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Abstract

We present a new method to solve the holomorphic anomaly equations governing the
free energies of type B topological strings. The method is based on direct integration
with respect to the non–holomorphic dependence of the amplitudes, and relies on the
interplay between non–holomorphicity and modularity properties of the topological string
amplitudes. We develop a formalism valid for any Calabi–Yau manifold and we study
in detail two examples, providing closed expressions for the amplitudes at low genus,
as well as a discussion of the boundary conditions that fix the holomorphic ambiguity.
The first example is the non-compact Calabi–Yau underlying Seiberg–Witten theory and
its gravitational corrections. The second example is the Enriques Calabi–Yau, which
we solve in full generality up to genus six. We discuss various aspects of this model:
we obtain a new method to generate holomorphic automorphic forms on the Enriques
moduli space, we write down a new product formula for the fiber amplitudes at all genus,
and we analyze in detail the field theory limit. This allows us to uncover the modularity
properties of SU(2), N = 2 super Yang–Mills theory with four massless hypermultiplets.
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1 Introduction

Topological string theory has played an important role in the quest for a better un-
derstanding of both physical and mathematical aspects of string theory. There are two
different topological string theories related to each other by mirror symmetry, and known
as the A and B-model. They are obtained from an N = 2 superconformal field theory,
twisted in two distinct ways to become type A or type B topological sigma models that
are then coupled to gravity. The physical relevance of these theories lies in their intimate
connection to type II superstring theory. In particular, the topological string on a given
Calabi-Yau manifold computes higher derivative F-terms in the 4d effective action of
the corresponding type II theory. From a mathematical point of view, the topological
string partition function provides a generating functional for Gromov-Witten invariants
in enumerative geometry.

It is therefore desirable to solve the topological string on a given Calabi-Yau manifold,
that is to say, to compute all the topological amplitudes F (g) in the genus expansion of the
partition function. While this problem is completely solved for the case of non-compact
toric Calabi-Yau manifolds thanks to the techniques of localization and the topological
vertex, it remains a challenge for the compact case. One of the main tools in solving
topological string theory, which also applies to compact Calabi-Yau manifolds, is the holo-
morphic anomaly equations for the B-model found in [7]. In this work we present a new
approach to solving these equations. We make use of the fact that for each Calabi-Yau
manifold there exists a target space symmetry group which provides a symmetry of the
topological partition function [1] and thereby drastically reduces the space of candidate
solutions. The topological string amplitudes F (g) turn out to be polynomials in a finite
set of generators which transform in a particularly simple way under the space-time sym-
metry group. Moreover, it can be shown that all non-holomorphic dependence in these
amplitudes arises through a very special set of generators that are suitable generaliza-
tions of the non-holomorphic Eisenstein function E2(τ, τ̄ ). The remaining generators are
holomorphic. Keeping track of these non-holomorphic contributions we will be able to
directly integrate the holomorphic anomaly equations. This method turns out to be very
efficient and gives us rich new information about the remaining holomorphic generators.
A similar approach to the holomorphic anomaly equations was sketched in [7], in the
analysis of toroidal orbifolds. For the quintic Calabi-Yau manifold a more complicated
method was outlined in [62]. Other related approaches have been used before in [31, 32]
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to analyze rational elliptic surfaces, and in [49, 50] to study noncritical strings and N = 4
super Yang–Mills theory.

The direct integration of the holomorphic anomaly equations can be performed for a
generic Calabi-Yau manifold, as we will show in the final section of this work. However,
in order to fully exploit the interplay of the holomorphic anomaly with the space-time
symmetry, we will intensively discuss specific examples. To illustrate the general ideas we
first study the local Calabi-Yau manifold associated to the Seiberg-Witten curve. Here
the target-space symmetry group is a subgroup of Sl(2,Z) and the generating modular
functions are well-known.

Applying these methods to a compact Calabi-Yau manifold is far more involved. In
the main part of the paper we will focus on the specific example of the Enriques Calabi-
Yau [23], arguably the simplest Calabi-Yau compactification with nontrivial topolog-
ical string amplitudes [41, 48]. This manifold can be obtained as the free quotient
(K3 × T

2)/Z2, where Z2 acts as the Enriques involution on the K3 fibers. The tar-
get space duality group of the Enriques Calabi-Yau is shown to be the discrete group
Sl(2,Z) ×O(10, 2,Z), with the factors corresponding to the T2 base and Enriques fiber,
respectively. The generating modular forms for Sl(2,Z) are well-known, therefore we will
be particularly concerned with the contributions from the Enriques fiber and specially
their mixing with the T2 base.

After integrating the holomorphic anomaly equations the only problem remaining is
to fix the holomorphic ambiguities, i.e. the boundary conditions in the integration of the
equations. These ambiguities are constrained by information coming from boundaries of
the moduli space where the F (g) are known explicitly. In the Enriques case one can use
the fiber limit, where all amplitudes can be determined by heterotic-type II duality [41],
and a field theory limit where the manifold degenerates to give rise to SU(2), Nf = 4
Seiberg-Witten theory. By making use of these boundary conditions we determine the
full topological string amplitudes up to genus 6, improving in this way previous results
in [41]. As a bonus of our analysis, we clarify the modularity properties of the conformal
Nf = 4 theory and its gravitational corrections described in [52]. At present the available
boundary conditions are not enough to completely solve topological string theory on the
Enriques Calabi–Yau, but we provide efficient tools to analyze the amplitudes at all genus
with the method of direct integration.

The organization of this paper is as follows. In section 2 we review the derivation of
the holomorphic anomaly equations. Section 3 gives a first simple example of the method
of direct integration and the fixing of holomorphic ambiguities by application to Seiberg-
Witten theory. Section 4 reviews what will be our main focus, the Enriques Calabi-Yau.
We introduce modular and automorphic forms which will be relevant later and discuss
the topological amplitudes on the Enriques fiber. Also an all-genus product formula for
the fiber partition function will be introduced. Section 5 constitutes the core of this
work. We show explicitly how one can solve for F (g) up to genus six and present the
general recursive formalism. Furthermore, boundary conditions and a reduced Enriques
model where part of the moduli space is blown down are investigated. In section 6 we
analyze the field theory limit corresponding to Nf = 4 SYM and we relate it in detail to
the Enriques Calabi–Yau. In section 7 we present a formalism for direct integration on
generic Calabi-Yau manifolds. Section 8 contains conclusions and an outlook on further
directions of investigation. Appendix A reviews some special geometry. Appendix B
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collects some useful formulae for theta functions and modular forms. Appendix C reviews
the heterotic computation of the amplitudes in [46, 41] and presents improved formulae
for their antiholomorphic dependence. Finally, appendix D presents the holomorphic
anomaly equations on the so-called big moduli space.

2 The holomorphic anomaly equations

In this section we will briefly recall some basics about topological string theory to set
the stage for the following sections and to fix our conventions. This will force us to
introduce some world-sheet notations and techniques. However, for the rest of this work
we will mostly need only the explicit form of the holomorphic anomaly equations. For a
more detailed introduction to topological string theory the reader might want to consult
references [30, 60, 51, 44, 39].

Type II string theory on Calabi-Yau threefold Y yields a superconformal field theory
with left and right moving (2, 2) supersymmetry on the world-sheet. This structure
admits two topological string theories: the A–and the B–model. The key quantity in
these topological theories is their all genus partition function

Z = exp

∞∑

g=0

g2g−2
s F (g) . (2.1)

This formal expansion in the string coupling gs contains the topological string amplitudes
F (g) for maps from genus g Riemann surfaces into a target Calabi-Yau manifold. The
topological string amplitudes of the A– and B–model are identified by mirror symmetry,
which maps one theory on Y to its dual on the corresponding mirror Calabi-Yau.

We will now briefly recall the B–model definitions of the free energies F (g). The
B–model describes constant maps from a world-sheet Riemann surface Σg to points in
the Calabi-Yau space Y . Therefore, the B–model definition of the F (g) involves only the
integration over the moduli space Mg of the world-sheet and not over the moduli space
of maps. More precisely, let us denote by (m,m) coordinates on Mg and abbreviate the
correlators of the world-sheet CFT by

〈
·
〉

g
. The free energies F (g) are then defined by

F (g) = 〈1〉g =

∫

Mg

〈
3g−3∏

k=1

βkβ̄k〉g [dm ∧ dm] . (2.2)

Here we inserted the operators βk =
∫
Σg
G−µk and their complex conjugates to obtain

the correct measure on the moduli space. βk and β̄k contain the the world-sheet Beltrami
differentials µk ∈ H1(TΣg) and the world-sheet supersymmetry generators G−, Ḡ−. The
contraction of [dm ∧ dm] with the (βk, β̄k) factor is antisymmetric due to the presence
of G−, Ḡ− and yields a top form on the complex 3g − 3 dimensional moduli space Mg.
The fact that one has to integrate only over the moduli space of the world-sheet makes
the B-model far simpler to solve than the A-model. Therefore, it is often easier to use
the B-model and the mirror map to determine A-model quantities.

From the point of view of the four-dimensional effective action, one is interested
in the dependence of the F (g) on the complex moduli ti, t̄i in the vector multiplets.
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These parametrize marginal deformations, which in the B-model correspond to complex
structure deformation of the Calabi-Yau manifold. Infinitesimally the world-sheet action
is perturbed by the ti, t̄i as follows

S = S0 + ti
∫

Σg

O(2)
i + t̄i

∫

Σg

Ō(2)
i , (2.3)

where the sums run over i = 1, . . . , h1(Y, TY ) = h(2,1)(Y ). Here the marginal two-form
operators are obtained using the descent equations as

O(2)
i = {G−

0 , [Ḡ
−
0 ,O(0)

i ]}dzdz̄ , O(2)
ı̄ = {G+

0 , [Ḡ
+
0 , Ō(0)

ı̄ ]}dzdz̄ , (2.4)

where G+
0 , G

−
0 are the zero modes of the twisted world-sheet supersymmetries G+, G−.

In these equations we denoted by O(0)
i the zero-form cohomological operators, which are

in one-to-one correspondence with the H1(Y, TY ) cohomology of the target space.

From the point of view of the target space Calabi-Yau the complex fields ti, t̄i provide
a set of local coordinates on the moduli space of complex structure deformations M.
This space is shown to be a special Kähler manifold with Kähler potential

K(t, t̄) = − log i

∫

Y

Ω(t) ∧ Ω̄(t̄) , (2.5)

where Ω(t) is the holomorphic three-form on Y varying holomorphically with a change
of the complex structure. Ω(t) is only unique up to rescalings by a holomorphic function
and hence should be viewed as a section of the line bundle L over the moduli space M.
In appendix A we review how the special geometry of M can be entirely encoded by a
single holomorphic section of L2, the prepotential F (0) = F(t). From a world-sheet point
of view one does not obtain F (0) directly, but rather finds the three-point function

C
(0)
ijk = 〈O(0)

i O(0)
j O(0)

k 〉g = −
∫

Y

Ω(t) ∧ ∂i∂j∂kΩ(t) , (2.6)

where ∂i are derivatives with respect to ti.

At higher genus a more involved world-sheet analysis can be applied to investigate
the properties of the higher F (g). It turns out that the higher genus topological string
amplitudes F (g) are not holomorphic, but rather fulfill specific holomorphic anomaly
equations. These equations are recursive in the genus and determine the anti-holomorphic
derivative of F (g). Therefore, even if the genus zero data are given they determine F (g)

only up to a holomorphic ambiguity. We will now briefly state the essential features and
results of the work of Bershadsky, Cecotti, Ooguri and Vafa [7], who have shown that

i.) The F (g) transform as section of L2−2g with the connection (A.3).

ii.) The topological B-model correlation functions

C
(g)
i1...in =





〈
∫
Σg

O(2)
i1

· · ·
∫
Σg

O(2)
in
〉g = Di1 . . .DinF

(g) for g ≥ 1

〈O(0)
i1
O(0)

i2
O(0)

i3

∫
Σg

O(2)
i4

· · ·
∫
Σg

O(2)
in 〉g = Di4 . . . DinC

(0)
i1i2i3

for g = 0
(2.7)

can be obtained using the covariant derivatives (A.3) and obey

C
(g)
i1...in = 0 for 2g − 2 + n ≤ 0 . (2.8)
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iii.) The anti-holomorphic derivative ∂ı̄ = ∂
∂t̄i

of the F (g),

∂̄ı̄F
(g) =

∫

Mg

∂̄ı̄µg =

∫

Mg

∂m∂̄m̄λı̄,g =

∫

∂Mg

λı̄,g, (2.9)

receives only contributions from the complex codimension one locus in the moduli space
of Riemann surfaces corresponding to world-sheets which are degenerate with lower genus
components. These boundary contributions can be worked out and yield recursive equa-
tions for the F (g). For g > 1 one gets

∂̄ı̄F
(g) = 1

2
C̄

(0)jk
ı̄

(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)
)

(2.10)

and for g = 1 a generalisation of the Quillen anomaly

∂i∂̄̄F
(1) = 1

2
C

(0)
ikl C̄

(0)kl
̄ −

( χ

24
− 1

)
Gī . (2.11)

Here we defined
C̄

(0)kl
̄ = e2KGkk̄Gll̄C̄

(0)

̄k̄l̄
, (2.12)

where Gkk̄ = ∂k∂̄k̄K is the Weil-Petersson metric of the Kähler potential (2.5).

These are the recursive holomorphic anomaly equations, which we want to integrate
directly in this paper. Note that there is no holomorphic anomaly at genus zero. C

(0)
ijk has

no world-sheet moduli dependence, hence no boundaries, and is therefore holomorphic.
The genus zero data thus have to be provided from the outset. They can be determined
from the period integrals of the manifold Y .

It is further shown in ref. [7] that (2.10) can be integrated recursively. With an
iterative procedure of complexity growing exponentially with the genus, one rewrites
(2.10) as

∂k̄F
(g)(t, t̄) = ∂̄k̄Γ

(g)(∆̂ij, ∆̂i, ∆̂, C
(r<g)
i1...in) , (2.13)

and integrates it to

F (g)(t, t̄) = Γ(g)(∆̂ij , ∆̂i, ∆̂, C
(r<g)
i1...in

) + f (g)(t) . (2.14)

Here Γ(g) is a functional of some propagators ∆̂ij , ∆̂i, ∆̂ and the lower genus vertices
C

(r)
i1...in with r < g. The holomorphic ambiguity f (g)(t) arises as an integration constant.

To prove that the functional Γ(g) exists at every genus, [7] show that it is the disconnected
Feynman graph expansion of an auxiliary action with the above vertices and propagators,
whose partition function fulfills a master equation equivalent to (2.10) and (2.11). The
propagators can be defined using the genus zero data as follows. Since

D̄ı̄ C̄
(0)

̄k̄l̄
= D̄̄ C̄

(0)

ı̄k̄l̄
(2.15)

one can integrate
C̄

(0)

̄k̄l̄
= −1

2
e−2KD̄ı̄D̄̄∂̄k̄∆̂ (2.16)

as
Gı̄j∆̂

j = 1
2
∂̄ı̄∆̂ , Gı̄k∆̂

kj = ∂̄ı̄∆̂
j , C̄

(0)jk
ı̄ = ∂̄ı̄∆̂

jk . (2.17)
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Note that the propagators are defined by these equations only up to holomorphic am-
biguities arising in the integration steps. Fixing these ambiguities directly affects the
definition of the holomorphic functions f (g)(t) in (2.14). It turns out that a preferred
choice for this ambiguity is provided by relating the propagators in a canonical way to
F (1)(t, t̄) [1].

The combinatorics of the Feynman graph expansion are useful to establish some
general properties of the F (g), but its complexity grows exponentially with the genus.
However, the F (g) are invariant under space-time modular transformations which are a
symmetry of the full string compactification. As we will discuss later, they generically
admit a split into a universal factor times a modular form. Here the weights of the
modular forms grow linearly with the genus. Since the ring of modular forms is finitely
generated, the complexity of modular invariant expressions grows only polynomially with
the genus. The method of direct integration that we develop in this paper uses this
connection with modular forms such that its complexity also grows only polynomially
with the genus. It has the advantage that the modular properties of the amplitudes are
manifest in all steps of the derivation.

3 Solving Seiberg-Witten theory by direct integra-

tion

Local Calabi-Yau geometries provide simple and instructive examples for the interplay
between holomorphicity and modular invariance in topological string theory. In this
section we will explain the key features using the simplest example, namely the local
Calabi-Yau corresponding to SU(2) Seiberg-Witten theory with no matter [54]. In sec-
tion 3.1 we first recall the geometry of Seiberg-Witten theory. We show that all genus
zero data can be expressed in terms of a finite set of holomorphic modular forms. All
higher amplitudes F (g) are invariant under the modular group. In section 3.2 we directly
integrate the holomorphic anomaly equations, determining all F (g) up to a holomorphic
modular ambiguity. Modularity restricts this ambiguity so much that simple boundary
conditions set by the effective action near special points in the moduli space allow one to
reconstruct all F (g). We review such a convenient set of boundary conditions in section
3.3. The general philosophy presented in this section will be later applied to the more
complicated case of compact Calabi-Yau manifolds.

3.1 The Seiberg-Witten geometry

Seiberg-Witten theory with no matter [54] can be obtained in the A–model as a limit of
the local Calabi-Yau geometry O(−2,−2) → P1×P1 [36]. The mirror B–model geometry
of this limit is the Seiberg-Witten elliptic curve E

y2 = (x− u)(x− Λ2)(x+ Λ2) , (3.1)

whose modular group is Γ(2). This subgroup of Sl(2,Z) acts on the period integrals

t =

∫

a

λ , tD =

∫

b

λ , (3.2)

7



where λ =
√

2
2π

y
x2−1

dx is the Seiberg-Witten meromorphic differential. In the limit
described above, λ is obtained as a reduction of the holomorphic (3, 0) form of the
Calabi-Yau manifold. Rigid special geometry guarantees the existence of a prepotential
F (0) = F(t) with the properties

tD =
∂F
∂t

, τ = − 1

4π

∂2F
∂2t

. (3.3)

These conditions are obtained as the rigid limit of the special geometry relations presented
in Appendix A. Note that τ is precisely the complex structure parameter of the torus
and hence parametrizes the upper half-plane. In particular, Imτ > 0 is guaranteed by
the Riemann inequality consistent with the fact that Imτ is the gauge kinetic coupling
function of Seiberg-Witten theory. Moreover, a modular transformation acts on τ as

τ 7→ aτ + b

cτ + d
. (3.4)

The genus zero data are functions of τ and transform in a particularly simple way under
(3.4). They can be expressed in terms of a finite set of modular generators, which we
will specify in the following.

A modular function f(τ) of weight m is defined to transform as f(τ) 7→ (cτ+d)mf(τ)
under (3.4). Focusing on the modular group of the Seiberg-Witten curve, we note that the
ring of modular functions of Γ(2) can be expressed as powers of the Jacobi θ-functions.
Relevant properties of the Jacobian θ-functions are summarized in Appendix B. We
introduce two generators

K2 = ϑ4
3 + ϑ4

4, K4 = ϑ8
2 , (3.5)

which are of modular weight two and four respectively. The modular transformation
properties follow from (B.3). K2, K4 generate the graded ring of holomorphic modular
forms M∗(Γ(2)) of Γ(2), which we will also denote by C[K2, K4]. It turns out to be useful
to also introduce

h = K2 , E4 = 1
4
(K2

2 + 3K4) . (3.6)

As we will see when we develop the method of direct integration, it is natural to take h,
E4 as the generators of the ring M∗(Γ(2)).

Let us now express the genus zero data in terms of modular forms. The connection
with the geometry of the Seiberg-Witten curve is given by the following relation

u(τ) =
K2√
K4

. (3.7)

The combination z(τ) = 1/u2(τ) is modular invariant and can be viewed as the analog of
the mirror map for this non-compact Calabi-Yau manifold. The analog of the holomorphic
triple coupling is

C ≡ C
(0)
ttt =

∂τ

∂t
=

32K
1/4
4

K2
2 −K4

(3.8)

Note that C2 is a form of weight −6 under the modular transformations in Γ(2). The
modular group Γ(2) also determines the periods t, tD as weight 1 objects 1

t(τ) =
E2(τ) +K2(τ)

3K
1/4
4 (τ)

, tD(τD) = −i2E2(τD) −K2(τD) − 3K
1/2
4 (τD)

3
(
2K2(τD) − 2K

1/2
4 (τD)

)1/2
, (3.9)

1They can be calculated likewise using the Picard-Fuchs equation.
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where τD = − 1
τ

and E2 is the second Eisenstein series defined in (B.9). It is natural to give
the periods in the above parameters. In the electric phase of Seiberg-Witten theory the
q = e2πiτ series converges and t is the physical expansion parameter, while in the magnetic
phase the qD = e2πiτD series converges and tD is the physical expansion parameter. Of
course tD(τ) and t(τD) can be obtained by performing an S-duality transformation on
E2 and the Jacobi theta functions.

3.2 Direct integration

Having discussed the genus zero geometry, let us now turn to the higher genus free energies
F (g) and their holomorphic anomaly. Starting with F (1), we note that the holomorphic
anomaly equation (2.11) specializes to

∂t∂t̄F
(1) = 1

2
C

(0) tt
t̄ C

(0)
ttt . (3.10)

where the indices are raised with the Weil-Petersson metric Gtt̄ = 2Imτ . This equation
integrates immediately to

F (1) = −1
2
log Imτ − log |Φ(τ)| , (3.11)

where ∂τ/∂t is evaluated using (3.8). The holomorphic object Φ(τ) is the ambiguity
at genus one. It is determined from modular constraints and the physical requirement
that F (1) should only be singular at the discriminant of E . Note that under a modular
transformation (3.4) one finds that Imτ 7→ |cτ + d|−2Imτ . Together with the invariance
of F (1) this implies that Φ(τ) must be a modular form of weight 1. The only modular
form of weight 1 which has only poles at the discriminant of E is the square of the η
function given in (B.7). This fixes the ambiguity at genus one as Φ(τ) = η2(τ).

At genus one the non-holomorphic dependence was induced through the appearance
of Imτ . As dictated by the holomorphic anomaly equations, all higher F (g) also depend
on t̄. We now show that this dependence arises through the propagator ∆̂tt only. ∆̂tt is
obtained in the local limit of (2.17) and thus obeys

∂t̄∆̂
tt = C

(0) tt
t̄ . (3.12)

All other propagators vanish in this limit. To integrate this condition, we first multiply
both sides in (3.12) by C

(0)
ttt . The result is easily compared to the holomorphic anomaly

equation (3.10) of F (1). Changing derivatives by inserting ∂τ/∂t = C
(0)
ttt one evaluates

with the help of (B.12)

∆̂tt = 2∂τF
(1)(τ, τ̄) = − 1

12
Ê2(τ, τ̄) , ∂τ = (2πi)−1 ∂

∂τ
(3.13)

The occurrence of the non-holomorphic extension of the second Eisenstein series E2(τ)

Ê2(τ, τ̄) = E2(τ) −
3

πImτ
. (3.14)

is forced by modular invariance. Since F (1)(τ, τ̄) is a modular function of weight zero,
its derivative must be a modular form of weight 2 which is not holomorphic. The only
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form with these properties is the almost holomorphic form Ê2(τ, τ̄). This form is the
canonical, almost holomorphic extension of the second Eisenstein series E2, where E2 is
the unique holomorphic quasimodular form of weight 2 transforming as

E2(τ) 7→ (cτ + d)2E2(τ) − 6
π
ic(cτ + d) (3.15)

under a modular transformation (3.4). The shift in the transformation of the anholomor-
phic piece in (3.14) cancels precisely the shift in (3.15). More generally the ring M̂∗ of

almost holomorphic forms of Γ(2) is generated as C[Ê2, h,∆].

Using the propagator and general properties of the Feynman graph expansion one
can extract the fact that the higher genus F (g) are weight 0 forms with the structure

F (g)(τ, τ̄ ) = C2g−2

3g−3∑

k=0

Êk
2 (τ, τ̄)c

(g)
k (τ) , g > 1 , (3.16)

where we defined C = C
(0)
ttt . Modular invariance implies then that the holomorphic forms

c
(g)
k (τ) are modular of weight 6(g − 1) − 2k in C[h,∆]. We will show next that all forms

c
(g)
k (τ) with k > 0 are very easily determined by direct integration of the holomorphic

anomaly equation. The form c
(g)
0 (τ) is not determined in this way and corresponds to a

holomorphic modular ambiguity.

In order to analyze the holomorphic anomaly equations in the local case, it turns out
to be very useful to discuss some general properties related to modular transformations.
Let us first discuss how derivatives transform under the modular transformation (3.4).
Denoting by fk a modular form of weight k it is elementary to check that its derivative
transforms under (3.4) as

∂τfk 7→ (cτ + d)k+2∂τfk +
k

2πi
c(cτ + d)k+1fk . (3.17)

Similarly, we can evaluate ∂tfk = C−1∂τfk, where as above C = C
(0)
ttt . In order to cancel

the shift in (3.17) we will now introduce covariant derivatives. There are two possible
ways to achieve this2. Firstly, one can cancel the shift against the shift of (Imτ)−1 and
set

Dtfk =
(
∂t −

kC

4πImτ

)
fk , Dτfk =

(
∂τ −

k

4πImτ

)
fk . (3.18)

Here Dt is the covariant derivative to the Weil-Petersson metric Gtt̄ and Dτ is the so-
called Mass derivative. Dt maps almost holomorphic forms of Γ(2) of weight k into almost
holomorphic forms of weight k − 1, while Dτ increases the weight from k to k + 2. Note
that both derivatives in (3.18) are non-holomorphic due to the appearance of Imτ . There
is however a second possibility to cancel the shift (3.17) which is manifestly holomorphic.
More precisely, one can cancel the shift against the shift (3.15) of E2(τ) and define

D̂tfk =
(
∂t − 1

12
kCE2

)
fk , D̂τfk =

(
∂τ − 1

12
kE2

)
fk . (3.19)

In this case D̂τ is known as the Serre derivative. Both D̂t and D̂τ are holomorphic. They
map holomorphic modular forms of weight k to holomorphic modular forms of weight
k − 1 and k + 2 respectively. It is easy to check that the following identity holds

Dtfk = D̂tfk + 1
12
kCÊ2 fk , Dτfk = D̂τfk + 1

12
kÊ2 fk . (3.20)

2We thank Don Zagier for explaining us several manipulations involved in the following.

10



These equations also imply that whenever fk is holomorphic all the non-holomorphic
dependence of Dtfk and Dτfk lies in a term involving the propagator. In other words,
once again all anti-holomorphic dependence arises through the propagator Ê2 only. The
generalizations of the modular derivatives (3.18) and (3.19) will reappear in later sections
of this work. For the Enriques Calabi-Yau they are given in (A.3),(4.11) and (5.31), while
in the general discussion of compact Calabi-Yau manifolds they appear in (7.4),(7.18) and
(7.42).

Here we will us the covariant derivatives (3.18) and (3.19) to rewrite the holomor-
phic anomaly equations (2.10). Firstly, we will apply modularity and the fact that

all non-holomorphic dependence arises through the propagator Ê2(τ, τ) to convert anti-

holomorphic derivatives into derivatives with respect to Ê2. Using (3.20) we will be able

to carefully keep track of the Ê2 dependence in the holomorphic anomaly equations.
Eventually, a solution will be simply obtained by direct integration of a polynomial in
Ê2.

To begin with, note that the holomorphic anomaly equations specialize in the local
limit to

∂t̄F
(g) = 1

2
C

(0)tt
t̄

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)
)
. (3.21)

Using the fact that all non-holomorphic dependence arises only through the propagator
Ê2(τ, τ̄), this equation can be rewritten as

∂F (g)

∂Ê2

= 1
48

(
Dt∂tF

(g−1) +

g−1∑

r=1

∂tF
(r)∂tF

(g−r)
)
. (3.22)

Here we used (3.12) to substitute C
(0)tt
t̄ with the derivative ∂t̄Ê2, which then cancels with

the same factor arising on the left-hand side of this equation. Let us now manipulate the
right-hand side of (3.25) and split off the derivative of F (1) in the second term

∂F (g)

∂Ê2

=






1
48

(
Dt∂tF

(1) + (∂tF
(1))2

)
g = 2 ,

1
48

(
(Dt + 2∂tF

(1))∂tF
(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)
)

g > 2 ,
(3.23)

where the sum now runs from r = 2 to r = g − 2. One then notes that ∂tF
(1) can

be replaced by − 1
24
CÊ2 by using (3.13). Furthermore, we replace the non-holomorphic

derivative Dt with its holomorphic counterpart D̂t via (3.20). Altogether, one evaluates

∂F (2)

∂Ê2

= − 1
48·24

(
D̂t(CÊ2) − 1

8
(CÊ2)

2
)

(3.24)

for genus two and for g > 2

∂F (g)

∂Ê2

= 1
48

(
(D̂t − 1

6
CÊ2)∂tF

(g−1) +

g−2∑

r=2

∂tF
(r)∂tF

(g−r)
)
. (3.25)

We are now in the position to make the dependence on Ê2 explicit. This can be
done by rewriting the right-hand side of (3.25) using (3.19). We also define d̂t and d̂τ as
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covariant derivatives Dt, D̂τ not acting on the propagators Ê2, such that e.g. d̂τ(Ê
k
2 c

(r)
k ) =

Êk
2 D̂τc

(r)
k . Applying the chain rule we find

∂tF
(r) =

[
d̂t + (D̂tÊ2)∂ bE2

]
F (r) = C

[
d̂τ − 1

12
(E4 + Ê2

2)∂ bE2

]
F (r) , (3.26)

where (3.14), (3.19) and (B.13) are applied to evaluate the derivative of E2. The Eisen-
stein series E4 arises naturally in rewriting the derivatives. We will therefore work with
the ring C[Ê2, h, E4] introduced in (3.6).

Similarly, we rewrite the second derivative

D̂t∂tF
(g−1) = 1

122C
2
(
122d̂2

τ + 62hd̂τ + 2E4(Ê2∂ bE2
+ Ê2

2∂
2
bE2

)

−(3h+ 12d̂τ )Ê
2
2∂ bE2

+ 2Ê3
2∂ bE2

+ Ê4
2∂

2
bE2

(3.27)

+(−9E4h+ 2h3 − 12E4d̂τ )∂ bE2
+ E2

4∂
2
bE2

)
F (g−1) ,

where we have used that the derivative of C is given by D̂τC = 1
4
hC. This is how the

holomorphic modular form h defined in (3.6) arises in the direct integration.

We can now actually perform the direct integration. This is done by inserting the
expressions (3.26) and (3.27) for ∂tF

(r) and D̂t∂tF
(g−1) into the holomorphic anomaly

equation (3.25). Replacing all F (r) for 1 < r < g with their propagator expansion (3.16),

it is then straightforward to keep track of the number of propagators Ê2 in each term of the
right-hand side of (3.25). Finally, F (g) is determined up to a Ê2−independent ambiguity

by integrating the resulting polynomial in Ê2. Without much effort this procedure can
be repeated iteratively up to the desired genus.

Note that the equation (3.24) for F (2) is particularly simple to integrate. Using (3.19)
and (B.13) one evaluates

D̂t(CÊ2) − 1
8
(CÊ2)

2 = 1
24
C2

(
− 5Ê2

2 + 6Ê2h− 2E4

)
. (3.28)

Inserted into (3.25) it is straightforward to integrate this quadratic polynomial in Ê2 to
derive F (2) as

F (2)(τ, τ̄) = 1
2·243C

2
(

5
3
Ê3

2 − 3 hÊ2
2 + 2E4Ê2

)
+ C2c

(2)
0 , (3.29)

where c
(2)
0 (h,E4) is the holomorphic ambiguity which can be fixed by additional boundary

conditions as we discuss in the next section. For genus up to 7 the expressions for F (g)

were calculated in [33] using the Feynman graph expansion. The direct integration using
(3.25) provides a far more effective method to solve Seiberg-Witten theory and confirms
the results of [33]. Furthermore, the modular properties of the expressions are manifest
at each step. As we will discuss in the later sections, similar constructions will provide
us with a powerful tool to determine the set of candidate modular generators for more
complicated Calabi-Yau manifolds. In particular, holomorphic modular forms are needed
to parametrize the holomorphic ambiguity. In case we know the ring of holomorphic
modular forms, fixing the ambiguity reduces to a determination of a finite set of numerical
factors at each genus. For Seiberg-Witten theory this can be done systematically, as we
will discuss in the next section.
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3.3 Boundary conditions

To systematically fix the c
(g)
0 we have to understand the boundary behavior of the F (g).

As it is well known, there are three distinguished regions in the moduli space of pure
SU(2) N = 2 SYM which correspond to the geometrical singularities of E . We will
parametrize the moduli space by the vacuum expectation value u = 〈TrΦ2〉 of the scalar
Φ in the N = 2 vector multiplet. The first region occurs at u ∼ 1

2
t2 → ∞, and it

corresponds physically to the semiclassical regime. The monopole region occurs near
u → Λ2, where a magnetic monopole of charge (e,m) = (0, 1) becomes massless and
the electric SU(2) theory with gauge coupling Imτ is strongly coupled. At the point
u → −Λ2 a dyon of charge (e,m) = (−1, 1) becomes massless. However, this point is
identified with the monopole point by a Z2 exact quantum symmetry. For this reason
there are no independent boundary conditions at u→ −Λ2 and we focus on u→ Λ2 and
u ∼ ∞. In both cases the elliptic curve acquires a node, i.e. a local singularity of the
form ξ2 +η2 = (u±Λ2), where a cycle of S1 topology shrinks. In string theory, a point in
the moduli space where a node in the target geometry develops is called a conifold point.

The natural physical parameter in the magnetic monopole region u → Λ2 is tD.
We get first a convergent expansion for the F (g) in the variable qD = exp(2πiτD) for
τD = − 1

τ
→ i∞, which corresponds to tD → 0. This is obtained by an S- transforma-

tion of the modular expressions for the F (g)(τ, τ̄) such as (3.29), which converge in the

semiclassical region. The holomorphic magnetic expansions F (g)
D (τD) can be obtained

by formally taking the limit τ̄D → ∞, while keeping τD fixed. Finally we obtain the
expansion in tD by inverting (3.9). In these magnetic expansions, a gap structure was
observed near the monopole (or conifold) point [33]. One finds that the leading behavior

of F (g)
D (τD) is of the form

F (g)
D =

B2g

2g(2g − 2)t̃2g−2
D

+ k
(g)
1 t̃D + O(t̃2D) , (3.30)

where the Bn are the Bernoulli numbers and we used a rescaled variable t̃D = i tD
2

. The
knowledge of the leading coefficients and the absence of the remaining 2g−3 sub-leading
negative powers in the t̃D expansion imposes 2g− 2 conditions. Since dimM6g−3(Γ(2)) =[

3g−1
2

]
this overdetermines the c

(g)
0 , e.g. for g = 2 we find c

(2)
0 = − 1

2·243

(
1
2
E4 h+ 1

30
h3

)
. It

is very easy to integrate (3.25) using (3.26), (3.27) and the gap condition, which fixes the
ambiguity to arbitrary genus. This solves the theory completely. One finds moreover a
pattern in the first subleading term in the magnetic expansion

k
(g)
1 =

((2g − 3)!!)3

g!27g−2
. (3.31)

The gap can be explained by using the embedding of Seiberg-Witten theory into type
IIA string theory compactified on a suitable Calabi–Yau manifold. The most generic
singularity of a d complex dimensional manifold is a node where an Sd shrinks. The
codimension one locus in the moduli space where this happens is called the conifold. It
was argued in [56, 58] that at the conifold a RR-hypermultiplet becomes massless. This
hypermultiplet is charged and couples to the U(1) vector multiplets. Its one loop effect
on the kinetic terms of the vector multiplets in the effective action is captured by the local

13



expansion of F (0) [56]. A gravitational one-loop effect yields the moduli dependence of
the R2

+ term in the effective action and is given by local expansion F (1) [58]. Using further
one-loop arguments it was shown that the F (g), which capture the moduli dependence of
the coupling of the self-dual part of the curvature to the self-dual part of the graviphoton
R2

+ F
2g−2
+ , have the following gap structure

F
(g)
conifold =

(−1)g−1B2g

2g(2g − 2)t2g−2
D

+ O(t0D), (3.32)

where tD is a suitable coordinate transverse to the conifold divisor [34]. The Seiberg-
Witten gauge theory embedded in type IIA string theory inherits this structure, and the
massless hypermultiplet at the conifold is identified as a monopole becoming massless
at the monopole point. In this way, (3.32) explains the field theory result (3.30) and
extends it to the full supergravity action.

Once the Seiberg-Witten amplitudes F (g) have been determined in terms of modular
functions, these can be expanded around every point in the moduli space. For example,
in the semiclassical regime τ → i∞, u → ∞ one finds the holomorphic amplitudes

F (g) =
(−1)gB2g

g(2g − 2)(2t)2g−2
+
l
(g)
2g+6

t2g+6
+ O(t2g+10) . (3.33)

The higher order terms in this expansion correspond to gauge theory instantons and have
been computed in [52].

4 A first look at the Enriques Calabi-Yau

In this section we review some basic properties of topological string theory on the Enriques
Calabi-Yau. We begin by reviewing the N = 2 special geometry of the classical moduli
space of Kähler and complex structure deformations in section 4.1. The first world-sheet
instanton corrections arise from genus one Riemann surfaces as shown in refs. [23, 29, 41].
The holomorphic higher genus free energies, restricted to the K3 fiber, can be also derived
by using heterotic-type II duality [41]. We briefly summarize these results in section 4.2.
In understanding and deriving the expression for the full F (g) an important hint is given
by their transformation properties under the symmetry group of the full topological
string theory on the Enriques Calabi-Yau. More precisely, generalizing the results of the
previous section, one expects that all F (g) are built out of functions transforming in a
particularly simple way under the group Sl(2,Z) ×O(10, 2,Z). In section 4.4 we review
some essentials about these modular and automorphic functions and forms.

4.1 Special geometry of the classical moduli space

The Enriques Calabi-Yau can be viewed as the first non-trivial generalization of the
product space T2 × K3. It is defined as the orbifold (T2 × K3)/Z2, where Z2 acts as a
free involution [23]. This involution inverts the coordinates of the torus and acts as the
Enriques involution on the K3 surface. The cohomology lattice of T2×K3 takes the form
[5]

Γ6,22 = Γ2,2 ⊕ [Γ1,1 ⊕E8(−1)]1 ⊕ [Γ1,1 ⊕ E8(−1)]2 ⊕ Γ1,1
g ⊕ Γ1,1

s , (4.1)
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where the inner products on the sublattices E8(−1) and Γ1,1 are given by

(Cαβ) = −CE8 , (Cij) =

(
0 1
1 0

)
. (4.2)

with α, β = 1, . . . , 8 and i, j = 1, 2. Here CE8 is the Cartan matrix of the exceptional
group E8. The lattice (4.1) splits into H1(T2) ⊕ H1(T

2) = Γ2,2 and H∗(K3) = Γ4,20.
Under heterotic-type II duality it can be identified with the Narain lattice of the heterotic
compactification on T6. The Z2 involution on the Enriques Calabi-Yau acts on the five
terms of the lattice (4.1) as [23] 3

|p1, p2, p3, p4, p5〉 → eπiδ·p5 | − p1, p3, p2,−p4, p5〉 , (4.3)

where pi is an element of the i-th term in (4.1) and we denoted δ = (1,−1) ∈ Γ1,1
s .

The Enriques Calabi-Yau has holonomy group SU(2) × Z2. This implies that type
II string theory compactified on the Enriques Calabi-Yau will lead to a four-dimensional
theory with N = 2 supersymmetry. Nevertheless, due to the fact that it does not have the
full SU(3) holonomy of generic Calabi-Yau threefolds, various special properties related
to N = 4 compactification on T2 ×K3 are inherited.

As an example of the close relation of the Enriques Calabi-Yau to its N = 4 coun-
terpart T

2 ×K3 one notes that the moduli space of Kähler and complex structure de-
formations are simply cosets. The complex dimensions of these moduli spaces are given
by the dimensions h(1,1) and h(2,1) of the cohomologies H(1,1) and H(2,1). They can be
determined constructing a basis of H(p,q) of forms of K3 and T2 invariant under the free
involution. One obtains [23]

h(2,1) = h(1,1) = 11 , (4.4)

while H(0,0), H(3,3) as well as H(3,0) are one-dimensional. Moreover, one can show that
the Enriques Calabi-Yau is self-mirror and that both the Kähler and complex structure
moduli spaces are given by the coset

M =
Sl(2,R)

SO(2)
×N8 , (4.5)

where

Ns =
O(s+ 2, 2)

O(s+ 2) ×O(2)
. (4.6)

The actual moduli space is obtained after dividing M by the discrete groups Sl(2,Z) ×
O(10, 2; Z). M is a simple example of a special Kähler manifold. We will discuss its
properties in the following.

It is a well-known fact that the geometric moduli space of a Calabi-Yau manifold
consists of two special Kähler manifolds corresponding to Kähler and complex struc-
ture deformations. A summary of some of the basic definitions and identities of special
geometry can be found in appendix A. Essentially all information is encoded in one
holomorphic function, the prepotential F . Let us for concreteness consider the moduli
space of Kähler structure deformations of the Enriques Calabi-Yau which is of the form

3The effect of the phase factor on the type II side was interpreted as turning on a Wilson line [23].
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(4.5). Denoting by ω̂ the harmonic (1, 1)-form in the T
2-base and by ωa the (1, 1) forms

in the Enriques fiber, we obtain complex coordinates S, ta by expanding the combination

J + iB2 = S ω̂ + ta ωa , a = 1, . . . , 10 , (4.7)

where J is the Kähler form on the Enriques Calabi-Yau and B2 is the NS-NS two-form.
Note that in our conventions ReS > 0 and Re ta > 0 such that the world-sheet instantons
arise as series in qS = e−S and qta = e−ta in the large radius expansion. We note that
these complexified Kähler parameters ta can be regarded as a parametrization of the
coset N8. The parametrization we are using here is the one suitable for the conventional
large radius limit and corresponds to what was called in [41] the geometric reduction. In
terms of (4.7), the prepotential takes the form

F = − i
2
Cabt

atbS . (4.8)

For the Enriques Calabi-Yau the cubic expression for the genus zero free energy F (0) = F
is exact and world-sheet instanton corrections will only arise at higher genus. This is
precisely the reason for the simple form (4.5) of the moduli space. The symmetric matrix
Cab in (4.8) encodes the intersections in the Enriques fiber E such that

Cab =

∫

E

ωa ∧ ωb . (4.9)

The inverse matrix Cab ≡ C−1 ab can be calculated explicitly and coincide in an appro-
priate basis with the intersection matrix of the Z2 invariant lattice of the second and the
third factor in (4.1), i.e.

ΓE = Γ1,1 ⊕ E8(−1) , (Cab) =

(
0 1
1 0

)
× (−CE8). (4.10)

Here CE8 is the Cartan matrix of the exeptional group E8. The lattice ΓE is identified
with the second cohomology group of the Enriques surface.

The prepotential for the Enriques Calabi-Yau encodes the classical geometry of the
moduli space (4.5). The Kähler potential is derived using equation (A.8) to be of the
form

K = − log
[
Y (S + S̄)

]
, Y = 1

2
Cab(t

a + t̄a)(tb + t̄b) . (4.11)

Note thatK as given in (A.8) contains a term − log |X0|2, with X0 being the fundamental
period. Such a term can be removed by a Kähler transformation K → K − f − f̄ , where
f is a holomorphic function, such that our expression (4.11) corresponds to a certain
Kähler gauge. In general, all objects we will consider below are sections of a line bundle
L which parametrizes such holomorphic rescalings V → efV . As an example e−K is a
section of L ⊗ L̄. Such Kähler transformations do not change the Kähler metric which
is obtained by evaluating the holomorphic and anti-holomorphic derivative of K. The
Kähler metric splits into two pieces

GSS̄ =
1

(S + S̄)2
, Gab̄ = −Cab

Y
+
Cac(t+ t̄)cCbd(t+ t̄)c

Y 2
, (4.12)

with all other components vanishing. The Christoffel symbols for this metric are easily
evaluated to be

ΓS
SS = 2KS , Γc

ab = KeC
edΓ̂c

ab|d , (4.13)
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where KS and Ka are the first derivatives of the Kähler potential (4.11) and we have
defined

Γ̂b
ac|d =

(
δb
cCad + δb

aCcd − δb
dCac

)
. (4.14)

It is also easy to derive the holomorphic Yukawa couplings C
(0)
ijk defined in (A.12). In

coordinates S, ta one uses the prepotential (4.8) to show

C
(0)
Sab = Cab . (4.15)

In general C
(0)
Sab is a section of L2 ⊗ Sym3(T ∗M). In the case of the Enriques Calabi–

Yau it is constant in the Kähler gauge and coordinates chosen above, and covariantly
constant in a general gauge. The covariant derivative, acting on a section of Lm ⊗ L̄n, is
(A.3)

Da = ∂a +mKa, Dā = ∂ā + nKā, (4.16)

and includes the Christoffel symbols when acting on tensors. Applied to C
(0)
Sab one shows

DcC
(0)
abS = −Γd

caCdb − Γd
cbCad + 2∂cKCab = 0 , (4.17)

which vanishes by means of the equation (4.13) for the Christoffel symbols. A similar

equation holds for the covariant derivative DSC
(0)
abS, showing that C

(0)
abS is indeed covari-

antly constant. Once again, this special property of the Yukawa couplings is immediately
traced back to the fact that the prepotential F receives no instanton corrections.

The space M has two different types of singular loci in complex codimension one
on the moduli space [23, 4] which lead to conformal field theories in four dimensions.
The first degeneration comes from the shrinking of a smooth rational curve e ∈ ΓE with
e2 = −2. The shrinking P1 leads to an SU(2) gauge symmetry enhancement together
with a massless hypermultiplet, also in the adjoint representation of the gauge group.
We then obtain for this point the massless spectrum of N = 4 supersymmetric gauge
theory. In terms of the complexified Kähler parameters introduced in (4.7) this singular
locus occurs along

t1 = t2. (4.18)

In order to understand the second singular locus, we first point out that the coset N8

can be parametrized in many different ways. In [41] it was noticed that there is a
parametrization of this coset in terms of some coordinates taD, a = 1, · · · , 10 which are
related to what was called there the BHM reduction. By using the formulae in [41] it is
easy to see that the coordinates ta and taD are related by the following simple projective
transformation,

t1 = t1D − 1

4t2D

10∑

i=3

(tiD)2,

t2 =
2π2

t2D
,

ti = −πi
tiD
t2D
, i = 3, · · · , 10.

(4.19)

The second singular locus occurs when

t1D = t2D. (4.20)

17



On this locus one gets as well an SU(2) gauge symmetry enhancement. In addition one
gets four hypermultiplets in the fundamental representation of SU(2), and the resulting
gauge theory is N = 2, SU(2) Yang-Mills theory with four massless hypermultiplets. In
Fig. 1 we represent schematically the two singular loci in moduli space, related by the
projective transformation (4.19). In sections 5 and 6 of this paper we will explore in
some detail the field theory limit of the topological string amplitudes and we will verify
this picture of the moduli space.

N = 4 enhancement

t
1

= t
2 t

1

D
= t

2

D

Nf = 4 enhancement

N8

Figure 1: The singular loci in the moduli space N8, leading to two different gauge theories
in the field theory limit.

4.2 Genus one and the free energies on the Enriques fiber

So far we have discussed the classical moduli space of the Enriques Calabi-Yau Y . We
introduced the prepotential F which is cubic in the Kähler structure deformations and
receives no worldsheet instanton corrections. One expects that such a simple structure
will no longer persist at higher genus. This is already true at genus one as was shown
in [29, 41]. Heterotic–type II duality can also be used to determine all higher genus
free energies on the K3 fibers of the Enriques Calabi-Yau [41]. In this section we will
summarize some results of [41] and present a closed expression for the fiber free energies
also including the anti-holomorphic dependence.

Let us begin with a brief discussion of the free energies for the Enriques fiber. The
fiber limit of the topological string amplitudes corresponds to blowing up the volume of
the base space by taking

S → ∞ , qS ≡ e−S → 0 . (4.21)

In what follows we will need to distinguish the full topological string amplitudes F (g)

from their fiber limits as well as from their holomorphic limits. We will denote,

F
(g)
E (t, t̄) = lim

S→∞
F (g)(t, t̄) (4.22)

and
F (g)

E (t) = lim
t̄→∞

F
(g)
E (t, t̄). (4.23)
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The fiber limit F
(g)
E (t, t̄) can be calculated using heterotic-type II duality [3, 46, 41]. In

the heterotic string they are given by a one–loop computation of the form

F
(g)
E (t, t̄) =

∫
dτ Θ

g

Γ(τ, v+)fg(τ, τ̄)/Y
g−1 (4.24)

where Y is defined in (4.11), and Θg
Γ(τ, v+) is a theta function with an insertion of

2g − 2 powers of the right–moving heterotic momentum. We will not need the precise
definitions of Θg

Γ and fg here. However, it is important to note that these amplitudes
can be evaluated in closed form by using standard techniques for one–loop integrals. The
holomorphic limit (4.23) was determined in [41] and it is given by

F (g)
E (t) =

∑

r>0

cg(r
2)

[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
, (4.25)

where Lin is the polylogarithm of index n defined as

Lin(x) =
∞∑

d=1

xd

dn
. (4.26)

In formula (4.25) we have also set r2 = Cabrarb and r · t = rat
a. We will sometimes write

r = (n,m, ~q). (4.27)

The restriction r > 0 means n > 0, or n = 0, m > 0, or n = m = 0, ~q > 0. Finally, we
need to define the coefficients cg(n). They can be identified as the expansion coefficients
of a particular quasi-modular form

∑

n

cg(n)qn = −2
Pg(q)

η12(2τ)
, (4.28)

with Pg(q) given by (
2πη3λ

ϑ1(λ|τ)

)2

=
∞∑

g=0

(2πλ)2gPg(q). (4.29)

The definition of η(τ) and the theta-function ϑ1(λ|τ) can be found in Appendix B. From
the definition (4.29) and the identities summarized in Appendix B one also infers that
the Pg are quasimodular forms of weight 2g and can be written as polynomials in the
Eisenstein series E2, E4, E6. We have for example

P1(q) = 1
12
E2(q) , P2(q) = 1

1440
(5E2

2 + E4) . (4.30)

In general, as we will see in section 5, it is very hard to include the T2-base in order
to obtain the expressions F (g) for the full Enriques Calabi-Yau. It turns out that only
F (1) factorizes nicely, namely we can write the A–model free energy F (1) as [29, 41]

F (1)(S, t) = F (1)
base + F (1)

E , (4.31)

where F (1)
base and F (1)

E are the contributions from the T2 base and the K3 fiber. F (1)
base is

the torus free energy given by [6]

F (1)
base = −12 log η(S) , (4.32)
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where η(S) is defined in (B.7), while

F (1)
E = −1

2
log Φ(t), (4.33)

where Φ(t) is the infinite product

Φ(t) =
∏

r>0

(
1 − e−r·t

1 + e−r·t

)2c1(r2)

. (4.34)

This infinite product first appeared in the work of Borcherds [10]. As we will discuss in
more detail later on, Φ(t) is the key example of a holomorphic automorphic form for the
Enriques Calabi-Yau. It is also convenient to introduce,

Φ(S, t) = η24(S)Φ(t), (4.35)

so that we can write
F (1)(S, t) = −1

2
log Φ(S, t). (4.36)

We presented above formulae for the holomorphic limit of F
(g)
E (t, t̄), but heterotic-

type II duality can be used as well to obtain the antiholomorphic dependence on t̄. At
genus one, one finds [28, 46]

F
(1)
E (t, t̄) = −2 log Y − log

∣∣Φ(t)
∣∣. (4.37)

The antiholomorphic dependence on S̄ is the usual one for the torus [6] and one has

F (1)(S, S̄, t, t̄) = F
(1)
E (t, t̄) − 6 log

(
(S + S̄)|η2(S)|2

)
. (4.38)

Equivalently, we can write

F (1)(S, S̄, t, t̄) = −2 log
[
(S + S̄)3Y

]
− log

∣∣Φ(S, t)
∣∣. (4.39)

As a consistency check one shows that this anti-holomorphic dependence can also be
inferred from the holomorphic anomaly equation (2.11) for F (1).

The antiholomorphic dependence in the heterotic calculation at higher genus is much
more complicated, but was written down for the STU model in [46]. As we show in
Appendix C, this computation can be considerably simplified and adapted to the Enriques
case. We find that the non-holomorphic free energy F

(g)
E (t, t̄) can be cast into the form

F
(g)
E (t, t̄) =

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(
2g − 3 − l

C

)
(t+ t̄)a1 . . . (t+ t̄)al−C∂a1 . . . ∂al−C

F (g−l)
E (t)

(l − C)!2l Y l

− 1

2g−2(g − 1)Y g−1
, (4.40)

where F (r)
E (t) is the holomorphic fiber expression given in (4.25). It is easy to check that

the F
(g)
E (t, t̄) fulfill the holomorphic anomaly equation on the fiber.
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So far we have discussed the heterotic results for the fiber limit by using the Kähler
parameters (4.7) appropriate for the large radius limit. As shown in [41], one can also
compute them in the coordinates taD introduced in (4.19). This was called the BHM
reduction in [41], and leads to the holomorphic couplings,

F (g)
E (tD) =

∑

r>0

dg(r
2/2)(−1)n+mLi3−2g(e

−r·tD) (4.41)

where the coefficients dg(n) are defined by

∑

n

dg(n)qn =
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
, (4.42)

and in (4.41) we regard r as a vector in Γ1,1 ⊕E8(−2). Note that in comparison to (4.10)
we now need to include the lattice E8(−2) with inner product given by −2 times the
Cartan matrix of E8, such that r2 = 2nm− 2~q 2. One has, in particular,

F (1)
E (tD) = −1

2
log ΦB(tD) , (4.43)

where

ΦB(tD) =
∏

r>0

(
1 − e−r·tD

)(−1)n+mcB(r2/2)

(4.44)

with coefficients ∑

n

cB(n)qn =
η(2τ)8

η(τ)8η(4τ)8
. (4.45)

This is the modular form introduced by Borcherds in [9], and the above expression for
F1 agrees with that found by Harvey and Moore in [29] (up to a factor of 1/2 due to
different choice of normalizations).

4.3 An all–genus product formula on the fiber

As we have already mentioned, the infinite product (4.34) was first considered by Borcherds
in [10]. Borcherds also noticed that (4.34) is the denominator formula for a generalized
Kac–Moody (or Borcherds) superalgebra (see [25, 28] for a review of Borcherds algebras).
The root lattice of this superalgebra is Γ1,1 ⊕E8(−1) (i.e. the cohomology lattice of the
Enriques surface), and the simple roots are the positive, norm 0 vectors. Each simple
root appears also as a superroot, both with multiplicity 8, and this is why the product of
(4.34) has a “supersymmetric” structure: the numerator is a trace over fermionic degrees
of freedom, while the denominator traces over bosonic degrees of freedom. Both have
the same multiplicity 2c1(r

2). In addition, the fact that c1(−1) = 0 is equivalent to the
absence of tachyons in the spectrum.

We will now write down a formula for the total partition function of topological string
theory, restricted to the fiber, and we will show that it preserves the structure found by
Borcherds for (4.34). As a first step, we define a generating functional ξ(q, gs) closely
related to (4.29),

ξ(q, gs) =
∞∏

n=1

(1 − qn)2

1 − 2qn cos gs + q2n
. (4.46)
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We have the identity

∞∑

g=0

Pg(q)g
2g−2
s =

(
2 sin

gs

2

)−2

ξ2(q, gs), (4.47)

Let us now define the Enriques degeneracies ΩE(r, ℓ) as

∑

r,ℓ

8ΩE(r, ℓ)qr2

qℓ
s =

2

(q
1
4
s − q

− 1
4

s )2

1

η12(2τ)
(ξ2(q, gs/2) − ξ2(−q, gs/2)), (4.48)

where
qs = eigs (4.49)

The r.h.s. of (4.48) only involves integer powers of q±1
s . We can collect the Enriques

degeneracies in the generating polynomials

Ωn(z) =
∑

r2=2n,ℓ≥0

ΩE(r, ℓ)zℓ, (4.50)

which are of degree n in z. We have for the first few:

Ω0(z) = 1,

Ω1(z) = 12 + 2z,

Ω2(z) = 90 + 24z + 3z2,

Ω3(z) = 520 + 180z + 36z2 + 4z3,

Ω4(z) = 2538 + 1040z + 270z2 + 48z3 + 5z4,

Ω5(z) = 10944 + 5070z + 1560z2 + 360z3 + 60z4 + 6z5.

(4.51)

Notice that the constant terms of Ωn(z) are closely related to the Euler characteristics
of the Hilbert schemes of the Enriques surface, but there are “deviations” which become
more and more important as the degree increases. Finally, notice that

∑

ℓ

ΩE(r, ℓ)qr2

qℓ
s = Ωn(qs) + Ωn(q−1

s ) − Ωn(0). (4.52)

We now define

FE =

∞∑

g=1

g2g−2
s F (g)

E (t), ZE = e−2FE . (4.53)

Notice that, as gs → 0, ZE is precisely the Borcherds product Φ(t). It is now an easy
exercise to evaluate it for finite gs from (4.25), and we find

ZE(gs, t) =
∏

r,ℓ

(
1 − qℓ

se
−r·t

1 + qℓ
se

−r·t

)8ΩE(r,ℓ)

. (4.54)

As in the g = 1 case, (4.54) has a supersymmetric structure, with the same degeneracies
for fermionic and bosonic states. This formula in fact suggests the existence of a super-
algebra structure for the all–genus result as well. By including gs we have extended the
lattice to

Γ1,1 ⊕ E8(−1) → Γ1,1 ⊕E8(−1) ⊕ Z (4.55)
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which is reminiscent of the growth of an eleven–dimensional direction associated to the
string coupling constant. The fact that the all–genus heterotic results seem to lead to
an extra direction in the heterotic lattice has been pointed out in [17, 38]. It would
be very interesting to see if there is indeed a superalgebra associated to the all–genus
result (4.54). If this was the case, the quantities 8ΩE(r, ℓ) would correspond to root
multiplicities.

Finally, we mention that according to the conjecture in [47] and the results of [48],
(4.54) is essentially the generating functional of an infinite family of Donaldson–Thomas
invariants on the Enriques surface (written already in the right variables). Such product
formulas for Z exist generically if the latter is expressed in terms of of Gopakumar-Vafa
invariants [40]. Our comments above indicate that the Donaldson–Thomas theory on
this manifold has a highly nontrivial algebraic structure (see section 3.2.6 in [48] for a
related observation).

4.4 Automorphic forms

The free energies F
(g)
E (t, t̄) on the fiber turn out to be automorphic forms on the coset

space N8. Here we will study in some detail automorphic forms on the space Ns. We
will say that a function on the moduli space Ns is automorphic if it has well–defined
transformation properties under the discrete subgroup O(s+ 2, 2; Z).

The transformation properties are easier to understand if we consider explicit genera-
tors of the symmetry group. We consider the explicit parametrization of the coset space
(4.5) induced by a reduction

Γs+2,2 = Γs+1,1 ⊕ Γ1,1, (4.56)

and let t ∈ Cs+1,1 be the vector of complex coordinates parametrizing the coset. Our
conventions are such that t has positive real part. For an element ta ∈ C

s+1,1 we define
the inner product

t2 = 1
2
Cabt

atb, (4.57)

where Cab is the intersection matrix.

The generators of the symmetry group are taken to be [28]:

• t 7→ t+ 2πiλ, λ ∈ Γs+1,1.

• t 7→ w(t), w ∈ O(s+ 1, 1; Z).

• The automorphic analog of an S–duality transformation

ta 7→ t̃a =
ta

t2
. (4.58)

We say that a function Ψ(t) is an automorphic function of weight k if it is invariant
under the first two transformations above, and if under (4.58), it behaves as follows:

Ψk(t̃) = t2kΨk(t). (4.59)

We can also have automorphic forms of weight (k, k̄) which transform as

Ψk,k̄(t̃) = t2k t̄ 2k̄Ψk,k̄(t). (4.60)
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Although we have not indicated it explicitly, these functions might have a non-holomorphic
dependence on t̄. Automorphic forms are in general non-holomorphic. Some automorphic
forms are meromorphic (they have poles at divisors). If they do not have poles, they are
called holomorphic.

Notice that (4.58) transforms the metric Y = (t + t̄)2 on the “upper half plane” as
follows:

Y 7→ t−2 t̄−2Y . (4.61)

Following the definition (4.60) this identifies Y as an automorphic form of weight (−1,−1).
Recalling the form of the Kähler potential for the classical moduli space (4.11) this is
nothing but a Kähler transformation [43]

K 7→ K + log t2 + log t̄2 . (4.62)

in special coordinates where X0 = 1. Note that, if we keep X0, this shift can be absorbed
by the transformation of X0

X0 7→ t2X0 . (4.63)

This can be traced back to the fact that K as given in (A.8) is a scalar under the full
symplectic group.

In order to understand how the automorphic properties mix with taking derivatives,
it is useful to derive the Jacobian J b

a of the change of coordinates (4.58). We immediately
find,

∂t̃a

∂tb
≡ (J−1)a

b =
1

t4

(
δa

bt
2 − taCbet

e
)
,

∂ta

∂t̃b
= Ja

b = δa
bt

2 − taCbet
e . (4.64)

Notice that J b
a obeys the following useful identities

J b
a = t4(J−1)b

a , Cab = t−4CcdJ
c
aJ

d
b , CabJc

aJ
d
b = t4Ccd . (4.65)

Let us now assume that Ψ is an automorphic form of weight (k, 0). We want to determine
the transformation behavior of DaΨ and DaDbΨ under the dualities (4.58). Da are here
the derivatives covariant both with respect to Christoffel connection and the canonical
connection on the vacuum bundle L, as introduced in section 4.1. Therefore,

DaΨ = (∂a − kKa)Ψ . (4.66)

Notice that, since K transforms as given in (4.62), its first derivative Ka shifts as

Ka 7→ J b
a

(
Kb + t−2Cbct

c
)
. (4.67)

Combining this with the transformation of the automorphic form Ψ itself we conclude

DaΨ 7→ t2kJ b
aDbΨ . (4.68)

Similarly, we show that the second derivative of Ψ transforms as

DbDaΨ 7→ t2kJ b
dJ

c
aDbDcΨ , (4.69)

where we have used that the Christoffel symbols in the second connection transform as

Jd
b ∂dJ

c
a − Γ̃d

baJ
c
a = Γd

baJ
c
a . (4.70)
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Hence, we have shown that the covariant derivatives Da of Ψ transform with a factor t2k

but are also rotated by the Jacobian Ja
b containing another factor of t2. Note however,

that we can easily obtain automorphic forms containing the derivatives DaΨ. More
precisely, if Ψ and Ψ′ are automorphic forms of weight (k, 0) and (k′, 0) we find by using
(4.65) that

CabDaDbΨ , CabDaΨDbΨ
′ (4.71)

are automorphic forms of weight k + 2 and k + k′ + 2 respectively. Such automorphic
combinations arise in the derivation of all F (g)(S, S̄, t, t̄), g > 1. More precisely, we will
argue in the next sections that as function of t, t̄, F (g)(S, S̄, t, t̄) itself is an automorphic
form of weight (2g − 2, 0) such that

F (g) 7→ t4g−4F (g) for g > 1 . (4.72)

An important example of an automorphic form is the heterotic integral (4.24). It is
easy to show from the properties of the Narain–Siegel theta function that it has weight
(2g− 2, 0). Since this integral gives the fiber limit F

(g)
E , we obtain a check of the general

property (4.72) from heterotic/type II duality. Note that it is straightforward to define
amplitudes F (g) invariant under automorphic transformations by

(X0)2−2g F (g) . (4.73)

The invariance of this combination is readily checked by using (4.63) and (4.72). The
expressions (4.73) are shown to be invariant under the full target space symmetry group
Sl(2,Z)×O(10, 2). They are the direct analogs of the invariant free energies encountered
in the Seiberg-Witten example in section 3.

A particularly important and simple example occurs at g = 1. Since F
(1)
E is invariant,

one deduces from (4.37) and (4.61) that Φ(t) is an automorphic form of weight (4, 0) i.e.

Φ(t̃) = t8 Φ(t) , t̃a =
ta

t2
. (4.74)

One can also show that Φ(t) is holomorphic. This is proved in [10], and it is in fact

a consequence of the regularity of F (g)
E (t) at the singular locus (4.18), which will be

discussed in more detail in section 5.4. In addition, Φ(t) is what is called a singular
automorphic form (see [8], section 3, for a definition). Singular automorphic forms are
known to satisfy a wave equation

Cab ∂2

∂ta∂tb
Φ(t) = 0. (4.75)

Equivalently, they have Fourier expansions involving only vectors of zero norm. It follows
that F (1)

E (t) satisfies

Cab∂a∂bF (1)
E = 2Cab∂aF (1)

E ∂bF (1)
E . (4.76)

This is equivalent to the recursive relation found in [48] for genus one invariants on

the fiber, and proves that the expression for F (1)
E (t) obtained in [41] agrees with the

Gromov–Witten calculation of [48].
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5 Direct Integration on the Enriques Calabi-Yau

In this section we illustrate the power of the method of direct integration by studying
the topological string amplitudes F (g) on the Enriques Calabi-Yau. Our approach will
follow and generalize the strategy developed for the Seiberg-Witten example in section
3. To begin with, we perform a direct integration along the T2−base in section 5.1.
Using the fiber results obtained in the previous section as additional input, the first six
free energies F (g) can be determined in a closed form. We then present a more general
formalism combining direct integration in base and fiber directions. In section 5.2, we
introduce the relevant holomorphic and non-holomorphic O(10, 2,Z) forms. A closed
recursive expression for F (g) will be derived in section 5.3. It determines the F (g) up
to a holomorphic ambiguity and we will briefly discuss possible boundary conditions in
section 5.4. Finally, in section 5.5 we consider a reduced Enriques model with three
parameters only, which was already studied in [41]. This model has the advantage that
the mirror map can be determined explicitly. We also study in more detail the boundary
conditions (such as the gap condition), which lead to valuable conclusions also applying
to the full model.

5.1 A simple direct integration and F (g) to genus six

Let us now perform the direct integration along the T2 base and derive the first few
amplitudes F (g). In order to do that we carefully keep track of their dependence of on
the base direction S, S̄. As in the case of Seiberg–Witten theory studied in section 3,
it is easy to see from the structure of the holomorphic anomaly equations that the only
antiholomorphic dependence of F (g) on S̄ appears through Ê2(S, S̄). By taking derivatives
with respect to S we will also generate in the holomorphic anomaly equations the modular
forms E4(S), E6(S), and by keeping track of the modular weight one immediately finds
that F (g) is an element of weight 2g − 2 in the ring generated by

Ê2(S, S̄), E4(S), E6(S) . (5.1)

Our only assumption here is that the holomorphic ambiguity for F (g) is also a modular
form of weight 2g − 2 in this ring. This assumption (as well as the details of the direct
integration) can be checked in a highly nontrivial way by comparing the resulting expres-
sions to the field theory limit in the Nf = 4 locus of Fig. 1. This check will be performed
in section 6.

To perform the direct integration let us first rewrite the holomorphic anomaly equa-
tion for the base direction S̄. The general expression (2.10) reduces to

∂S̄F
(g) = −1

2

Cab

(S + S̄)2

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
. (5.2)

We now convert the derivative ∂S̄ into a derivative with respect to Ê2. The definition of
Ê2 was already given in (3.14). Since we now consider an expansion in qS = e−S it takes
the form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) . (5.3)
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Using the above assumption that the dependence of F (g) on S̄ is only through this
quantity, we can rewrite the anomaly equation as

∂F (g)

∂Ê2

= − 1
24
Cab

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
. (5.4)

Here the covariant derivatives Da are only taken with respect to the fiber directions and
do not depend on the base due to the simple special geometry of the Enriques Calabi-
Yau. This implies that all dependence on Ê2 arises directly through the F (r). We thus
expand F (g) in powers of Ê2 by writing

F (g) =

g−1∑

k=0

Êk
2 (S, S̄) c

(g)
k , g > 1 . (5.5)

We see that (5.4) determines all the coefficients c
(g)
k for k = 1, . . . , g − 1 in terms of

quantities at lower genera. Explicitly, we have the solution

c
(g)
k = − 1

24k
Cab

(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
, (5.6)

where we have set
c
(1)
0 = F (1) , c

(1)
i = 0 , i 6= 0 . (5.7)

The Ê2-independent term c
(g)
0 arises as an integration constant and hence cannot be

determined by the holomorphic anomaly equation. However, given our assumptions, we
can fix it up to genus 6 as follows. Let us denote the coefficients in the fiber limit by

c
(g)
E| k = lim

S,S̄→∞
c
(g)
k . (5.8)

By also taking the fiber limit of (5.5) we find

g−1∑

k=0

c
(g)
E| k = F

(g)
E (t, t̄). (5.9)

The free energies F
(g)
E (t, t̄) are known from the heterotic computation and given in (4.40).

Together with the fact that all c
(g)
E| k for k ≥ 1 are uniquely determined by the direct

integration we can use (5.9) to derive c
(g)
E|0 i.e. the fiber limit of the integration constant.

But the condition that c
(g)
0 is a modular form in the ring generated by (5.1) and does not

involve Ê2 fixes it uniquely in terms of c
(g)
E|0 as

c
(2)
0 = 0 , c

(3)
0 = c

(3)
E| 0 E4 , c

(4)
0 = c

(4)
E| 0 E6 ,

c
(5)
0 = c

(5)
E| 0 E

2
4 , c

(6)
0 = c

(6)
E| 0 E4E6 ,

(5.10)

where E4(S) and E6(S) are the two holomorphic generators in (5.1). This can be checked
by noting that the definition (B.9) of the Eisenstein series implies that

E2 , E4 , E6 → 1 , (5.11)
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in the fiber limit S, S̄ → ∞. For g ≥ 7, the number of possible modular forms is greater
than one and c

(g)
E| 0 is no longer uniquely determined in terms of its fiber limit. For

example, at genus seven c
(7)
0 can contain terms proportional to E3

4 as well as E2
6 .

Let us now write down some explicit formula for lower genera. For g = 2 we find,

F (2)(S, S̄, t, t̄) = Ê2(S, S̄) c
(2)
1 , (5.12)

where we use (5.10) and apply (5.6) to derive

c
(2)
1 = − 1

24
Cab

(
DaDbF

(1)
E +DaF

(1)
E DbF

(1)
E

)
. (5.13)

Consistency of the fiber limit requires that c
(2)
1 = F

(2)
E (t, t̄). This can be checked by using

the heterotic expression (4.40) for F
(2)
E (t, t̄), the property (4.76), and the identity [41]

F (2)
E = − 1

16
Cab∂a∂bF (1)

E , (5.14)

which follows directly from (4.24). In the holomorphic limit we find,

F (2)(S, t) = E2(S)F (2)
E (t) , (5.15)

in agreement with the results of [41, 48]. In the following sections we will also need a
slightly different form of F (2). Namely, it is straightforward to apply (4.76) to write

F (2) = −1
8
Cab∂aF

(1)∂bF
(1) . (5.16)

Let us now consider the g = 3 case. The amplitude F (3) can be expanded by using
(5.5) and (5.10) as

F (3) = Ê2
2(S, S̄) c

(3)
2 + E4(S) c

(3)
E|0 . (5.17)

Using the result of the direct integration (5.6) we obtain

c
(3)
2 = − 1

48
Cab

(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
. (5.18)

To determine c
(3)
E| 0 we use (5.9), which gives

c
(3)
2 + c

(3)
E| 0 = F

(3)
E (t, t̄) . (5.19)

On the other hand, one finds that

F
(3)
E (t, t̄) = − 1

24
CabDaDbF

(2)
E . (5.20)

This can be derived in the holomorphic limit by using (4.24), and it is similar to (5.14).
The antiholomorphic part can be checked with (4.40). Using all this, we finally obtain
the following simple expression for F (3)(S, S̄, t, t̄),

F (3) = − 1
24
E4C

abDaDbF
(2)
E − 1

48
(Ê2

2 − E4)C
ab

(
DaDbF

(2)
E + 2DaF

(2)
E DbF

(1)
E

)
, (5.21)

with the holomorphic limit

F (3)(S, t) = − 1
24
E4C

ab∂a∂bF (2)
E − 1

48
(E2

2 −E4)C
ab

(
∂a∂bF (2)

E + 2∂aF (2)
E ∂bF (1)

E

)
. (5.22)
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Note that the second term in these expressions vanishes identically in the fiber limit
where E2, E4 → 1. As we will discuss in more detail in section 5.4, this is the first
F (g) where the inclusion of the base yields a behavior near the singular loci that differs
significantly from the fiber limit.
Explicit calculations at genus 4 proceed in the same way. Modular invariance with respect
to S gives

F (4)(S, S̄, t, t̄) = Ê3
2 c

(4)
E| 3 + Ê2E4 c

(4)
E| 1 + E6 c

(4)
E|0. (5.23)

Once again, the general equation (5.48) allows us to determine the coefficients as

c
(4)
E| 3 = − 1

72
Cab

(
DaDbc

(3)
E| 2 + 2DaF

(1)
E Dbc

(3)
E| 2 +DaF

(2)
E DbF

(2)
E

)
,

c
(4)
E| 1 = − 1

24
Cab

(
DaDbc

(3)
E| 0 + 2DaF

(1)
E Dbc

(3)
E| 0

)
.

(5.24)

The ambiguity c
(4)
E| 0 is again determined by the heterotic computation in the fiber limit.

More precisely, one specializes (5.9) to

c
(4)
E|0 + c

(4)
E| 1 + c

(4)
E| 3 = F

(4)
E (t, t̄) , (5.25)

and solves for c
(4)
E|0 by inserting the fiber result (4.40). This determines the free energy

F (4). A similar analysis also applies to g = 5, 6. As already discussed above, the main
obstacle that has to be overcome in order to proceed to higher genus is the difficulty
to fix the ambiguities c

(g)
0 . We will discuss possible additional boundary conditions in

sections 5.4, 5.5 and 6.

5.2 Propagators and homolomorphic automorphic forms

In the previous section we calculated the first free energies F (g) by a direct integration
along the base direction. The results were expressed in terms of the holomorphic fiber
energies F (g)

E , which are known from heterotic-type II duality. Even though the results
were rather compact and transparent, the information we have extracted is somewhat
partial, since we have not used the holomorphic anomaly equations for the fiber moduli.
In order to exploit the information they contain, we will construct building blocks for
the automorphic forms in the fiber which enable us to perform the direct integration of
the remaining holomorphic anomaly equations. Recall that we argued in the previous
sections that the almost holomorphic modular form

Ê2(S, S̄) = − 12

S + S̄
+ E2(S) , E2(S) = ∂S log Φ , (5.26)

contains all non-holomorphic dependence of F (g) along the base direction S. It will be the
task of this section to introduce the analog of Ê2 for the fiber directions ta. Furthermore
we will define the fiber analogs of the holomorphic modular forms E4(S) and E6(S).
This will lead us to the definition of a new class of holomorphic automorphic forms of
O(10, 2,Z). Eventually, in section 5.3 we will argue that a direct integration along the
fiber direction allows us to express all F (g) in terms of these almost holomorphic and
holomorphic forms of O(10, 2,Z).
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Let us now introduce the fiber analog of the almost holomorphic modular form
Ê2(S, S̄). This can be done by recalling that the genus one free energy F (1) is an in-
variant of the full symmetry group Sl(2,Z) × O(10, 2,Z) and hence its first derivatives
transform in a particularly simple way. For the derivative with respect to S one finds
∂SF

(1) = 1
2
Ê2. The derivative with respect to ta we denote by ∆a = −1

2
Cab∂bF

(1) and
evaluate

∆a =
ta + t̄a

Y
+ ǫa(t) = ǫa(t) −Kb(t)C

ba , ǫa(t) = 1
4
Cab∂tb log Φ , (5.27)

where Y = 1
2
Cab(t+ t̄)b(t+ t̄)b and Φ is given in (4.34). The function ǫa(t) is holomorphic

in the coordinates ta and is the fiber analog of E2(S), while ∆a plays the role of Ê2. To
see this note that ǫa transforms with a shift under the duality ta 7→ ta/t2:

ǫa 7→ t4(J−1)a
b(ǫ

b + t−2tb) . (5.28)

This shift is precisely canceled by the shift of the non-holomorphic term in (5.27) such
that ∆a simply transforms as

∆a 7→ t4(J−1)a
b∆

b(t) . (5.29)

Note that Ê2 and ∆a are sufficient to parametrize all propagators ∆̂ij , ∆̂i, ∆̂ introduced
in (2.17). Indeed, one has

∆̂ab = − 1
12
CabÊ2 , ∆̂aS = ∆a , (5.30)

∆̂S = −1
2
Cab∆

a∆b , ∆̂a = 1
12
Ê2∆

a , ∆̂ = − 1
12
Ê2Cab∆

a∆b .

Using the explicit form of Ê2 and ∆a it is straightforward to check that these propagators
fulfill the defining conditions (2.17). The fact that all ∆̂−propagators can be expressed

as polynomials in Ê2 and ∆a will be used in the next section to argue that all non-
holomorphic dependence of F (g) only arises through Ê2,∆

a. However, we also have
to extract the non-holomorphic dependence in the covariant derivatives Da defined in
(A.3). Following the logic of section 3 we will show that each derivative can be split into
a holomorphic covariant derivative D̂a plus holomorphic terms times the propagators ∆a.
As an important byproduct, the definition of D̂a will also allow us to find an interesting
construction of holomorphic automorphic forms.

Let us now construct a holomorphic covariant derivative D̂a, which has the same
properties as Da under automorphic transformations (4.58). More precisely, given an
automorphic form Ψ of weight k we define its first derivative as

D̂aΨ ≡
(
∂a − kCabǫ

b
)
Ψ , (5.31)

where ǫa is defined in (5.27), and note that D̂a = Da − kCab∆
b. D̂a can be viewed as the

analog of the Serre derivative (3.19) for modular forms of subgroups of Sl(2,Z). It is not
hard to check that it transforms under (4.58) exactly asDa. This transformation property
was given in (4.68). Note however, that D̂a maps holomorphic forms into holomorphic
forms, while Da contains an anti-holomorphic contribution. Moreover, by definition of ǫa

one has
D̂aΦ(t) = 0 , (5.32)
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for the automorphic form Φ(t) given in (4.34). In order to evaluate second derivatives
we need to introduce the holomorphic analog of the Christoffel symbol in the definition
(A.3) of Dk. To do that, let us consider a section Ψa which transforms as Ψa 7→ t2kJ b

aΨb

under the action (4.58). The covariant derivative is then defined to act as

D̂aΨb =
(
∂a − kCacǫ

c
)
Ψb − Γ̂c

abΨc . (5.33)

Here we have included the holomorphic Christoffel symbol

Γ̂c
ab = Γ̂c

ab|dǫ
d = 1

2
Ĉcd

(
∂bĈda + ∂aĈdb − ∂dĈab

)
, (5.34)

where Γ̂b
cd|a is defined in (4.14) and related to Γb

cd by Γb
cd = Γ̂b

cd|aC
aeKe. We also have

introduced the holomorphic ‘metric’ Ĉab. Explicitly, Ĉab is defined as

Ĉab = Φ1/2Cab , Ĉab 7→ Jc
aJ

d
b Ĉcd , (5.35)

where Φ is given in (4.34) and we have also displayed the transformation behavior of Ĉab

under (4.58) as inferred from (4.74) and (4.65). Once again we evaluate the transforma-
tion behavior of D̂aΨb under (4.58) and finds the holomorphic analog of (4.69). It is now
easy to show that every non-holomorphic derivative Da can be split as

DaΨb = D̂aΨb + kCac∆
c Ψb + Γ̂c

ab|d∆
d Ψc . (5.36)

In other words, whenever Ψb is holomorphic the non-holomorphic dependence in DaΨb

arises through the propagators ∆a only.

Let us now discuss a second interesting application of the holomorphic covariant
derivative D̂a. Namely, we will now show how it can be used to construct new holomorphic
automorphic forms. To start with let us note that ǫa = Cabǫ

b transforms in (5.28) similarly
to a vector field. We can use this analogy and define a field strength

ǫ4ab = ∂aǫb − 1
2
Γ̂c

abǫc = ∂aǫb − ǫaǫb + Cabǫ
2 , ǫa = Cabǫ

b , (5.37)

which transforms covariantly, ǫ4ab 7→ Jc
aJ

d
b ǫ

4
cd, under automorphic transformations (4.58).

Note that by using the wave-equation (4.76) one shows that ∂aǫ
a = −4Cabǫ

aǫb such that

Cabǫ4ab = 0 . (5.38)

Nevertheless, we can use ǫ4ab to construct holomorphic automorphic forms. To do that,
we define

ǫ2k
a1...ak

= D̂ak
. . . D̂a3

ǫ4a2a1
, (5.39)

which is shown to be totally symmetric in the indices. Holomorphic automorphic forms
are now constructed by contraction with Cab. For example, forms of weight 4 and 6 are
given by

weight 4 : CabCcdǫ4acǫ
4
bd , (5.40)

weight 6 : CacCbeCdf ǫ4abǫ
4
cdǫ

4
ef , CacCbeCdfǫ6abdǫ

6
cef .

It is tempting to conjecture that holomorphic automorphic forms of this type are sufficient
to parametrize the holomorphic ambiguity of F (g). The fact that there is no holomorphic
weight 2 automorphic form of this type due to (5.38) matches nicely the fact that there is
no holomorphic ambiguity for F (2). Also the forms in (5.40) can be shown to be sufficient
to parametrize the ambiguities of F (3) and F (4). This will be analyzed in further work.
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5.3 Direct integration of the holomorphic anomaly

We will now use the material developed in the previous section to perform the direct
integration in both fiber and base directions. This will allow us to give closed expressions
which determine the F (g) up to a holomorphic ambiguity. To begin with, we show that
each F (g) can be written as

F (g) =

g−1∑

k=0

2g−2∑

n=0

Êk
2∆a1 . . .∆anc

(g)
k | a1...an

, g > 1 (5.41)

where c
(g)
k | a1...an

are holomorphic functions of S, ta and all anti-holomorphic dependence

arises through the propagators ∆a and Ê2 introduced in (5.26) and (5.27). Note that by
using the transformation properties of F (g) and ∆a given in (4.72) and (5.29) one infers
that

c
(g)
k | a1...an

7→ t4g−4−4nJ b1
a1
. . . J bn

an
c
(g)
k | b1...bn

(5.42)

under automorphic transformations (4.58).

Let us now show that each F (g) for g > 1 can indeed be written as (5.41) by using
induction. We first note that F (2) is of the form (5.41),

F (2) = −1
2
Ê2Cab∆

a∆b , (5.43)

as is immediately inferred from (5.16) and (5.27). So let us assume that (5.41) is true
for all r < g and show that this implies that (5.41) is true for g. In order to do that
we use the Feynman graph expansion (2.14) of F (g) [7], which states that each F (g) can

be written as an expansion with propagators ∆̂ij , ∆̂i, ∆̂ and vertices C
(r)
i1...in

with r < g.

We have already shown that the ∆̂-propagators are polynomials in Ê2 and ∆a in (5.30).

Hence, it remains to show that also the vertices C
(r)
i1...in

are polynomials in Ê2 and ∆a.
By definition (2.7) and our assertion, the vertices are defined as the covariant derivatives
of amplitudes F (r) of the form (5.41). Using (5.36) each of these covariant derivatives
Da can be split into a holomorphic covariant derivative D̂a and an expansion in ∆a. So
we only have to show that D̂a∆

b admits again an expansion into ∆’s. A straightforward
computation shows that

D̂a∆
b = Cbdǫ4da − 1

2
Γ̂b

cd|a∆
c∆d , (5.44)

where ǫ4ab and Γ̂b
cd|a are defined in (5.37) and (4.14). Altogether one infers that all vertices

and ∆̂-propagators are polynomial in ∆a and hence that F (g) is of the form (5.41).

Having shown that every F (g) is of the form (5.41) we will now derive a closed expres-
sion for F (g) by direct integration of the holomorphic anomaly equation (2.10). Applying
the definition (2.17) of the propagators we can write the holomorphic anomaly equation
as

∂ı̄F
(g) = 1

2
∂ı̄∆̂

ik
(
DjDkF

(g−1) +

g−1∑

r=1

DjF
(r)DkF

(g−r)
)
. (5.45)

This equation captures the anti-holomorphic derivatives ∂S̄F
(g) along the base as well as

the derivative ∂āF
(g) along the fiber of the Enriques Calabi-Yau. Recall that the only
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non-vanishing propagators are ∆̂ab = − 1
12
CabÊ2 and ∆a = ∆̂aS. As we have shown, they

contain all anti-holomorphic dependence such that we can rewrite (5.45) as

∂F (g)

∂Ê2

= − 1
24
Cab

(
DaDbF

(g−1) +

g−1∑

r=1

DaF
(r)DbF

(g−r)
)
, (5.46)

∂F (g)

∂∆a
= DaDSF

(g−1) +

g−1∑

r=1

DaF
(r)DSF

(g−r) . (5.47)

As we have seen above, the first equation is already very powerful and can be integrated
easily. We can write the solution (5.6) as

F (g) = − 1
24

∞∑

k=1

1
k
Êk

2C
ab

(
DaDbc

(g−1)
k−1 +

g−1∑

r=1

∑

l+m=k−1

Dac
(r)
l Dbc

(g−r)
m

)
+ c

(g)
0 , (5.48)

where c
(1)
m is defined in (5.7). Note that c

(g)
0 (∆, S, t) arises an integration constant of the

Ê2 integration and hence can be a function of the propagators ∆a but not Ê2.

Let us now determine a second closed expression for F (g) by integrating the second
anomaly equation (5.47). Since F (1) is not of the form (5.41) we first split off terms

involving F (1). Inserting the definitions of the propagators ∆a and Ê2 we find for g > 2
that

∂F (g)

∂∆a
= (DS + 1

2
Ê2)DaF

(g−1) − 2Cac∆
cDSF

(g−1) +

g−2∑

r=2

DaF
(r)DSF

(g−r). (5.49)

To make the dependence on the propagators ∆a explicit we expand the covariant deriva-
tive DaF

(g). The covariant derivative Da can be split into a holomorphic derivative D̂a

defined in (5.33) plus a propagator expansion using (5.36). Moreover, using the chain
rule one rewrites

D̂a = d̂a + (D̂a∆
b)∂∆b , (5.50)

where d̂a is the covariant holomorphic derivative not acting on the propagators, i.e. we
set

d̂a

(
∆a1 . . .∆anca1...an

)
= ∆a1 . . .∆anD̂aca1...an

. (5.51)

Combining (5.36), (5.50) and (5.44) we immediately derive

DaF
(g) =

[
d̂a + ǫ4acC

cb∂∆b + (2g − 2)Cad∆
d − 1

2
Γ̂b

cd|a∆
c∆d∂∆b

]
F (g) . (5.52)

This expansion makes the dependence of Da on the propagators ∆a explicit. We note
that the d̂a term on the right-hand side of this expansion does not change the number of
propagators. The second term lowers the number of propagators by one, while the two
last terms raise the number of propagators by one. Inspecting the holomorphic anomaly
equation we note that only the first derivative along the fiber direction appears on the
right-hand side of (5.49). Hence, at least for the integration of (5.49) it will not be
necessary to evaluate the second derivative DaDbF

(g) as a propagator expansion.
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To integrate expressions such as (5.52) for DaF
(g) we also need to keep track of the

number of propagators in the expansion of F (g). Therefore, we introduce the following
short-hand notation

F (g) =
∑

n

c
(g)
(n) , c

(g)
(n) =

g−1∑

k=0

Êk
2∆a1 . . .∆anc

(g)
k | a1...an

, (5.53)

where each c
(g)
(n) contains n propagators ∆a. By counting the number of propagators one

finds
∫
DaF

(g)d∆a =
∑

n

{
1

n+1
∆ad̂a + 1

n
∆aǫ4acC

cb∂∆b + 4g−4−n
n+2

∆2
}
c
(g)
(n) , (5.54)

where as defined above ∆2 = 1
2
Cab∆

a∆b. This integral together with similar ones for the
remaining terms in (5.49) yields a closed expression for F (g) of the form

F (g) =
(
DS + 1

2
Ê2)

∑

n

{
1

n+1
∆ad̂a + 1

n
∆aǫ4acC

cb∂∆b + 4g−8−n
n+2

∆2
}
c
(g−1)
(n)

−
∑

n

4
n+2

∆2DSc
(g−1)
(n) +

g−2∑

r=2

∑

n

∑

k+l=n

DSc
(g−r)
(l)

{
1

n+1
∆ad̂a

+ 1
n
∆aǫ4acC

cb∂∆b + 4r−4−n
n+2

∆2
}
c
(r)
(k) + c

(g)
(0) . (5.55)

Here c
(g)
(0)(Ê2, S, t) is the integration constant of the ∆a integration and hence can depend

on Ê2 but not on ∆a.

Before turning to the discussion of an explicit example, let us consider the fiber limit
of (5.55). We therefore apply (B.13) and (5.11) to show that

lim
S,S̄→∞

DSF
(g) = 0 . (5.56)

We also denote by c
(g)
E (k) the fiber limit of the coefficients c

(g)
(k) in (5.53). Inserting (5.56)

into the formula (5.55) for direct integration along the fiber direction one finds

F
(g)
E = 1

2

∑

n

(
1

n+1
∆ad̂a + 1

n
∆aǫ4acC

cb∂∆b + 4g−8−n
n+2

∆2
)
c
(g−1)
E (n) + c

(g)
E (0) , (5.57)

where c
(g)
E (0)(t) is a holomorphic ambiguity in the fiber. Recall that the full expression

(4.40) for F
(g)
E (t, t̄) is known from heterotic-type II duality. Therefore, verifying that this

closed expression fulfills the differential equation (5.57) provides a non-trivial check of
our derivations.

Let us end this section by presenting the first non-trivial solution to the closed ex-
pressions (5.48) and (5.55) for F (g). More precisely, one derives that the free energy F (3)

admits the following propagator expansion

F (3) = − 1
48
Ê2

2

(
14∆4 + 10ǫ4ab∆

a∆b − ǫ4acǫ
4
bdC

abCcd
)

− 1
48
E4

(
− 2∆4 + 2ǫ4ab∆

a∆b − ǫ4acǫ
4
bdC

abCcd
)
, (5.58)
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where ǫ4ab is defined in (5.37). Note that the last term in the first line has to be deter-

mined by the direct integration with respect to Ê2 by using (5.48). Moreover, the purely
holomorphic term

f (3)(S, t) = 1
48
E4ǫ

4
acǫ

4
bdC

abCcd (5.59)

is the holomorphic ambiguity at genus 3, determined by the fiber limit. In other words,
applying (5.11) one easily derives

F
(3)
E = −1

4
ǫ4ab∆

a∆b − 1
4
∆4 + 1

24
ǫ4acǫ

4
bdC

abCcd , (5.60)

which is readily compared with the general expression (4.40) for the fiber free energies.
It is straightforward to derive all F (g) for g < 7 by evaluating (5.48) and (5.55) and fixing
the ambiguity by comparison with the fiber result (4.40). Clearly, at genus greater than
6 we will encounter the same difficulties as in section 5.1. Only additional boundary
conditions can help to fix the ambiguities in these cases. In the next section we will
summarize possible additional conditions.

5.4 Boundary conditions

One important feature of the formalism of direct integration is that modular and holo-
morphic properties of the F (g) are manifest. In particular the ambiguity is holomorphic,
modular invariant and for given genus expressible in terms of a modular form of finite
weight. This implies that a finite number of data will fix it. The latter must be provided
from additional information at the boundaries of the moduli space of the Calabi-Yau
manifold. Let us give a short overview over the the nature of these boundary conditions.

In the large radius limit the holomorphic limit of the F (g) has an expansion in terms
of Gromov-Witten invariants N

(g)
β . Since the an-holomorphic part is fixed, the F (g) can

be completely determined by calculating a finite number of Gromov-Witten invariants.
The reorganisation of the expansion in terms of Gopakumar-Vafa invariants n

(g)
β is useful

here, because the latter vanish if the degree is higher then the maximal degree for which
a smooth curve exists in a given class.

For K3-fibered Calabi-Yau threefolds, the limit of large base volume corresponds
generically to a perturbative heterotic string theory on K3×T

2. If the heterotic theory is
known one can calculate the dependence of the F (g) on the fiber moduli by calculating
a BPS saturated one loop amplitude in the heterotic string [46, 41]. In the Enriques
CY case this yields most of the information and is the reason that one can tackle an 11
parameter model at all. Even if the heterotic dual is not known, one may get all the
holomorphic F (g) in the fiber from the modular properties of the B-model on the K3 and
the formula for the cohomology of the Hilbert scheme of points on the fiber [40].

If the Calabi-Yau admits controllable local limits, e.g. to toric Fano varieties with anti-
canonical bundle, then the F (g) can be unambiguously calculated using the topological
vertex [2].

One can also find boundary conditions by looking at the behavior of the topological
string amplitudes near the conifold point, as we discussed in section 3.3. When there is
only one hypermultiplet becoming massless at the conifold point, the amplitudes behave
like (3.32), where tD is a suitable coordinate transverse to the conifold divisor. This
yields 2g − 2 independent conditions on the holomorphic ambiguity.
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In contrast to generic N = 2 compactifications, the four dimensional massless spec-
trum at singularities of the Enriques Calabi-Yau is conformal, which requires hyper-
and vector multiplets to become simultaneously massless. The leading behavior of the
corresponding effective action is less characteristic. We will find a partial gap in the
reduced model considered in section 5.5, which is similar to the partial gap structures
that were found in [34] at a point where likewise several RR states become massless.
The determination of the subleading behavior is possible in the field theory limit and
yields conditions on the anomaly. We will consider here only the complex codimension
singularities that we discussed in section 4. The nontrivial information about the F (g)

comes from the Nf = 4 locus: as we will show in section 6, the residue of the leading
singularity near (4.18) can be computed using instanton counting in field theory.

Let us now analyze the leading singularity of F (g) near the singular loci in the fiber
limit. This can be done with the heterotic computations of [41] reviewed in section 4.
These computations give us expansions around two special regions in moduli space, the
large radius limit (where ta are large) and the region appropriate to the BHM reduction
(where taD are large). As in [3, 46], we can use the computation at large radius to obtain
the leading behavior of the fiber amplitudes near (4.18), and the computation in the
BHM reduction to obtain the behavior near (4.20).

Let us first look at the behavior near (4.18). A possible singular behavior there must
come from the vector r = (1,−1) in (4.25), since this leads to a polylogarithm which,
when expanded at the singular locus (4.18),

Li3−2g(e
−z) =

(2g − 3)!

z2g−2
+ O(z0), g ≥ 2, (5.61)

exhibits a pole. Here, z = t1 − t2. However, since cg(−2) = 0, the coefficient of this
polylogarithm vanishes and we conclude that the amplitudes are regular at (4.18). This
is indeed consistent with the fact that the field theory limit of this model at (4.18) is
massless SU(2), N = 4 super Yang–Mills theory, which has F (g) = 0 for all g ≥ 2
[52, 53, 12].

Let us now look at the behavior near (4.20). To understand this, we look at the
heterotic result for the holomorphic couplings in the BHM reduction (4.41). Again, the
singular behavior comes from the vector r = (1,−1). Since the coefficients are defined
now by (4.42), we find

dg(−1) =
4g − 1

2g−2

|B2g|
2g(2g − 2)!

. (5.62)

If we set
µ = t1D − t2D, (5.63)

and we take into account the behavior of the polylogarithm (5.61), we find that the

singular behavior of F (g)
E (tD) near (4.20) is given by

F (g)
E (tD) → 4g − 1

2g−2

|B2g|
2g(2g − 2)

1

µ2g−2
+ O(µ0) (5.64)

for g ≥ 2, while for g = 1 we have a logarithm singularity

− 1

2
log µ. (5.65)
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Since the full F (g)(S, tD) can be written for g ≤ 6 in terms of (4.41), as we showed
in section 5.1, we can compute its leading singular behavior at the locus (4.20). This
will be useful in section 6 to compare to the field theory limit. The above computation
shows that along the fiber direction the topological string amplitudes F (g)

E show the
gap behavior discovered in [33, 34]. In order to see if the gap also holds in the mixed
directions, it is clear from the formulae above that we need a precise knowledge of the
regular terms in µ in the expansion of F (g)

E . Unfortunately, this is something we cannot
extract from the heterotic expressions. We will however be able to do this in the reduced
model introduced in [41] and studied in more detail below. We will see that indeed the
strong gap condition obtained for the fiber direction in (5.64) does not hold for the mixed
directions.

5.5 The reduced Enriques model

In this section we discuss a reduced model for the Enriques Calabi-Yau introduced in
[41]. The main advantage of this model is that the target symmetry group becomes
much simpler, and one can easily parametrize the holomorphic functions which appear
in the expansion of F (g) in the propagators ∆a(t, t̄) and Ê2(S, S̄). In particular, the
holomorphic ambiguity can be parametrized in terms of a finite number of coefficients
at each genus. Also the mirror map is known explicitly and can be used to translate the
F (g) into a simple polynomial form. In these aspects, the reduced model is very closely
related to the Seiberg–Witten theory studied in section 3.

5.5.1 Special geometry and the mirror map

We begin with a brief discussion of the reduced special geometry and recall the mirror
map derived in [41]. Out of the eleven special coordinates S, ta the reduced model is only
parametrized by three parameters. More precisely, it is obtained by shrinking 8 out of
the 10 cycles in the Enriques fiber as

(S, ta) = (S, ti, tα) → (S, ti, 0) , i = 1, 2 , α = 3, . . . , 10 . (5.66)

We denote the reduced moduli space spanned by the remaining coordinates S, t1, t2 by
Mr. Explicitly, the full coset (4.5) reduces in this limit to

Mr =
Sl(2,R)

SO(2)
×

(
Sl(2,R)

SO(2)

)2

, (5.67)

inducing a split of the full target space symmetry group as

Sl(2,Z) × O(10, 2,Z) → Sl(2,Z) × Γ(2) × Γ(2) . (5.68)

The generators of Sl(2,Z) are precisely the Eisenstein series Ê2(S, S̄), E4(S), E6(S)
as already introduced for the full model in (5.1). The generators for Γ(2) have been
introduced in the Seiberg-Witten section 3. More precisely, we will generate the ring of
almost holomorphic modular forms of Γ(2) by Ê2(t, t̄), K2(t) and K4(t) explicitly defined
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in (5.3) and (3.5). In the following we will simplify expressions by abbreviating

E2 = E2(t
1) , K2 = K2(t

1) , K4 = K4(t
1) ,

Ẽ2 = E2(t
2) , K̃2 = K2(t

2) , K̃4 = K4(t
2) . (5.69)

Whenever not stated otherwise, we will keep the S-dependence explicit. Let us also note
that the matrix Cab splits as

Cab =

(
Cij 0
0 Cαβ

)
, Cij =

(
0 1
1 0

)
, (5.70)

as already given in (4.10). Hence, the holomorphic prepotential (4.8) and the fiber Kähler
potential Y = (t+ t̄)2 reduce to

Fr = iSt1t2 , Yr = (t1 + t̄1)(t2 + t̄2) . (5.71)

As we have already noted in section 4.1 this prepotential and fiber potential are exact
and receive no instanton corrections.

Let us now turn to a discussion of the mirror map for the reduced Enriques model.
In order to determine this duality map we first note that the reduced Enriques has
an algebraic realization. Applying standard techniques, one can thus derive the three
Picard-Fuchs equations for the holomorphic three-form Ω(z) as

L1Ω(z) = 0 , L2Ω(z) = 0 , L3Ω(z) = 0 , (5.72)

where zi(t), z3(S) with i = 1, 2 are the mirror coordinates of ti, S respectively. The
Picard-Fuchs operators are found to be

Li = θ2
i − 4(4θi + 4θj − 3)(4θi + 4θj − 1)zi , i, j = 1, 2 , i 6= j , (5.73)

L3 = 36(z3 − 1)2(z3 − 2)θ2
3 + 36z3(z3 − 1)θ3 + z3

(
8z3 − 4(z3)2 − 31

)
, (5.74)

where θi = zi ∂
∂zi . The Picard-Fuchs equations (5.72) can be solved to determine the

mirror maps zi(t), z3(S). This was done in [41] and we will only quote the result here.
We first abbreviate

z(qi) =
K4(t

i)

K2
2(t

i)
. (5.75)

Using this shorthand notation the fiber mirror map reads

z1(t) = z(q1)
(
1 − z(q2)

)
, z2(t) = z(q2)

(
1 − z(q1)

)
. (5.76)

These coordinates are related by a factor of 64 to z1, z2 used in ref. [41]. In the base one
evaluates

z3(S) = 1 −E
−3/2
4 E6 . (5.77)

Compared to [41] we have rescaled z3 by a factor 864. Using these explicit expressions for
z1, z2 and z3, one immediately verifies their invariance under the target space symmetry
group Sl(2,Z)× Γ(2)× Γ(2). Also the fundamental period X0 can be obtained from the
Picard-Fuchs system (5.72) and reads

X0 = x0X̂0 , (X̂0)2 = 1
4
K2K̃2 , (x0)4 = E4 . (5.78)
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We immediately verify that X0 is not invariant under the symmetry group Sl(2,Z) ×
Γ(2) × Γ(2). The S-duality transformation (4.58) reads for the reduced model t1 7→ 1/t2

and t2 7→ 1/t1. Applied to X0 this yields precisely the transformation behavior given in
(4.63). Before turning to the higher genus amplitudes in the next section let us also note
that the discriminant of the reduced model is given by

∆(z1, z2) D(z3) , (5.79)

where ∆(z1, z2) is the discriminant along the fiber and D(z3) is the discriminant along
the base. Explicitly, we find in the coordinates (5.75) and (5.76) that

∆(z1, z2) =
(
1 − z(q1) − z(q2)

)2
(5.80)

= 1 − 2(z1 + z2 + z1z2) + (z1)2 + (z2)2 . (5.81)

The second discriminant D(z3) is given by

D(z3) = 1
2633

(
(z3)2 − z3

)
. (5.82)

In the next section we will use the mirror coordinates z1, z2 to express the reduced free
energies F

(g)
r . Since along the base direction all equations are expressed in terms of simple

Eisenstein series E2n(S) we choose to keep this S-parametrization also in the following
discussions.

5.5.2 Reduced free energies and direct integration

Let us now discuss the free energies F
(g)
r and their holomorphic limits F (g)

r for the reduced
model. In the limit (5.66) they are simply defined as

F (g)
r (S, t1, t2) = F (g)(S, t1, t2, tα = 0) . (5.83)

The reduced form of F (1) can be derived by direct computation as was already discussed
in [41]. Explicitly one finds

F (1)
r = −2 log

[
(S + S̄)3(t1 + t̄1)(t2 + t̄2)

]
− log |Φr(S, t)| , (5.84)

where

Φr(S, t
1, t2) = η24(S)

∏

m,n

(1 − qnqm

1 + qnqm

)cr1(2mn)

. (5.85)

The coefficients cr1(n) are given through the modular form

∑

n

cr1(n)qn = − 64

3η6(q)ϑ6
2(q)

E2(q)E4(q
2) . (5.86)

Note that in comparison with the expression (4.28) for the full Enriques model the Eisen-
stein series E4(q

2) appears in (5.86). This extra factor arises due to the summation over
the E8 vectors in (4.34) and precisely counts their degeneracy. It was further shown in
[41] that the following denominator formula holds

Φr(S, t
1, t2) = 1

16
η24(S) δ = η24(S)(X̂0)4∆1/2 (5.87)

39



where
δ(t1, t2) = K2

2K̃
2
2 −K4K̃

2
2 −K2

2K̃4 . (5.88)

Here the Γ(2) generators K2, K̃2 as well as K4, K̃4 are defined in (5.69), while the funda-
mental period X̂0 and the discriminant ∆ were given in (5.78) and (5.80).

The holomorphic reduced amplitudes restricted to the Enriques fiber can also be
computed directly by reducing the heterotic expressions (4.25) and (4.41). The result
reads [41]

F (g)
r,E(t) =

∑

r>0

crg(r
2)

[
23−2gLi3−2g(e

−r·t) − Li3−2g(e
−2r·t)

]
,

F (g)
r,E(tD) =

∑

r>0

dr
g(r

2/2)(−1)n+mLi3−2g(e
−r·tD) ,

(5.89)

where the coefficients cr(n), dr
g(n) are defined by

∑

n

crg(n)qn = −2E4(q
2)

Pg(q)

η12(2τ)
,

∑

n

dr
g(n)qn = E4(q

2)
22+gPg(q

4) − 22−gPg(q)

η12(2τ)
.

(5.90)

Once again we recognize the additional factor E4(q
2) counting the degeneracies of the E8

lattice. Clearly, also the expressions F (g)
r,E(t) and F (g)

r,E(tD) can be expressed in terms of
the holomorphic generators (5.69) depending on ti and tiD respectively.

Let us now turn to the discussion of the complete reduced amplitudes including the
base and the non-holomorphic dependence. In order to do that we describe the direct
integration for the reduced model focusing on the essential differences to the considera-
tions presented in section 5.3. To begin with, note that the propagators of the full model
reduce as

∆i → @
i , ∆α → 0 , (5.91)

where @
i is obtained from (5.27) by setting tα = 0 and using (5.85). That ∆α reduces to

zero arises from the fact that in summation over the E8 lattice the vectors cancel pairwise.
In order to perform the direct integration we first have to find recursive relations which
are valid for the reduced free energies F

(g)
r . Recall that in the full Enriques model we

found two sorts of recursive relations (5.46) and (5.47) capturing the properties F (g) in
the base and in the fiber of the Enriques. It turns out that only the second anomaly
equation (5.47) admits a simple reduction. More precisely, it can be rewritten for the
reduced model as

∂F
(g)
r

∂@i
= DSDiF

(g−1)
r +

g−1∑

r=1

DiF
(r)
r DSF

(g−r)
r , (5.92)

since performing the reduction tα = 0 interchanges with the differentiation with respect
to t1, t2. Note that this is no longer true for derivatives with respect to tα. In particular,
the first equation (5.46) involves a summation over the α indices and one shows that the
resulting terms do not vanish under the reduction tα = 0. Nevertheless, one can directly

40



integrate (5.92) for the reduced free energies

F (g)
r =

2g−2∑

n=1

@
i1 . . . @in ĉ

(g)
i1...in

+ ĉ(g) , g > 1 . (5.93)

The function ĉ(g) is holomorphic in ti and generally depends on Ê2(S, S̄), E4(S), E6(S).
Note that due to (5.91) the coefficients of the full and reduced model are related by

ĉ
(g)
i1...in

= c
(g)
i1...in

(tα = 0). The direct integration is performed in analogy to the integration
in the full model and results in a closed expression similar to (5.55). The important
difference is that the ǫ4r ij as well as the covariant derivatives D̂r

a are not obtained from

the full ǫ4ab and D̂a by simply restricting to the i, j indices and setting tα = 0. Both ǫ4r ij

as well as D̂r
a have to be defined with respect to a new holomorphic metric Ĉr

ij = Φ
1/2
r Cij

but otherwise analog to (5.37) and (5.33). If one had been using the old connection, an
additional summation over the α indices would arise and yield extra contributions. Ap-
plied to the specific free energy F (3) one finds the reduction of the holomorphic ambiguity
(5.59)

f (3)
r (S, t) = 1

48
E4

(
ǫ4r ikǫ

4
r jlC

ijCkl + 1
8
(ǫ4r ijC

ij)2
)

(5.94)

After these considerations it is not surprising that the contraction of the new ǫ4r ij with
Cij does not vanish as it is the case in the full model (5.38).

5.5.3 The free energies F (g) on the mirror

So far the reduced free energies F
(g)
r were expressed as functions of the variables ti, S or

tiD, S. In the reduced model we know the mirror map explicitly and thus will be able

to translate the expansion (5.93) of F
(g)
r into a function of the complex coordinates zi.

We will show that the holomorphic coefficients become polynomials in zi divided by an
appropriate power of the discriminant. Since the dependence of F

(g)
r is rather transparent

we chose to keep this variable and do not replace it by its mirror counterpart z3.

The F (g) transform non-trivially under the reduced automorphic transformations. We
already discussed the actually invariant combination in (4.73). In the coordinates zi, S
we thus set

F (g)(z, z̄, S, S̄) = (X̂0)2−2g F (g)(t, t̄, S, S̄) . (5.95)

This definition is consistent with the fact that the zi(t) are invariant under the target
space group (5.68), while (X̂0)2g−2 transforms exactly as F (g)(t, S). To rewrite the ex-
pansion (5.93) we first note that the propagator @

i can be written in the zi coordinates
as

@
i = (X̂0)2 ∂t

i

∂zj
@

zj

, @
zi

= −Czizj(
K̂zj − 1

8
∂zj log ∆

)
, (5.96)

where @
zi

is a function of zi, z̄i and we have used

Cij = (X̂0)−2Czkzl

∂zk

∂ti
∂zl

∂tj
, K̂(z, z̄) ≡ − log

[
|X̂0|2Yr(z, z̄)

]
. (5.97)

It is not hard to use the expressions (5.76) for z1 and z2 to evaluate Czizj explicitly as

Cz1z2 =
1

z1z2∆
(1 − z1 − z2) , Cz1z1 =

1

z1z2∆
2z2 , Cz2z2 =

1

z1z2∆
2z1 . (5.98)
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Once again (5.96) and (5.97) are in accordance with the transformation behavior of the

@
i and Cij given in (5.29) and (4.65). Similarly, we transform the coefficients ĉ

(g)
i1...in in

(5.93) and set

ĉ
(g)
i1...in = (X̂0)2g−2−2n ∂zj1

∂ti1
. . .

∂zjn

∂tin
ĉ
(g)

zj1 ...zjn
(z) , (5.99)

which is consistent with (5.43). It is also straightforward to rewrite the direct integration

expression for F
(g)
r by using the zi coordinates. Let us once again only discuss the

appearing building blocks. We begin by noting that the holomorphic covariant derivative
transforms as

D̂iVj = (X̂0)2k ∂z
l

∂ti
∂zm

∂tj
D̂zlVzm , (5.100)

where the covariant derivative D̂zi is given by

D̂ziVzj = ∂ziVzj − k
8
(∂zi log ∆)Vzj + Γ̂zl

zizjVzl . (5.101)

The holomorphic Christoffel symbol in this expression is defined by

Γ̂zl

zizj = 1
2
Ĉzlzm(

∂ziĈzmzj + ∂zj Ĉzizm − ∂zmĈzizj

)
, Ĉzizj = ∆1/4Czizj . (5.102)

The second important object in the general equation for the direct integration is the
automorphic form ǫ4r ij . One shows that it can be decomposed as

ǫ4r ij =
1

z1z2∆2

∂zl

∂ti
∂zm

∂tj
ǫ4zlzm . (5.103)

where for i = 1, 2, i 6= j one finds that

ǫ4zizi = − 1
16
zj

(
(zi)2

(
1 + 3 zj

)
+

(
−1 + zj

)2 (
1 + 3 zj

)
− 2 zi

(
1 − 5 zj + 3 (zj)2

) )
,

ǫ4zizj = 3
16
zi zj

(
−2 + zi + (zi)2 + zj + (zj)2 − 2 zi zj

)
. (5.104)

Note that ǫ4zizi is polynomial due to the fact that we extracted the denominator z1z2∆2 in

(5.103). This turns out to be possible for all the coefficients ĉ
(g)

zi1 ...zin
appearing in (5.99).

We thus define
P

(g)
i1...in

(z, Ê2, E4, E6) = (z1z2∆)g−1 ĉ
(g)

zi1 ...zin
, (5.105)

where P (g) are polynomials in zi as well as Ê2, E4, E6. The reduced free energies are thus
of the form

F (g)
r (z, z̄, S, S̄) =

1

(z1z2∆)g−1

∑

n

@
zi1
. . . @zin

P
(g)
i1...in , g > 1 . (5.106)

In particular, this implies that at each genus the holomorphic ambiguity is parametrized
by a polynomial P (g)(z, E4, E6) holomorphic in zi and S. As it was the case before
the coefficients in P (g) have to be determined by boundary conditions. For the lower
genera this can be done explicitly by using the fiber limes. At higher genus additional
information are needed and we will discuss in the next section the possible input from a
small gap condition. We believe that essentially all results on the mirror rewriting can
be generalized to the full model in case one is able to determine the full mirror map. For
the ten parameters along the fiber this is however a technically challenging task.
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5.5.4 Boundary conditions and the small gap

As we have seen in (5.68), the automorphism group acting on the fiber variables is simply

Γ(2) × Γ(2) , (5.107)

where these groups act on t1,2, respectively, plus the exchange t1 ↔ t2. Moreover, we see
from (4.19) that the {ti = 0 : i = 3, · · · , 10} locus maps to the {tiD = 0 : i = 3, · · · , 10}
locus. If we now define

2πiτ 1,2 = −t1,2, 2πiτ 1,2
D = −t1,2

D . (5.108)

we see that the transformation (4.19) relating the geometric and the BHM expressions
reduces to

τ 1
D = τ 1, τ 2

D = −1

2

1

τ 2
. (5.109)

By using the explicit expressions for F (g)
r,E(t) in terms of modular forms (which can be

obtained for example by direct integration), one finds that under (5.109)

F (g)
r,E(t) → 21−gF (g)

r,E(tD), (5.110)

where the factor of 2 is inherited from the factor of 2 in (5.109) and F (g)
r,E(tD) are also

given in (5.89). Therefore, one can obtain expressions for the amplitudes in the BHM
reduction in terms of modular forms by simply applying the transformation (5.109) to the
results of the direct integration in the reduced model (which are valid for the geometric
reduction).

These expressions for the BHM amplitudes can also be used to study in detail the
behavior near the singularity (4.20), and in particular to calculate the subleading terms.
One can verify that the discriminant (5.80) transforms under (5.109) as

∆(t1, t2) 7→ ∆(t1D, t
2
D) = (z(q1

D) − z(q2
D))2, (5.111)

which vanishes at the locus (4.20). This leads to the singular behavior of F (g)
r (tD), and

one can now verify the behavior (5.64) by expanding the expressions in terms of modular
forms. One finds,

F (1)
r,E(tD) = −1

2
log(µ) − 1

2
log

[ 1

128
K2K4(K

2
2 −K4)(q

2
D)

]
+ O(µ),

F (2)
r,E(tD) =

1

16µ2
− 80E2

2K
2
2 − 16K4

2 + 3K2
2K4 + 9K2

4 + 16E2(K
2
2 + 3K2K4)

9216K2
2

(q2
D) + O(µ),

F (3)
r,E(tD) =

1

32µ4
+

1

53084160K4
2

(
−800E4

2K
4
2 + 214K8

2 − 726K6
2K4 + 1431K4

2K
2
4

+ 405K4
4 − 320E3

2(K
5
2 + 3K3

2K4) + 120E2
2(10K6

2 − 15K4
2K4 + 9K2

2K
2
4)

−540K2
2K4 − 40E2(14K7

2 − 54K5
2K4 + 27K3

2K
2
4 − 27K − 2K3

4)
)
(q2

D) +O(µ).

(5.112)
However, if one includes the base directions, the gap is “partially filled” starting at genus
three (for F (2)(S, tD), the gap property away from the fiber limit is trivially satisfied).
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Indeed, one finds that the term Cab∂aF (1)
E (tD)∂bF (2)

E (tD), leads, in the reduced model, to
the expansion

∂1F (1)
r,E(tD)∂2F (2)

r,E(tD) + ∂2F (1)
r,E(tD)∂1F (2)

r,E(tD) =

− 1

8µ4
− 20E2

2K2 + 17K3
2 + 3K2K4 + 4E2(K

2
2 + 3K4)

9216K2
(q2

D)
1

µ2
+ · · ·

(5.113)

Although there are some nontrivial cancellations (for example, there is no term in µ−3),
generically one finds, for finite S, singular terms in µ beyond the leading one.

6 The field theory limit

As we reviewed in section 4, there is a line of enhanced symmetry in the moduli space
of the Enriques Calabi–Yau which leads in the field theory limit to SU(2), N = 2
QCD with four massless hypermultiplets. This occurs at the locus (4.20). Similarly to
what happens for other K3 fibrations [35], we expect that near this locus the leading
singularities of the topological string partition functions become field theory amplitudes
of the Nf = 4 theory. At genus zero one should recover the prepotential, and at higher
genus the gravitational amplitudes introduced by Nekrasov in [52] by using instanton
counting techniques. In this section we will explain this in some detail, and as spin-off
we will obtain some new results on the modularity properties of the Nf = 4 theory and
its gravitational corrections.

We first note that the behavior of the amplitudes near (4.18), in the fiber limit, has
been already determined with heterotic techniques in (5.64). The results of section 5
including the base were obtained in principle in the large radius limit, in terms of the
“electric” coordinates t. However, the calculations of F (g) performed there are also valid
in the tD coordinates, due to general covariance. In particular, the holomorphic limit
F (g)(S, tD) can be expanded in polynomials in E2(S), E4(S), E6(S) as explained before
(5.1), and we can write

F (g)(S, tD) =
∑

k

pg
k(S)f g

k (tD). (6.1)

Near the locus (4.20) the f g
k should show display a singular behavior of the form

f g
k (tD) =

bgk
µ2g−2

+ · · · , (6.2)

as we checked in the fiber limit in (5.64). How does this compare to the field theory?

The prepotential and gravitational corrections of the massless Nf = 4, SU(2) N = 2
Yang–Mills theory depend on the vector multiplet variable a and on the microscopic
coupling τ0. They can be put together into a generating functional

FYM(a, τ0, ~) =

∞∑

g=0

~
2gFYM

g (a, τ0), (6.3)

where FYM
0 (a, τ0) is the N = 2 prepotential and the higher g amplitudes are the gravita-

tional corrections. The statement that the type II theory on the Enriques Calabi–Yau has
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this gauge theory as its field theory limit near the locus (4.20) implies that the leading
singularity of the topological string amplitudes is given by

F (g)(S, tD) → 1

µ2g−2

∑

k

bgkp
g
k(S) = FYM

g (a, τ), (6.4)

where S is related to the coupling constant of the theory τ0, and µ is related to the a
variable of Seiberg and Witten in a way that we will make precise in a moment. Let
us first look at the prepotential. While it has been originally assumed [55] that the
prepotential of the self-dual theories with N = 2, gauge group SU(N) and 2N flavors is
classically exact, it was found in [20] that it does get instanton corrections. Those can
however be absorbed in the following redefinition of the coupling [21],

τ0 → τ =
1

2

∂2

∂a2
FYM

0 (a, τ0) = τ0 +
∑

k

ckq
k
0 , (6.5)

where
q0 = exp(2πiτ0). (6.6)

We then have for the instanton-corrected prepotential

FYM
0 (a, τ0) =

1

2
τa2, (6.7)

in terms of the renormalized coupling τ . This is needed in order to match the type II
prepotential (4.8), which does not exhibit instanton corrections. We will then express
the FYM

g obtained by instanton computations not as functions of q0, but of q = e2πiτ .

The computation of the field theory amplitudes proceeds as follows. The functional
(6.3) has the structure

FYM(a, τ0, ~) = FYM
pert(a, ~) − ~

2 logZ(a, τ0, ~), (6.8)

where

FYM
pert,g(a, ~) = − 2B2g

4(g−1)2g(2g − 2)
(1 − 4g)

1

a2g−2
(6.9)

is the perturbative piece computed in [53], and

Z(a, τ0, ~) =
∑

k

Zk(a, ~)qk
0 (6.10)

is an instanton sum. Nekrasov’s formula for the k-instanton contribution to the partition
sum Zk(a, ~) can be written as [12]

Zk(a, ~) =
∑

{Yλ}

N∏

λ

∏

s∈Yλ

ϕλ(s)
4

∏
λ̃E(s)2

. (6.11)

The sum runs over sets {Yλ} of Young diagrams labeled in the SU(2) case by λ = 1, 2.
For massless flavors,

ϕλ(s) = aλ − (sj − si)~, (6.12)
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Figure 2: A sample pair of Young diagrams Yλ, Yλ̃ contributing to (6.11).

where si, sj are the coordinates of the cell s inside the Young diagram Yλ. We also have

E(s) = aλλ̃ − ~(h(s) − v(s) − 1), h(s) = νsi
− sj, v(s) = ν̃ ′sj

− si, (6.13)

where νsi
is the length of row si in Yλ, ν̃

′
sj

the length of column sj in Yλ̃ and h(s), v(s) are
the number of boxes to the right of s inside Yλ respectively above s inside Yλ̃, see Fig. 2.
The constants aλ = (a1, a2) are set to (−a, a).

The relative normalizations between the results in [52] and the Calabi–Yau case can
be obtained from the limit q → 0, which is the limit S → ∞. The only remaining
singularity on the Enriques is then (5.64), while in the Yang–Mills case we are left with
the perturbative piece (6.9). Comparing this to (5.64) and taking into account the relative
sign in (6.4) we find

(−2)g−1 a
2g−2

µ2g−2
= 1, (6.14)

and one can immediately read off the normalization of a with respect to µ = t1D − t2D:

a =
µ

i
√

2
. (6.15)

We notice the following factorization,

FYM
g (q0, a) =

1

a2g−2
Ξg(q0), (6.16)

where Ξg(q0) is a power series in q0. The relation between q0 and q is defined by

q = q0 exp[Ξ0(q0)], (6.17)

which can be inverted to obtain the relation between q0 and q. The explicit power series
one finds is

q0 = q − q2

2
+

11q3

64
− 3q4

64
+

359q5

32768
− 75q6

32768
+

919q7

2097152
− 41q8

524288
+ O(q9). (6.18)
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If we now plug this series into FYM
g (a, q0) we find that all gravitational couplings are

functions of q2, that is to say, there are no odd instanton contributions, as it should
be since those are forbidden by a Z2–symmetry of the theory [55]. The power series
(6.18) should be given by a mirror map, corresponding to some algebraic realization of
an elliptic curve. Indeed, when expressed in terms of

q = 24q
1
2
S , qS = e−S, (6.19)

we find

q0 = 16 q
1
2
S − 128 qS + 704 q

3
2
S − 3072 q2

S + · · · =
ϑ4

2(qS)

ϑ4
3(qS)

, (6.20)

which is (up to an overall factor 16) the Hauptmodul of Γ0(4). This equality between
q0 and the Hauptmodul has only be checked for the first few terms of the instanton
expansion, and we don’t have a general proof.

We can now express the couplings FYM
g (a, q0), computed from (6.11), in terms of

qS, µ. Due to the connection to the Enriques results and the field theory limit (6.4), we
expect them to be (up to an overall factor µ2−2g) quasi–modular forms in qS of weight
2g − 2, and belonging to the ring generated by E2(S), E4(S) and E6(S). The results
obtained with the instanton expansion are in perfect agreement with this. We find at
g = 2

µ2FYM
2 =

1

16
− 3qS

2
− 9q2

S

2
− 6q3

S − 21q4
S

2
− 9q5

S + 18q6
S + O

(
q7
S

)

=
1

24
E2(qS) .

(6.21)

Proceeding in the same way we find,

µ4FYM
3 =

1

25

(2

3
E2

2 +
1

3
E4

)
,

µ6FYM
4 =

1

26

(11

12
E3

2 +
4

3
E2E4 +

7

12
E6

)
,

µ8FYM
5 =

1

27

(17

9
E4

2 +
97

18
E2

2E4 +
32

9
E2

4 +
14

3
E2E6

)
,

µ10FYM
6 =

1

28

(619

120
E5

2 +
218

9
E3

2E4 +
427

9
E2E

2
4 +

4501

144
E2

2E6 +
4337

144
E4E6

)
,

µ12FYM
7 =

1

29

(1418

81
E6

2 +
52837

432
E4

2E4 +
12848

27
E2

2E
2
4 +

22631

108
E3

2E6 +
5423

9
E2E4E6

+
6529

54
E2

6 +
352069

1296
E3

4

)
,

(6.22)
We point out that we have not proved these equalities, but rather verified them by using
the instanton expansion up to high order. It is however highly non–trivial that this
expansion can be matched to a quasimodular form of the required weight. In addition,
one can verify that the coefficients of the above combinations agree with the Enriques
results. For example, if we look at the singular behavior of (5.22) by using (5.64), one
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finds,

F (3)(S, tD) → 1

32µ4
E4(S) +

1

48µ4
(E2

2(S) − E4(S)) =
1

96
(2E2

2(S) + E4(S)), (6.23)

in agreement with the result above. We have checked that the above polynomials are
in accordance with the field theory limit of the Enriques model also for g = 4, 5, 6. For
higher genus the instanton results for the Nf = 4 theory provide a boundary condition
for the holomorphic anomaly equation, since they determine the coefficient of the leading
singularity near (4.20) as a function of S, and generalize the heterotic result (5.64) away
from the fiber.

In summary, we have verified with the instanton computations of [52] our general re-
sults about the structure of the topological string amplitudes in the Enriques Calabi–Yau
(in particular our assumption after (5.1) about the modular properties of the holomor-
phic ambiguity). Conversely, the results on the Enriques side have been instrumental in
clarifying the modularity structure of the massless Nf = 4 theory.

7 Direct integration on generic Calabi-Yau manifolds

In this section we present a general formalism which allows for direct integration of
the holomorphic anomaly equation (2.10) for a generic Calabi-Yau manifold. In order
to do that we will first have to rewrite these equations by using new coordinates and
introduce the so-called big moduli space M̂ in section 7.1. The holomorphic anomaly
equations on the big moduli space have been also discussed in [18, 59]. The target space
symmetry group acts naturally on the coordinates of this extended moduli space and
we will briefly discuss modular forms on M̂ in section 7.2. This has been also studied
in [1], see also [27]. Alternatively to the direct integration, the higher genus amplitudes
can be derived using a Feynman graph expansion in generalization of [7, 59, 1]. We
introduce the appropriate propagators and vertices in section 7.3. Finally, in section 7.4
we derive a closed expression for the F (g) using direct integration. This can be viewed
as the generalization of the discussion of the Seiberg-Witten example in section 3 for
compact Calabi-Yau manifolds with an arbitrary number of moduli.

7.1 The recursive anomaly for F (g)

In this section we rewrite the holomorphic anomaly equations (2.10) for an enlarged
moduli space in which the 2h(2,1) coordinates ti, t̄i on M are promoted to 2h(2,1) + 2
coordinates Y K , Ȳ K . From a geometric point of view, this amounts to working on the
moduli space of complex normalized (3, 0)-forms Ω on the Calabi-Yau manifold under

consideration. We denote this moduli space by M̂ and call it the big moduli space. The
coordinates Y K on M̂ are defined as functions of tk by using the homogeneous coordinates
XK(t) arising in the expansion (A.6) of the holomorphic three-form Ω. Explicitly, we
define

Y I = λ−1XI(t) , I = 0, . . . , h(2,1) , (7.1)
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where λ is the complex string coupling. The big moduli space M̂ is shown to be a rigid
special Kähler manifold with Kähler potential K̂ and Kähler metric K̂IJ̄ given by

K̂ = i
2

(
Y KF̄K(Ȳ ) − Ȳ KFK(Y )

)
, K̂IJ̄ = ∂I∂J̄K̂ = ImτIJ , (7.2)

where ∂I ≡ ∂Y I and ∂Ī ≡ ∂Ȳ I are the derivatives with respect to the coordinates on

M̂ and τIJ = ∂I∂JF is the second derivative of the prepotential. Note that the Kähler
metric ImτIJ is not positive definite, but rather has complex signature (h2,1, 1), i.e. has
one complex negative direction. The metric connection is shown to be

ΓI
JK = K̂IM̄∂JK̂KM̄ = − i

2
C I

JK , (7.3)

where CIJK(Y ) = ∂I∂J∂KF is the third derivative of the prepotential F . This implies

that the covariant derivative of a tensor VK on M̂ is given by

DIVK ≡ ∂IVK − ΓJ
IKVJ = ∂IVK + i

2
C J

IK VJ . (7.4)

Here and in the following, we will raise and lower indices using the metric K̂IJ̄ = ImτIJ .
For a more exhaustive discussion of rigid special geometry we refer to the existing liter-
ature [14, 15, 24].

Let us now lift the holomorphic anomaly equations (2.10) for the free energies F (g)

to the big moduli space M̂. In order to do that, we evaluate F (g)(t, t̄) as functions of
the homogeneous coordinates XK . As reviewed in section 2, they transform as sections
of L2−2g such that

F (g)(Y, Ȳ ) = λ2g−2F (g)(X, X̄) , Y K∂KF
(g) = (2 − 2g)F (g) . (7.5)

Rewriting the holomorphic anomaly equations (2.10) using the Y K coordinates and the
functions F (g)(Y, Ȳ ) we find

∂ĪF
(g) = − i

8
C̄ JK

I

(
DJ∂KF

(g−1) +

g−1∑

r=1

∂JF
(r)∂KF

(g−r)
)
. (7.6)

A detailed derivation of (7.6) can be found in appendix D.1. We can also lift the equation

(2.11) for F (1) to the big moduli space M̂ in a way similar to the lift of the holomorphic
anomaly equations for g > 1. First recall that F (1) is a section of L0 and hence as a
function of the homogeneous coordinates XK(t) homogeneous of degree 0 as seen in (7.5).
This implies that

Y K∂Y K∂Ȳ MF (1) = Ȳ K∂Ȳ K∂Y MF (1) = 0 . (7.7)

Using this property and the special geometry identities summarized in appendix A, one
derives the holomorphic anomaly for F (1)(Y, Y ) on the big moduli space (see appendix
D.2)

∂I∂J̄F
(1) = 1

8
CILM C̄

LM
J −

( χ

24
− 1

)
KIJ̄(Y, Ȳ ) , (7.8)

where the second derivative of the Kähler potential (2.5) is shown to be

KIJ̄ ≡ ∂Y I∂Ȳ JK(Y, Ȳ ) = 2eKK̂IJ + 4e2K ȲIYJ , (7.9)
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and indices were lowered by contraction with the metric (7.2). Note that the last term
in the expression for KIJ̄ ensures that the holomorphic anomaly (7.8) also implies (7.7).
In this big moduli space formulation, it is straightforward to integrate the holomorphic
anomaly equation (7.8) for F (1). One thus shows that the genus one free energy is locally
of the form

F (1)(Y, Ȳ ) = −1
2
log det(ImτIJ) −

( χ

24
− 1

)
K(Y, Ȳ ) − ln |Φ| + f (1) + f̄ (1) , (7.10)

where Φ(Y ) and f (1)(Y ) are holomorphic functions arising as integration constants. For
reasons which will become clear later, we introduced the seemingly artificial split of
the holomorphic ambiguity into Φ and f (1). The expression (7.10) provides the direct
generalization for F (1) in Seiberg-Witten theory (3.11) and also reduces to the Enriques
result (4.39). Clearly, the holomorphic anomaly does not determine Φ, f (1) which were
derived in the Seiberg-Witten and Enriques example by using additional information due
to modularity and string dualities. In the next section we will briefly discuss modularity
from the point of view of the big moduli space M̂.

7.2 Monodromy, symplectic group and modular forms

In this section we discuss the action of the target space symmetry group on the coordi-
nates of the big moduli space M̂ and introduce some basic modular forms and modular
derivatives. To begin with, let us note that there is a natural symplectic action on the
periods (FJ , Y

I) of the holomorphic three-form given by
(
a b
c d

) (
F
Y

)
=

(
F ′

Y ′

)
, (7.11)

where a, b, c and d are real integer-valued matrices obeying

aT c = cTa , bTd = dT b , aTd− cT b = 1 . (7.12)

These transformations change the basis of the third cohomology of the Calabi-Yau mani-
fold and form the symplectic group Sp(H3,Z). Note that in general only a subgroup
ΓM of Sp(H3,Z) provides a true symmetry of the topological string theory. ΓM is
the monodromy group. We encountered specific examples for ΓM in the sections on
Seiberg-Witten theory and the Enriques Calabi-Yau: ΓM(SW) = Γ(2) and ΓM(E) =
Sl(2,Z) × O(10, 2,Z). The monodromy group ΓM is a symmetry of all higher genus
amplitudes F (g)(Y, Ȳ ).

Given the action of Sp(H3,Z) on the periods, we can also investigate its induced

action on the geometrical objects on M̂. First note that both Kähler potentials K and
K̂ are invariant under (7.11) since they contain the symplectic scalars Y KF̄K − Ȳ KFK .
The second derivative τIJ = ∂Y IFJ of the prepotential transforms as

τ 7→ (aτ + b)(cτ + d)−1 . (7.13)

This implies that τIJ transforms as a modular parameter and is the higher-dimensional
analog of (3.4). Once again one easily shows that the inverse of ImτIJ transforms with a
shift

Imτ IJ 7→ (cτ + d)I
K(cτ + d)J

LImτKL − 2icIK(cτ + d)J
K . (7.14)
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On the other hand, the third derivative CIJK of the prepotential F transforms without
such a shift

CIJK 7→ (cτ + d)−1 M
I (cτ + d)−1 N

J (cτ + d)−1P
K CMNP (7.15)

This is precisely the transformation property of a modular form of weight −3. In general,
we say that a modular form is of weight −n if it transforms as

MI1...In
7→ (cτ + d)−1J1

I1
. . . (cτ + d)−1Jn

In
MJ1...Jn

. (7.16)

The holomorphic form Φ appearing in (7.10) has no indices, but nevertheless transforms
under the modular group ΓM . It is chosen such that F (1) as well as f (1) are invariant.
This implies that it has to transform as

Φ 7→ det(cτ + d) Φ (7.17)

to compensate the transformation of det(ImτIJ) in (7.10). A major challenge is to find
the appropriate Φ for a given Calabi-Yau manifold and show that it can be expressed as
a function of τIJ only. In order to do that one can change f (1) by holomorphic modular
invariant combinations. Φ(τIJ) can be explicitly derived for the Enriques Calabi-Yau. It
is desirable to explore further examples such as the quintic Calabi-Yau.

As we have seen before, the derivative ∂I0MI1...In
of a modular form M is no longer

a modular form, since the derivative also acts on the matrices (Cτ + D)−1Ji

Ii
. However,

this action can be compensated by using covariant derivatives on M̂. One easily shows
that the Christoffel symbols (7.3) shift under (7.11) such that the covariant derivative
DI0MI1...In

of a modular form is again a modular form of weight reduced by one. If we
express MK as a function of τIJ , we can also take derivatives

DIJMK ≡ ∂τIJ
MK − i

2
δ
{J
K Imτ I}LML , DI = CIJKD

JK , (7.18)

where {IJ} indicates symmetrization in the indices I and J with symmetry factor 1
2
. In

order to relate DI and DJK we have used that ∂IτKL = CIKL. Since CIKL has weight −3
this also implies that DIJ raises the weight of the modular form by 2. Let us note that
DI and DIJ are the higher-dimensional analogs of the derivatives Dt and Dτ displayed
in (3.18).

7.3 Feynman rules for F (g): vertices and the propagators

Let us now come back to the discussion of the holomorphic anomaly equations (7.6). As
argued in [7] and briefly recalled in section 2, the traditional way of finding a solution
to equations of the form (7.6) is via a Feynman graph expansion. In this section we will
derive the vertices and propagators to describe such an expansion in the large moduli
space. This can be done by first directly solving (7.6) for the smallest possible genus
g = 2. The resulting section F (2) can be identified as a sum over Feynman graphs counting
degeneracies of Riemann surfaces. This example allows us to identify the vertices and
propagators, which can be used to systematically construct every solution F (g). The
generating functional encoding these Feynman rules is then derived and can be shown to
be equivalent to the generating functional of Bershadsky, Cecotti, Ooguri and Vafa [7].
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In order to extract the solutions for the free energies F (g) we first define complex
tensors

C
(g)
I1...In

(Y, Ȳ ) ≡
{
DI1 . . .DIn

F (g)(Y, Ȳ ) for g ≥ 1
iDI1 . . .DIn

CIn−2In−1In
for g = 0

. (7.19)

and demand
C

(g)
I1...In

= 0 for 2g − 2 + n ≤ 0 . (7.20)

These two equations are the big moduli space equivalents of (2.7) and (2.8). They imply

that C
(g)
I1...In

is a section of L2−2g−n such that we can infer the homogeneity relation

Y KC
(g)
KI1...In

= (2 − 2g − n)C
(g)
I1...In

. (7.21)

In equation (7.10) we already displayed the general local form of solutions for the free
energy F (1). The next function to determine is F (2)(Y, Ȳ ). Evaluating (7.6) for g = 2
one obtains

∂Ȳ IF (2) = − i
8
C̄ JK

I

(
DJ∂KF

(1) + ∂JF
(1)∂KF

(1)
)
, (7.22)

As we discuss in appendix D.1 such an equation can be solved by an integration by parts
method. This amounts to writing the right-hand side of (7.22) as an anti-holomorphic
derivative of some expression Γ(2)(Y, Ȳ ). The solution to (7.22) is then given by F (2) =
Γ(2)(Y, Ȳ )+f (2)(Y ), where f (2) is the holomorphic ambiguity at genus two. This method
of solving (7.22) is equivalent to the one used in ref. [7] to solve the holomorphic anomaly
equations (2.10) for F (g)(t, t̄). However, in contrast to [7] it will be sufficient to introduce
one type of propagator denoted by ∆IJ . The propagator ∆IJ has to be chosen such that

∂K̄∆IJ = i
4
C̄ IJ

K . (7.23)

Clearly, this fixes the form of ∆IJ only up to an holomorphic function. As for the examples
discussed in the previous sections this ambiguity can be fixed by modular invariance and
compatibility with the solution F (1).

In order to derive an explicit expression for the propagator ∆IJ we note that a solution
to (7.23) is always of the form

∆IJ = −1
2
Imτ IJ + E IJ(Y ) , (7.24)

where E IJ(Y ) is a holomorphic function, which compensates the shift transformation
(7.14) of Imτ IJ . As in the Seiberg-Witten and Enriques example we want to express
E IJ as a derivative of the holomorphic part of F (1) given in (7.10). In order to do that,
let us assume that we can express Φ(Y ) as a function of τIJ itself. To achieve this, it
might be necessary to appropriately split the holomorphic ambiguity of F (1) into Φ(τ)
and an additional function f (1)(Y ). f (1) is a modular invariant function which might not
be expressible as a function of τIJ . We then identify the holomorphic part in (7.24) to
be

E IJ = − i

Φ

∂Φ(τ)

∂τIJ
. (7.25)

From this definition one can immediately conclude that ∆IJ is a modular form of weight
2 under the target space symmetry group ΓM . To see this, note that since F (1) and K
are invariant under ΓM also the section

F̃ (1) = −1
2
log det(ImτIJ) − ln |Φ(τ)| + f (1) + f̄ (1) , (7.26)
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is trivially invariant under ΓM . But evaluating the first derivative on the weight zero
forms F̃ (1) and f (1) one finds

∂I F̃
(1) = −1

2
C

(0)
IJK∆JK + ∂If

(1) , (7.27)

and infers from the discussion of section 7.2 that ∆IJ is of weight 2 and does not shift
under ΓM .

Now that we have discussed the propagator ∆IJ , let us turn to the definition of the
vertices. We do that by continuing the evaluation of the F (2) example. In appendix D.1
we determine by the partial integration method of [7] that F (2)(Y, Ȳ ) to be

F (2)(Y, Ȳ ) = f (2) − ∆JK
(

1
2
C̃

(1)
JK + 1

2
C̃

(1)
J C̃

(1)
K

)
− ∆JK∆LM

(
1
8
C

(0)
KLMJ + 1

2
C

(0)
JLMC̃

(1)
K

)

−∆JK∆LM∆QP
(

1
12
C

(0)
KMQC

(0)
PLJ + 1

8
C

(0)
KJQC

(0)
PML

)
, (7.28)

where f (2)(Y ) is the holomorphic ambiguity. Note that in this expansion we introduced
the shifted F (1) vertices

C̃
(1)
JK = C

(1)
JK +

(
χ
24

− 1
)
KJKK , C̃

(1)
K = C

(1)
K +

(
χ
24

− 1
)
KK . (7.29)

It is not hard to interpret the resulting F (2) as being obtained from a Feynman graph
expansion. Each term in (7.28) corresponds to one Feynman diagram representing a

degeneration of a genus 2 Riemann surface. The vertices are C
(0)
IJK , C

(0)
IJKL and C̃

(1)
I , C̃

(1)
IJ

which are connected by propagators ∆IJ . The whole Feynman sum is shown in Figure
3.

= 1−
2

1−
12

1−
8

+

1−
2

+1−
2

+

1−
8

+ +

Figure 3: The Feynman graph expansion for F (2).

From this example we can also infer the general Feynman rules which generate the so-
lutions F (g)(Y, Ȳ ) to the holomorphic anomaly equation (7.6). The propagator is defined
in (7.24) and (7.27) as the derivative of F̃ (1). The vertices take the form

C̃
(g)
I1...In

= C
(g)
I1...In

for g 6= 1 , C̃(1) = 0 . (7.30)

C̃
(1)
I1...In

= C
(1)
I1...In

+ (n− 1)!
(

χ
24

− 1
)
KI1 . . . KIn

for n > 0 , (7.31)

where KI = ∂Y IK(Y, Ȳ ) are the first derivatives of the Kähler potential (2.5). It is

straightforward to check that by using KI = −K̂I/K̂ and DIK̂J = 0 one finds

C̃
(1)
I1...In

= DI1 . . .DIn
F̃ (1) , (7.32)
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where F̃ (1) is defined in (7.26). This Feynman graph expansion can be obtained as a
saddle point expansion of the formal integral

Ẑ
[
Y

]
=

∫
dZ

√
det ∆ exp

(
− 1

2
g−2

s ∆−1
IJ Z

IZJ +W [Z; Y, Ȳ ]
)
, (7.33)

where gs is the expansion constant playing the role of ~. Here W [Z; Y, Ȳ ] contains the
vertices (7.30) and reads

W [Z; Y, Ȳ ] =
∞∑

g=0

∞∑

n=0

1
n!
g2g−2

s C̃
(g)
I1...In

ZI1 . . . ZIn (7.34)

=
∞∑

g=0

∞∑

n=0

1
n!
g2g−2

s C
(g)
I1...In

ZI1 . . . ZIn −
(

χ
24

− 1
)
ln

(
1 − ZIKI

)
.

Note that the holomorphic anomaly equations on the big moduli space together with
(7.19) and (7.20) imply that the integrand of (7.33) transforms as a wavefunction [61,
18, 59, 1]. Moreover, following [7, 59] one shows that Ẑ[Y ] is actually holomorphic in
Y I . One thus concludes that each coefficient of g2g−2

s in the saddle point expansion of
log Ẑ is a holomorphic ambiguity f (g)(Y ). On the other hand, each coefficient is of the
form F (g)(Y, Ȳ ) − Γ(g)(Y, Ȳ ), where Γ(g) are the Feynman graphs described above. We
thus solve for F (g) = Γ(g)(Y, Ȳ ) + f (g)(Y ) and find the desired result. In the remainder
of this section, we will argue that the big moduli space formulation is indeed completely
equivalent to the results obtained in [7].

Let us now turn to the comparison of the big moduli space formalism with the stan-
dard results of [7] reviewed in section 2. Firstly, note that we only needed one type of
propagator ∆IJ . This propagator is related to the propagators ∆̂ij , ∆̂i and ∆̂ introduced
in (2.17) by

∆IJ = χI
i ∆̂

ijχJ
j − χI

i ∆̂
iXJ −XI∆̂iχJ

i +XI∆̂XJ ,

=
(
XI χI

i

)(
∆̂ −∆̂j

−∆̂i ∆̂ij

) (
XJ

χJ
j

)
, (7.35)

where χI
i is defined in (A.6). To check this identity, we can evaluate the t̄i-derivative of

∆IJ . Clearly, from the form (7.24) we find

∂t̄i∆
IJ = i

4
λ−1χ̄K

ı̄ C̄
IJ

K . (7.36)

Precisely the same equation is obtained by using the identification (7.35) the special
geometry identities (A.13) and the derivatives (2.17) of the small propagators ∆̂ij , ∆̂i

and ∆̂. In other words, we found a non-holomorphic lift of the small propagators ∆̂
to M̂ such that ∆IJ takes the simple form (7.24). Even though we did not completely
specify the holomorphic dependence of ∆IJ we already notice that all non-holomorphic
dependence entirely arises through the inverse of ImτIJ . This already hints to the fact
that in the formulation on M̂ we have much better control over the Ȳ I dependence of
each F (g)(Y, Ȳ ). In section 7.4 we will show that this fact can be used to directly integrate
the holomorphic anomaly equations, which provides an efficient and direct method to find
F (g). In order to show that expressions such as (7.28) are completely equivalent to the
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ones of [7], we also need the projection of the vertices C̃
(g)
I1...In

. These vertices are related

to the correlation functions C
(g)
i1...in defined in (2.7) by

C
(g)
i1...in

(t, t̄) = λ2−2g−nχI1
i1
. . . χIn

in
C̃

(g)
I1...In

(Y, Ȳ ) . (7.37)

In order to derive this equation we have used the special geometry relations (A.13) as

well as the scaling behavior of C
(g)
I1...In

when inserting Y K = λ−1XK(t). This equation also

holds for C̃
(1)
I1...In

since due to (D.12) the additional terms are zero under the contraction

with χI
i . They are however of importance once one contracts C̃

(g)
I1...In

by Y K yielding

Y KC̃
(g)
KI1...In

= (2 − 2g − n) C̃
(g)
I1...In

. (7.38)

By using these identities and the identification (7.35) of the propagators the expansion

(7.28) on M̂ gets transformed into the known result of [7]. Moreover, also the generating
function (7.34) reduces to the one found in [7] if we identify

ZI = −ϕY I + xiχI
i (Y, Ȳ ) . (7.39)

This proves that the solutions for F (g) are actually identical in the formulation of section
2 and the big moduli space formalism presented here. As already mentioned above, the
advantage of this new formulation is that all non-holomorphic dependence arises entirely
through Imτ IJ in the unified propagator ∆IJ and the covariant derivatives DI . We will
use this fact in the next section to perform a direct integration and to derive a closed
expression for F (g).

7.4 Direct integration of the holomorphic anomaly

In this section we make use of the special properties of the big moduli space formulation
to directly integrate the holomorphic anomaly equations (7.6). To begin with, we will
argue that every F (g) for g > 1 can be expressed as a finite power series in the propagators
∆IJ as

F (g)(Y, Ȳ ) =

3g−3∑

k=0

∆I1J1 . . .∆IkJk c
(g)
I1J1...IkJk

, (7.40)

where c(g) without indices is the holomorphic ambiguity at genus g. Due to modular
invariance of F (g) the coefficients c

(g)
I1J1...IkJk

(Y ) are shown to be holomorphic modular

forms of weight −2k on the big moduli space M̂. All non-holomorphic dependence of
F (g) arises entirely through Imτ IJ appearing in the propagators ∆IJ defined in (7.24), It
is this fact which will allow us to directly integrate the holomorphic anomaly equations
(7.6).

First of all, we have to show that indeed each F (g) for g > 1 can be written as a
power series in the propagators ∆IJ with holomorphic coefficients. We check this for F (2)

first. F (2) was expressed in (7.28) as a power series in ∆IJ with coefficients containing

C̃
(0)
IJKL, C̃

(1)
I and C̃

(1)
IJ . From their definitions (7.30), it is clear that these three quantities

are not holomorphic. Hence, in order to establish that (7.40) is true for F (2), they

have to be written as power series in ∆IJ . For C̃
(0)
IJKL ≡ DIC

(0)
JKL this requires that
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we have to expand the connection DI . Note that DI contains the Christoffel symbol
ΓK

IJ = − i
2
CIJLImτLK and is only non-holomorphic due to the appearance of Imτ IJ .

However, by using (7.24) one can replace ImτLK and split the connection as

DIVJ = ĎIVJ − C
(0)
IJK∆KLVL , ΓK

IJ = Γ̌K
IJ + C

(0)
IJM∆MK , (7.41)

where we introduced the holomorphic connection

ĎIVJ = ∂IVJ − Γ̌M
IJVM = ∂IVJ + iCIJKEKMVM . (7.42)

The holomorphic connection ĎI maps holomorphic sections VK(Y ) into holomorphic
sections ĎKVL(Y ). Moreover, it maps modular forms into modular forms, decreasing
the weight of the modular form by one. ĎI are the generalizations of the holomorphic
covariant derivatives (3.19) and (5.33) for the Seiberg-Witten example and the Enriques

Calabi-Yau. We can now split C̃
(0)
IJKL into a holomorphic part and a term linear in the

propagator

C̃
(0)
IJKL = ĎIC

(0)
JKL − ∆MN

(
C

(0)
IJMC

(0)
NKL + C

(0)
IKMC

(0)
NJL + C

(0)
ILMC

(0)
NJK

)
. (7.43)

Clearly, due to the holomorphicity of C
(0)
IJK both ĎIC

(0)
JKL and the coefficient of ∆MN are

holomorphic functions.

Let us now evaluate C̃
(1)
I and C̃

(1)
IJ . The first derivative C̃

(1)
I = ∂IF̃

(1) was already
given in (7.27) and shown to have an expansion in the propagator ∆IJ with holomor-
phic coefficients. In order to also evaluate the remaining vertices, we will need to take
derivatives of E IJ . As in the examples, note that the first derivative ∂KE IJ is not a
modular form, but rather transforms with a shift. These shift transformations can be
compensated by adding another term quadratic in E IJ . Indeed, we find that the linear
combination

EKL
I ≡ ∂IEKL − EKMELNC

(0)
IMN , (7.44)

transforms as a modular form without an additional shift. Not surprisingly, EKL
I is

not the same as ĎIEKL but rather the field strength of E IJ . However, there is another
important representation of EKL

I in terms of derivatives of Φ(τ). Using (7.44) one finds

EKL
I = EKLMN

4 C
(0)
MNI , (7.45)

where

E I1J1...IkJk

2k = (−i)k 1

Φ

∂Φ(τ)

∂τI1J1 . . . ∂τIkJk

. (7.46)

These holomorphic modular forms of weight 2k are the direct generalizations of the
forms ǫ2k

a1...ak
introduced in (5.39). A direct calculation shows that we can also express

the holomorphic modular derivative of ∆IJ as a propagator expansion,

ĎI∆
KL = −∆KM∆LNC

(0)
MNI + EKLMN

4 C
(0)
MNI . (7.47)

We are now in the position to evaluate the vertex C̃
(1)
IJ ≡ DJ∂IF̃ (1). Using the

derivatives (7.47) of the propagators together with (7.41), one easily derives

C̃
(1)
IJ = −1

2
EKLMN

4 C
(0)
MNJC

(0)
IKL + ĎJ∂If

(1) − 1
2
∆KL

(
ĎJC

(0)
IKL + 2C

(0)
IJK∂Lf

(1)
)

+1
2
∆KL∆MN

(
C

(0)
JIMC

(0)
NKL + C

(0)
JKMC

(0)
NIL

)
. (7.48)
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Inserting (7.27), (7.43) and (7.48) into the expansion (7.28) for F (2) one finds

F (2) = ∆I1J1∆I2J2∆I3J3
(

1
24
C

(0)
I1I2I3

C
(0)
J1J2J3

+ 1
16
C

(0)
I1J1I2

C
(0)
J2I3J3

)
(7.49)

−1
8
∆I1J1∆I2J2

(
ĎI1C

(0)
J1I2J2

+ 4C
(0)
I1J1I2

∂J2f
(1)

)

−1
4
∆I1J1EKLMN

4 C
(0)
I1MNC

(0)
J1KL + 1

2
ĎI1∂J1f

(1) + 1
2
∂I1f

(1)∂J1f
(1) + c(2) .

This shows that the calculation of F (2) using the partial integration and the expansion
of the non-holomorphic coefficients yields the desired expansion (7.40) of F (2). We will
now use an inductive argument to show that every F (g) can be written in the form (7.40)
and derive a recursive expression by direct integration.

Let us now go one step further and show that if all F (r) for 1 < r < g can be written
in the form (7.40) also F (g) itself admits this expansion. To do that, we use the Feynman
graph expansion introduced in section 7.3. It was shown there that each F (g)(Y, Ȳ ) can

be obtained from vertices C̃
(r)
I1...Ik

, r < g connected with propagators ∆IJ . But it is not

hard to see that C̃
(r)
I1...Ik

is actually an expansion in ∆IJ with holomorphic coefficients.
More precisely, note that the vertices are obtained by taking covariant derivatives DI of
F (r) and we can apply (7.41) to rewrite these into holomorphic covariant derivatives ĎI

and a propagator contribution. But since by our induction assumption F (r) is of the form
(7.40) for r < g we can apply (7.47) to show that this is equally true for F (g) itself. This
proves that (7.40) is true for all g > 1. It is also straightforward to count the number
of propagators arising in the expansion (7.40). One simply notes that the term in the

Feynman graph expansion with coefficients C
(0)
IJK only is already an expansion in ∆IJ

with holomorphic coefficients. It has the maximal number of propagators, namely 3g−3.

Having shown that F (g) can be always brought to the form (7.40), let us now determine
a closed expression by direct integration. Since all non-holomorphic dependence arises
through ∆IJ , the holomorphic anomaly equation can be rewritten as

∂F (g)

∂∆IJ
= 1

2
DI∂JF

(g−1) + 1
2

g−1∑

r=1

∂IF
(r)∂JF

(g−r) . (7.50)

To integrate this expression we introduce the following shorthand notation

F (g)(Y, Ȳ ) =

3g−3∑

k=0

c
(g)
(k) , c

(r)
(k) = ∆I1J1 . . .∆IkJk c

(r)
I1J1...IkJk

, (7.51)

where c
(g)
(k) is the term containing k propagators ∆IJ . We also rewrite the right-hand

side of the holomorphic anomaly equation as

DI∂JF
(g−1) + ∂I F̃

(1)∂JF
(g−1) + ∂IF

(g−1)∂J F̃
(1) +

g−2∑

r=2

∂IF
(r)∂JF

(g−r) . (7.52)

Here the first three terms can be rewritten as

DI∂JF
(g−1) + ∂IF̃

(1)∂JF
(g−1) + ∂IF

(g−1)∂J F̃
(1) (7.53)

= ĎI∂JF
(g−1) − ∆KLC

(0)
IJK∂LF

(g−1) − ∆KLC
(0)
KL{I∂J}F

(g−1) + 2∂{If
(1)∂J}F

(g−1) ,
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where we have applied (7.41) and inserted (7.27). We also introduce the derivative ď,
which acts on the coefficients of the ∆-expansion as the holomorphic covariant derivative
ĎI but leaving ∆IJ invariant. For c

(g)
(k) given in (7.51) we thus set

ďIc
(g)
(k) = ∆I1J1 . . .∆IkJk ĎIc

(g)
I1J1...IkJk

(Y ) (7.54)

Using this definition, we calculate

∂Ic
(g)
(k) = ďIc

(g)
(k) +

(
ĎI∆

MN
) ∂

∂∆MN
c
(g)
(k) (7.55)

= ďIc
(g)
(k) + C

(0)
IPQ

(
EPQMN

4 − ∆PM∆QN
) ∂

∂∆MN
c
(g)
(k) . (7.56)

Note that the first term is homogeneous of degree k in ∆, the second is homogeneous of
degree k− 1, while the last is homogeneous of degree k+ 1. We also evaluate the second
derivative

ĎI∂Jc
(g−1)
(k) =

[
EMNQP

4 ETURS
4 C

(0)
IMNC

(0)
JTU

] ∂2

∂∆QP∂∆RS
c
(g−1)
(k) (7.57)

+
[
ECDKLMN

6 C
(0)
KLIC

(0)
MNJ + ECDFG

4 Č
(0)
JFGI + 2ECDFG

4 C
(0)
FG{I ďJ}

] ∂

∂∆CD
c
(g−1)
(k)

+
[
ďI ďJ − 2EQCFG

4 C
(0)
FG{IC

(0)
J}QB∆BD ∂

∂∆CD

−2ECDEF
4 C

(0)
MN{IC

(0)
J}EF∆MQ∆NP ∂2

∂∆QP∂∆CD

]
c
(g−1)
(k)

−
[
Č

(0)
IJAB + 2C

(0)
AB{I ďJ}

]
∆AC∆BD ∂

∂∆CD
c
(g−1)
(k)

+
[
2C

(0)
IMNC

(0)
JQB∆QM∆NC∆BD ∂

∂∆CD

+C
(0)
IMNC

(0)
JAB∆QM∆NP ∆AC∆BD ∂2

∂∆QP∂∆CD

]
c
(g−1)
(k) ,

where {IJ} indicates the symmetrization of the indices and we abbreviated

Č
(0)
IJKL = ĎIC

(0)
JKL . (7.58)

Once again, we can specify the ∆-homogeneity of the terms: first line k − 2, second line
k− 1, third and fourth line k, fifth line k+1, sixth and seventh line k+2. In performing
the direct integration of the holomorphic anomaly equation we keep track of the number
of propagators on the right-hand side of (7.50). We can do this explicitly by inserting
(7.53) together with (7.55) and (7.57) into (7.50). Due to the vast number of indices the
result looks rather complicated and will be presented in the following.
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Performing the direct integration one finds

F (g) = 1
2

3g−6∑

k=0

[
1

k−1
EMNQP

4 ETURS
4 C

(0)
IMNC

(0)
JTU∆IJ ∂2

∂∆QP∂∆RS

+ 1
k

(
ECDKLMN

6 C
(0)
KLIC

(0)
MNJ + ECDFG

4 Č
(0)
JFGI + 2ECDFG

4 C
(0)
FGI

(
ďJ + ∂Jf

(1)
))

∆IJ ∂

∂∆CD

+ 1
k+1

((
ďI + ∂If

(1)
)(
ďJ + ∂Jf

(1)
)
∆IJ − ∂If

(1)∂Jf
(1)∆IJ

−2
(
EQCFG

4 C
(0)
FGIC

(0)
JQB∆IJ∆BD + EPQCD

4 C
(0)
IJKC

(0)
LPQ∆IJ∆KL

) ∂

∂∆CD

−2ECDEF
4 C

(0)
MNIC

(0)
JEF∆IJ∆MQ∆NP ∂2

∂∆QP∂∆CD

)

− 1
k+2

(
2C

(0)
IJK ďL∆IJ∆KL +

(
Č

(0)
IJAB + 2C

(0)
ABI(ďJ + ∂Jf

(1))
)
∆IJ∆AC∆BD ∂

∂∆CD

)

+ 1
k+3

(
2
(
C

(0)
IJKC

(0)
LPQ∆IJ∆KL∆PC∆QD + C

(0)
IMNC

(0)
JQB∆IJ∆QM∆NC∆BD

) ∂

∂∆CD

+C
(0)
IMNC

(0)
JAB∆IJ∆QM∆NP ∆AC∆BD ∂2

∂∆QP∂∆CD

)]
c
(g−1)
(k)

+ 1
2

g−2∑

r=2

3g−6∑

k=0

∑

m+n=k

[
1

k+1
∆IJ

(
ďIc

(g−r)
(m)

)(
ďJc

(r)
(n)

)

+ 1
k−1

EPQMN
4 ERSTU

4 C
(0)
IPQC

(0)
JRS∆IJ

( ∂

∂∆MN
c
(g−r)
(m)

)( ∂

∂∆TU
c
(r)
(n)

)

+ 1
k+3

C
(0)
IPQC

(0)
JRS∆IJ∆PM∆QN∆PT ∆SU

( ∂

∂∆MN
c
(g−r)
(m)

)( ∂

∂∆TU
c
(r)
(n)

)

+ 1
k
ERSTU

4 C
(0)
JRS∆IJ

{(
ďIc

(g−r)
(m)

)( ∂

∂∆TU
c
(r)
(n)

)
+

( ∂

∂∆TU
c
(g−r)
(m)

)(
ďIc

(r)
(n)

)}

− 1
k+2

C
(0)
JRS∆IJ∆PT ∆SU

{(
ďIc

(g−r)
(m)

)( ∂

∂∆TU
c
(r)
(n)

)
+

( ∂

∂∆TU
c
(g−r)
(m)

)(
ďIc

(r)
(n)

)}]

− 1
k+1

EPQMN
4 C

(0)
IPQC

(0)
JRS∆IJ∆PT ∆SU

{( ∂

∂∆MN
c
(g−r)
(m)

)( ∂

∂∆TU
c
(r)
(n)

)

+
( ∂

∂∆TU
c
(g−r)
(m)

)( ∂

∂∆MN
c
(r)
(n)

)}]
+ c

(g)
(0) . (7.59)

Let us end with some brief remarks about the properties of the direct integration in the
big moduli space. Firstly, we note that the building blocks of F (g) are the propagators
∆IJ as well as the holomorphic modular forms

E I1...Jk

2k , ĎI1 . . . ĎIk
f (1) , ĎI1 . . . ĎIk

C
(0)
KLM , (7.60)

induced by F (1) and F (0). It seems likely that also the holomorphic ambiguity can be
parametrized by (7.60). To determine these forms it is essential to find Φ(τ), which
will be harder for examples other than the Enriques Calabi-Yau. Moreover, in order to
efficiently derive all F (g) one also needs to show that the forms (7.60) are generated by a
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finite number of holomorphic modular forms of ΓM . Clearly, the most challenging task
is then to fix the ambiguity by appropriate boundary conditions. To explore these issues
for other interesting examples will be left for further work.

8 Conclusion and Outlook

In this paper we have developed a new approach to solving the holomorphic anomaly
equations of [7], based on the interplay between modularity and non-holomorphicity,
which makes possible to perform a direct integration of the equations at each genus. This
approach is more efficient than the diagram expansion of [7] and leads to closed expres-
sions for the topological string amplitudes, once the ambiguities are fixed by appropriate
boundary conditions. The amplitudes obtained with this procedure can be written as
polynomials in a finite set of generators that transform in a particularly simple way under
the space-time symmetry group, making the modularity properties manifest. There are
many open questions and possible avenues for future work. We list here some of them.

Although we have been able to improve the results of [41] for the Enriques Calabi–Yau
manifold, it would be interesting to push further the formalism developed in this paper.
In section 5 we have introduced a set of holomorphic automorphic forms on the Enriques
moduli space which might be enough to parametrize the holomorphic ambiguity. Using
these forms, the boundary conditions obtained from the field theory and the fiber limits,
and some extra information coming for example from Gromov–Witten theory, one might
be able to obtain the topological string amplitudes at higher genus.

As explained in [37], Gopakumar–Vafa invariants should provide a microscopic count-
ing of degrees of freedom for 5d spinning black holes, although in order to make contact
with the macroscopic Bekenstein–Hawking entropy one typically needs a knowledge of
these invariants (therefore of the topological string amplitudes F (g)) at arbitrary high
genus. Some of the results of this paper might be useful in studies of these black holes.
For example, the all–genus fiber result for the Enriques Calabi–Yau manifold should give
a detailed microscopic counting for small 5d black holes obtained by wrapping M2 branes
in the Enriques fiber.

Vast progress has been made in the understanding of compactifications which allow
to stabilize many or all moduli in N = 1 supersymmetric vacua [19]. These vacua often
rely on the inclusion of background fluxes and D brane instanton effects. Orientifolds
of the Enriques Calabi-Yau might serve as very controllable examples in which certain
corrections to the N = 1 low energy effective theory can be derived. In particular, it is
an interesting task to identify and compute corrections to the four-dimensional super-
and Kähler potentials encoded by the higher genus amplitudes.

As shown in [33, 22] the free energies of matrix models satisfy the holomorphic
anomaly conditions. Hence, the techniques of this paper could lead to a useful method
to analyze matrix models. Using matrix model technology one can also write down holo-
morphic anomaly equations for open string amplitudes in local Calabi–Yau manifolds
[22], and it would be interesting to study them using the methods of this paper. In view
of the results of [45], this could lead to a powerful approach to compute open string
amplitudes on toric Calabi–Yau manifolds.
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Appendices

A N = 2 special geometry

In this appendix we summarize some basics about N = 2 special geometry [13, 14, 15, 24].
Let Y be a Calabi-Yau threefold, i.e. a complex three-dimensional Kähler manifold with
SU(3) or SU(2) × Z2, but no smaller, holonomy group. In particular Y has a no-where
vanishing holomorphic three-form Ω, which is unique up to complex rescaling. Ω depends
on the complex structure of Y and hence varies over the space of complex structure
deformations M. Local coordinates on M are denoted by ti, t̄i. Ω(t) can be used to
define a Kähler potential

K(t, t̄) = − log
[
i

∫

Y

Ω ∧ Ω̄
]

(A.1)

K induces the following Kähler metric structures on M

Gī = ∂i∂̄K, Γk
ij = Gkl̄∂iGjl̄, Γk̄

ı̄̄ = Glk̄∂̄ı̄Gl̄

Rīkl̄ = −∂i∂̄̄Gkl̄ +Gmn̄(∂iGkn̄)(∂̄̄Gml̄), R l
ij̄k

= −∂̄̄Γ
l
ik

Rī ≡ Gkl̄Rīkl̄ = −∂i∂̄̄ log det(Gī) .

(A.2)

Ω and Ω̄ are sections of holomorphic and anti-holomorphic lines bundles L and L over M
respectively and holomorphic gauge transformations Ω → efΩ in L correspond to Kähler
transformations, i.e. e−K ∈ L ⊗ L. The derivatives ∂i are with respect to coordinates ti
of M, and sections like Vj̄ in TM∗

(1,0) ⊗ TM∗
(0,1) ⊗ Lm ⊗ Ln

have a natural connection
with respect to the Weil-Petersson metric Gī and the line bundle Ki = ∂iK, Kı̄ = ∂ı̄K

DiVj̄ = ∂i − Γl
ijVl̄ +mKiVj̄, Dı̄Vj̄ = ∂ı̄ − Γl̄

ı̄̄Vjl̄ + nKı̄Vj̄ . (A.3)

For a given complex structure Ω defines a Hodge decomposition

H3(Y,C) = H(3,0) ⊕H(2,1) ⊕H(1,2) ⊕H(0,3) . (A.4)

The forms Ω, χi ≡ DiΩ, χı̄ ≡ Dı̄Ω̄ and Ω̄ provide a basis which spans the above cohomol-
ogy groups over C. Since it depends on the complex structure we call it the moving basis.
By Kodaira theory, infinitesimal deformations of the complex structure are elements of
H1(Y, TY ). Ω induces an isomorphism H1(Y, TY ) ∼ H(2,1)(Y ). Hence the harmonic
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(2, 1)-forms χi, i = 1, . . . , h21 can be identified as (co)tangent vectors to M and these
deformations are unobstructed on a CY manifold [57].

We also introduce a fixed integer symplectic basis (αK , β
L) of H3(Y,Z) with

∫

Y

αK ∧ βL = −
∫

Y

βL ∧ αK = δL
K ,

∫

Y

αK ∧ αL =

∫

Y

βK ∧ βL = 0 , (A.5)

which is independent of the complex structure. We can expand the moving basis in terms
of the fixed basis

Ω = XIαI −FIβ
I , χi = χI

iαI − χIiβ
I , etc . (A.6)

The expansion coefficients are the period integrals

XI =

∫

AI

Ω, FI =

∫

BI

Ω, χI
i =

∫

AI

χi, χI i =

∫

BI

χi , (A.7)

where (AK , BI) is a basis of H3(Y,Z) dual to (αK , β
L). Using (A.5) and (A.7) we can

express (A.1) in terms of the periods

K = − log i
[
X̄KFK −XKF̄K

]
. (A.8)

Note that XI ∈ L, F I ∈ L, χI
i ∈ T ∗

(1,0)M ⊗ L etc. Obviously the periods carry the

information about the complex structure deformations. The XI , I = 0, . . . h21 can serve
locally as homogeneous coordinates on M. Local special coordinates on M are defined
by ti = X i/X0, i = 1, . . . h(2,1). The FI on the other hand are not independent. It follows
rather from ∫

Y

Ω ∧ ∂

∂XI
Ω = 0 (A.9)

that there is a holomorphic section F of L2 called prepotential obeying

F = 1
2
XIFI , FI = ∂XIF . (A.10)

This also implies that F(X) is homogeneous of degree two in XI . In special coordinates
ti one also writes F(t) = (X0)−2F(X). It turns out to be useful to introduce the second
and third derivative of the prepotential as

τIJ = ∂I∂JF , CIJK = ∂I∂J∂KF , (A.11)

which are homogeneous of degree zero and minus one respectively.

Special Kähler geometry describes the relation between the metric structure and the
Yukawa coupling

C
(0)
ijk ≡ iCijk ≡ −

∫

Y

Ω ∧ ∂i∂j∂kΩ = −
∫

Y

Ω ∧DiDjDkΩ , (A.12)

a section of Cijk ∈ Sym3(T ∗
(1,0)) ⊗ L2. Using 〈χi, χ̄ı̄〉 = Gīe

−K and transversality of 〈, 〉
under the the decomposition (A.4), i.e. 〈γ(k,l), γ(m,n)〉 = 0 unless k +m = l + n = 3 one
gets the special geometry identities [13]

DiX
I ≡ χI

i , Diχ
I
j = iCijkG

kk̄χ̄I
k̄e

K , Diχ̄
I
j̄ = Gij̄X̄

I . (A.13)
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From (A.3) and (A.2) follows [Di, D̄]χk = −Gī +R l
īkχl and using (A.13) one gets

[Di, Dk̄]
l

j = R l
ik̄j = Gik̄δ

l
j +Gjk̄δ

l
i − CijmC̄

ml
k̄ , (A.14)

where we abbreviated

C̄
(0)ml

k̄
= e2KC̄

(0)

k̄ı̄̄
Gmı̄Gl̄ , C̄ml

k̄ = iC̄
(0)ml

k̄
. (A.15)

Let us also summarize some relations obeyed by τIJ and CIJK . One first notes that
by homogeneity and (A.12) and (A.13) one has

CIJKX
K = 0 , Cijk = CIJKχ

I
iχ

J
j χ

K
k . (A.16)

Using the above definitions and the degree two homogeneity of F one also shows that

2eKXIImτIJX̄
J = 1 , X̄IImτIJχ

J
i = 0 , 2eKχI

i ImτIJ χ̄
J
j̄ = Gij̄ . (A.17)

Denoting by Imτ IJ the inverse of ImτIJ it follows from these conditions that

χI
iG

ij̄χ̄J
j̄ e

K = 1
2
Imτ IJ +XIX̄JeK . (A.18)

B Theta functions and modular forms

Our conventions for the Jacobi theta functions are:

ϑ1(ν|τ) = ϑ[11](ν|τ) = i
∑

n∈Z

(−1)nq
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ2(ν|τ) = ϑ[10](ν|τ) =
∑

n∈Z

q
1
2
(n+1/2)2eiπ(2n+1)ν ,

ϑ3(ν|τ) = ϑ[00](ν|τ) =
∑

n∈Z

q
1
2
n2

eiπ2nν ,

ϑ4(ν|τ) = ϑ[01](ν|τ) =
∑

n∈Z

(−1)nq
1
2
n2

eiπ2nν ,

(B.1)

where q = e2πiτ . When ν = 0 we will simply denote ϑ2(τ) = ϑ2(0|τ) (notice that
ϑ1(0|τ) = 0). The theta functions ϑ2(τ), ϑ3(τ) and ϑ4(τ) have the following product
representation:

ϑ2(τ) = 2q1/8
∞∏

n=1

(1 − qn)(1 + qn)2,

ϑ3(τ) =

∞∏

n=1

(1 − qn)(1 + qn− 1
2 )2,

ϑ4(τ) =

∞∏

n=1

(1 − qn)(1 − qn− 1
2 )2

(B.2)

63



and under modular transformations they behave as:

ϑ2(−1/τ) =

√
τ

i
ϑ4(τ),

ϑ3(−1/τ) =

√
τ

i
ϑ3(τ),

ϑ4(−1/τ) =

√
τ

i
ϑ2(τ),

ϑ2(τ + 1) =eiπ/4ϑ2(τ),

ϑ3(τ + 1) =ϑ4(τ),

ϑ4(τ + 1) =ϑ3(τ).

(B.3)

The theta function ϑ1(ν|τ) has the product representation

ϑ1(ν|τ) = −2q
1
8 sin(πν)

∞∏

n=1

(1 − qn)(1 − 2 cos(2πν)qn + q2n). (B.4)

We also have the following useful identities:

ϑ4
3(τ) = ϑ4

2(τ) + ϑ4
4(τ), (B.5)

and
ϑ2(τ)ϑ3(τ)ϑ4(τ) = 2 η3(τ), (B.6)

where

η(τ) = q1/24
∞∏

n=1

(1 − qn) (B.7)

is the Dedekind eta function. One has the following doubling formulae,

η(2τ) =

√
η(τ)ϑ2(τ)

2
, ϑ2(2τ) =

√
ϑ2

3(τ) − ϑ2
4(τ)

2
,

ϑ3(2τ) =

√
ϑ2

3(τ) + ϑ2
4(τ)

2
, ϑ4(2τ) =

√
ϑ3(τ)ϑ4(τ),

η(τ/2) =
√
η(τ)ϑ4(τ).

(B.8)

The Eisenstein series are defined by

E2n(q) = 1 − 4n

B2n

∞∑

k=1

k2n−1qk

1 − qk
, (B.9)

where Bm are the Bernoulli numbers. The covariant version of E2 is

Ê2(τ, τ̄) = E2(τ) −
3

πIm τ
= E2(τ) −

6i

π(τ − τ̄)
. (B.10)

The formulae for the derivatives of the theta functions are also useful:

q
d

dq
log ϑ4 =

1

24

(
E2 − ϑ4

2 − ϑ4
3

)
,

q
d

dq
log ϑ3 =

1

24

(
E2 + ϑ4

2 − ϑ4
3

)
,

q
d

dq
log ϑ2 =

1

24

(
E2 + ϑ4

3 + ϑ4
4

)
,

(B.11)
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and from these one finds

q
d

dq
log η =

1

24
E2(τ) (B.12)

and the Ramanujan identities

q
d

dq
E2(q) =

1

12
(E2

2(q) − E4(q)),

q
d

dq
E4(q) =

1

3
(E2(q)E4(q) − E6(q)),

q
d

dq
E6(q) =

1

2
(E2(q)E6(q) − E2

4(q)).

(B.13)

These can be used to compute the q-derivatives of the generators K2, K4 introduced in
(3.5):

q∂qK2 =
1

6
E2(q)K2(q) +

1

4
K4(q) −

1

12
K2

2 (q),

q∂qK4 =
1

3
K4(q)(E2(q) +K2(q)).

(B.14)

The doubling formulae for E2(τ), E4(τ) are

E2(2τ) =
1

2
E2(τ) +

1

4
(ϑ4

3(τ) + ϑ4
4(τ)),

E4(2τ) =
1

16
E4(2τ) +

15

16
ϑ4

3(τ)ϑ
4
4(τ).

(B.15)

C The antiholomorphic dependence of the heterotic

F (g)

In this Appendix we find the antiholomorphic dependence of F (g)(t, t̄) in the heterotic
theory. In section C.1, we show how the complicated result of the heterotic computation
of the F (g) in the STU-model given in [46] can be simplified, along the lines of [10]. In

section C.2 we write down the result for F
(g)
E in the Enriques Calabi-Yau and derive

(4.40).

C.1 A simple form for F (g) in the STU-model

In [46], an explicit expression for the holomorphic and antiholomorphic dependence of the
topological amplitudes in the fiber limit of the STU-model was found. This expression is
obtained from a one–loop computation in the dual heterotic theory, given by the integral
(4.24), which is then performed by using the technique of lattice reduction [10]. One

finds that F (g) = F
(g)
deg + F

(g)
ndeg, where [46]

F
(g)
deg = 4π2U1δg,1 +

22g−1π4g−3

T 2g−3
1

g∑

l=0

cg(0, l)
l!

πl+3

(
T1

U1

)l

ζ(2(2 + l − g)), (C.1)
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F
(g>1)
ndeg = 4π2g−2(−1)g−1

∑

r 6=0

g∑

l=0

2g−2∑

h=0

[g−1−h/2]∑

j=0

s∑

a=0

cg(r
2/2, l)

(2π)l(2g − 2)!

j!h!(2g − h− 2j − 2)!

× (−1)j+h

2j+a

(s+ a)!

a!(s− a)!
(sgn (Re(r · y))h 1

(T1U1)l
(Re(r̂·y))l−j−a Li3+a+j+l−2g(e

−r̂·y)

+
2π3g−3cg(0, g − 1)

(T1U1)g−1

g−1∑

s=0

(−1)s (2g − 2)!

s!(g − 1 − s)!
ψ(

1

2
+ s)

+

g∑

l=0
l 6=g−1

4l+gπ2g+l−5/2cg(0, l)
ζ(3 + 2(l − g))

(T1U1)l

×
g−1∑

s=0

(−1)s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ
(3

2
+ s+ l − g

)
.

(C.2)

We refer to F
(g)
deg, F

(g)
ndeg as the degenerate and nondegenerate contributions, respectively.

Also, s := |2g − 2 − h− j − l − 1/2| − 1/2; y = (T, U), the complex norm is defined
as r2 = 2r1r2, and

r̂·y ≡ |Re(r · y)| + iIm(r · y).
The coefficients cg(m, l) can be obtained from the expansion

E4E6

η24
P̂g =

∑

m∈Q

∑

l≥0

cg(m, l)q
mτ−l

2 , (C.3)

where P̂g are defined by

(
2πη3λ

ϑ1(λ|τ)

)2

e
−πλ2

τ2 =

∞∑

g=0

(2πλ)2gP̂g(τ, τ̄ ). (C.4)

Note that these P̂g(τ, τ̄) are the modular, almost holomorphic extensions of the Pg(τ)

defined in (4.29), that is, P̂g is obtained from Pg by replacing E2 → Ê2. The only

antiholomorphic dependence in P̂g thus lies in the Ê2(τ, τ̄). Using the explicit expressions

for P̂g given in [41], one can show that independently of the specific model,

cg(m, l) =
(−1)l

l!(4π)l
cg−l(m), (C.5)

where cg(m) are defined analogously to (4.28), that is

∑

n

cg(n)qn = Pg(q)
E4E6

η24
. (C.6)

In what follows, we will systematically express everything in terms of the coefficients
cg(m).

It turns out that (C.2) can be dramatically simplified. We will need the identity:

∑

j

(−1)j

(
C

j

)(
A− 2j + C −B − 1

A− 2j

)
=

∑

j

(−1)j

(
C

A− j

)(
B

j

)
(C.7)
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This is valid for any A,B,C ∈ Z, see [10] for a proof. A special case of the above formula
is the following. Let C, l and m+ − h+ be integers such that 0 ≤ l < C < m+ − h+ − l.
Then,

∑

j

(−1)j(m+ − h+ + C − 2j − 1 − l)!

j!(m+ − h+ − 2j)!(C − j)!
= 0.

The proof of this statement is easy. Set B = l, A = m+ − h+ in (C.7) to obtain

∑

j

(−1)j (m+ − h+ + C − 2j − 1 − l)!C!

j!(m+ − h+ − 2j)!(C − j)!(C − 1 − l)!
=

∑

j

(
C

m+ − h+ − j

)(
l

j

)
. (C.8)

Since C > l ≥ 0, any non-vanishing term on the right-hand side must fulfillm+−h+−C ≤
j ≤ l, in contradiction with the assumption C < m+ − h+ − l.

We also have the following three additional nontrivial identities. First of all, let
s := |2g − 2 − h− j − l − 1/2| − 1/2. Then,

2g−2∑

h=0

C∑

j=0

(2g − 2)!

22g−2

(s+ C − j)!(−1)C−j

l!h!j!(2g − 2 − h− 2j)!(s− C + j)!(C − j)!

=

{ (
2g−3−l

C

)
1

(l−C)!
C ≤ min(l, 2g − 3 − l)

0 otherwise.

This is valid for any pair of positive integers g, l. The second identity reads,

g−1∑

s=0

(−1)s (2g − 2)!

s!(g − 1 − s)!
ψ

(
s+

1

2

)
= −2(2g−2)(g − 2)!. (C.9)

The final identity we will need is

g−1∑

s=0

(−1)l+s22(s−2g)+5 (2g − 2)!

(2s)!(g − 1 − s)!
Γ
(3

2
+ s+ l − g

)
=

(−1)g−1(2g − 3 − l)!

(2g − 3 − 2l)!

√
π4−l.

(C.10)
which is valid for any l ∈ N, l < g−1. Making use of (C.8) and (C.9), we can convert the
sums over h, j, a in (C.2) into a single one over C = j + a = {0, · · · , l}. Then, (C.9) and
(C.10) can be used to simplify the second respectively third term in (C.2). The sum over
r can be restricted for all g ≥ 3 to a sum over r for which Re(r · y) < 0, or equivalently
to a sum over positive r and a finite number of boundary cases. At genus 2, however,
there is a contribution from Re(r · y) > 0, it reads [46]

c0(r
2/2)

16T1U1
Li3(e

−r·y). (C.11)

We can then write down a simplified expression for the nondegenerate part of F (g) in the
STU model:

F
(g>1)
nd,STU

=

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(
2g−l−3

C

)

(l − C)!2C

(−Re(r · y))l−C

(2T1U1)l
cg−l(

r2

2
)Li3−2g+l+C(e−r·y)

+
22

2g(g − 1)

1

(2T1U1)g−1
+

g−2∑

l=0

cg−l(0)

l!(4T1U1)l
ζ(3 + 2(l − g))

(2g − 3 − l)!

(2g − 3 − 2l)!
,

(C.12)
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where we also have used the fact that in the STU model, c1(0) = −22, and we have re-
moved an overall prefactor of 4(2πi)2g−2 to agree with the normalization of the topological
string amplitudes.

C.2 Application to the Enriques Calabi-Yau

The above expressions have to be adapted slightly for the Enriques Calabi-Yau. We only
consider here the geometric reduction suited to the large radius limit. As shown in [41],

the polylogarithm is replaced by Lim(x) → 2mLim(x
1
2 ) − Lim(x), and the norm of the

reduced lattice is doubled. We also replace the quantity 2T1U1 appearing in the STU-
model by Y = e−K as in (4.11), and the coefficients cg(m) are now defined by (4.28).
There is a new important simplification: c0(r

2) and cg>1(0) vanish, and thus there is no
contribution from negative r at any genus g > 1, since (C.11) becomes

c0(r
2)

8Y

(
8Li3(e

−r·y) − Li3(e
−2r·y)

)
= 0. (C.13)

Furthermore, the degenerate contribution (C.1) and the last term in (C.2) vanish for all

g > 1, while c1(0) = 4, and the full F
(g)
E (t, t̄) for the Enriques reads

F
(g>1)
E (t, t̄) =

g−1∑

l=0

min(l,2g−3−l)∑

C=0

∑

r>0

(
2g−l−3

C

)

(l − C)!2C

(−2Re(r · t))l−C

Y l
cg−l(r

2)

·
(
23−2g+l+CLi3−2g+l+C(e−r·t) − Li3−2g+l+C(e−2r·t)

)
− 1

2g−2(g − 1)

1

Y g−1
.

(C.14)

Using
Re(ta)∂taLin(e−r·t) = −Re(r · t)Lin−1(e

−r·t), (C.15)

this can be cast into the following recursive form:

F
(g)
E (t, t̄)

=

g−1∑

l=0

min
(l,2g−3−l)∑

C=0

(2g − 3 − l)!

(2g − 3 − l − C)!(l − C)!C!2l

(ta1 + t̄a1) · · · (tal−C + t̄al−C )∂a1 · · ·∂al−C
F (g−l)(t)

Y l

− 1

2g−2(g − 1)Y g−1
.

(C.16)
Notice that this exhibits the structure of the antiholomorphic amplitudes written down
in [1].

68



D Anomaly equations for F (g) on the big moduli space

D.1 Anomaly equation for F (g) (g > 1)

Here we provide some details on the calculation of the recursive anomaly equations on
the big moduli space. We like to rewrite the equation (2.10) in terms of the variables
Y K = λ−1XK(t) and Ȳ K . First note that

∂

∂ti
−Kiλ

∂

∂λ
= λ−1χI

i

∂

∂Y K
, (D.1)

where χI
i is defined in (A.6). This implies that the first derivative of F (g) can be written

as
DiF

(g) = λ−2g+1χI
i ∂Y IF (g)(Y ) . (D.2)

where we have used the fact that λ∂λF
(g)(Y ) = (2g − 2)F (g)(Y ) due to (7.5). Moreover,

one derives that the second derivative reads

DiDjF
(g−1) = λ−2g+3(Diχ

I
j ) ∂Y IF (g−1)(Y ) + λ−2g+3χI

jDi ∂Y IF (g−1)(Y )

= iλ−2g+3CijkG
kk̄χ̄I

k̄ ∂Y IF (g−1)(Y ) + λ−2g+2χI
iχ

J
j ∂Y I∂Y JF (g−1)(Y )

= λ−2g+2χI
iχ

J
j

[
i
2
C

(Y ) K
IJ ∂Y KF (g−1)(Y ) + ∂Y I∂Y JF (g−1)(Y )

]
. (D.3)

In order to evaluate the second identity we have used the special geometry relation (A.13)
and (D.2) while for the third identity we have used (A.18). Also notice that from (D.2)
one infers that

g−1∑

r=1

DiF
(r)DjF

(g−r) = λ−2g+2χI
iχ

J
j

g−1∑

r=1

∂Y IF (r)(Y ) ∂Y JF (g−r)(Y ) (D.4)

Finally, we need the identity

i
2
e2KC̄īj̄k̄G

j̄jGk̄kχI
jχ

J
k = i

8
λ−1χ̄K

ī C̄
(Y ) IJ
K . (D.5)

Hence, we conclude that

∂Ȳ IF (g) = i
8
C̄ IJ

K

[
∂Y I∂Y JF (g−1)+

g−1∑

r=1

∂Y IF (r) ∂Y JF (g−r)
]
− 1

16
C̄ IJ

K C K
IJ ∂Y KF (g−1) , (D.6)

where CIJK and F (r) are functions of Y K , Ȳ K . This equation is precisely the recursive
anomaly equation given in (7.6).

Let us also present the derivation of the simplest solution to (7.6). In other words,
we calculate F (2) by using the integration by parts method of [7]. To do that we use the
definition (7.23) of the propagator to replace C̄ IJ

K in (7.22). We pull the derivative ∂Ī in
front of all the terms and evaluate

∂Ī

[
F (2) + 1

2
∆JK

(
DJ∂KF

(1) + ∂JF
(1)∂KF

(1)
)]

= −
(

χ
24

− 1
)
∂Ī

[
∆JKKJ

]
∂KF

(1)

−1
8
∂Ī

[
∆JK∆LM

](
C

(0)
KLMJ + 4C

(0)
JLM∂KF

(1)
)
− 1

2

(
χ
24

− 1
)
∂Ī

[
∆JKKJKK

]
, (D.7)
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where C
(0)
IJK = iCIJK as defined in (7.19). In performing the derivative we used the

equation (7.22) to eliminate the terms arising when ∂Ī hits the propagator. Furthermore
we commuted ∂Ī with the covariant derivative DJ by using the identity

[
∂Ī , DJ

]
VK = 1

4
C P

JK C̄ M
IP VM . (D.8)

One can then eliminate the second derivative ∂Ī∂KF
(1) by inserting the equation (7.8)

and applying the useful identities

DIK̂IJ̄ = DIK̂J = 0 , ∆IJDIKJK̄ = 2∆IJKIK̄KJ , KJ∂Ī∆
JK = 0 . (D.9)

In the next step we once again pull the derivative ∂Ī in front of all terms and evaluate

∂Ī

[
F (2) + 1

2
∆JK

(
DJ∂KF

(1) + ∂JF
(1)∂KF

(1)
)

+ 1
2

(
χ
24

− 1
)
∆JKKJKK (D.10)

+1
8
∆JK∆LM

(
C

(0)
KLMJ + 4C

(0)
JLM∂KF

(1)
)

+
(

χ
24

− 1
)
∆JKKJ∂KF

(1)
]

= −∂Ī

[
1
2

(
χ
24

− 1
)
C

(0)
JLM∆JK∆LMKJ + 1

2

(
χ
24

− 1
)2

∆JKKJKK

+∆JK∆LM∆QP
(

1
12
C

(0)
KMQC

(0)
PLJ + 1

8
C

(0)
KJQC

(0)
PML

)]
.

We are now in the position to read off F (2)(Y, Ȳ ) up to a holomorphic ambiguity f (2)(Y ).
The corresponding solution can be found in (7.28).

D.2 Anomaly equation for F (1) on big phase space

In this appendix we discuss the lift of the holomorphic anomaly equation 2.11 for F (1) to
the big moduli space M̂. To begin with let us first note that

|λ|−2χI
i χ̄

J
j̄ ∂Y I∂Ȳ JK = Gī , Y I∂Y I∂Ȳ JK = 0 , Ȳ J∂Y I∂Ȳ JK = 0 . (D.11)

where K is the Kähler potential (A.8) and Gī is the Weil-Petersson metric. We also
evaluate the first derivative KI of K and show that it satisfies

KIχ
I
i = 0 , KIY

I = −1 . (D.12)

With these identities at hand we now lift the holomorphic anomaly equation (2.11). Using
the homogeneity condition (7.7) one derives

∂i∂j̄F
(1) = |λ|−2χI

i χ̄
J
j̄ ∂Y I∂Ȳ JF (1)(Y ) (D.13)

Moreover, one shows that

1
2
e2KGkk̄Gll̄CiklC̄j̄k̄l̄ = |λ|−2χI

i χ̄
J
j̄

1
8
CILMC̄

LM
J , (D.14)

as well as ( χ

24
− 1

)
Gij̄ = |λ|−2χI

i χ̄
J
j̄

( χ

12
− 2

)
eK(Y,Ȳ )ImτIJ . (D.15)
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Inserting (D.13)-(D.15) into the anomaly equation (2.11) we verify its big moduli space
counterpart (7.8). It is straightforward to integrate (7.8) to find the local solution (7.10)
for F (1) by applying the identity

RIJ = ∂Y I∂Ȳ J log det Imτ = −1
4
CIKLC̄

KL
J . (D.16)

It is however instructive to also recall a second alternative approach which integrates
(2.11) rather then (7.8).

Let us end this appendix by recalling the direct integration of (2.11). First note that
the Riemann tensor on a special Kähler manifold is given by

Rij̄lm̄ = Gij̄Glm̄ +Gim̄Glj̄ − e2KCilpC̄j̄m̄p̄G
pp̄ . (D.17)

The Ricci tensor takes the form

Rij̄ = ∂i∂j̄ log detG = Gij̄(h
2,1 + 1) − e2KCilpC̄j̄m̄p̄G

lm̄Gpp̄ . , (D.18)

such that
1
2
e2KGkk̄Gll̄CiklC̄j̄k̄l̄ = Gij̄(h

2,1 + 1) − ∂i∂j̄ log detG . (D.19)

Using this equation we solve (2.11) as 4

F (1) = −1
2
log detG+

(
1
2
(h2,1 + 1) − χ

24
+ 1

)
K + h(t) + h̄(t̄) (D.20)

where h(t) is a holomorphic function arising as integration constant. Now note that it
follows from (A.18) that [14]

det(2ImτIJ) = − det(Gij̄)e
−(h(2,1)+1)K | det(χI

i , X
I)|−2 . (D.21)

This equation can be used to rewrite F (1) as

F (1) = −1
2
log det(2ImτIJ)+

(
1− χ

24

)
K+ 1

2
log

(
−| det(χI

i , X
I)|−2

)
+h(t)+ h̄(t̄) (D.22)

One can evaluate the determinate of the coordinate change and shows [14]

| det(χI
i , X

I)|−2 = |X0|−2(h2,1+1)| det ei
j |−2 . (D.23)

where ei
j = ∂ti(X

i/X0). But since X0 and ei
j are holomorphic in the coordinates ti they

can be absorbed into h such that (D.22) becomes (7.10).
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