CERN {PH {EP / 2006 { 040 } 20 D ecem ber 2006

Spin asym m etry A_1^d and the spin-dependent structure function g_1^d of the deuteron at low values of x and Q^2

The COM PASS Collaboration

A bstract

W e present a precise m easurem ent of the deuteron longitudinal spin asym m etry A_1^d and of the deuteron spin-dependent structure function g_1^d at Q $^2<1$ (G eV =c) 2 and 4 10 $^5<$ x < 2:5 10 2 based on the data collected by the COM PASS experiment at CERN during the years 2002 and 2003. The statistical precision is tenfold better than that of the previous measurement in this region. The measured A_1^d and g_1^d are found to be consistent with zero in the whole range of x.

K eywords: inelastic muon scattering; spin; structure function; A1; g1; low x; low Q2.

The COM PASS Collaboration

```
E.S. Ageev<sup>24)</sup>, V. Yu. Alexakhin<sup>8)</sup>, Yu. Alexandrov<sup>18)</sup>, G.D. Alexeev<sup>8)</sup>, A. Amoroso<sup>29)</sup>,
            B. Badelek<sup>30)</sup>, F. Balestra<sup>29)</sup>, J. Ball<sup>25)</sup>, G. Baum<sup>1)</sup>, Y. Bedfer<sup>25)</sup>, P. Berglund<sup>13)</sup>,
                         C.Bernet^{25}, R.Bertini^{29}, R.Birsa^{28}, J.Bisplingho^{3}, P.Bordalo^{15},
                    F.Bradam ante<sup>28)</sup>, A.Bravar<sup>16)</sup>, A.Bressan<sup>28)</sup>, E.Burtin<sup>25)</sup>, M.P.Bussa<sup>29)</sup>
               V.N.Bytchkov^{8)}, L. Cerin\dot{i}^{28)}, A. Chapiro<sup>27)</sup>, A. Cicuttin<sup>27)</sup>, M. Colanton\dot{i}^{29,50},
                 A A. Colavita<sup>27)</sup>, S. Costa<sup>29)</sup>, M. L. Crespo<sup>27)</sup>, N. d'Hose<sup>25)</sup>, S. Dalla Torre<sup>28)</sup>,
      S.S.D. asgupta<sup>6)</sup>, R.D.e.M. ass<sup>20)</sup>, N.D. edek<sup>19)</sup>, O.Yu.D. enisov<sup>29E</sup>, L.D. hara<sup>7)</sup>, V.D. iaz
   Kavka<sup>27)</sup>, A.M. Dinkelbach<sup>20)</sup>, A.V. Dolgopolov<sup>24)</sup>, S.V. Donskov<sup>24)</sup>, V.A. Dorofeev<sup>24)</sup>,
               N.Doshita<sup>21)</sup>, V.Duic<sup>28)</sup>, W.Dunnweber<sup>19)</sup>, J.Ehlers<sup>12;16)</sup>, P.D. Eversheim<sup>3)</sup>,
       W. Eyrich<sup>9)</sup>, M. Fabro<sup>28)</sup>, M. Faessler<sup>19)</sup>, V. Falaleev<sup>11)</sup>, P. Fauland<sup>1)</sup>, A. Ferrero<sup>29)</sup>,
  L. Ferrero<sup>29)</sup>, M. Finger<sup>22)</sup>, M. Finger jr. <sup>8)</sup>, H. Fischer<sup>10)</sup>, J. Franz<sup>10)</sup>, J.M. Friedrich<sup>20)</sup>,
        V.Frolov^{29}, U.Fuchs^{11}, R.Garfagnini^{29}, F.Gautheron^{1}, O.P.Gavrichtchouk^{8},
S.G erassim ov^{18;20)}, R.G eyer<sup>19)</sup>, M.G iorgi<sup>28)</sup>, B.G obbo<sup>28)</sup>, S.G oertz<sup>2;4)</sup>, A.M.G orin<sup>24)</sup>,
     O A . G rajek<sup>30)</sup>, A . G rasso<sup>29)</sup>, B . G rube<sup>20)</sup>, A . G runem aler<sup>10)</sup>, J . H annappel<sup>4)</sup>, D . von
    Harrach^{16}, T.Hasegawa^{17}, S.Hedicke^{10}, F.H.Heinsius^{10}, R.Hermann^{16}, C.He^{2},
                      F. Hinterberger<sup>3)</sup>, M. von Hodenberg<sup>10)</sup>, N. Horikawa<sup>21,tl)</sup>, S. Horikawa<sup>21)</sup>,
   R.B. I_{a}^{27}, C. I_{b}^{27}, A. I. I_{b}^{21}, S. I_{b}^{21}, O. I_{b}^{21}, O. I_{b}^{21}, T. I_{b}^{21}, D. I_{b}^{21}, 
    R.Jahn^{3)}, A.Janata^{8)}, R.Joosten^{3)}, N.J.Jouravlev^{8)}, E.K.abu^{16)}, V.K.alinnikov^{28)},
                   D.K ang^{10}, F.K arstens^{10}, W.K astaun^{10}, B.K etzer^{20}, G.V.K haustov^{24},
             Yu A. Khokhlov<sup>24)</sup>, N. V. Khom utov<sup>8)</sup>, Yu. Kisselev<sup>1,2)</sup>, F. Klein<sup>4)</sup>, S. Koblitz<sup>16)</sup>,
                            J.H.Koivuniem i^{13}, V.N.Kolosov<sup>24</sup>, E.V.Kom issarov<sup>8</sup>, K.Kondo<sup>21</sup>,
       K.Konigsmann<sup>10)</sup>, A.K.Konoplyannikov<sup>24)</sup>, I.Konorov<sup>18;20)</sup>, V.F.Konstantinov<sup>24)</sup>,
             A S.Korentchenko<sup>8)</sup>, A.Korzenev<sup>16,c)</sup>, A.M.Kotzinian<sup>8,29)</sup>, N.A.Koutchinski<sup>8)</sup>,
  K.Kowalik<sup>30)</sup>, N.P.Kravchuk<sup>8)</sup>, G.V.Krivokhizhin<sup>8)</sup>, Z.V.Kroum chtein<sup>8)</sup>, R.Kuhn<sup>20)</sup>,
               \text{F.Kunne}^{25)}, \text{K.Kurek}^{30)}, \text{M.E.Ladygin}^{24)}, \text{M.Lamanna}^{11,28)}, \text{J.M.LeGo}^{25)},
                 M . Leberig^{11;16)}, J . Lichtenstad^{26)}, T . Liska^{23)}, I . Ludw ^{10)}, A . M aggiora^{29)},
           M \cdot M \cdot A \cdot 
                  J.M arroncle<sup>25)</sup>, A.M artin<sup>28)</sup>, J.M arzec<sup>31)</sup>, T.M atsuda<sup>17)</sup>, A.N.M axim ov<sup>8)</sup>,
     K.S.M.edved^{8}, W.M.eyer^{2}, A.M.ielech^{28,30}, Yu.V.M.ikhailov^{24}, M.A.M.oinester^{26},
                    O.Nahle^{3}, J.Nassalski^{30}, S.Neliba^{23}, D.P.Neyret^{25}, V.I.Nikolaenko^{24},
            A A. Nozdrin<sup>8)</sup>, V. F. Obraztsov<sup>24)</sup>, A. G. Olshevsky<sup>8)</sup>, M. Ostrick<sup>4)</sup>, A. Padee<sup>31)</sup>,
                 P. Pagano<sup>28)</sup>, S. Panebianco<sup>25)</sup>, D. Panzierri<sup>29</sup>, S. Pauli<sup>20)</sup>, H. D. Pereira<sup>10,25)</sup>,
D.V. Peshekhonov<sup>8)</sup>, V.D. Peshekhonov<sup>8)</sup>, G. Piragino<sup>29)</sup>, S. Platchkov<sup>25)</sup>, K. Platzer<sup>19)</sup>,
                J. Pochodzalla<sup>16)</sup>, V. A. Polyakov<sup>24)</sup>, A. A. Popov<sup>8)</sup>, J. Pretz<sup>4)</sup>, C. Quintans<sup>15)</sup>,
               S.Ramos^{15}, P.C.Rebourgeard^{25}, G.Reicherz^{2)}, J.Reymann^{10)}, K.Rith^{9}, ith^{11},
A M. Rozhdestvensky<sup>8)</sup>, E. Rondio<sup>30)</sup>, A. B. Sadovski<sup>8)</sup>, E. Saller<sup>8)</sup>, V. D. Samoylenko<sup>24)</sup>,
A. Sandacz<sup>30)</sup>, M. Sans<sup>19)</sup>, M. G. Sapozhnikov<sup>8)</sup>, I.A. Savin<sup>8)</sup>, P. Schiavon<sup>28)</sup>, C. Schill<sup>10)</sup>,
           T. Schm idt<sup>10)</sup>, H. Schm itt<sup>10)</sup>, L. Schm itt<sup>20)</sup>, O. Yu. Shevchenko<sup>8)</sup>, A. A. Shishkin<sup>8)</sup>,
            H.W. Siebert<sup>12;16)</sup>, L. Sinha<sup>7)</sup>, A. N. Sissakian<sup>8)</sup>, A. Skachkova<sup>29)</sup>, M. Slunecka<sup>8)</sup>,
G.I.Sm.imov^{8)}, F.Sozzi^{28)}, V.P.Sugonyaev^{24)}, A.Smka^{5)}, F.Stinzing^{9)}, M.Stolarski^{30)},
               M.Sulc^{14}, R.Sulc^{31}, N.Takabayashi^{21}, V.V.Tchalishev^{8}, F.Tessarotto^{28},
       A. Teufel^9, D. Thers^{25}, L.G. Tkatchev^8, T. Toeda^{21}, V.I. Tretyak^8, S. Trousov^8,
          M. Varanda<sup>15)</sup>, M. Virius<sup>23)</sup>, N. V. Vlassov<sup>8)</sup>, M. Wagner<sup>9)</sup>, R. Webb<sup>9)</sup>, E. Weise<sup>3)</sup>,
                Q.Weitzel<sup>20)</sup>, U.Wiedner<sup>19)</sup>, M.Wiesmann<sup>20)</sup>, R.Windmolders<sup>4)</sup>, S.Wirth<sup>9)</sup>,
                   W.W islicki^{30}, A.M. Zanetti^{28}, K. Zarem ba<sup>31)</sup>, J. Zhao<sup>16)</sup>, R. Ziegler<sup>3)</sup>, and
                                                                                                                 A. Zvyagin<sup>19)</sup>
```

- ¹⁾ U niversitat B ielefeld, Fakultat für Physik, 33501 B ielefeld, G em any^{f)}
- ²⁾ Universitat Bochum, Institut für Experimentalphysik, 44780 Bochum, Germany^{f)}
- Universitat Bonn, Helm holtz-Institut für Strahlen-und Kemphysik, 53115 Bonn, Germany^{f)}
- 4) Universitat Bonn, Physikalisches Institut, 53115 Bonn, Germany^{f)}
- $^{5)}$ Institute of Scienti c Instrum ents, A S CR , 61264 B mo, C zech R epublic $^{9)}$
- ⁶⁾ Burdwan University, Burdwan 713104, Indiaⁱ⁾
- 7) Matrivani Institute of Experimental Research & Education, Calcutta-700 030, India
- 3) Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
- 9) Universitat Erlangen (Numberg, Physikalisches Institut, 91054 Erlangen, Germany^{f)}
- ¹⁰⁾ Universitat Freiburg, Physikalisches Institut, 79104 Freiburg, Germany^{f)}
- 11) CERN, 1211 Geneva 23, Switzerland
- ¹²⁾ Universitat Heidelberg, Physikalisches Institut, 69120 Heidelberg, Germany^{f)}
- Helsinki University of Technology, Low Temperature Laboratory, 02015 HUT, Finland and University of Helsinki, Helsinki Institute of Physics, 00014 Helsinki, Finland
- ¹⁴⁾ Technical University in Liberec, 46117 Liberec, Czech Republic^{g)}
- LIP, 1000-149 Lisbon, Portugal^h)
- ¹⁶⁾ U niversitat M ainz, Institut fur K emphysik, 55099 M ainz, G em any^{f)}
- ¹⁷⁾ University of Miyazaki, Miyazaki 889–2192, Japan^{k)}
- 18) Lebedev Physical Institute, 119991 M oscow, Russia
- 19) Ludwig-Maximilians-Universitat Munchen, Department für Physik, 80799 Munich, Germany^{f)}
- ²⁰⁾ Technische Universitat Munchen, Physik Department, 85748 Garching, Germany^{f)}
- ²¹⁾ Nagoya U niversity, 464 Nagoya, Japan^{k)}
- ²²⁾ Charles University, Faculty of Mathematics and Physics, 18000 Prague, Czech Republic⁹⁾
- ²³⁾ Czech Technical University in Prague, 16636 Prague, Czech Republic^{g)}
- State R exearch C enter of the R ussian Federation, Institute for H igh E nergy Physics, 142281 Protvino, R ussia
- ²⁵⁾ CEA DAPNIA/SPhN Saclay, 91191 G if-sur-Y vette, France
- Tel A viv University, School of Physics and A stronom y, 69978 Tel A viv, Israel¹⁾
- 27) ICTP (INFN M Lab Laboratory, 34014 Trieste, Italy
- ²⁸⁾ INFN Trieste and University of Trieste, Department of Physics, 34127 Trieste, Italy
- 29) INFN Turin and University of Turin, Physics Department, 10125 Turin, Italy
- $^{30)}$ Soltan Institute for Nuclear Studies and W arsaw University, 00-681 W arsaw, Poland $^{\mathrm{m}}$
- 31) Warsaw University of Technology, Institute of Radioelectronics, 00-665 Warsaw, Polandⁿ)
- a) A lso at IST, Universidade Tecnica de Lisboa, Lisbon, Portugal
- b) A lso at University of East Piedmont, 15100 A lessandria, Italy
- c) On leave of absence from JINR Dubna
- d) Also at Chubu University, Kasugai, Aichi, 487-8501 Japan
- e) A lso at Yam agata University, Yam agata, 992-8510 Japan
- f) Supported by the Germ an Bundesm inisterium fur Bildung und Forschung
- g) Suppported by Czech Republic MEYS grants ME492 and LA242
- $^{\rm h)}$ Supported by the Portuguese FCT Fundacao para a Ciência e Tecnologia grants POCTI/FNU/49501/2002 and POCTI/FNU/50192/2003
- i) Supported by DST-FIST II grants, Govt. of India
- j) Supported by the Shailabala Biswas Education Trust
- k) Supported by the M inistry of Education, Culture, Sports, Science and Technology, Japan; Daikou Foundation and Yam ada Foundation
- 1) Supported by the Israel Science Foundation, founded by the Israel A cademy of Sciences and Humanities
- $^{\rm m}$) Supported by KBN grant nr 621/E-78/SPUB-M/CERN/P-03/DZ 298 2000, nr 621/E-78/SPB/CERN/P-03/DW M 576/2003-2006, and by MNII reasearch funds for 2005{2007
- n) Supported by KBN grant nr 134/E-365/SPUB-M/CERN/P-03/DZ299/2000

In the nucleon structure investigations by high energy lepton probes, the region of low x corresponds to high parton densities, where new dynam ical mechanisms may be revealed. The longitudinal structure function $g_1(x;Q^2)$ is presently the only observable which perm its the study of low x processes in spin dependent interactions. The existing data have been obtained exclusively from xed-target experiments where the low values of x strongly correlate with low values of Q^2 . Therefore theoretical interpretations of the results require a suitable extrapolation of the parton ansatz to the low- Q^2 region and possibly also an inclusion of nonperturbative mechanisms, which vanish at higher Q^2 .

Contrary to the spin-independent structure functions, the small-x behaviour of both the singlet and the non-singlet part of g_1 is controlled by double logarithm ic terms, i.e. by those terms which correspond to powers of $\ln^2(1/x)$ at each order of the perturbative expansion [1]. The double logarithm ic extra go beyond the DGLAP evolution and can be accommodated in it using special techniques [2{4]. Dierent approaches permit a smooth extrapolation of the obtained g_1 to the low- Q^2 region [4,5] where it may also be complemented by a non-perturbative component [6]. The double logarithm ic terms generate the leading small-x behaviour of g_1 where the relevant Regge poles are expected to have a low intercept.

The region of low x and x ed Q 2 is the R egge lim it of the (deep) inelastic scattering where the R egge pole exchange model should be applicable. In this model the shape of g_1 at x ! 0 (i.e. at Q 2 W 2 where W 2 is the N centre-of-mass energy squared) is parametrised as

$$g_1^i(x;Q^2)$$
 $(Q^2)x^{-i(0)}$: (1)

Here the index i refers to the avour singlet (s) and nonsinglet (ns) combinations of proton and neutron structure functions and $_{i}(0)$ denotes the Regge trajectory function at zero momentum transfer. It is expected that $_{sns}(0) < 0$ and that $_{s}(0) = _{ns}(0)$ [7]. This behaviour of g_{1} should translate to the W 2 dependence of the Compton cross-section at Q 2 ! 0 where g_{1} should be a nite function of W 2 , free from any kinematical singularities or zeros.

The spin-dependent structure function of the deuteron $g_1^d(x;Q^2)$ has been accurately measured in the perturbative region, $Q^2>1$ (GeV=c) 2 [8{12]. Due to the relatively low incident energy, the deep inelastic scattering events collected in those experiments cover only a limited range of x. The behaviour of g_1 at x < 0.001 in the large- Q^2 region is unknown due to the lack of data from colliders with polarised beams.

M easurem ents at low x and low Q 2 put very high dem ands on event triggering and reconstruction and are very scarce: they were perform ed only by the SM C at CERN on proton and deuteron targets [13]. Here we present new results from the COM PASS experim ent at CERN on the deuteron longitudinal spin asymmetry A_1^d and the spin-dependent structure function g_1^d in the range $0.001 < Q^2 < 1 \ (GeV=c)^2$ in the photon virtuality and 4 - 10 < x < 2.5 - 10 in the B jorken scaling variable. This range is essentially the same as that covered by the SM C [13], but the present measurements result in about tenfold better precision. They complement our recently published measurements obtained in the region <math display="inline">0.004 < x < 0.7 and $1 < Q^2 < 100 \ (GeV=c)^2 \ [12]$. The data were collected during the years 2002 and 2003. They cover the kinematic range presented in Fig. 1. We refer the reader to reference [14] for the description of the 160 GeV/c positive muon beam, the two-cell $^6\mathrm{L}$ iD polarised target and the COMPASS spectrometer and to Ref. [15] for a detailed description of the analysis.

The COMPASS data acquisition system is triggered by coincidence signals in ho-

doscopes, de ning the direction of the scattered muon behind the spectrom eter magnets and/or by a signal in the hadron calorin eters [16]. Triggers due to halo muons are suppressed by veto counters installed upstream of the target. COMPASS uses three types of triggers: i) inclusive ones, based on muon detection only ii) sem i-inclusive triggers, based on muon detection and presence of energy deposit in the hadron calorim eters and iii) a calorim etric trigger where only information from the hadron calorim eters is used. The low-x and low-Q² region is dominated by sem i-inclusive triggers. The contribution of the inclusive ones is below 5% for x < 0.001 and exceeds 30% only for x > 0.01. Also the contribution of the standalone calorim etric trigger is negligible there. In the kinematic region considered here events are characterised by smallmuon scattering angles and their kinem atics may be distorted by real photon emission. Therefore in the analysis presented here the so-called hadron method [8] is used. This means that all events in our sample require the presence of the trajectories of a reconstructed beam muon, a scattered muon and at least one additional outgoing particle, together de ning an interaction point. The presence of hadrons in the nal state in proves the reconstruction of the interaction point and reduces the background of events originating from radiative processes and from the muons scattered o atomic electrons. It has been checked that the use of the hadron m ethod does not bias the inclusive asym m etries [8].

The momentum of the incoming muon, centred around $160\,\mathrm{G}$ eV/c and measured in the beam spectrom eter, is required to be between $140\,\mathrm{and}\,180\,\mathrm{G}$ eV/c. The reconstructed interaction point has to be located inside one of the target cells. In addition, the extrapolated beam muon trajectory is required to cross entirely both target cells in order to equalize the ux seen by each of them. The scattered muon is identified by detectors situated behind hadron absorbers and its trajectory must be consistent with the hodoscope signals used for the event trigger.

Events are selected by cuts on the four-m om entum transfer squared, Q $^2 < 1 \ (\text{G eV} = \text{c})^2$, the fractional energy of the virtual photon, 0:1 < y < 0.9, and the scaling variable x > 4 -10. The remaining cuts are the same as those used in the Q $^2 > 1 \ (\text{G eV} = \text{c})^2$ analysis [12], with additional quality checks on the interaction point, appropriate to the present kinematics [15]. A coording to the hadron method we also require the most energetic hadron having $z_h > 0:1 \ (z_h$ is a fraction of the virtual photon energy in the laboratory frame, carried by a hadron).

At low values of x the sam ple is contam inated by events of m uon elastic scattering o atom ic electrons, $^+\mathrm{e}$! $^+\mathrm{e}$, occurring at x $_\mathrm{e}$ = m $_\mathrm{electron}$ =M = 5:45 $\,$ 10 (M is the proton m ass) and at very sm all scattering angles. To rem ove such events, cuts are in posed on a variable, q , de ned as the product of the angle $\,$ between the virtual photon and the hadron candidate and the sign q of the electric charge of the hadron. D epending upon the number of hadron candidates outgoing from the interaction point, the event is rejected if $5 < q < 2\,\mathrm{m}$ rad or $2 < q < 0\,\mathrm{m}$ rad depending whether it contains one or two hadron

5 < q < 2 m rad or 2 < q < 0 m rad depending whether it contains one or two hadror candidates ¹⁾. The distribution of the q variable and the x spectrum before and after the e scattering rejection are presented in Fig. 2. The background of e events which remains under the elastic peak is estimated to be smaller than 1% of the data sample. As the electromagnetic calorimeter (ECAL) could not be fully used in the present analysis, the cuts used for e scattering rejection presented above are applied in the whole range of x to reduce the yield of unwanted radiative events. A study using a small subsample of events where the ECAL was available shows that around 50% of those unwanted events

 $^{^{1)}}$ A part of that condition, 0 < q < 2 m rad, encom passes m isidenti ed m uons and beam halo m uons.

are excluded from the data sample in this way. The remaining background of radiative events accounts for less than about 1% of the data sample.

The resulting sam ple consists of 280 m illion events, out of which about 40% were obtained in 2002. This is about 200 times more than in Ref. [13]. The acceptance in the (x,Q^2) plane after all the cuts is shown by the contour superimposed on Fig. 1. A verage values of Q^2 in bins of x are presented in Fig. 3.

During data taking the two target cells are polarised in opposite directions, so that the deuteron spins are parallel or antiparallel to the spins of the incoming muons. The spins are inverted every 8 hours by a rotation of the target magnetic eld. In 2002 and 2003 the average beam and target deuteron polarisations were about 0:76 and 0:51, respectively.

Extraction of the cross-section asymmetry A_1^d in the kinematic region where Q^2 extends down to about 0.001 (G eV=c)² demands special care. The common practise of neglecting them $^2=Q^2$ terms (m is them uon mass) in the expression for the cross-sections cannot be applied in this region. Therefore we present below the general spin formalism where all the m $^2=Q^2$ terms are properly taken into account. The only approximation applied is neglecting the m $^2=E^2$ terms (E is the incident muon energy) which are of the order of 10^{-7} at our kinematics. In all the formulae we consider the exchange of one virtual photon only. The interference e ects between virtual Z^0 and photon exchange in the inelastic muon scattering have been measured in an unpolarised experiment [17] and found negligible in the kinematic range of current xed target experiments (see also [18]).

The polarised inelastic muon (deuteron inclusive scattering cross-section in the one-photon exchange approximation can be written as the sum of a spin-independent term and a spin-dependent term and involves the muon helicity h=1

$$= \frac{1}{2}h \qquad : \tag{2}$$

Eight independent structure functions param etrise the cross-section for a spin-1 target; this is twice as many as for the spin-1/2 case. A part of the spin-independent structure functions F_1 and F_2 and the spin-dependent structure functions g_1 and g_2 , four additional structure functions, b_1 , b_2 , b_3 , b_4 are needed in the spin-1 case [19]. All these functions depend on Q^2 and x. Following previous analyses, cf. Refs. [8,12,13] we neglect $b_{1/4}$ since they are predicted to be small [19]. Then the expressions for the cross-sections and and thus the cross-section asymmetries A_k and A_2 become identical to those for a spin-1/2 target.

The spin-independent cross-section for parity-conserving interactions can be expressed in terms of two unpolarized structure functions F_1 and F_2 :

$$\frac{d^{2}}{dxdQ^{2}} = \frac{4^{2}}{Q^{4}x} xy^{2} 1 \frac{2m^{2}}{Q^{2}} F_{1}(x;Q^{2}) + 1 y \frac{2y^{2}}{4} F_{2}(x;Q^{2}); \quad (3)$$

w here

$$= \frac{2M \times p}{p - \frac{p}{Q^2}} = \frac{p}{Q^2}$$
 (4)

and is the energy of the exchanged virtual photon.

When the muon spin and the deuteron spin form an angle , the cross-section can be expressed as $[20\,]$

$$= \cos k + \sin \cos 2 : \tag{5}$$

Here is the azimuthal angle between the scattering plane and the spin plane. The cross-sections $_k$ and $_2$ refer to the two con gurations where the deuteron spin is (anti)parallel or orthogonal to the muon spin; $_k$ is the dierence between the cross-sections for antiparallel and parallel spin orientations and $_2$ = $_T$ = cos , the difference between the cross-sections at angles and + . The corresponding dierential cross-sections, which can be written in terms of the two structure functions g_1 and g_2 , are given by

$$\frac{d^2}{dxdQ^2} = \frac{16 - {}^2y}{Q^4} - 1 - \frac{y}{2} - \frac{{}^2y^2}{4} - \frac{m^2y^2}{Q^2} - g_1 - \frac{{}^2y}{2}g_2$$
 (6)

and

$$_{T} = \cos$$
 $_{?} \frac{d^{3}}{dxdQ^{2}d} = \cos \frac{8^{2}y}{Q^{4}} \frac{r}{1} \frac{r}{y} \frac{-2y^{2}}{4} \frac{y}{2} 1 + \frac{2m^{2}}{Q^{2}}y g_{1} + g_{2}$; (7)

The relevant asymm etries are

$$A_k = \frac{k}{2}; \qquad A_? = \frac{?}{2}:$$
 (8)

The cross-section asymmetry $A_k^d=(""")=(""+"")$, for antiparallel ("") and parallel ("") spins of the incoming muon and the target deuteron can be obtained from the numbers of events N $_i$ collected from each cell before and after reversal of the target spins:

$$N_i = a_i i n_i (1 + P_B P_T f A_k^d); i = 1;2;3;4;$$
 (9)

The longitudinal and transverse virtual-photon deuteron asymm etries, A_1^d and A_2^d , are denied via the asymm etry of absorption cross-sections of transversely polarised photon as

$$A_1^d = \begin{pmatrix} T & T \\ 0 & T \end{pmatrix} = \begin{pmatrix} T & T \\ 2 & T \end{pmatrix}; \qquad A_2^d = \begin{pmatrix} T^L + T^L \\ 0 & T \end{pmatrix} = \begin{pmatrix} T^L + T^L \\ 1 & T$$

where $_J^T$ is the -deuteron absorption cross-section for a total spin projection J in the photon direction, $_J^{TL}$ results from the interference between transverse and longitudinal amplitudes for J=0; 1 and $_J^T=(_0^T+_1^T+_2^T)=3$ is the total transverse photoabsorption cross-section. The relation between A_1^d ; A_2^d and the experimentally measured A_k^d , A_2^d is

$$A_k^d = D (A_1^d + A_2^d); A_2^d = d(A_2^d A_1^d); (11)$$

where D (the so called depolarisation factor), , d and depend on kinematics:

$$D = \frac{y (1 + {}^{2}y=2)(2 \quad y) \quad 2y^{2}m^{2}=Q^{2}}{v^{2}(1 \quad 2m^{2}=Q^{2})(1 + {}^{2}) + 2(1 + R)(1 \quad v \quad {}^{2}y^{2}=4)};$$
 (12)

$$= \frac{1 \quad y \quad ^2y^2 = 4 \quad y^2m^2 = Q^2}{(1 + ^2y = 2)(1 \quad y = 2) \quad ^2m^2 = Q^2};$$
 (13)

$$d = \frac{p}{1} \frac{1}{y^{2}y^{2}=4} \frac{(1+y^{2}y=2)}{(1+y^{2}y^{2})(1+y^{2}y=2)} p;$$
 (14)

$$= \frac{(1 \quad y=2 \quad \sqrt[2]{m^2 = Q^2})}{1 + \sqrt[2]{y=2}};$$
 (15)

In view of the small value of $\,$ in our kinematic region the expression for A_1^d in Eq. (11) is reduced to A_1^d ' A_k^d =D and the possible contribution from the neglected term is included in the systematic errors [15]. The virtual-photon depolarisation factor D depends on the ratio of longitudinal and transverse photoabsorption cross-sections, $R = ^L = ^T$. In the present analysis an updated parametrisation of R taking into account all existing measurements is used [23] together with an extension to very low values of Q², cf. A ppendix. A verage values of D and R in bins of x are shown in Figs. ??, respectively.

In order to m in in ize the statistical error of the asym m etry, the kinem atic factors f, D and the beam polarisation P_B are calculated event-by-event and used to weight events. This approach in proves the statistical precision by approximately 8% as compared to asym m etry evaluation from events numbers. In the weight calculations a parametrisation of P_B as a function of the beam momentum is used. For P_T an average value is used for the data sample taken between two consecutive target spin reversals 2). The obtained asymmetry is corrected for spin-dependent radiative except according to Ref. [24] but retaining only radiative inelastic tails.

The nalvalues of $A_1^d(x;Q^2)$ are listed in Table 1 with the corresponding average values of x and Q^2 . They are also shown as a function of x in Fig. 7. These values con rm, with a statistical precision increased by m ore than an order of m agnitude, the observation made in Ref. [13] that the asymmetry is consistent with zero for x < 0.01.

The system atic error of A_1^d contains multiplicative contributions resulting from uncertainties on polarisations P_B and P_T , on the dilution factor f and on the function f used to calculate the depolarisation factor f of these, the largest contribution comes from f due to a poor knowledge of f when combined in quadrature, these errors amount to f 10{30% (Table 2). However the most important contribution to the systematic error is due to possible false asymmetries which could be generated by instabilities in some components of the spectrometer. In order to minimize their elect, the values of f in each interval of f have been calculated for f 37 subsamples, each of them covering a short period of running time and, therefore, ensuring similar detector operating conditions. An upper limit of the elect of the time dependent detector instabilities has been evaluated by a statistical approach. Dispersions of the values of f around their means at each value of f were compared with their expected values. Using the f onto f around their means at each value of f were compared with their expected values. Using the f onto f or the technique for a statistical limit estimate [25], values for the false asymmetries were calculated and everywhere found to be smaller than the statistical precision. This estimate accounts for the time variation elects of the spectrometer components.

²⁾ As P_T varies with time, using it in the weight would bias the A_1 asymmetry.

Several other searches for false asymmetries were performed. Data from the two target cells were combined in dierent ways in order to eliminate the spin-dependent asymmetry. Data obtained with opposite signs of cell polarisations were compared as they may reveal acceptance e ects. These searches did not show any signicant false asymmetry.

In Fig. 8 results of the present analysis as a function of x are presented together with previous measurements by the SMC at $0.01 < Q^2 < 100$ (GeV=c)² [8,13]. The improvement in the statistical precision at low x is striking. O ther data, mostly from the deep inelastic scattering region by COMPASS [12], HERMES [11], SLAC E143 [9] and SLAC E155 [10], are also presented in Fig. 8. The values of A_1^d , even if originating from experiments at dierent energies, tend to coincide due to the very small Q^2 dependence of A_1^d at xed x.

The spin dependent structure functions are connected to the virtual photon asym ${\color{black}-}$ m etries in the following way

$$g_1^{d} = \frac{F_1^{d}}{(1+2)} A_1^{d} + A_2^{d}; g_2^{d} = \frac{F_1^{d}}{(1+2)} A_1^{d} + A_2^{d}; (16)$$

These form ulae are exact; possible contributions from the structure functions $b_{1\,4}$ cancel out. Neglecting A_2^d and making the usual replacement $(1+\ ^2)F_2=(2xF_1)=1+R$, as in the spin-1/2 case and valid if $b_{1\,4}=0$, the longitudinal spin structure function g_1^d is obtained as

$$g_1^{d} = \frac{F_2^{d}}{2 \times (1 + R)} A_1^{d};$$
 (17)

The values of g_1^d are listed in the last column of Table 1 and shown in Fig. 9. They have been obtained with the F_2^d parametrisation of Refs. [8,26], cf. Appendix, and with the parametrisation of R used in the depolarisation factor. The systematic errors on g_1^d are obtained in the same way as for A_1^d , with an additional contribution from the uncertainty on F_2^d . Moreover the error of the depolarisation factor was modiled. Instead of D, the error of the quantity D (1 + R), [D (1 + R)] was considered. The values of $xg_1^d(x)$ obtained in this analysis and, for comparison, the SMC [13] and HERMES [11] results at $Q^2 < 1$ (G eV =c) 2 are shown in Fig. 10.

The low x data in the kinematic region where W 2 is high and W 2 Q 2 , should in principle allow testing the Regge behaviour of g_1 through its x dependence. These conditions are full led by our measurements and thus a tofEq. (1) to the g_1 data from the Q 2 range of 0:0025 0:25 (G eV = c) in six subintervals of Q 2 const was performed. The results of the twere inconclusive. No information on the singlet intercept, $_s(0)$, could be extracted. Thus our data do not provide a test of the Regge behaviour of g_1 without additional assumptions about its Q 2 dependence. This is due to a limited x interval for any given value of Q 2 combined with small measured values of g_1 . However, these data can be compared with models predicting both the x and Q 2 dependence of g_1 at low values of x and Q 2 [4,6]. A relevant phenomenological analysis is in progress.

In sum m ary, we have m easured the deuteron spin asym m etry A_1^d and its longitudinal spin-dependent structure function g_1^d for Q 2 < 1 (G eV =c) 2 over the range 4 $$ 10 < x < 2.5 $$ 10 and with a statistical precision m ore than tenfold better than previous experim ents. The A_1^d and g_1^d values are compatible with zero for x $^<$ 0.01.

A cknow ledgem ents

We gratefully acknow ledge the support of the CERN management and sta and the skill and e ort of the technicians and engineers of our collaborating institutes. Special thanks are due to V. Anosov, J.-M. Demolis and V. Pesaro for their technical support during the installation and the running of this experiment. This work was made possible by the nancial support of our funding agencies.

A ppendix

K now ledge of $F_2(x;Q^2)$ and R $(x;Q^2)$ is needed in computations of the dilution factor, the radiative corrections, the depolarisation factor and the spin dependent structure function $g_1(x;Q^2)$. It is not suicient to know these functions only in the kinematic range of the analysis since radiative corrections require their know ledge at $x>x_m$ eas and all values of Q^2 including $Q^2=0$, due to radiative \tails". A symptotic behaviours of F_2 and R in the photoproduction $\lim_{x\to\infty} it$, $Q^2:0$, are: $F_2:0$ and R $Q^2:0$ (for xed, arbitrary). These kinematic constraints eliminate potential kinematical singularities at $Q^2=0$ of the hadronic tensor defining the virtual C ompton scattering amplitude.

In the analysis, a new SLAC param etrisation of R, R₁₉₉₈ [23], and F₂ param etrisation of R ef. [8] is employed. The former, valid for $Q^2 > 0.5$ (G eV=c)², is extended to lower values of Q^2 , including the R Q^2 behaviour at $Q^2 = 0$, as:

$$R(Q^{2} < 0.5 (G \text{ eV} = c)^{2}; x) = R_{1998}(0.5 (G \text{ eV} = c)^{2}; x)$$
 (1 exp(2 \oplus)) (18)

with = 0.2712 and = 1=(1 exp(0.5=)) = 1.1880. At Q^2 = 0.5 (G eV =c)² the function and its rst derivative are continuous in the whole x range of our m easurem ents. The error on R , R , above Q^2 = 0.5 (G eV =c)² was taken from R ef. [23] and below Q^2 = 0.5 (G eV =c)² was set to 0.2. For this value of R and for the sim plest assum ption about R at Q^2 < 0.5 (G eV =c)² and any x (e.g. R = 0.2) there is an approximate agreement (within 1) with both the value R = 0 at the photoproduction limit and with measurements at higher Q^2 from HERA, where R 0.4 [27].

The F_2 of Ref. [8] is valid for $Q^2 > 0.2$ (GeV=c)² and x > 0.0009. At lower values of Q^2 and x we used the model of Ref. [26] valid down to $Q^2 = 0$ and $x = 10^5$ and based on a concept of generalised vector meson dominance. Two other F_2 parametrisations, albeit for the proton [28,29], were also tried together with Ref. [26], to estimate the F_2 uncertainty, F_2 . The former of these parametrisations is based on the parton saturation model with recent modications including the QCD evolution and the latter is a Regge motivated to all the world data of F_2^p , extended into the large Q^2 in a way compatible with QCD expectations. They are valid in a range similar to that of Ref. [26]. The F_2 uncertainty was taken as the largest difference between the values of the employed F_2 and other parametrisations.

R eferences

- [1] J. Bartels, B. I. Erm olaev and M. G. Ryskin, Z. Phys. C 70 (1996) 273; Z. Phys. C 72 (1996) 627.
- [2] J. Blum lein and A. Vogt, Acta Phys. Polon. B 27 (1996) 1309; Phys. Lett. B 386 (1996) 350; J. Blum lein, S. Riem ersma and A. Vogt Nucl. Phys. B (Proc. Suppl) 51C (1996) 30.
- [3] J.K. wiecinski and B. Ziaja, Phys. Rev. D 60 (1999) 054004.
- [4] B.J. Erm olaev, M. Greco and S.J. Troyan, hep-ph/0605133; hep-ph/0607024.
- [5] B. Badelek and J. Kwiecinski, Phys. Lett. B 418 (1998) 229.
- [6] B.Badelek, J.Kwiecinski and J.Kiryluk, Phys.Rev.D 61 (2000) 014009; B.Badelek, J.Kwiecinski and B.Ziaja, Eur.Phys.J.C 26 (2002) 45.
- [7] R. L. Heim ann, Nucl. Phys. B 64 (1973) 429; J. Ellis and M. Karliner, Phys. Lett. B 213 (1988) 73; B. L. To e, V. A. Khoze, and L. N. Lipatov, 'Hard Processes', (North-Holland, Am sterdam, 1984).
- [8] SM C Collaboration, B. Adeva et al., Phys. Rev. D 58 (1998) 112001.
- [9] E143 Collaboration, K. Abe et al., Phys. Rev. D 58 (1998) 112003.
- [10] E155 Collaboration, P.L. Anthony et al., Phys. Lett. B 463 (1999) 339.
- [11] HERM ES Collaboration, A. Airapetian et al., preprint DESY /06-142, September 21, 2006.
- [12] COM PASS Collaboration, V. Yu. A lexakhin et al., hep-ex/0609038 and submitted to the Phys. Lett. B.
- [13] SM C Collaboration, B. Adeva et al., Phys. Rev. D 60 (1999) 072004; erratum ibid, D 62 (2000) 079902.
- [14] G K .M allot, Nucl. Instrum .M ethods A 518 (2004) 121.
- [15] M. Stolarski, PhD Thesis, Warsaw University, 2006; http://www.com.pass.cem.ch/com.pass/publications/welcom.e.htm # theses.
- [16] C. Bernet et al., Nucl. Instrum. Methods A 550 (2005) 217.
- [17] BCDM S Collaboration, A. Argento et al., Phys. Lett. B 120 (1983) 245; ibid. 140 (1984) 142.
- [18] SM C Collaboration, D. Adam set al., Phys. Rev. D 56 (1997) 5330.
- [19] P.Hoodbhoy, R.L.Ja e and A.V.Manohar, Nucl. Phys. B 312 (1989) 571; H.Khan and P.Hoodbhoy, Phys. Lett. B 298 (1993) 181.
- [20] R. L. Ja e, Comments Nucl. Phys. 19, 239 (1990).
- [21] A.A. Akhundov et al., Fortsch. Phys. 44 (1996) 373.
- [22] COMPASS Collaboration, E.S. Ageev et al., Phys. Lett. B 612 (2005) 154.
- [23] E143 Collaboration, K. Abe et al., Phys. Lett. B 452 (1999) 194.
- [24] I.V. Akushevich and N.M. Shumeiko, J. Phys. G 20 (1994) 513.
- [25] O. Helene, Nucl. Instrum. Methods 212 (1983) 319.
- [26] J. Kwiecinski and B. Badelek, Z. Phys. C 43 (1989) 251; B. Badelek and J. Kwiecinski, Phys. Lett. B 295 (1992) 263.
- [27] H1 Collaboration, C. Adlo et al., Phys. Lett. B 393 (1997) 452; H1 and ZEUS Collaborations, T. Lastovicka, Eur. Phys. J. C 33 (2004) s388.
- [28] J. Bartels, K. Golec-Biernat and H. Kowalski, Phys. Rev. D 66 (2002) 014001.
- [29] H. Abram ow icz and A. Levy, DESY 97{251 and hep-ph/9712415.

x range	hxi	$\frac{\text{M2}^{2}\text{i}}{[(\text{G eV}=\text{c})^{2}]}$	hyi		A ^d			91 ^d	
0.000063{ 0.00004	0.000052	0.0068	0.44	8000.0	0.0036	0.0034	0:06	0:27	0:26
0.00004 { 0.0001	0.000081	0.012	0.49	0:0027	0:0027	0:0017	0:22	0:23	0:14
0.0001 { 0.00016	0.00013	0.021	0.53	0.0015	0.0023	0.0014	0.13	0.21	0.12
0.00016 { 0.00025	0.00020	0.034	0.56	{0.0007	0.0022	0.0015	80.06	0.19	0.13
0.00025 { 0.0004	0.00032	0.054	0.56	0.0045	0.0022	0.0017	0.36	0.18	0.14
0.0004 { 0.00063	0.00050	0.085	0.56	{0.0022	0.0023	0.0013	{0.16	0.17	0.09
0.00063 { 0.001	0.00079	0.13	0.55	0.0005	0.0025	0.0015	80.03	0.16	0.09
0.001 { 0.0016	0.0013	0.20	0.54	{0.0035	0.0029	0.0022	{0.11	0.09	0.09
0.0016 { 0.0025	0.0020	0.32	0.54	{0.0023	0.0035	0.0025	{0.07	0.10	0.07
0.0025 { 0.004	0.0031	0.50	0.53	{0.0013	0.0043	0.0034	80.03	0.10	80.0
0.004 { 0.0063	0.0049	0.63	0.43	{0.0069	0.0061	0.0033	{0.11	0.10	0.06
0.0063 { 0.01	0.0077	0.68	0.30	{0.016	0.010	800.0	{0.17	0.11	0.09
0.01 { 0.0158	0.012	0.74	0.20	0.013	0.019	0.012	0.09	0.13	0.09
0.0158 { 0.025	0.019	0.82	0.14	0.019	0.040	0.019	0.09	0.20	0.09

Table 1: Values of A_1^d and g_1^d with their statistical and system atic errors as a function of x with the corresponding average values of x, Q 2 and y. The maximum Q 2 cut is 1 (G eV =c) 2 . B ins in x are of equal width in $\log_{10} x$.

	Beam polarisation	$P_B = P_B$	4%	
M ultiplicative	Target polarisation	$P_T = P_T$	5%	
variables	Depolarisation factor	D (R)=D (R)	4 { 30 %	
error	D ilution factor	f=f	7%	
Additive	Transverse asym m etry	₂ A	< 0:1 stat	
variables	Radiative corrections	A_1^{RC}	< 0:03 Aat	
error	False asym m etry	A _{false}	< A ₁ stat	

Table 2:D ecom position of the system atic error of A_1 into multiplicative and additive variables contributions.

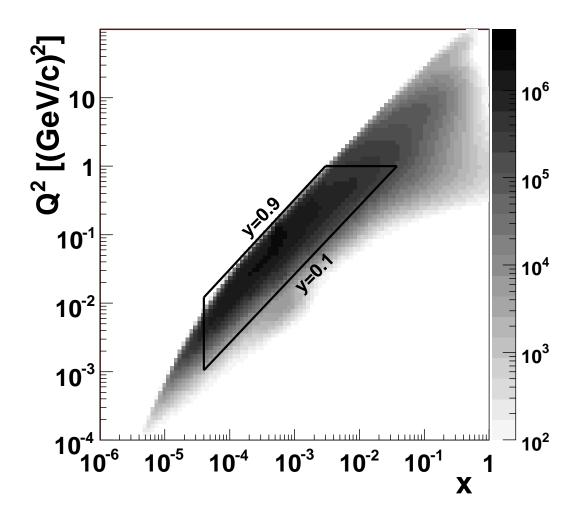


Figure 1:COM PASS acceptance in the (x,Q 2) plane. The contour indicates the region selected for this analysis.

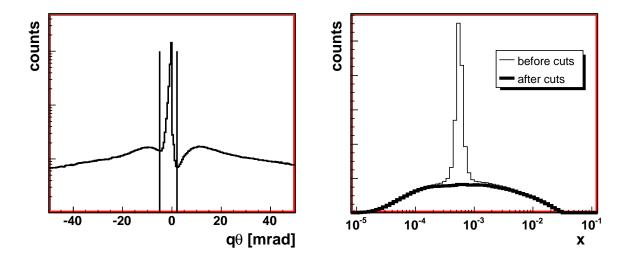


Figure 2:Removal of the 'e!' e scattering events. Left: distribution of the variable q (see text for the denition) for events with one (positive or negative) hadron candidate outgoing from the primary interaction point. Events between vertical lines are removed from further analysis. Note the logarithmic scale on the vertical axis. Right: x distribution of events with one negative hadron candidate, before and after e event rejection.

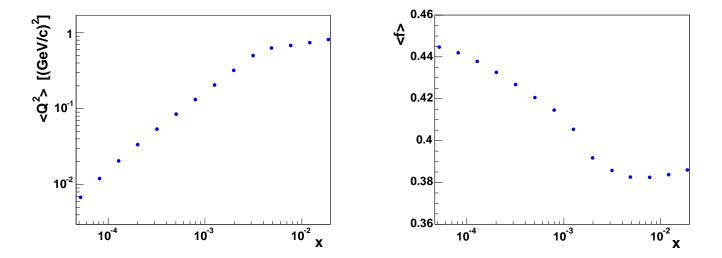


Figure 3: hQ^2 i as a function of x for the naldata Figure 4: M can e ective dilution factor, hf i, as a sam ple.

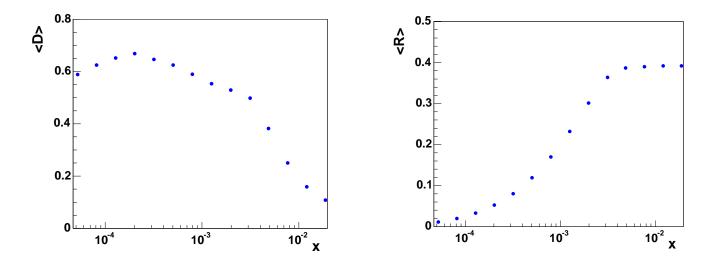


Figure 5: Mean depolarisation factor, hDi, as a Figure 6: Mean values of the ratio R = L = T as function of x for the naldata sample.

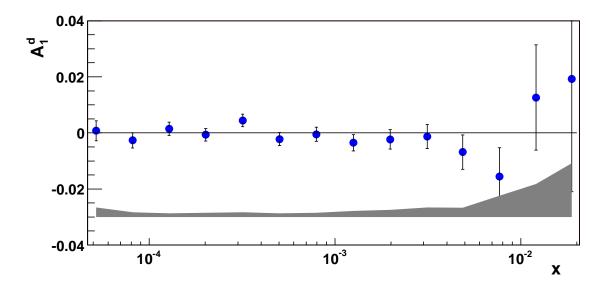


Figure 7: The asymmetry $A_1^d(x)$ as a function of x at the measured values of Q^2 obtained in this analysis. Errors are statistical; the shaded band indicates the size of the systematic ones.

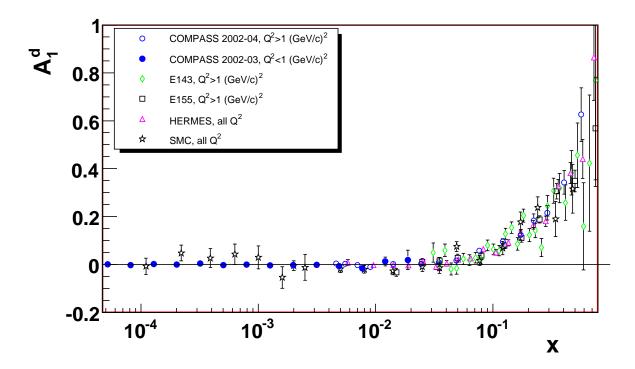


Figure 8: The asymmetry $A_1^d(x)$ as a function of x at the measured values of Q^2 : the results for $Q^2 < 1$ (G eV =c)² obtained in this analysis are compared with previous results at dierent values of Q^2 from COMPASS [12], SMC [8,13], HERMES [11], SLAC E143 [9] and SLAC E155 [10]. The E155 data correponding to the same x have been averaged over Q^2 . Errors are statistical.

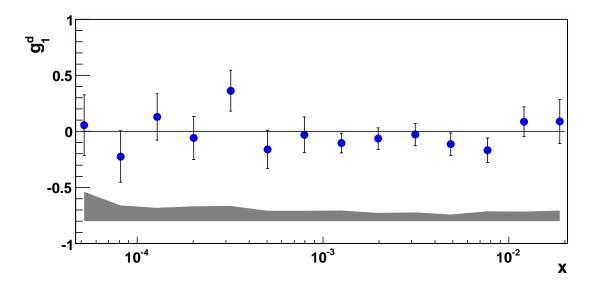


Figure 9: The spin dependent structure faction $g_1^d(x)$ as a function of x at the measured values of Q^2 obtained in this analysis. Errors are statistical; the shaded band indicates the size of the system atic ones.

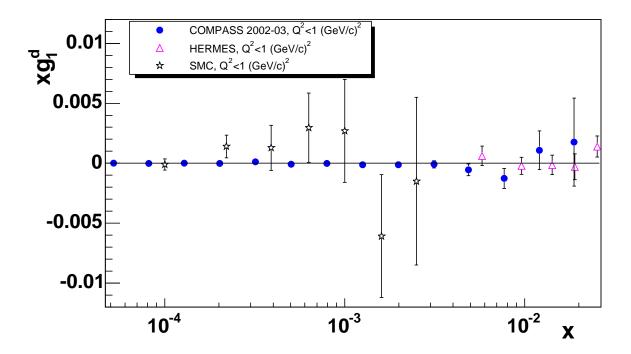


Figure 10: Same as in Fig. 8 but for the quantity xg_1^d . Only data for Q 2 < 1 (G eV =c) 2 are shown.