can be written as a

power series in the propagators ∆IJ with holomorphic coefficients. We check this for F (2)

first. F (2) was expressed in (7.28) as a power series in ∆IJ with coefficients containing

C̃
(0)
IJKL, C̃

(1)
I and C̃

(1)
IJ . From their definitions (7.30), it is clear that these three quantities

are not holomorphic. Hence, in order to establish that (7.40) is true for F (2), they have to be

written as power series in ∆IJ . For C̃
(0)
IJKL ≡ DIC

(0)
JKL this requires that we have to expand

the connection DI . Note that DI contains the Christoffel symbol ΓK
IJ = − i

2CIJLImτLK

and is only non-holomorphic due to the appearance of Imτ IJ . However, by using (7.24)

one can replace ImτLK and split the connection as

DIVJ = ĎIVJ − C
(0)
IJK∆KLVL , ΓK

IJ = Γ̌K
IJ + C

(0)
IJM∆MK , (7.41)

where we introduced the holomorphic connection

ĎIVJ = ∂IVJ − Γ̌M
IJVM = ∂IVJ + iCIJKEKMVM . (7.42)

The holomorphic connection ĎI maps holomorphic sections VK(Y ) into holomorphic sec-

tions ĎKVL(Y ). Moreover, it maps modular forms into modular forms, decreasing the

weight of the modular form by one. ĎI are the generalizations of the holomorphic co-

variant derivatives (3.19) and (5.33) for the Seiberg-Witten example and the Enriques

Calabi-Yau. We can now split C̃
(0)
IJKL into a holomorphic part and a term linear in the

propagator

C̃
(0)
IJKL = ĎIC

(0)
JKL − ∆MN

(
C

(0)
IJMC

(0)
NKL + C

(0)
IKMC

(0)
NJL + C

(0)
ILMC

(0)
NJK

)
. (7.43)

Clearly, due to the holomorphicity of C
(0)
IJK both ĎIC

(0)
JKL and the coefficient of ∆MN are

holomorphic functions.

Let us now evaluate C̃
(1)
I and C̃

(1)
IJ . The first derivative C̃

(1)
I = ∂I F̃

(1) was already

given in (7.27) and shown to have an expansion in the propagator ∆IJ with holomorphic

coefficients. In order to also evaluate the remaining vertices, we will need to take derivatives

of EIJ . As in the examples, note that the first derivative ∂KEIJ is not a modular form, but

rather transforms with a shift. These shift transformations can be compensated by adding

another term quadratic in EIJ . Indeed, we find that the linear combination

EKL
I ≡ ∂IEKL − EKMELNC

(0)
IMN , (7.44)
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transforms as a modular form without an additional shift. Not surprisingly, EKL
I is not the

same as ĎIEKL but rather the field strength of EIJ . However, there is another important

representation of EKL
I in terms of derivatives of Φ(τ). Using (7.44) one finds

EKL
I = EKLMN

4 C
(0)
MNI , (7.45)

where

EI1J1...IkJk

2k = (−i)k
1

Φ

∂Φ(τ)

∂τI1J1 . . . ∂τIkJk

. (7.46)

These holomorphic modular forms of weight 2k are the direct generalizations of the forms

ǫ2k
a1...ak

introduced in (5.39). A direct calculation shows that we can also express the holo-

morphic modular derivative of ∆IJ as a propagator expansion,

ĎI∆
KL = −∆KM∆LNC

(0)
MNI + EKLMN

4 C
(0)
MNI . (7.47)

We are now in the position to evaluate the vertex C̃
(1)
IJ ≡ DJ∂IF̃ (1). Using the deriva-

tives (7.47) of the propagators together with (7.41), one easily derives

C̃
(1)
IJ = −1

2
EKLMN

4 C
(0)
MNJC

(0)
IKL + ĎJ∂If

(1) − 1

2
∆KL

(
ĎJC

(0)
IKL + 2C

(0)
IJK∂Lf (1)

)

+
1

2
∆KL∆MN

(
C

(0)
JIMC

(0)
NKL + C

(0)
JKMC

(0)
NIL

)
. (7.48)

Inserting (7.27), (7.43) and (7.48) into the expansion (7.28) for F (2) one finds

F (2) = ∆I1J1∆I2J2∆I3J3

(
1

24
C

(0)
I1I2I3

C
(0)
J1J2J3

+
1

16
C

(0)
I1J1I2

C
(0)
J2I3J3

)
(7.49)

−1

8
∆I1J1∆I2J2

(
ĎI1C

(0)
J1I2J2

+ 4C
(0)
I1J1I2

∂J2f
(1)

)

−1

4
∆I1J1EKLMN

4 C
(0)
I1MNC

(0)
J1KL +

1

2
ĎI1∂J1f

(1) +
1

2
∂I1f

(1)∂J1f
(1) + c(2) .

This shows that the calculation of F (2) using the partial integration and the expansion of

the non-holomorphic coefficients yields the desired expansion (7.40) of F (2). We will now

use an inductive argument to show that every F (g) can be written in the form (7.40) and

derive a recursive expression by direct integration.

Let us now go one step further and show that if all F (r) for 1 < r < g can be written

in the form (7.40) also F (g) itself admits this expansion. To do that, we use the Feynman

graph expansion introduced in section 7.3. It was shown there that each F (g)(Y, Ȳ ) can be

obtained from vertices C̃
(r)
I1...Ik

, r < g connected with propagators ∆IJ . But it is not hard

to see that C̃
(r)
I1...Ik

is actually an expansion in ∆IJ with holomorphic coefficients. More

precisely, note that the vertices are obtained by taking covariant derivatives DI of F (r)

and we can apply (7.41) to rewrite these into holomorphic covariant derivatives ĎI and a

propagator contribution. But since by our induction assumption F (r) is of the form (7.40)

for r < g we can apply (7.47) to show that this is equally true for F (g) itself. This

proves that (7.40) is true for all g > 1. It is also straightforward to count the number
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of propagators arising in the expansion (7.40). One simply notes that the term in the

Feynman graph expansion with coefficients C
(0)
IJK only is already an expansion in ∆IJ with

holomorphic coefficients. It has the maximal number of propagators, namely 3g − 3.

Having shown that F (g) can be always brought to the form (7.40), let us now determine

a closed expression by direct integration. Since all non-holomorphic dependence arises

through ∆IJ , the holomorphic anomaly equation can be rewritten as

∂F (g)

∂∆IJ
=

1

2
DI∂JF (g−1) +

1

2

g−1∑

r=1

∂IF
(r)∂JF (g−r) . (7.50)

To integrate this expression we introduce the following shorthand notation

F (g)(Y, Ȳ ) =

3g−3∑

k=0

c
(g)
(k) , c

(r)
(k) = ∆I1J1 . . . ∆IkJk c

(r)
I1J1...IkJk

, (7.51)

where c
(g)
(k) is the term containing k propagators ∆IJ . We also rewrite the right-hand side

of the holomorphic anomaly equation as

DI∂JF (g−1) + ∂I F̃
(1)∂JF (g−1) + ∂IF

(g−1)∂J F̃ (1) +

g−2∑

r=2

∂IF
(r)∂JF (g−r) . (7.52)

Here the first three terms can be rewritten as

DI∂JF (g−1)+∂I F̃
(1)∂JF (g−1)+∂IF

(g−1)∂J F̃ (1) (7.53)

= ĎI∂JF (g−1) − ∆KLC
(0)
IJK∂LF (g−1)−∆KLC

(0)
KL{I∂J}F

(g−1)+2∂{If
(1)∂J}F

(g−1) ,

where we have applied (7.41) and inserted (7.27). We also introduce the derivative ď, which

acts on the coefficients of the ∆-expansion as the holomorphic covariant derivative ĎI but

leaving ∆IJ invariant. For c
(g)
(k) given in (7.51) we thus set

ďIc
(g)
(k) = ∆I1J1 . . . ∆IkJk ĎIc

(g)
I1J1...IkJk

(Y ) (7.54)

Using this definition, we calculate

∂Ic
(g)
(k) = ďIc

(g)
(k) +

(
ĎI∆

MN

)
∂

∂∆MN
c
(g)
(k) (7.55)

= ďIc
(g)
(k) + C

(0)
IPQ

(
EPQMN

4 − ∆PM∆QN

)
∂

∂∆MN
c
(g)
(k) . (7.56)

Note that the first term is homogeneous of degree k in ∆, the second is homogeneous of

degree k − 1, while the last is homogeneous of degree k + 1. We also evaluate the second

derivative

ĎI∂Jc
(g−1)
(k) =

[
EMNQP

4 ETURS
4 C

(0)
IMNC

(0)
JTU

]
∂2

∂∆QP ∂∆RS
c
(g−1)
(k) (7.57)

+

[
ECDKLMN

6 C
(0)
KLIC

(0)
MNJ +ECDFG

4 Č
(0)
JFGI +2ECDFG

4 C
(0)
FG{I ďJ}

]
∂

∂∆CD
c
(g−1)
(k)
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+

[
ďI ďJ − 2EQCFG

4 C
(0)
FG{IC

(0)
J}QB∆BD ∂

∂∆CD

−2ECDEF
4 C

(0)
MN{IC

(0)
J}EF ∆MQ∆NP ∂2

∂∆QP ∂∆CD

]
c
(g−1)
(k)

−
[
Č

(0)
IJAB + 2C

(0)
AB{I ďJ}

]
∆AC∆BD ∂

∂∆CD
c
(g−1)
(k)

+

[
2C

(0)
IMNC

(0)
JQB∆QM∆NC∆BD ∂

∂∆CD

+C
(0)
IMNC

(0)
JAB∆QM∆NP ∆AC∆BD ∂2

∂∆QP ∂∆CD

]
c
(g−1)
(k) ,

where {IJ} indicates the symmetrization of the indices and we abbreviated

Č
(0)
IJKL = ĎIC

(0)
JKL . (7.58)

Once again, we can specify the ∆-homogeneity of the terms: first line k − 2, second line

k − 1, third and fourth line k, fifth line k + 1, sixth and seventh line k + 2. In performing

the direct integration of the holomorphic anomaly equation we keep track of the number of

propagators on the right-hand side of (7.50). We can do this explicitly by inserting (7.53)

together with (7.55) and (7.57) into (7.50). Due to the vast number of indices the result

looks rather complicated and will be presented in the following.

Performing the direct integration one finds

F (g) =
1

2

3g−6∑

k=0

[
1

k − 1
EMNQP

4 ETURS
4 C

(0)
IMNC

(0)
JTU∆IJ ∂2

∂∆QP ∂∆RS

+
1

k

(
ECDKLMN

6 C
(0)
KLIC

(0)
MNJ + ECDFG

4 Č
(0)
JFGI

+2ECDFG
4 C

(0)
FGI

(
ďJ + ∂Jf (1)

))
∆IJ ∂

∂∆CD

+
1

k + 1

((
ďI + ∂If

(1)

)(
ďJ + ∂Jf (1)

)
∆IJ − ∂If

(1)∂Jf (1)∆IJ

−2

(
EQCFG

4 C
(0)
FGIC

(0)
JQB∆IJ∆BD + EPQCD

4 C
(0)
IJKC

(0)
LPQ∆IJ∆KL

)
∂

∂∆CD

−2ECDEF
4 C

(0)
MNIC

(0)
JEF∆IJ∆MQ∆NP ∂2

∂∆QP ∂∆CD

)

− 1

k + 2

(
2C

(0)
IJK ďL∆IJ∆KL +

(
Č

(0)
IJAB + 2C

(0)
ABI(ďJ + ∂Jf (1))

)
×

×∆IJ∆AC∆BD ∂

∂∆CD

)

+
1

k + 3

(
2

(
C

(0)
IJKC

(0)
LPQ∆IJ∆KL∆PC∆QD

+C
(0)
IMNC

(0)
JQB∆IJ∆QM∆NC∆BD

)
∂

∂∆CD
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+C
(0)
IMNC

(0)
JAB∆IJ∆QM∆NP ∆AC∆BD ∂2

∂∆QP ∂∆CD

)]
c
(g−1)
(k)

+
1

2

g−2∑

r=2

3g−6∑

k=0

∑

m+n=k

[
1

k + 1
∆IJ

(
ďIc

(g−r)
(m)

)(
ďJc

(r)
(n)

)

+
1

k − 1
EPQMN

4 ERSTU
4 C

(0)
IPQC

(0)
JRS∆IJ

(
∂

∂∆MN
c
(g−r)
(m)

)(
∂

∂∆TU
c
(r)
(n)

)

+
1

k + 3
C

(0)
IPQC

(0)
JRS∆IJ∆PM∆QN∆PT ∆SU

(
∂

∂∆MN
c
(g−r)
(m)

)(
∂

∂∆TU
c
(r)
(n)

)

+
1

k
ERSTU

4 C
(0)
JRS∆IJ

{(
ďIc

(g−r)
(m)

)(
∂

∂∆TU
c
(r)
(n)

)
+

(
∂

∂∆TU
c
(g−r)
(m)

)(
ďIc

(r)
(n)

)}

− 1

k + 2
C

(0)
JRS∆IJ∆PT∆SU

{(
ďIc

(g−r)
(m)

)(
∂

∂∆TU
c
(r)
(n)

)

+

(
∂

∂∆TU
c
(g−r)
(m)

)(
ďIc

(r)
(n)

)}]

− 1

k + 1
EPQMN

4 C
(0)
IPQC

(0)
JRS∆IJ∆PT∆SU

{(
∂

∂∆MN
c
(g−r)
(m)

)(
∂

∂∆TU
c
(r)
(n)

)

+

(
∂

∂∆TU
c
(g−r)
(m)

)(
∂

∂∆MN
c
(r)
(n)

)}]
+ c

(g)
(0) . (7.59)

Let us end with some brief remarks about the properties of the direct integration in the

big moduli space. Firstly, we note that the building blocks of F (g) are the propagators ∆IJ

as well as the holomorphic modular forms

EI1...Jk

2k , ĎI1 . . . ĎIk
f (1) , ĎI1 . . . ĎIk

C
(0)
KLM , (7.60)

induced by F (1) and F (0). It seems likely that also the holomorphic ambiguity can be

parametrized by (7.60). To determine these forms it is essential to find Φ(τ), which will be

harder for examples other than the Enriques Calabi-Yau. Moreover, in order to efficiently

derive all F (g) one also needs to show that the forms (7.60) are generated by a finite number

of holomorphic modular forms of ΓM . Clearly, the most challenging task is then to fix the

ambiguity by appropriate boundary conditions. To explore these issues for other interesting

examples will be left for further work.

8. Conclusion and outlook

In this paper we have developed a new approach to solving the holomorphic anomaly

equations of [7], based on the interplay between modularity and non-holomorphicity, which

makes possible to perform a direct integration of the equations at each genus. This approach

is more efficient than the diagram expansion of [7] and leads to closed expressions for the

topological string amplitudes, once the ambiguities are fixed by appropriate boundary

conditions. The amplitudes obtained with this procedure can be written as polynomials

in a finite set of generators that transform in a particularly simple way under the space-

time symmetry group, making the modularity properties manifest. There are many open

questions and possible avenues for future work. We list here some of them.
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Although we have been able to improve the results of [41] for the Enriques Calabi-Yau

manifold, it would be interesting to push further the formalism developed in this paper.

In section 5 we have introduced a set of holomorphic automorphic forms on the Enriques

moduli space which might be enough to parametrize the holomorphic ambiguity. Using

these forms, the boundary conditions obtained from the field theory and the fiber limits,

and some extra information coming for example from Gromov-Witten theory, one might

be able to obtain the topological string amplitudes at higher genus.

As explained in [37], Gopakumar-Vafa invariants should provide a microscopic counting

of degrees of freedom for 5d spinning black holes, although in order to make contact with

the macroscopic Bekenstein-Hawking entropy one typically needs a knowledge of these

invariants (therefore of the topological string amplitudes F (g)) at arbitrary high genus.

Some of the results of this paper might be useful in studies of these black holes. For

example, the all-genus fiber result for the Enriques Calabi-Yau manifold should give a

detailed microscopic counting for small 5d black holes obtained by wrapping M2 branes in

the Enriques fiber.

Vast progress has been made in the understanding of compactifications which allow

to stabilize many or all moduli in N = 1 supersymmetric vacua [19]. These vacua often

rely on the inclusion of background fluxes and D brane instanton effects. Orientifolds

of the Enriques Calabi-Yau might serve as very controllable examples in which certain

corrections to the N = 1 low energy effective theory can be derived. In particular, it is

an interesting task to identify and compute corrections to the four-dimensional super- and

Kähler potentials encoded by the higher genus amplitudes.

As shown in [33, 22] the free energies of matrix models satisfy the holomorphic anomaly

conditions. Hence, the techniques of this paper could lead to a useful method to analyze

matrix models. Using matrix model technology one can also write down holomorphic

anomaly equations for open string amplitudes in local Calabi-Yau manifolds [22], and it

would be interesting to study them using the methods of this paper. In view of the results

of [45], this could lead to a powerful approach to compute open string amplitudes on toric

Calabi-Yau manifolds.
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A. N = 2 special geometry

In this appendix we summarize some basics about N = 2 special geometry [13 – 15, 24]. Let
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Y be a Calabi-Yau threefold, i.e. a complex three-dimensional Kähler manifold with SU(3)

or SU(2)× Z2, but no smaller, holonomy group. In particular Y has a no-where vanishing

holomorphic three-form Ω, which is unique up to complex rescaling. Ω depends on the

complex structure of Y and hence varies over the space of complex structure deformations

M. Local coordinates on M are denoted by ti, t̄i. Ω(t) can be used to define a Kähler

potential

K(t, t̄) = − log

[
i

∫

Y
Ω ∧ Ω̄

]
(A.1)

K induces the following Kähler metric structures on M

Gi̄ = ∂i∂̄K, Γk
ij = Gkl̄∂iGjl̄, Γk̄

ı̄̄ = Glk̄∂̄ı̄Gl̄

Ri̄kl̄ = −∂i∂̄̄Gkl̄ + Gmn̄(∂iGkn̄)(∂̄̄Gml̄), R l
ij̄k

= −∂̄̄Γ
l
ik

Ri̄ ≡ Gkl̄Ri̄kl̄ = −∂i∂̄̄ log det(Gi̄) .

(A.2)

Ω and Ω̄ are sections of holomorphic and anti-holomorphic lines bundles L and L over M
respectively and holomorphic gauge transformations Ω → efΩ in L correspond to Kähler

transformations, i.e. e−K ∈ L⊗L. The derivatives ∂i are with respect to coordinates ti of

M, and sections like Vj̄ in TM∗
(1,0) ⊗ TM∗

(0,1) ⊗Lm ⊗Ln
have a natural connection with

respect to the Weil-Petersson metric Gi̄ and the line bundle Ki = ∂iK, Kı̄ = ∂ı̄K

DiVj̄ = ∂i − Γl
ijVl̄ + mKiVj̄, Dı̄Vj̄ = ∂ı̄ − Γl̄

ı̄̄Vjl̄ + nKı̄Vj̄ . (A.3)

For a given complex structure Ω defines a Hodge decomposition

H3(Y, C) = H(3,0) ⊕ H(2,1) ⊕ H(1,2) ⊕ H(0,3) . (A.4)

The forms Ω, χi ≡ DiΩ, χı̄ ≡ Dı̄Ω̄ and Ω̄ provide a basis which spans the above cohomology

groups over C. Since it depends on the complex structure we call it the moving basis.

By Kodaira theory, infinitesimal deformations of the complex structure are elements of

H1(Y, TY ). Ω induces an isomorphism H1(Y, TY ) ∼ H(2,1)(Y ). Hence the harmonic

(2, 1)-forms χi, i = 1, . . . , h21 can be identified as (co)tangent vectors to M and these

deformations are unobstructed on a CY manifold [57].

We also introduce a fixed integer symplectic basis (αK , βL) of H3(Y, Z) with

∫

Y
αK ∧ βL = −

∫

Y
βL ∧ αK = δL

K ,

∫

Y
αK ∧ αL =

∫

Y
βK ∧ βL = 0 , (A.5)

which is independent of the complex structure. We can expand the moving basis in terms

of the fixed basis

Ω = XIαI −FIβ
I , χi = χI

i αI − χIiβ
I , etc . (A.6)

The expansion coefficients are the period integrals

XI =

∫

AI

Ω, FI =

∫

BI

Ω, χI
i =

∫

AI

χi, χI i =

∫

BI

χi , (A.7)
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where (AK , BI) is a basis of H3(Y, Z) dual to (αK , βL). Using (A.5) and (A.7) we can

express (A.1) in terms of the periods

K = − log i

[
X̄KFK − XKF̄K

]
. (A.8)

Note that XI ∈ L, FI ∈ L, χI
i ∈ T ∗

(1,0)M ⊗ L etc. Obviously the periods carry the

information about the complex structure deformations. The XI , I = 0, . . . h21 can serve

locally as homogeneous coordinates on M. Local special coordinates on M are defined by

ti = Xi/X0, i = 1, . . . h(2,1). The FI on the other hand are not independent. It follows

rather from ∫

Y
Ω ∧ ∂

∂XI
Ω = 0 (A.9)

that there is a holomorphic section F of L2 called prepotential obeying

F =
1

2
XIFI , FI = ∂XIF . (A.10)

This also implies that F(X) is homogeneous of degree two in XI . In special coordinates ti

one also writes F(t) = (X0)−2F(X). It turns out to be useful to introduce the second and

third derivative of the prepotential as

τIJ = ∂I∂JF , CIJK = ∂I∂J∂KF , (A.11)

which are homogeneous of degree zero and minus one respectively.

Special Kähler geometry describes the relation between the metric structure and the

Yukawa coupling

C
(0)
ijk ≡ iCijk ≡ −

∫

Y
Ω ∧ ∂i∂j∂kΩ = −

∫

Y
Ω ∧ DiDjDkΩ , (A.12)

a section of Cijk ∈ Sym3(T ∗
(1,0)) ⊗ L2. Using 〈χi, χ̄ı̄〉 = Gi̄e

−K and transversality of 〈, 〉
under the the decomposition (A.4), i.e. 〈γ(k,l), γ(m,n)〉 = 0 unless k + m = l + n = 3 one

gets the special geometry identities [13]

DiX
I ≡ χI

i , Diχ
I
j = iCijkG

kk̄χ̄I
k̄e

K , Diχ̄
I
j̄ = Gij̄X̄

I . (A.13)

From (A.3) and (A.2) follows [Di,D̄]χk = −Gi̄ + R l
i̄kχl and using (A.13) one gets

[Di,Dk̄] l
j = R l

ik̄j = Gik̄δ
l
j + Gjk̄δ

l
i − CijmC̄ml

k̄ , (A.14)

where we abbreviated

C̄
(0)ml

k̄
= e2KC̄

(0)

k̄ı̄̄
Gmı̄Gl̄ , C̄ml

k̄ = iC̄
(0)ml

k̄
. (A.15)

Let us also summarize some relations obeyed by τIJ and CIJK . One first notes that

by homogeneity and (A.12) and (A.13) one has

CIJKXK = 0 , Cijk = CIJKχI
i χ

J
j χK

k . (A.16)
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Using the above definitions and the degree two homogeneity of F one also shows that

2eKXI ImτIJX̄J = 1 , X̄I ImτIJχJ
i = 0 , 2eKχI

i ImτIJ χ̄J
j̄ = Gij̄ . (A.17)

Denoting by Imτ IJ the inverse of ImτIJ it follows from these conditions that

χI
i G

ij̄χ̄J
j̄ eK =

1

2
Imτ IJ + XIX̄JeK . (A.18)

B. Theta functions and modular forms

Our conventions for the Jacobi theta functions are:

ϑ1(ν|τ) = ϑ[11](ν|τ) = i
∑

n∈Z

(−1)nq
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ2(ν|τ) = ϑ[10](ν|τ) =
∑

n∈Z

q
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ3(ν|τ) = ϑ[00](ν|τ) =
∑

n∈Z

q
1
2
n2

eiπ2nν ,

ϑ4(ν|τ) = ϑ[01](ν|τ) =
∑

n∈Z

(−1)nq
1
2
n2

eiπ2nν ,

(B.1)

where q = e2πiτ . When ν = 0 we will simply denote ϑ2(τ) = ϑ2(0|τ) (notice that ϑ1(0|τ) =

0). The theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) have the following product representation:

ϑ2(τ) = 2q1/8
∞∏

n=1

(1 − qn)(1 + qn)2,

ϑ3(τ) =
∞∏

n=1

(1 − qn)(1 + qn− 1
2 )2,

ϑ4(τ) =

∞∏

n=1

(1 − qn)(1 − qn− 1
2 )2

(B.2)

and under modular transformations they behave as:

ϑ2(−1/τ) =

√
τ

i
ϑ4(τ),

ϑ3(−1/τ) =

√
τ

i
ϑ3(τ),

ϑ4(−1/τ) =

√
τ

i
ϑ2(τ),

ϑ2(τ + 1) =eiπ/4ϑ2(τ),

ϑ3(τ + 1) =ϑ4(τ),

ϑ4(τ + 1) =ϑ3(τ).

(B.3)

The theta function ϑ1(ν|τ) has the product representation

ϑ1(ν|τ) = −2q
1
8 sin(πν)

∞∏

n=1

(1 − qn)(1 − 2 cos(2πν)qn + q2n). (B.4)

We also have the following useful identities:

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ), (B.5)
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and

ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2 η3(τ), (B.6)

where

η(τ) = q1/24
∞∏

n=1

(1 − qn) (B.7)

is the Dedekind eta function. One has the following doubling formulae,

η(2τ) =

√
η(τ)ϑ2(τ)

2
, ϑ2(2τ) =

√
ϑ2

3(τ) − ϑ2
4(τ)

2
,

ϑ3(2τ) =

√
ϑ2

3(τ) + ϑ2
4(τ)

2
, ϑ4(2τ) =

√
ϑ3(τ)ϑ4(τ),

η(τ/2) =
√

η(τ)ϑ4(τ).

(B.8)

The Eisenstein series are defined by

E2n(q) = 1 − 4n

B2n

∞∑

k=1

k2n−1qk

1 − qk
, (B.9)

where Bm are the Bernoulli numbers. The covariant version of E2 is

Ê2(τ, τ̄ ) = E2(τ) − 3

πIm τ
= E2(τ) − 6i

π(τ − τ̄)
. (B.10)

The formulae for the derivatives of the theta functions are also useful:

q
d

dq
log ϑ4 =

1

24

(
E2 − ϑ4

2 − ϑ4
3

)
,

q
d

dq
log ϑ3 =

1

24

(
E2 + ϑ4

2 − ϑ4
3

)
,

q
d

dq
log ϑ2 =

1

24

(
E2 + ϑ4

3 + ϑ4
4

)
,

(B.11)

and from these one finds

q
d

dq
log η =

1

24
E2(τ) (B.12)

and the Ramanujan identities

q
d

dq
E2(q) =

1

12
(E2

2 (q) − E4(q)),

q
d

dq
E4(q) =

1

3
(E2(q)E4(q) − E6(q)),

q
d

dq
E6(q) =

1

2
(E2(q)E6(q) − E2

4(q)).

(B.13)

These can be used to compute the q-derivatives of the generators K2, K4 introduced in (3.5):

q∂qK2 =
1

6
E2(q)K2(q) +

1

4
K4(q) −

1

12
K2

2 (q),

q∂qK4 =
1

3
K4(q)(E2(q) + K2(q)).

(B.14)
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The doubling formulae for E2(τ), E4(τ) are

E2(2τ) =
1

2
E2(τ) +

1

4
(ϑ4

3(τ) + ϑ4
4(τ)),

E4(2τ) =
1

16
E4(2τ) +

15

16
ϑ4

3(τ)ϑ4
4(τ).

(B.15)

C. The antiholomorphic dependence of the heterotic F
(g)

In this appendix we find the antiholomorphic dependence of F (g)(t, t̄) in the heterotic

theory. In section C.1, we show how the complicated result of the heterotic computation

of the F (g) in the STU-model given in [46] can be simplified, along the lines of [10]. In

section C.2 we write down the result for F
(g)
E in the Enriques Calabi-Yau and derive (4.40).

C.1 A simple form for F (g) in the STU-model

In [46], an explicit expression for the holomorphic and antiholomorphic dependence of the

topological amplitudes in the fiber limit of the STU-model was found. This expression

is obtained from a one-loop computation in the dual heterotic theory, given by the inte-

gral (4.24), which is then performed by using the technique of lattice reduction [10]. One

finds that F (g) = F
(g)
deg + F

(g)
ndeg, where [46]

F
(g)
deg = 4π2U1δg,1 +

22g−1π4g−3

T 2g−3
1

g∑

l=0

cg(0, l)
l!

πl+3

(
T1

U1

)l

ζ(2(2 + l − g)), (C.1)

F
(g>1)
ndeg = 4π2g−2(−1)g−1

∑

r 6=0

g∑

l=0

2g−2∑

h=0

[g−1−h/2]∑

j=0

s∑

a=0

cg(r
2/2, l)

(2π)l(2g − 2)!

j!h!(2g − h − 2j − 2)!

×(−1)j+h

2j+a

(s + a)!

a!(s − a)!
(sgn (Re(r · y))h 1

(T1U1)l
(Re(r̂·y))l−j−a Li3+a+j+l−2g(e

−r̂·y)

+
2π3g−3cg(0, g − 1)

(T1U1)g−1

g−1∑

s=0

(−1)s
(2g − 2)!

s!(g − 1 − s)!
ψ

(
1

2
+ s

)

+

g∑

l=0
l 6=g−1

4l+gπ2g+l−5/2cg(0, l)
ζ(3 + 2(l − g))

(T1U1)l

×
g−1∑

s=0

(−1)s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ

(
3

2
+ s + l − g

)
. (C.2)

We refer to F
(g)
deg, F

(g)
ndeg as the degenerate and nondegenerate contributions, respectively.

Also, s := |2g − 2− h− j − l − 1/2| − 1/2; y = (T,U), the complex norm is defined as

r2 = 2r1r2, and

r̂·y ≡ |Re(r · y)| + iIm(r · y).

The coefficients cg(m, l) can be obtained from the expansion

E4E6

η24
P̂g =

∑

m∈Q

∑

l≥0

cg(m, l)qmτ−l
2 , (C.3)
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where P̂g are defined by

(
2πη3λ

ϑ1(λ|τ)

)2

e
−πλ2

τ2 =

∞∑

g=0

(2πλ)2gP̂g(τ, τ̄ ). (C.4)

Note that these P̂g(τ, τ̄ ) are the modular, almost holomorphic extensions of the Pg(τ)

defined in (4.29), that is, P̂g is obtained from Pg by replacing E2 → Ê2. The only anti-

holomorphic dependence in P̂g thus lies in the Ê2(τ, τ̄ ). Using the explicit expressions for

P̂g given in [41], one can show that independently of the specific model,

cg(m, l) =
(−1)l

l!(4π)l
cg−l(m), (C.5)

where cg(m) are defined analogously to (4.28), that is

∑

n

cg(n)qn = Pg(q)
E4E6

η24
. (C.6)

In what follows, we will systematically express everything in terms of the coefficients cg(m).

It turns out that (C.2) can be dramatically simplified. We will need the identity:

∑

j

(−1)j
(

C

j

)(
A − 2j + C − B − 1

A − 2j

)
=

∑

j

(−1)j
(

C

A − j

)(
B

j

)
(C.7)

This is valid for any A,B,C ∈ Z, see [10] for a proof. A special case of the above formula

is the following. Let C, l and m+ − h+ be integers such that 0 ≤ l < C < m+ − h+ − l.

Then,
∑

j

(−1)j(m+ − h+ + C − 2j − 1 − l)!

j!(m+ − h+ − 2j)!(C − j)!
= 0.

The proof of this statement is easy. Set B = l, A = m+ − h+ in (C.7) to obtain

∑

j

(−1)j
(m+ − h+ + C − 2j − 1 − l)!C!

j!(m+ − h+ − 2j)!(C − j)!(C − 1 − l)!
=

∑

j

(
C

m+ − h+ − j

)(
l

j

)
. (C.8)

Since C > l ≥ 0, any non-vanishing term on the right-hand side must fulfill m+−h+−C ≤
j ≤ l, in contradiction with the assumption C < m+ − h+ − l.

We also have the following three additional nontrivial identities. First of all, let s :=

|2g − 2 − h − j − l − 1/2| − 1/2. Then,

2g−2∑

h=0

C∑

j=0

(2g − 2)!

22g−2

(s + C − j)!(−1)C−j

l!h!j!(2g − 2 − h − 2j)!(s − C + j)!(C − j)!

=

{ (2g−3−l
C

)
1

(l−C)! C ≤ min(l, 2g − 3 − l)

0 otherwise.

This is valid for any pair of positive integers g, l. The second identity reads,

g−1∑

s=0

(−1)s
(2g − 2)!

s!(g − 1 − s)!
ψ

(
s +

1

2

)
= −2(2g−2)(g − 2)!. (C.9)
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The final identity we will need is

g−1∑

s=0

(−1)l+s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ

(
3

2
+ s + l − g

)
=

(−1)g−1(2g − 3 − l)!

(2g − 3 − 2l)!

√
π4−l.

(C.10)

which is valid for any l ∈ N, l < g − 1. Making use of (C.8) and (C.9), we can convert

the sums over h, j, a in (C.2) into a single one over C = j + a = {0, · · · , l}. Then, (C.9)

and (C.10) can be used to simplify the second respectively third term in (C.2). The sum

over r can be restricted for all g ≥ 3 to a sum over r for which Re(r ·y) < 0, or equivalently

to a sum over positive r and a finite number of boundary cases. At genus 2, however, there

is a contribution from Re(r · y) > 0, it reads [46]

c0(r
2/2)

16T1U1
Li3(e

−r·y). (C.11)

We can then write down a simplified expression for the nondegenerate part of F (g) in the

STU model:

F
(g>1)
nd,STU =

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(
2g−l−3

C

)

(l − C)!2C

(−Re(r · y))l−C

(2T1U1)l
cg−l(

r2

2
)Li3−2g+l+C(e−r·y)

+
22

2g(g − 1)

1

(2T1U1)g−1
+

g−2∑

l=0

cg−l(0)

l!(4T1U1)l
ζ(3 + 2(l − g))

(2g − 3 − l)!

(2g − 3 − 2l)!
, (C.12)

where we also have used the fact that in the STU model, c1(0) = −22, and we have removed

an overall prefactor of 4(2πi)2g−2 to agree with the normalization of the topological string

amplitudes.

C.2 Application to the Enriques Calabi-Yau

The above expressions have to be adapted slightly for the Enriques Calabi-Yau. We only

consider here the geometric reduction suited to the large radius limit. As shown in [41], the

polylogarithm is replaced by Lim(x) → 2mLim(x
1
2 )− Lim(x), and the norm of the reduced

lattice is doubled. We also replace the quantity 2T1U1 appearing in the STU-model by

Y = e−K as in (4.11), and the coefficients cg(m) are now defined by (4.28). There is a new

important simplification: c0(r
2) and cg>1(0) vanish, and thus there is no contribution from

negative r at any genus g > 1, since (C.11) becomes

c0(r
2)

8Y

(
8Li3(e

−r·y) − Li3(e
−2r·y)

)
= 0. (C.13)

Furthermore, the degenerate contribution (C.1) and the last term in (C.2) vanish for all

g > 1, while c1(0) = 4, and the full F
(g)
E (t, t̄) for the Enriques reads

F
(g>1)
E (t, t̄) =

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(2g−l−3
C

)

(l − C)!2C

(−2Re(r · t))l−C

Y l
cg−l(r

2) (C.14)

·
(
23−2g+l+CLi3−2g+l+C(e−r·t) − Li3−2g+l+C(e−2r·t)

)
− 1

2g−2(g − 1)

1

Y g−1
.
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Using

Re(ta)∂taLin(e−r·t) = −Re(r · t)Lin−1(e
−r·t), (C.15)

this can be cast into the following recursive form:

F
(g)
E (t, t̄) =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(2g − 3 − l)!

(2g − 3 − l − C)!(l − C)!C!2l
× (C.16)

×(ta1 + t̄a1) · · · (tal−C + t̄al−C )∂a1 · · · ∂al−C
F (g−l)(t)

Y l
− 1

2g−2(g − 1)Y g−1
.

Notice that this exhibits the structure of the antiholomorphic amplitudes written down

in [1].

D. Anomaly equations for F
(g) on the big moduli space

D.1 Anomaly equation for F (g) (g > 1)

Here we provide some details on the calculation of the recursive anomaly equations on

the big moduli space. We like to rewrite the equation (2.10) in terms of the variables

Y K = λ−1XK(t) and Ȳ K . First note that

∂

∂ti
− Kiλ

∂

∂λ
= λ−1χI

i

∂

∂Y K
, (D.1)

where χI
i is defined in (A.6). This implies that the first derivative of F (g) can be written

as

DiF
(g) = λ−2g+1χI

i ∂Y I F (g)(Y ) . (D.2)

where we have used the fact that λ∂λF (g)(Y ) = (2g − 2)F (g)(Y ) due to (7.5). Moreover,

one derives that the second derivative reads

DiDjF
(g−1) = λ−2g+3(Diχ

I
j ) ∂Y IF (g−1)(Y ) + λ−2g+3χI

jDi ∂Y IF (g−1)(Y )

= iλ−2g+3CijkG
kk̄χ̄I

k̄ ∂Y I F (g−1)(Y ) + λ−2g+2χI
i χ

J
j ∂Y I∂Y J F (g−1)(Y )

= λ−2g+2χI
i χ

J
j

[
i

2
C

(Y ) K
IJ ∂Y KF (g−1)(Y ) + ∂Y I ∂Y J F (g−1)(Y )

]
. (D.3)

In order to evaluate the second identity we have used the special geometry relation (A.13)

and (D.2) while for the third identity we have used (A.18). Also notice that from (D.2)

one infers that

g−1∑

r=1

DiF
(r)DjF

(g−r) = λ−2g+2χI
i χ

J
j

g−1∑

r=1

∂Y I F (r)(Y ) ∂Y J F (g−r)(Y ) (D.4)

Finally, we need the identity

i

2
e2KC̄īj̄k̄G

j̄jGk̄kχI
jχ

J
k =

i

8
λ−1χ̄K

ī C̄
(Y ) IJ
K . (D.5)
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Hence, we conclude that

∂Ȳ IF (g) =
i

8
C̄ IJ

K

[
∂Y I ∂Y J F (g−1) +

g−1∑

r=1

∂Y I F (r) ∂Y J F (g−r)

]
− 1

16
C̄ IJ

K C K
IJ ∂Y K F (g−1) ,

(D.6)

where CIJK and F (r) are functions of Y K , Ȳ K . This equation is precisely the recursive

anomaly equation given in (7.6).

Let us also present the derivation of the simplest solution to (7.6). In other words,

we calculate F (2) by using the integration by parts method of [7]. To do that we use the

definition (7.23) of the propagator to replace C̄ IJ
K in (7.22). We pull the derivative ∂Ī in

front of all the terms and evaluate

∂Ī

[
F (2) +

1

2
∆JK

(
DJ∂KF (1) + ∂JF (1)∂KF (1)

)]
= −

(
χ

24
− 1

)
∂Ī

[
∆JKKJ

]
∂KF (1)

−1

8
∂Ī

[
∆JK∆LM

](
C

(0)
KLMJ + 4C

(0)
JLM∂KF (1)

)
− 1

2

(
χ

24
− 1

)
∂Ī

[
∆JKKJKK

]
,

where C
(0)
IJK = iCIJK as defined in (7.19). In performing the derivative we used the

equation (7.22) to eliminate the terms arising when ∂Ī hits the propagator. Furthermore

we commuted ∂Ī with the covariant derivative DJ by using the identity
[
∂Ī ,DJ

]
VK =

1

4
C P

JK C̄ M
IP VM . (D.7)

One can then eliminate the second derivative ∂Ī∂KF (1) by inserting the equation (7.8) and

applying the useful identities

DIK̂IJ̄ = DIK̂J = 0 , ∆IJDIKJK̄ = 2∆IJKIK̄KJ , KJ∂Ī∆
JK = 0 . (D.8)

In the next step we once again pull the derivative ∂Ī in front of all terms and evaluate

∂Ī

[
F (2) +

1

2
∆JK

(
DJ∂KF (1) + ∂JF (1)∂KF (1)

)
+

1

2

(
χ

24
− 1

)
∆JKKJKK (D.9)

+
1

8
∆JK∆LM

(
C

(0)
KLMJ + 4C

(0)
JLM∂KF (1)

)
+

(
χ

24
− 1

)
∆JKKJ∂KF (1)

]

= −∂Ī

[
1

2

(
χ

24
− 1

)
C

(0)
JLM∆JK∆LMKJ +

1

2

(
χ

24
− 1

)2

∆JKKJKK

+∆JK∆LM∆QP

(
1

12
C

(0)
KMQC

(0)
PLJ +

1

8
C

(0)
KJQC

(0)
PML

)]
.

We are now in the position to read off F (2)(Y, Ȳ ) up to a holomorphic ambiguity f (2)(Y ).

The corresponding solution can be found in (7.28).

D.2 Anomaly equation for F (1) on big phase space

In this appendix we discuss the lift of the holomorphic anomaly equation 2.11 for F (1) to

the big moduli space M̂. To begin with let us first note that

|λ|−2χI
i χ̄

J
j̄ ∂Y I∂Ȳ J K = Gi̄ , Y I∂Y I ∂Ȳ J K = 0 , Ȳ J∂Y I∂Ȳ J K = 0 . (D.10)
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where K is the Kähler potential (A.8) and Gi̄ is the Weil-Petersson metric. We also

evaluate the first derivative KI of K and show that it satisfies

KIχ
I
i = 0 , KIY

I = −1 . (D.11)

With these identities at hand we now lift the holomorphic anomaly equation (2.11). Using

the homogeneity condition (7.7) one derives

∂i∂j̄F
(1) = |λ|−2χI

i χ̄
J
j̄ ∂Y I∂Ȳ J F (1)(Y ) (D.12)

Moreover, one shows that

1

2
e2KGkk̄Gll̄CiklC̄j̄k̄l̄ = |λ|−2χI

i χ̄
J
j̄

1

8
CILM C̄ LM

J , (D.13)

as well as (
χ

24
− 1

)
Gij̄ = |λ|−2χI

i χ̄
J
j̄

(
χ

12
− 2

)
eK(Y,Ȳ )ImτIJ . (D.14)

Inserting (D.12)-(D.14) into the anomaly equation (2.11) we verify its big moduli space

counterpart (7.8). It is straightforward to integrate (7.8) to find the local solution (7.10)

for F (1) by applying the identity

RIJ = ∂Y I∂Ȳ J log det Imτ = −1

4
CIKLC̄ KL

J . (D.15)

It is however instructive to also recall a second alternative approach which integrates (2.11)

rather then (7.8).

Let us end this appendix by recalling the direct integration of (2.11). First note that

the Riemann tensor on a special Kähler manifold is given by

Rij̄lm̄ = Gij̄Glm̄ + Gim̄Glj̄ − e2KCilpC̄j̄m̄p̄G
pp̄ . (D.16)

The Ricci tensor takes the form

Rij̄ = ∂i∂j̄ log det G = Gij̄(h
2,1 + 1) − e2KCilpC̄j̄m̄p̄G

lm̄Gpp̄ . , (D.17)

such that
1

2
e2KGkk̄Gll̄CiklC̄j̄k̄l̄ = Gij̄(h

2,1 + 1) − ∂i∂j̄ log detG . (D.18)

Using this equation we solve (2.11) as4

F (1) = −1

2
log detG +

(
1

2
(h2,1 + 1) − χ

24
+ 1

)
K + h(t) + h̄(t̄) (D.19)

where h(t) is a holomorphic function arising as integration constant. Now note that it

follows from (A.18) that [14]

det(2ImτIJ) = − det(Gij̄)e
−(h(2,1)+1)K |det(χI

i ,X
I)|−2 . (D.20)

4The derivative of the determinate of the matrix A is given by ∂x detA = det A · A
−1 IJ

∂xAIJ
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This equation can be used to rewrite F (1) as

F (1) = −1

2
log det(2ImτIJ)+

(
1− χ

24

)
K +

1

2
log

(
−|det(χI

i ,X
I)|−2

)
+h(t)+ h̄(t̄) (D.21)

One can evaluate the determinate of the coordinate change and shows [14]

|det(χI
i ,X

I)|−2 = |X0|−2(h2,1+1)|det ei
j |−2 . (D.22)

where ei
j = ∂ti(X

i/X0). But since X0 and ei
j are holomorphic in the coordinates ti they

can be absorbed into h such that (D.21) becomes (7.10).
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