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1. Introduction

The muon anomalous magnetic moment g − 2 [aµ ≡ (g − 2)/2] has been measured

by the E821 experiment (Muon g-2 Collaboration) at Brookhaven National Labo-

ratory (BNL) with an impressive accuracy of 0.72 ppm 1 yielding the present world

average1

aexp
µ = 11 659 208.0(6.3)× 10−10 (1)

with an accuracy of 0.54 ppm. New experiments2,3 are under design with a goal of

measuring aµ with an accuracy of at least 0.25 ppm.

On the theory side, a large amount of work has been devoted to reduce the

uncertainty of the Standard Model prediction. A recent updated discussion with an

extensive list of references for both theoretical predictions and experimental results

∗On leave of absence from CAFPE and Departamento de F́ısica Teórica y del Cosmos, Universidad
de Granada, Campus de Fuente Nueva, E-18002 Granada, Spain.
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is Ref. 3 and Ref. 4, and a more introductory exposition can be found in the lectures

by Knecht in Ref. 5.

In this paper, we review the present status of the hadronic light-by-light con-

tribution (hLBL). A somewhat shorter version is the published talk in Ref. 6. The

uncertainty in the hLBL is expected to eventually become the largest theoretical

error. This contribution is shown schematically in Fig. 1. It consists of three photon

legs coming from the muon line connected to the external electromagnetic field by

hadronic processes. Its contribution can be written as

p1
ν

p2
α qρ

p3
β

p5p4p′ p

Fig. 1. The hadronic light-by-light contribution to the muon g − 2.

M = |e|7Vβ

∫

d4p1

(2π)4

∫

d4p2

(2π)4
1

q2 p2
1 p2

2(p
2
4 − m2) (p2

5 − m2)

× Πρναβ(p1, p2, p3) ū(p′)γα(6p4 + m)γν(6p5 + m)γρu(p) (2)

where q = p1+p2+p3. To obtain the amplitude M in (2), the hadronic contribution

to the full correlator Πρναβ(p1, p2, p3 → 0) needs to be known for all possible four-

momenta p1 and p2. The correlator is defined via

Πρναβ(p1, p2, p3) = i3
∫

d4x

∫

d4y

∫

d4zei(p1·x+p2·y+p3·z) ×

〈0|T
[

V ρ(0)V ν(x)V α(y)V β(z)
]

|0〉 (3)

with V µ(x) =
[

qQ̂γµq
]

(x) and Q̂ = diag(2,−1,−1)/3 the quark charges. The

external magnetic field couples to the photon leg with momentum p3 → 0. In the

remainder whenever we refer to aµ we specifically mean only the hadronic light-by-

light contribution to it.

Clearly, the correlator (3) is a complicated object. It contains many independent

Lorentz structures, each of comes with a function of the variables p2
1, p2

2 and q2. As

a consequence, many different energy scales can be involved in the calculation of the

hadronic light-by-light contribution to muon g− 2. This makes it difficult to obtain

the full needed behavior of the correlator (3) from known constraints. Therefore
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no full first principles calculation exists at present. The needed results cannot be

directly related to measurable quantities either. Lattice QCD calculations are at

the exploratory stage only, see e.g. Ref. 7.

In fact, there has long been a confusion about hadronic exchangesa versus quark

loop estimates. This confusion was resolved by organizing the different contributions

according to the lowest power in 1/Nc and the lowest order in the chiral perturba-

tion theory (CHPT) expansion counting where they start contributing9. One can

distinguish four types of contributions:

• Goldstone boson exchange contributions are order Nc and start contributing

at order p6 in CHPT.

• (Constituent) quark-loop and non-Goldstone boson exchange contributions

are order Nc and start contributing at order p8 in CHPT.

• Goldstone boson loop contributions are order one in 1/Nc and start con-

tributing at order p4 in CHPT.

• Non-Goldstone boson loop contributions are order one in 1/Nc and start to

contribute at order p8 in CHPT.

The two existing full calculations8,10, are based on this classification. The Gold-

stone boson exchange contribution (GBE) was shown to be numerically dominant

in Refs. 8 and 10 after strong cancellations between the other contributions. But

the other contributions, though each smaller than the GBE, were not separately

negligible. Using effective field theory techniques, Ref. 11 showed that the leading

double logarithm comes from the GBE and was positive. Refs. 11 and 12 found a

global sign mistake in the GBE of the earlier work8,10 which was confirmed by the

authors of those works13,14 and by others15,16. In the remainder we will always

correct for this sign mistake without explicitly mentioning it.

Recently, Melnikov and Vainshtein pointed out new short-distance constraints on

the correlator (3) in Ref. 17, studied and extended in Ref. 18. The authors of Ref. 17

constructed a model which satisfies their main new short-distance constraints in

order to study its effects and found a number significantly different from the earlier

work. They approximated the full hLBL by the GBE and axial-vector exchange

contributions.

One of the purposes of this review is to critically compare the different contribu-

tions in the different calculations and extend somewhat on our earlier comments6.

For the dominant GBE we also present some new results on the momentum regions

which are relevant. In earlier work several studies were done to check which mo-

mentum regions were important. These used different methods, varying the vector

meson mass10, studying the cut-off dependence8 and expansions around various

momentum regions in the loop integrals17,19.

In Sect. 2 we discuss the calculations done before 2002 and compare their results.

aWe stick here to the formulation “exchange” as used by us8. It is often referred to as “pole”
contributions. We consider this misleading because the exchanged particle is used off-shell.
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×

M

qp1 p2

p3 → 0

Fig. 2. A generic meson exchange contribution to the hadronic light-by-light part of the muon
g − 2.

Sect. 3 discusses the short distance constraints proposed by Melnikov and Vainshtein

and the numerical results presented in their paper. In Sect. 4 we show in detail in

which momentum regions the contributions from π0 exchange originate and Sect. 5

compares and comments on the various contributions in the different calculations.

Finally, we present our conclusions as to the present best value and error for the

hLBL in Sect. 6.

2. Results obtained up to 2002

In this section we discuss the calculations performed in the period 1995-2001. These

were organized according to the large Nc and CHPT countings 9 discussed above.

The CHPT counting is used as a classification tool, none of these calculations were

actually performed at a fixed order in CHPT. We want to emphasize once more

that the calculations in Refs. 8, 10, 13 and 14 showed that only after several large

cancellations in the rest of the contributions, the numerically dominant one is the

Goldstone boson exchange. In this section we concentrate on the work in Refs. 8

and 13, with some comments and results from Refs. 10, 12 and 14.

2.1. Pseudo-Scalar Exchange

The pseudo-scalar exchange was saturated by the Goldstone boson exchange in

Refs. 8, 10, 13 and 14. This contribution is shown in Fig. 2 with M = π0, η, η′.

Refs 8 and 13, used a variety of π0γ∗γ∗ form factors

Fµν(p1, p2) ≡ Nc/(6π) (α/fπ) i εµναβp1αp2β F(p2
1, p

2
2) (4)

fulfilling several possible QCD constraints. A more extensive analysis of this form

factor was done in Ref. 20 finding very similar numerical results. In particular, the

three-point form factors F(p2
1, p

2
2) used in Refs. 8 and 13 had the correct QCD
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Table 1. Results for the π0 and π0, η and η′ exchange contributions.

1010 × aµ

π0 only π0, η and η′

Bijnens, Pallante and Prades 8,13 5.6 8.5 ± 1.3

Hayakawa and Kinoshita 10,14 5.7 8.3 ± 0.6

Knecht and Nyffeler 12 (h2 = 0) 5.8 8.3 ± 1.2

Knecht and Nyffeler 12 (h2 = −10 GeV2) 6.3

Melnikov and Vainshtein 17 7.65 11.4±1.0

Table 2. Results for the axial-vector exchange contri-
butions.

Axial-Vector Exchange Contributions 1010 × aµ

Bijnens, Pallante and Prades 8,13 0.25 ± 0.10

Hayakawa and Kinoshita 10,14 0.17 ± 0.10

Melnikov and Vainshtein 17 2.2±0.5

short-distance behaviorb

F(Q2, Q2) → A/Q2 , F(Q2, 0) → B/Q2 , (5)

when Q2 is Euclidean. These form factors were in agreement with available data

including the slope at the origin as well as treating the π0, η and η′ mixing. All form

factors converged for a cutoff scale Λ ∼ (2 − 4) GeV and produced small numerical

differences when plugged into the hadronic light-by-light contribution.

Somewhat different F(p2
1, p

2
2) form factors where used in Refs. 10, 12 and 14

but the results agree well. For comparison, one can find the results of Refs. 8, 10,

12, 13 and 14 in Tab. 1 of the π0 exchange and after adding η and η′ exchange

contributions to the dominant π0 one.

2.2. Axial-Vector Exchange

This contribution is depicted in Fig. 2 with M = A = a0
1, f1 and possibly other

axial-vector resonances. For this contribution one needs the Aγγ∗ and Aγ∗γ∗ form

factors. Little is known about these but there exist anomalous Ward identities which

relate them to the Pγγ∗ and Pγ∗γ∗ form factors.

This contribution was not studied by Knecht and Nyffeler12. Refs. 8, 10, 13 ands

14 used nonet symmetry, which is exact in the large Nc limit, for the masses of the

axial-vector resonances. Their results are shown in Tab. 2 for comparison.

b The observance of QCD short-distance constraints was implemented for this one and several
other contributions in Refs. 8 and 13, contrary to the often heard wrong claim that Ref. 17 is the
first calculation to take such constraints into account, e.g. see Ref. 21.
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←
p2

α

←
qρ

↑ p3
β

↓ p1
ν

(a)

Fig. 3. Quark-loop contribution, as modeled in ENJL.

2.3. Scalar Exchange

This contribution is shown in Fig. 2 with M = S = a0, f0 and possible other

scalar resonances. For this contribution one needs the Sγγ∗ and Sγ∗γ∗ form factors.

Within the extended Nambu–Jona-Lasinio (ENJL) model used in Refs. 8 and 13,

chiral Ward identities impose relations between the constituent quark loop and

scalar exchanges. The needed scalar form factors are also constrained at low energies

by CHPT. Refs. 8 and 13 used nonet symmetry for the masses. This contribution

was not included by the other groups10,14,17.

The leading logarithms of the scalar exchange are the same as those of the pion

exchange but with opposite sign15. Refs. 8 and 13 find that sign for the full scalar

exchange contribution, obtaining

aµ(Scalar) = −(0.7 ± 0.2) × 10−10 . (6)

2.4. Other contributions at leading order in 1/Nc.

This includes any contributions that are not modeled by exchanged particles. At

short-distance, the main one is the quark-loop. At long distances they are often

modeled as a constituent quark-loop with form factors in the couplings to photons.

This corresponds to the contribution shown in Fig. 3. Refs. 8 and 13 split up the

quark momentum integration into two pieces by introducing an Euclidean matching

scale Λ. At energies below Λ, the ENJL model was used to compute the quark-loop

contribution while above Λ a bare (partonic) heavy quark loop of mass Λ was used.

The latter part scales as 1/Λ2 and mimics the high energy behavior of QCD for

a massless quark with an IR cut-off around Λ –see footnote b. Adding these two

contributions yields a stable result as can be seen in Tab. 3.

2.5. NLO in 1/Nc: Goldstone Boson Loops

At next-to-leading order (NLO) in 1/Nc, the leading contribution in the chiral

counting to the correlator in (2), corresponds to charged pion and Kaon loops
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Table 3. Sum of the short- and
long-distance quark loop contributions8

as a function of the matching scale Λ.

Λ [GeV] 0.7 1.0 2.0 4.0

1010 × aµ 2.2 2.0 1.9 2.0

Table 4. Results for the charged and Kaon loop
contributions to the hadronic light-by-light contribution to muon g − 2.

Charged Pion and Kaon Loop Contributions 1010 × aµ

Bijnens, Pallante and Prades (Full VMD) 8,13 −1.9 ± 0.5

Hayakawa and Kinoshita (HGS) 10,14 −0.45 ± 0.85

Melnikov and Vainshtein (Full NLO in 1/Nc guess) 17 0±1

which can be depicted analogously to the quark-loop in Fig. 3 but with charged

pions and Kaons running inside the loop instead. In general one expects loops of

heavier particles to be suppressed and has only been evaluated for the pion loop

and the much smaller Kaon loop.

The needed form factorsc γ∗P+P− and γ∗γ∗P+P− vertices were studied exten-

sively in Ref. 8. In particular which form factors were fully compatible with chiral

Ward identities were studied. The full vector meson dominance model (VMD) is one

model fulfilling the known constraints. The conclusion unfortunately is that there

is a large ambiguity in the momentum dependence starting at order p6 in CHPT.

Both the full VMD model8,13 and the hidden gauge symmetry (HGS) model10,14

satisfy the known constraints. Unfortunately, this ambiguity cannot easily be re-

solved since there is no data for γ∗γ∗ → π+π−. Adding the charged pion and Kaon

loops, the results obtained in Refs. 8 and 10 are listed in Tab. 4.

In view of this model dependence, the authors of Refs. 8 and 13 considered that

the difference between the results from Ref. 8 and Ref. 10 for this contribution

needs to be added linearly to the final uncertainty of the hadronic light-by-light

contribution to aµ.

3. New Short-Distance Constraints

Melnikov and Vainshtein pointed out17 a new short-distance constraint on the cor-

relator (3). This constraint is for

〈T [V ν(p1)V
α(p2)V

ρ(−q = −p1 − p2)]|γ(p3 → 0)〉 (7)

cNote that neither the ENJL model nor any fixed order in CHPT was used in any of the estimates
of this contribution.
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Table 5. Results quoted in Ref. 17 for the pseudo-vector exchange
depending of the f1(1285) and f1(1420) resonances mass mixing.

Mass Mixing 1010 × aµ

No OPE and Nonet Symmetry with M=1.3 GeV 0.3
New OPE and Nonet Symmetry with M= 1.3 GeV 0.7

New OPE and Nonet Symmetry with M= Mρ 2.8
New OPE and Ideal Mixing with Experimental Masses 2.2 ± 0.5

and follows from the OPE for two vector currents when P 2
1 ≃ P 2

2 ≫ Q2 with

P 2
1 = −p2

1, P 2
2 = −p2

2 and Q2 = −q2:

T [V ν(p1)V
α(p2)] ∼ εναµβ (p̂µ/p̂2) [qQ̂2γβγ5q](p1 + p2) (8)

with p̂ = (p1 − p2)/2 ≃ p1 ≃ −p2 and Q̂ is the light quark electrical charge matrix

(3). This constraint was afterward generalized in Ref. 18. Note that the new part is

the use of (8) for the full correlator (3). Short-distance was already used to obtain

the first constraint in (5).

The authors of Ref. 17 saturated the full correlator by exchanges. The new OPE

constraint is satisfied by introducing a pseudo-scalar exchange with the vertex on

the q, p3 side of Fig. 2 point-like rather than including a form factor. This change

strongly breaks the symmetry between the two ends of the exchanged particle. There

are also OPE constraints for P 2
1 ≈ P 2

2 ≈ Q2 and P 2
2 ≈ Q2 ≫ P 2

1 , essentially derived

from the quark-loop behavior in this regime17. Both latter OPE constraints on the

correlator (3) are not satisfied by the model used in Ref. 17 but they argued that

this made only a small numerical difference of order 0.05 × 10−10.

Ref. 17 added to the pseudo-scalar exchange an axial-vector exchange contribu-

tion. They found this contribution to be extremely sensitive to the mixing of the

resonances f1(1285) and f1(1420) as can be seen in Tab. 5, taken from the results

there. The difference between the lines labeled “No OPE” and “New OPE” is the

effect of making the q, p3 vertex point-like. The authors of Ref. 17 took the ideal

mixing result for their final result for aµ.

4. Momentum Regions for π0 Exchange

We were somewhat puzzled by the effect when saturating the new short distance

constraint by GBE in Ref. 17 and have therefore done a few studies to see whether

the changes there come from large momentum regimes or are located elsewhere.

This was because our total estimate of the quark-loop was similar to the numerical

change in the GBE of Ref. 17. In order to do this study, we have adapted the method

used in Refs. 8 and 20 to various form factors used in earlier works. We rotate the

integrals in (2) into Euclidean space. The eight dimensional integral can be easily

reduced to a five dimensional integral. Here one can choose as variablesd P1, P2 and

dIn Refs. 8 and 20 a different set was used not quite as suitable for the present study.
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Table 6. π0-exchange results for 1010 × aµ with a cut-off on the
three photon momenta for the four cases described in the text. The
last column is the difference between MV and KN form factors.
The numerical error is at or below the last digit quoted.

Cut-off Λ (GeV) WZW VMD KN MV MV−KN

0.5 4.74 3.37 3.39 3.68 0.29
0.7 7.51 4.41 4.47 5.01 0.54
1.0 11.3 5.14 5.29 6.15 0.86
2.0 21.9 5.60 5.99 7.34 1.35
4.0 33.8 5.65 6.20 7.79 1.59
8.0 49.6 5.65 6.24 7.92 1.69
16.0 68. 5.64 6.23 7.96 1.73

Q and two angles θ1 and θ2. These are the angles between the Euclidean p1, p2 and

the muon momentum while P1, P2 and Q are the size of the Euclidean momenta

with P 2
1 = −p2

1, P 2
2 = −p2

2 and Q2 = −q2. Ref. 12 performed the integrals over three

of these quantities analytically but not for the asymmetric case used by Ref. 17.

We have therefore use numerical integration. The main integration routine used

by us earlier8,20 was VEGAS. For the present study we have also performed the

integration using an adaptive Gaussian multidimensional integration routine and

have checked for several quantities that both agree and reproduce earlier known

results.

We will show the contributions to the muon anomalous magnetic moment from

π0 exchange for several different form factors. These correspond to the point-like

π0γ∗γ∗ form factor (WZW), the full vector meson dominance model (VMD), the

LMD+V form factor12 with h2 = −10 GeV2 (KN) and the latter form factor but

with the point-like version on the soft-photon end17 (MV). We will refer to these

form factors as WZW, VMD, KN, and MV in the remainder of this section. We

have used the values h1 = 0, h5 = 6.93 GeV2 and the value of h7 as given by Ref.

12. We picked the value of h2 that was argued17 to better produce subleading OPE

constraints. It raises the central value somewhat compared to h2 = 0 as shown in

Tab. 1

As inputs we used MV = MV1
= 0.770 GeV and MV2

= 1.465 GeV, Fπ =

92.4 MeV and the measured π0 and muon masses. This is the origin of the minor

differences with Ref.12.

As a first indication where the contributions to aµ come from, we have listed in

Tab. 6 the value of aµ for the four cases with the constraint Q, P1, P2 < Λ. We have

shown the logarithmically square divergent point-like case here to show the size of

the suppression introduced by the form factors. Note that we cannot reproduce the

7.65 of Ref. 17 but we do reproduce the results of Refs. 8, 12 and 20. The new short-

distance constraint (8) came from the region Q ≪ P1 ≈ P2. We have thus checked

how much of the difference and total comes from the region with Q < min(P1, P2)

and from the region with Q larger than at least one of (P1,P2), the numbers quoted
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P2

aµ
PP(MV)

Fig. 4. The quantity aPP
µ of Eq. 10) as a function of P1 and P2 for the MV choice.

are for Λ = 16 GeV. The numbers are 1010 × aµ.

Q < min(P1, P2): 4.01 (KN) 4.74 (MV) 0.73 (MV−KN)

Q > min(P1, P2): 2.24 (KN) 3.23 (MV) 0.99 (MV−KN)
(9)

As one sees, in fact, most of the difference comes from the region where the OPE

condition is strongly violated.

The results in Tab. 6 give only a partial indication of which momentum regions

are important. In the remaining figures we therefore show the contribution to aµ

in several ways. We always denote p1, p2 as the momenta on the π0 side with both

photons connected to the muon line and q the momentum on the soft-photon side.

We can thus rewrite the contribution to aµ of (2) in various ways:

aµ =

∫

dP1dP2 aPP
µ (P1, P2)

=

∫

dl1dl2 aLL
µ (l1, l2)

=

∫

dl1dl2dlq aLLQ
µ (l1, l2, lq) ,

with l1 = log(P1/GeV), l2 = log(P2/GeV), and lq = log(Q/GeV) . (10)

In Fig. 4 we have plotted 1010 × aPP
µ (P1, P2) as a function of P1 and P2. In this

way of plotting it is however rather difficult to see why the contribution with at

least one scale above 1 GeV is as large as shown in Tab. 6. The quantity aLL
µ is

much more suitable for this. The result for aµ after integrating for this quantity is

directly proportional to the volume under the surface as it is plotted in Figs. 5, 6
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aµ
LL(MV)
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Fig. 5. The quantity aLL
µ of Eq. 10) as a function of P1 and P2 for the MV choice. aµ is directly

related to the volume under the surface as plotted.

and 7 with a logarithmic scale for P1 and P2. We have used the same scale for all

three plots. What one finds is that the VMD one has much smaller contributions

for P1 and P2 large but both MV and KN show a significant contribution even at

fairly high values of (P1, P2). Also the contribution at these higher values of (P1, P2)

is concentrated along the axis P1 = P2. One also see by comparing Figs. 5 and 6

that the enhancement of the MV result over the KN result comes not from a very

different shape but more a general increase over the entire region. The parts below

0.1 GeV were not plotted, these are very similar for all three cases. A plot for the

WZW case simply shows a constantly growing ridge along P1 = P2 which produces

then the log2 Λ divergence.

The figures before give an indication of which ranges of (P1, P2) are important.

But what about the values of Q that are relevant. This will of course depend on the

values of P1 and P2. We show in Fig. 8 the value for aLLQ
µ along the line P1 = P2.

Again, the contribution to aµ is proportional to the volume under the surface as

shown. This is shown for the MV and KN form factors in Figs. 8 and 9 respectively.

One surprise for us was that while one can see that the tail towards larger values of

Q is somewhat larger for the MV form factor than the KN one, it is much less than

expected and only marginally visible in the plot. The main conclusion from this

section is that the numerical difference between MV and KN comes from relatively

low values of Q and moderate values of P1 and P2. We have provided plots and

numerics so that readers can draw their own conclusions.
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5. Comparison

Let us now try to compare the different results of the three calculations in Refs.

8, 13, 10, 14 and 17. In Tab. 7, the results to leading order in 1/Nc are shown.

The quark loop is of the same order and has to be added to get the full hadronic
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Fig. 9. The quantity aLLQ
µ of Eq. 10) as a function of Q and P1 = P2 for the KN choice. aµ is
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light-by-light while the model used in Ref. 17 is saturated just by exchanges. In the

GBE the effect of the new OPE in Ref. 17 is a little larger than the quark loop

contributions of Refs. 8 and 13 but compatible within one sigma. This contribution

has been discussed in more detail in the previous section. The new OPE in Ref. 17
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Table 7. Full hadronic light-by-light contribution to
aµ at O(Nc). The difference between the two re-
sults of Refs. 8 and 13 is the contribution of the
scalar exchange −(0.7 ± 0.1) × 10−10. This contri-
bution is not included in Refs. 10, 14 and 17.

Hadronic light-by-light at O(Nc) 1010 × aµ

Nonet Symmetry + Scalar Exchange 8,13 10.2 ± 1.9

Nonet Symmetry 8,13 10.9 ± 1.9

Nonet Symmetry 10,14 9.4 ± 1.6

New OPE and Nonet Symmetry 17 12.1 ± 1.0

New OPE and Ideal Mixing 17 13.6 ± 1.5

similarly increases the axial-vector exchange with nonet symmetry from 0.3 ×10−10

to 0.7 ×10−10 One thus sees a reasonable agreement in the comparison of the O(Nc)

results of Refs. 8, 13, 10, 14 and 17 when using the same mass mixing for the axial-

vectors, namely, (10.9± 1.9, 9.4 ± 1.6, 12.1 ±1.0).

The final differences are due to the additional increase of 1.5×10−10 from the

ideal mixing in the axial vector exchange in Ref. 17 and the scalar exchange of

−0.7×10−10 in Refs. 8 and 13.

Let us now see what the different predictions at NLO in 1/Nc are. In Ref. 17,

the authors studied the chiral expansion of the charged pion loop using the HGS

model used in Refs. 10 and 14. This model is known not to give the correct QCD

high energy behavior in some two-point functions, in particular it does not fulfill

Weinberg Sum Rules, see e.g. Ref. 8. Within this model, Ref. 17 showed that there is

a large cancellation between the first three terms of an expansion of the charged pion

loop contribution in powers of (mπ/Mρ)
2. It is not clear how one should interpret

this. In Refs. 8 some studies of the cut-off dependence of this contribution were done

and the bulk of their final number came from fairly low energies which should be

less model dependent. However, it is clear that there is a large model dependence

in the NLO in 1/Nc contributions. But simply taking it to be (0± 1)× 10−10 as in

Ref. 17 is rather drastic and certainly has an underestimated error. The argument

of very large higher order corrections when expanded in CHPT orders which was

used against this contribution in Ref. 17 also applies to the π0 exchange as can be

seen from Tab. 6 by comparing the WZW column with the others.

Let us now compare the results for the full hadronic light-by-light contribution

to aµ when summing all contributions. The final result quoted in Refs. 8, 13, 10, 14

and 17 can be found in Tab. 8. The apparent agreement between Refs. 8, 13 and 10,

14 final number is hiding non-negligible differences which numerically compensate

to a large extent. There are differences in the quark loop and charged pion and

Kaon loops and Refs. 10, 14 do not include the scalar exchange.

Comparing the results of Refs. 8, 13 and 17, we have seen several differences of

order 1.5 × 10−10, differences which are not related to the one induced by the new

short-distance constraint introduced in Ref. 17. These differences are numerically
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Table 8. Results for the full hadronic light-by-light
contribution to aµ.

Full Hadronic Light-by-Light 1010 × aµ

Bijnens, Pallante and Prades 8,13 8.3 ± 3.2

Hayakawa and Kinoshita 10,14 8.9 ± 1.7

Melnikov and Vainshtein 17 13.6 ± 2.5

of the same order or smaller than the uncertainty quoted in Refs. 8, 13 but tend to

add up making the total difference large as follows: The different axial-vector mass

mixing account for −1.5×10−10, the absence of scalar exchange in Ref. 17 accounts

for −0.7 × 10−10 and the absence of the NLO in 1/Nc charged pion and Kaon

loops contribution in Ref. 17 accounts for −1.9 × 10−10. These model dependent

differences add up to −4.1× 10−10 out of the final −5.3× 10−10 difference between

the results in Refs. 8, 13 and 17. In addition we have shown from which regions

in momentum the main contribution originates. Clearly, the new OPE constraint

found in Ref. 17 alone does not account for the large final numerical difference with

respect to Refs. 8, 13 as a reading of it seems to suggest.

6. Conclusions

At present, the only possible conclusion is that the situation of the hadronic light-

by-light contribution to aµ is unsatisfactory. However, looking into the various calcu-

lations one finds a numerical agreement within roughly one sigma when comparing

the O(Nc) results found in Refs. 8, 10, 13, 14 and 17, see Tab. 7. A new full O(Nc)

calculation studying the full correlator with the large Nc techniques developed in

Refs. 22 and 23 and references therein, seems feasible and definitely desirable.

At NLO in 1/Nc, one needs to control both Goldstone and non-Goldstone boson

loop contributions. The high model dependence of the Goldstone boson loop is

clearly visible in the different results of Refs. 8, 13 and 10, 14 and discussed in Refs.

8 and 17. For non-Goldstone boson loops, little is known on how to consistently

treat them, a recent attempt in another context is Ref. 24.

In the meanwhile, we propose as an educated guess for the total hLBLe

aµ = (11 ± 4) × 10−10 . (11)

We believe that, that this number and error capture our present understanding of

the hLBL contribution to aµ. This number can be reached using several different

arguments: the new short-distance constraint found in Ref. 17 and the ideal mixing

for the axial-vector exchange should lead to some increase of the results of Refs. 8,

13 and 10, 14; the scalar exchange and the pion and Kaon loops are expected to

e This educated guess agrees with the one presented by Eduardo de Rafael 3 and ourselves 6 at
the “Final Euridice Meeting” in Kazimierz, August 2006 and by one of us (JB) at the “DESY
Theory Workshop” in Hamburg, September 2005.
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lead to some decrease of the result of Ref. 17; one can also average the leading in

1/Nc results (three middle results of Tab. 7) which turn out to be within one sigma.

The final error remains a guess but the error in (11) is chosen to include all the

known uncertainties.
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