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Abstract. We present an approach to the problem of vacuum energy in cosmology,

based on dynamical screening of Λ on the horizon scale. We review first the physical

basis of vacuum energy as a phenomenon connected with macroscopic boundary

conditions, and the origin of the idea of its screening by particle creation and vacuum

polarization effects. We discuss next the relevance of the quantum trace anomaly to this

issue. The trace anomaly implies additional terms in the low energy effective theory

of gravity, which amounts to a non-trivial modification of the classical Einstein theory,

fully consistent with the Equivalence Principle. We show that the new dynamical

degrees of freedom the anomaly contains provide a natural mechanism for relaxing

Λ to zero on cosmological scales. We consider possible signatures of the restoration

of conformal invariance predicted by the fluctuations of these new scalar degrees of

freedom on the spectrum and statistics of the CMB, in light of the latest bounds from

WMAP. Finally we assess the prospects for a new cosmological model in which the dark

energy adjusts itself dynamically to the cosmological horizon boundary, and therefore

remains naturally of order H
2 at all times without fine tuning.

Invited Contribution to New Journal of Physics Focus Issue on Dark Energy

Preprint Nos. LA-UR-06-8631 CERN-PH-TH/2006-251

‡ On leave from CPHT (UMR CNRS 7644) Ecole Polytechnique, 91128 Palaiseau Cedex, France

http://export.arxiv.org/abs/gr-qc/0612068v1


Cosmological Dark Energy: Prospects for a Dynamical Theory 2

1. Vacuum Fluctuations and the Cosmological Term

Vacuum fluctuations are an essential feature of quantum theory. The attractive force

between uncharged metallic conductors in close proximity, discovered and discussed

by Casimir more than half a century ago, is due to the vacuum fluctuations of the

electromagnetic field in the region between the conductors [1]. At first viewed perhaps

as a theoretical curiosity, the Casimir effect is now being measured with increasing

accuracy and sophistication in the laboratory [2]. The Casimir force directly confirms

the existence of quantum fluctuations, and the field theory methods for handling

the ultraviolet divergences they generate, to obtain finite answers at macroscopic

distance scales. When combined with the Equivalence Principle, also well established

experimentally, this success of relativistic quantum field theory should permit the

treatment of the effects of vacuum fluctuations at macroscopic distances in the context

of general relativity as well.

In classical general relativity, the requirement that the field equations involve no

more than two derivatives of the metric tensor allows for the possible addition of a

constant term, the cosmological term Λ, to Einstein’s equations,

R b
a − R

2
δ b
a + Λ δ b

a =
8πG

c4
T b
a . (1)

If transposed to the right side of this relation, the Λ term corresponds to a constant

energy density ρΛ = c4Λ/8πG and isotropic pressure pΛ = −c4Λ/8πG permeating all of

space uniformly, and independently of any localized matter sources. Hence, even if the

matter T b
a = 0, a cosmological term causes spacetime to become curved with a radius

of curvature of order |Λ|− 1

2 .

In purely classical physics there is no natural scale for Λ. Indeed if ~ = 0 and Λ = 0,

there is no fixed length scale at all in the vacuum Einstein equations, G/c4 being simply

a conversion factor between the units of energy and those of length. Hence Λ may take

on any value whatsoever with no difficulty (and with no explanation) in classical general

relativity.

As soon as we allow ~ 6= 0, there is a quantity with the dimensions of length that

can be formed from ~, G, and c, namely the Planck length,

Lpl ≡
(

~G

c3

)
1

2

= 1.616 × 10−33 cm. (2)

Hence when quantum theory is considered in a general relativistic setting, the quantity

λ ≡ ΛL2
pl =

~GΛ

c3
(3)

becomes a dimensionless pure number, whose value one might expect a theory of gravity

incorporating quantum effects to address.

Some eighty years ago W. Pauli was apparently the first to consider the question of

the effects of quantum vacuum fluctuations on the the curvature of space [3, 4]. Pauli
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recognized that the sum of zero point energies of the two transverse electromagnetic

field modes in vacuo,

ρΛ = 2

∫ L−1

min d3k

(2π)3

~ωk

2
=

1

8π2

~c

L 4
min

= −pΛ (4)

contribute to the stress-energy tensor of Einstein’s theory as would an effective

cosmological term Λ > 0. Since the integral (4) is quartically divergent, an ultraviolet

cutoff L−1
min of (4) at large k is needed. Taking this short distance cutoff Lmin to be of

the order of the classical electron radius e2/mc2, Pauli concluded that if his estimate

were correct, Einstein’s theory with this large a Λ would lead to a universe so curved

that its total size “could not even reach to the moon.” If instead of the classical electron

radius, the apparently natural but much shorter length scale of Lmin ∼ Lpl is used to cut

off the frequency sum in (4), then the estimate for the cosmological term in Einstein’s

equations becomes vastly larger, and the entire universe would be limited in size to the

microscopic scale of Lpl (2) itself, in even more striking disagreement with observation.

Clearly Pauli’s estimate of the contribution of short distance modes of the

electromagnetic field to the curvature of space, by using (4) as a source for Einstein’s

eqs. (1) is wrong. The question is why. Here the Casimir effect may have something

to teach us. The vacuum zero point fluctuations being considered in (4) are the same

ones that contribute to the Casimir effect, but this estimate of the scale of vacuum

zero point energy, quartically dependent on a short distance cutoff Lmin, is certainly

not relevant for the effect observed in the laboratory. In calculations of the Casimir

force between conductors, one subtracts the zero point energy of the electromagnetic

field in an infinitely extended vacuum (with the conductors absent) from the modified

zero point energies in the presence of the conductors. It is this subtracted zero point

energy of the electromagnetic vacuum, depending upon the boundary conditions imposed

by the conducting surfaces, which leads to experimentally well verified results for the

force between the conductors. In this renormalization procedure the ultraviolet cutoff

L−1
min drops out, and the distance scale of quantum fluctuations that determine the

magnitude of the Casimir effect is not the microscopic classical electron radius, as in

Pauli’s original estimate, nor much less the even more microscopic Planck length Lpl, but

rather the relatively macroscopic distance d between the conducting boundary surfaces.

The resulting subtracted energy density of the vacuum between the conductors is

ρv = − π2

720

~c

d4
. (5)

This energy density is of the opposite sign as (4), leading to an attractive force per unit

area between the plates of 0.013 dyne/cm2 (µm/d)4, a value which is both independent of

the ultraviolet cutoff L−1
min, and the microscopic details of the atomic constituents of the

conductors. This is a clear indication, confirmed by experiment, that the measurable

effects associated with vacuum fluctuations are infrared phenomena, dependent upon

macroscopic boundary conditions, which have little or nothing to do with the extreme

ultraviolet modes or cutoff of the integral in (4).
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By the Equivalence Principle, local short distance behavior in a mildly curved

spacetime is essentially equivalent to that in flat spacetime. Hence on physical grounds

we should not expect the ultraviolet cutoff dependence of (4) to affect the universe in the

large any more than it affects the force between metallic conductors in the laboratory.

In the case of the Casimir effect a constant zero point energy of the vacuum, no

matter how large, does not affect the force between the plates. In the case of cosmology it

is usually taken for granted that any effects of boundary conditions can be neglected. It

is not obvious then what should play the role of the conducting plates in determining the

magnitude of ρv in the universe, and the magnitude of any effect of quantum zero point

energy on the curvature of space has remained unclear from Pauli’s original estimate

down to the present. In recent years this has evolved from a question of fundamental

importance in theoretical physics to a central one of observational cosmology as well.

Observations of type Ia supernovae at moderately large redshifts (z ∼ 0.5 to 1) have led

to the conclusion that the Hubble expansion of the universe is accelerating [5]. According

to Einstein’s equations this acceleration is possible if and only if the energy density and

pressure of the dominant component of the universe satisfies the inequality,

ρ+ 3p ≡ ρ (1 + 3w) < 0 . (6)

A vacuum energy with ρ > 0 and w ≡ pv/ρv = −1 leads to an accelerated expansion,

a kind of “repulsive” gravity in which the relativistic effects of a negative pressure can

overcome a positive energy density in (6). Taken at face value, the observations imply

that some 74% of the energy in the universe is of this hitherto undetected w = −1 dark

variety. This leads to a non-zero inferred cosmological term in Einstein’s equations of

Λmeas ≃ (0.74)
3H2

0

c2
≃ 1.4 × 10−56 cm−2 ≃ 3.6 × 10−122 c3

~G
. (7)

Here H0 is the present value of the Hubble parameter, approximately 73 km/sec/Mpc ≃
2.4 × 10−18 sec−1. The last number in (7) expresses the value of the cosmological dark

energy inferred from the SN Ia data in terms of Planck units, L−2
pl = c3

~G
, i.e. the

dimensionless number in (3) has the value

λ ≃ 3.6 × 10−122 . (8)

Explaining the value of this smallest number in all of physics is the basic form of the

“cosmological constant problem.”

We would like to emphasize that the naturalness problem posed by the very small

value of the cosmological vacuum energy λ of (7) arises only when quantum fluctuations

(~ 6= 0) and gravitational effects (G 6= 0) are considered together. As we have already

noted, if the universe were purely classical, Lpl would vanish and Λ, like the overall size

or total age of the universe, could take on any value whatsoever without any technical

problem of naturalness. Likewise as the Casimir effect makes clear, if G = 0 and there

are also no boundary effects to be concerned with, then the cutoff dependent zero point

energy of flat space (4) can simply be subtracted, with no observable consequences.

A naturalness problem arises only when quantum vacuum fluctuations are weighed by
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gravity, and the effects of vacuum zero point energy on the large scale curvature of

spacetime are investigated. This is a problem of the quantum aspects of gravity at

macroscopic distance scales, very much greater than Lpl. Indeed, what is measured

in the supernova data (7) is not directly the energy density of the vacuum (4) at all,

but rather the geometry of the universe at very large distance scales. The dark energy

content of the universe and the equation of state pv/ρv ≈ −1 are inferred from the

observations, by assuming the validity of (6) and therefore of Einstein’s equations (1)

as the effective theory of gravity applicable at cosmological distances.

The treatment of quantum effects at distances much larger than any ultraviolet

cutoff is precisely the context in which effective field theory (EFT) techniques should

be applicable. The EFT point of view is the one we shall adopt for this article. This

means that we assume that we do not need to know every detail of physics at extremely

short distance scales of 10−33 cm or even 10−13 cm in order to discuss cosmology at

1028 cm scales. What is important instead is the Equivalence Principle, i.e. invariance

under general coordinate transformations, which greatly restricts the form of any EFT

of gravity. In his search for field equations for a metric theory with universal matter

couplings, which incorporate the Equivalence Principle automatically but which is no

higher than second order in derivatives of the metric, Einstein was using what we

would now recognize as EFT reasoning. In an EFT treatment quantum effects and any

ultraviolet (UV) divergences they generate at very short distance scales are absorbed

into a few, finite low energy effective parameters, such as G and Λ.

General coordinate invariance of the low energy EFT does requires a more careful

renormalization procedure than a simple normal ordering subtraction, which suffices

for the original Casimir calculations in flat space. The UV divergent terms from

the stress tensor must be isolated and carefully removed in a way consistent with

the Equivalence Principle to extract physical effects correctly. These more general

renormalization procedures, involving e.g. proper time, covariant point splitting or

dimensional regularization have been developed in the context of quantum field theory

in curved spacetime [6]. The non-renormalizability of the classical Einstein theory poses

no particular obstacle for an EFT approach. It requires only that certain additional

terms be added to the effective action to take account of UV divergences which are not

of the form of a renormalization of G or Λ. The result of the renormalization program

for quantum fields and their vacuum energy in curved space is that general relativity can

be viewed as a low energy quantum EFT of gravity, provided that the classical Einstein-

Hilbert classical action is augmented by these additional terms, a necessary by product

of which is the quantum trace anomaly of massless fields [7]. We do not review the

technology of renormalization of the stress tensor here, referring the interested reader to

the literature for details [6]. We shall make extensive use of one important result of the

renormalization of the stress tensor however, namely the trace anomaly and its effects

at large distance scales. Hence it is the renormalization of the quantum stress tensor

in curved space which provides the rigorous basis for an EFT approach to gravity at

distance scales much larger than LP l.
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The essential physical assumption in an EFT approach is the hypothesis of

decoupling, namely that low energy physics is independent of very short distance degrees

of freedom and the details of their interactions. All of the effects of these short distance

degrees of freedom is presumed to be encapsulated in a few phenomenological coefficients

of the infrared relevant terms of the EFT. Notice that this will not be the case in gravity

if the low energy Λ relevant for dark energy and cosmology depends upon the quantum

zero point energies of all fields up to some UV cutoff, as in (4). If (4) is to be believed,

then the introduction of every new field above even some very large mass scale would

each contribute its own zero point energy of the order of L−4
min and generate additional

terms relevant to the large scale curvature of spacetime. Clearly this contradicts any

intuitive notion of decoupling of very massive states from low energy physics. Despite

the severe violation of decoupling this represents, the usual presumption is that the

“natural” scale for Λ is of order unity in Planck units, i.e. λ ∼ 1.

In order to make the naturalness problem of small numbers and large hierarchies

more precise, ’t Hooft gave the intuitive notion of fine tuning a technical definition

[8]. According to his formulation, a parameter of an EFT can be small naturally, only

if setting it equal to zero results in a larger symmetry of the theory. Then quantum

corrections will not upset the hierarchy of scales, once imposed. An example of such

a naturally small parameter is the ratio of the pion mass to the ρ meson or nucleon

mass in QCD. In the limit of vanishing u and d quark masses QCD possesses an

enhanced SUch(2) chiral symmetry, and mπ → 0 in the chiral limit. Even if the quark

masses are finite, this is a “soft” breaking of SUch(2), and Goldstone’s theorem protects

mπ from receiving large loop corrections at the otherwise natural scale of the strong

interactions, mρ ≃ 770 MeV. Of course, this approximate symmetry does not enable

one to predict the magnitude of chiral symmetry breaking in the strong interactions,

and the actual small values of mπ ≃ 140 MeV or the u and d quark masses in QCD

remain unexplained. However, the enhanced symmetry as these masses go to zero does

permit the soft breaking scale of chiral symmetry to be quite different in principle from

the UV cutoff scale of the pion EFT, since at least any large hierarchy of scales and a

small value of mπ/mρ is not automatically upset by quantum loop corrections.

In the case of the cosmological term Λ, the problem is that Einstein’s theory does

not possess any apparent enhanced symmetry if Λ is set equal to zero. This is hardly

surprising since as we have already pointed out, the classical theory contains no natural

scale with which to compare Λ, any value being equally allowed a priori. Supersymmetry

does not help here since in order to account for the absence of supersymmetric partners

to the standard model particles at low energies, supersymmetry must be spontaneously

broken at an energy scale no lower than approximately 1 TeV. Then the natural scale

of Λ is still some 57 orders of magnitude larger than that measured by the acceleration

of the universe in (7). Similar considerations apply to any new symmetry invoked at

very short distances, and the problem persists even in apparently more microscopic

description of quantum effects in gravity at the Planck scale. This impasse emphasizes

once again that the problem of vacuum energy arises on macroscopic distance scales, and
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suggests that there is some basic ingredient missing in our EFT estimate of supposedly

very weak quantum effects in gravity at large distances.

A fine tuning problem potentially related to the naturalness problem for the

dimensionless λ posed by (7) is that of the dimensionless ratio of ρΛ to the closure

density,

ΩΛ ≡ 8πGρΛ

3c2H2
0

=
c2Λmeas

3H2
0

≃ 0.74 . (9)

According to the conventional adiabatic expansion history of the universe, in which

little or no entropy is generated during large epochs of time, ΩΛ is strongly time

dependent, being very much smaller than unity at early times when matter or radiation

dominates, but approaching unity exponentially rapidly at late times, as these other

components are diluted by the expansion. Thus the value inferred from observations

(9) would seem to imply that we are living in a very special epoch in the history of the

universe, when the vacuum energy has grown to be an appreciable fraction (74%) of the

total, but just before the matter and radiation have been redshifted away completely,

as conventional adiabatic theory indicates they soon will be, exponentially rapidly.

This “cosmic coincidence problem,” independently of the naturalness problem of the

very small value of λ also suggests that something basic may be missing from current

cosmological models. The first indication as to what that element may be emerges from

consideration of quantum effects in curved spacetimes such as de Sitter spacetime.

2. Quantum Effects in de Sitter Spacetime

The simplest example of accelerated expansion is a universe composed purely of vacuum

energy, i.e. ΩΛ = 1. This is de Sitter spacetime with H2 = Λc2/3 a constant. In

classical general relativity de Sitter spacetime is the stable maximally symmetric solution

to Einstein’s equations (1) with positive Λ and T b
a = 0 otherwise. In spatially flat,

homogeneous and isotropic Robertson-Walker (RW) form de Sitter spacetime has the

line element,

ds2 = −c2dτ 2 + a2(τ) dx2 . (10)

Here τ is the proper time of a freely falling observer and a(τ) is the RW scale factor,

determined from the Friedman equation,

H2 ≡
( ȧ

a

)2

=
8πG

3c2
ρ . (11)

with the overdot denoting differentiation with respect to τ . The cosmological constant

is included in the right hand side of (11) as a vacuum energy contribution with equation

of state, ρΛ = −pΛ = c4Λ/8πG. With ΩΛ = 1, and H2 = c2Λ/3 a constant, the RW

scale factor is

adeS(τ) = eHτ , (12)

in de Sitter spacetime.
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At the beginning of modern cosmology the de Sitter model was proposed to account

for the Hubble expansion [9]. This model was soon abandoned in favor of Friedman-

LeMâıtre-Robertson-Walker (FLRW) models, with apparently more physical ordinary

matter and radiation replacing the unknown ρΛ as the dominant energy density in the

universe. Unlike the eternal expansion of (12), these FLRW models possess an origin of

time at which the universe originates at a spacelike singularity of infinite density, i.e. a

big bang. Evidence for the radiation relic of this primordial explosion was discovered in

the cosmic microwave background radiation (CMB). The CMB is remarkably uniform

(to a few parts in 105) over the whole sky, and hence its discovery immediately raised

the question of how this uniformity could have been established. In the classical FLRW

models with their spacelike initial singularity, there is no possibility of causal contact

between different regions of the present microwave sky, and hence these models possess a

causality or horizon problem. In the 1960’s Sakharov and Gliner observed that a de Sitter

epoch in the early universe could remove this causality problem of the initial singularity

in the standard matter or radiation dominated cosmologies [10]. In the 1980’s such a de

Sitter phase in the early history of the universe was proposed under the name of inflation,

with a vacuum energy scale ~H of the order of 1015 GeV, associated with the unification

scale of the strong and electroweak interactions [11]. A key success of inflationary models

is that the small deviations from exact homogeneity and isotropy of the CMB, now

measured in beautiful detail by the COBE and WMAP satellites [12], can originate from

quantum zero point fluctuations in the de Sitter phase, with a magnitude determined by

the ratio ~H/MP lc
2 [13]. Thus if inflationary models are correct, microscopic quantum

physics at the tiny unification scale of 10−29 cm is responsible for the large scale

classical inhomogeneities of the matter distribution in the universe at 1025 cm and

above. The supposition of inflationary models that microscopic quantum physics might

be responsible for the classical distribution of galaxies at cosmological distance scales is

no less remarkable now than when it was first proposed a quarter century ago.

Despite the central importance of quantum fluctuations in the de Sitter phase of

inflationary models, and the cosmological vacuum energy responsible for the inflationary

epoch itself rooted in quantum theory, current inflationary models remain quite classical

in character. For example one large class of models involves the “slow roll” of a

postulated (and so far unobserved) scalar inflaton field in a classical potential V [13].

In models of this kind the classical evolution of the inflaton must be slow enough to

allow for a sufficiently long-lived de Sitter phase, to agree with the presently observed

size and approximate flatness of the universe, a condition that requires fine tuning of

parameters in the model. The value of the cosmological Λ term responsible for the

present acceleration of the universe (generally assumed to be identically zero prior to

the supernova data) is unexplained by scalar inflaton models and requires additional fine

tuning. Indeed fine tuning issues are characteristic of all phenomenological treatments

of the cosmological term, with a large hierarchy of scales and no fundamental quantum

theory of vacuum energy.
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Beginning in the 1980’s, quantum fluctuations and their backreaction effects in de

Sitter spacetime were considered in more detail by a number of authors, including the

present ones [14, 15, 16, 17]. Several of these studies indicated that fluctuations at the

horizon scale c/H could be responsible for important effects on the classical de Sitter

expansion itself. Based on these studies, a mechanism for relaxing the effective value of

the vacuum energy to zero over time dynamically was proposed [14, 19]. Although a fully

satisfactory cosmological model based on these ideas does not yet exist, a dynamical

theory of vacuum energy still appears to be the most viable alternative to fine tuning or

purely anthropic considerations for the very small but non-zero value of λ. For a recent

overview of approaches we refer the reader to ref. [20].

Given the incomplete and scattered nature of the results in the technical literature,

the need for a review of the subject accessible to a wider audience has been apparent for

some time. With the discovery of dark energy in the universe, and the recent twenty-fifth

anniversary of inflationary models, we have thought it worthwhile to review at this time

the status and prospects for a dynamical resolution to the problem of vacuum energy.

In this section, we begin by reviewing the infrared quantum effects in de Sitter space,

which first suggested a dynamical relaxation mechanism, in roughly the historical order

that they were first discussed.

2.1. Particle Creation in de Sitter Space

A space or time dependent electric field creates particles. J. Schwinger first studied this

effect in QED in a series of classic papers [21]. Later, Parker, Fulling, Zel’dovich and

many others realized that a time dependent gravitational metric should also produce

particles [6]. The study of these effects formed the beginning of the subject of quantum

fields in curved spacetime. From this point of view the exponential de Sitter expansion

(12) provides a time dependent background field which can create particle pairs from

the “vacuum,” converting the energy of the classical gravitational background into that

of particle modes.

Both the concept of “vacuum” and “particle” in a background gravitational (or

electromagnetic) field merit some comment. Since particle number generally does not

commute with the Hamiltonian in spacetime dependent backgrounds, a unique definition

of a “vacuum” state devoid of particles does not exist in this situation. In flat space with

no background fields, relativistic wave equations have both positive energy (particle)

solutions and negative energy (anti-particle) solutions, which are clearly distinguishable

by time reversal symmetry. In time dependent backgrounds this is no longer the case

and the two solutions mix on the scale of the time variation. Physically this is because

in quantum theory a particle cannot be localized to a region smaller than its de Broglie

wavelength. When this wavelength becomes large enough to be of the same order of the

scale of spacetime variation of the background field, the particle concept begins to lose its

meaning and it is better to think of matter as waves rather than as particles. Of course,

this is precisely the wavelike effect of quantum matter which we characterize as “particle”
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creation. A fair amount of the technical literature on particle creation is concerned with

defining what a particle is and what sort of detector in a particular state of motion

can detect it. Much of this is an irrelevant to the backreaction problem, and will not

concern us here. Provided one sticks to questions of evaluating conserved currents

in well-defined initial states, one can bypass any technical discussion of definitions of

“particles” per se. The solutions of the wave equation of the quantum field(s) undergoing

the particle creation, and the evolution of its electric current or energy-momentum tensor

once renormalized are well-defined, and independent of arbitrary definitions of particle

number. For a consistent physical definition of adiabatic particle number see ref. [18].

Let us consider the electromagnetic case in more detail. To motivate the discussion,

we note that there is an analogy to the vacuum energy problem in electromagnetism

as well, the “cosmological electric field problem” [19]. It consists of the elementary

observation that Maxwell’s equations in vacuo, i.e. in the absence of all sources admit a

solution with constant, uniform electric field Ecosm of arbitrary magnitude and direction.

Why then are all electric fields we observe in nature always associated with localized

electrically charged matter sources? Why do we not observe some macroscopic uniform

electric field pointing in an arbitrary direction in space?

A non-zero Ecosm selects a preferred direction in space. Nevertheless, and perhaps

somewhat surprisingly, relativistic particle motion in a uniform constant electric field

has precisely the same number of symmetry generators (ten) as those of the usual

zero field vacuum. These 10 generators define a set of modified spacetime symmetry

transformations, leaving Ecosm fixed, whose algebra is isomorphic to that of the Poincaré

group [22]. In this respect field theory in a spacetime with a constant, non-dynamical

Ecosm 6= 0 is similar to field theory in de Sitter spacetime with a constant, non-dynamical

Λ 6= 0. The isometry group of de Sitter spacetime is O(4, 1), which also has 10

generators, exactly the same number of flat Minkowski spacetime. In the absence of a

unique choice of vacuum in a spacetime dependent background, the point of view often

adopted is to choose the state with the largest possible symmetry group permitted by

the background. In de Sitter spacetime this maximally symmetric state is called the

Bunch-Davies (BD) state [23].

Ordinarily one would say that the ground state should also be the one of lowest

energy, and as a non-zero electric field has a non-zero energy density, the ground state

should be that with Ecosm = 0. However, once we appeal to an energy argument we

must admit that we do not know the absolute energy of the vacuum, and because of

(4) must allow for an arbitrary shift of that zero point, perhaps compensating for the

electromagnetic field energy. Again Λ = 0 is similar to Ecosm = 0 in having zero energy

in flat space. As with Λ classically we are free to set Ecosm = 0 by an appropriate

boundary condition at very large distances, but this leaves unanswered the question of

why this is the appropriate boundary condition for our universe. The suggestion that

Λ may be regarded also as a constant of integration has been made by a number of

authors [24]. In quantum theory the boundary condition which determines a constant

of integration in the low energy description requires information about the macroscopic
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quantum state of the system at large distance scales. Is there any evidence that quantum

effects are relevant to the question of the cosmological electric field or of Λ?

The answer is almost certainly yes, because of quantum vacuum polarization and

particle creation effects. Suppose that Ecosm were not zero. Then the quantum vacuum

of any charged matter fields interacting with it is polarized. This is described by a

polarization tensor,

Πab(x, x′;E) = i〈T ja(x)jb(x′)〉
E
, (13)

where ja is the charge current operator and the expectation value is evaluated in

a state with classical background field E. This could be taken to be the state of

maximal symmetry allowed by the background, in particular a state with discrete

time reversal symmetry. The time ordering symbol T enforces the Feynman boundary

conditions on the polarization operator. These boundary conditions are not time

symmetric. Time-ordering (with an iǫ prescription in the propagator) defines a different

polarization tensor or Feynman Green’s function from anti-time-ordering (with a −iǫ
prescription). This time asymmetry is built into quantum theory by the demands of

causality which distinguishes retarded from advanced effects in the polarization function

(13). Correspondingly, the polarization operator Πab contains two pieces, an even and an

odd piece under time reversal. The even piece describes the polarizability of the vacuum,

since the vacuum fluctuations of virtual charge pairs may be thought of as giving rise

to an effective polarizability of the vacuum (dielectric constant). The time reversal odd

piece describes the creation of real particle anti-particle pairs from the vacuum by the

Schwinger mechanism. The creation of real charged pairs means that a real current flows

j ≥ 0 in the direction of the electric field, even if none existed initially. This implies

that the electric field does work at a rate, j ·E. To the extent that this power cannot be

recovered because the created particles interact and lose the coherence they may have

had in their initial state, this is the rate of energy dissipation. The vacuum can behave

then very much like a normal conductor with a finite conductivity and resistivity, due

to the random, uncorrelated motions of its fluctuating charge carriers.

At the same time, the electric field is diminished by the Maxwell equation,

∂E

∂t
= −〈j〉 (14)

in the case of exact spatial homogeneity of the average current. The important question

is that of the time scale of the effective dissipation. Does the degradation of the coherent

electric field take place rapidly enough to effectively explain why there is no observed

Ecosm today? The original Schwinger calculation of the decay rate of the vacuum into

charged pairs involves a tunneling factor, exp(−πm2c3/eE~) for the creation of the

first pair from the vacuum under the assumption of particular initial conditions. An

exponential tunneling factor like this would greatly suppress the effect. However, if any

charged matter is present initially, i.e. if we are not in precisely the maximally symmetric

“vacuum” state, the charges are accelerated, radiate, and pair produce without any

tunneling suppression factor. Thus the time scale for an induced cascade of particle
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pairs to develop and degrade the electric field energy in any state save a carefully tuned

initial vacuum state will be very much faster than the Schwinger spontaneous vacuum

rate. Hence on physical grounds there is an instability of the vacuum in a background

electric field and extreme sensitivity to boundary conditions. These are the necessary

conditions for the spontaneous breaking of time reversal symmetry [19].

The particle creation effects in homogeneous electric fields, including the

backreaction of the mean current on the field through (14) have been studied in some

detail in the large N or mean field approximation [25]. In this approximation the direct

scattering between the created particles is neglected. Inclusion of scattering processes

opens additional channels and faster time scales for dissipation, as in classical plasmas

or Boltzmann gases. Allowing for these dissipative processes should permit any long

range coherent Ecosm present initially to relax to very small values on time scales much

shorter than a Hubble expansion time, H−1
0 .

The electromagnetic analogy is that of a giant capacitor discharging. Any

cosmological electric field initially present in the universe eventually shorts itself out, and

degrades to zero, when the vacuum polarization effects described by Πab and realistic

particle interactions are taken into account. The actual value of the electric field at

late times may then be very much less than its “natural” value of m2c3/~e or any

other scale related to short distance physics. The real and imaginary parts of Πab are

related by a dispersion relation which is one form of a fluctuation-dissipation theorem

for the electrically polarized quantum vacuum. It is simply a consequence of causality,

and the existence of a positive Hilbert space of quantum states that quantum vacuum

fluctuations and quantum vacuum dissipation are inseparably related. One necessarily

implies the other. This is the modern, relativistically covariant formulation for quantum

fields of the relation between an equilibrium quantity (mean square displacement) and

a time asymmetric dissipative quantity (diffusion coefficient or viscosity) first discussed

by Einstein in his theory of Brownian movement [26].

These observations are of a very general nature, and apply equally well to vacuum

fluctuations in a gravitational background field. Since the geometry couples to the

energy-momentum stress tensor, it is the fluctuations in this quantity which govern

the dynamics of the gravitational field, and we are led to consider the corresponding

polarization tensor,

Πabcd(x, x′; ḡ) = i〈T T ab(x)T cd(x′)〉ḡ, (15)

where ḡab(x) represents some classical background metric, for example that of de Sitter

spacetime (10-12). This polarization tensor may be handled by exactly the same

techniques as (13), and the analogous fluctuation-dissipation theorem relating its real

and imaginary parts may be proven [16]. If the background ḡab(x) possesses a timelike

Killing field, and therefore a Euclidean continuation with periodicity β = ~/k
B
T , it

is natural to introduce the Fourier transform with respect to the corresponding static

coordinate time difference t− t′. Defining the Fourier transforms of the symmetric and
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anti-symmetric parts of (15) by
∫ ∞

−∞

dt 〈{T ab(x), T cd(x′)}+〉eiω(t−t′) = Sabcd(r, r′;ω),

∫ ∞

−∞

dt 〈[T ab(x), T cd(x′)]
−
〉eiω(t−t′) = Dabcd(r, r′;ω),

(16)

we find that the two pieces are related via:

Dabcd(r, r′;ω) = tanh

(

βω

2

)

Sabcd(r, r′;ω). (17)

One can show that the condition for particle creation effects to occur in the background

electric or gravitational field is just the condition that the time asymmetric piece of the

exact polarization function diverges for large t− t′, in particular that:

Dabcd(r, r′;ω) ∝ ω−1, ω → 0. (18)

In fact it is precisely the residue of this ω−1 pole which determines the particle creation

rate in the adiabatic limit of slowly varying backgrounds [16]. This singular behavior

at low frequencies means that the background is unstable to small perturbations, and

is the signal for spontaneous breaking of time reversal symmetry. This sensitivity to

infrared fluctuations in Πabcd is why the inclusion of quantum fluctuations and correlation

functions higher than the average 〈T b
a 〉 can change the behavior of a macroscopic

quantum system over long times.

In cosmology the Friedman equation (11) together with the equation of covariant

energy conservation,

ρ̇+ 3H (ρ+ p) = 0, (19)

imply that:

Ḣ = −4πG

c2
(ρ+ p). (20)

This relation from Einstein’s equations is to be compared to the Maxwell eq. (14).

In both cases there is a classical static background that solves the equation trivially,

namely H or E a constant with zero source terms on the right hand side. In the case

of (20) this is de Sitter spacetime with ρΛ + pΛ = 0. In order to exhibit explicitly the

static nature of de Sitter spacetime, we make the coordinate transformation,

2Hτ = 2Ht+ ln
(

1 −H2r2/c2
)

(21a)

|x| = r e−Hτ = r e−Ht
(

1 −H2r2/c2
)−

1

2 , (21b)

to bring the de Sitter line element (10) with (12) into the form,

ds2
∣

∣

∣

deS
= −(c2 −H2r2) dt2 +

dr2

1 −H2r2/c2
+ r2(dθ2 + sin2 θ dφ2) , (22)

in which the metric is independent of the static time variable t. The translation ∂t
defines a isometry of de Sitter spacetime or Killing field, which is timelike for r < c/H .

This is the time translation invariance of de Sitter space which permits the introduction
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of a time stationary state with an equilibrium thermal distribution at the inverse

temperature β of (17). In the representation (22) the static nature of de Sitter space

and the existence of the observer horizon at r
H

= c/H are manifest, but an arbitrary

particular point in space r = 0 is chosen as the origin, so that the spatial homogeneity

of the Robertson-Walker coordinates (12) is no longer manifest. Spacetime events for

r > r
H

are causally disconnected and unobservable to a freely falling observer at the

origin of static coordinates.

In the static coordinates (22) the de Sitter metric becomes space dependent rather

than time dependent, just as a constant electric field can be expressed either in a

time dependent (A = −Et) or static (A0 = −E · r) gauge. The effects of the de

Sitter background on the polarization of the vacuum and particle creation should be

independent of the coordinates or gauge. In each case the static H or E background field

is stable to classical matter perturbations. Classical matter (if charged in the E case) is

simply accelerated, and swept out by the constant electric or gravitational field. In the

de Sitter case classical matter (obeying ρ+ p > 0) is redshifted away by (19). However

if quantum matter fluctuations possess a spectrum with a singular ω−1 dependence for

small frequencies (18), then the classically stable background with an event horizon is

unstable to quantum fluctuations. In that case the system will be driven away from

the quasi-static initial state towards a final state in which the classical field energy has

been dissipated into matter or radiation field modes. In ref. [16] it was argued that the

polarization function corresponding to scalar (i.e. metric trace) perturbations of the

de Sitter background has precisely the required singular ω−1 behavior. This behavior

describes the response of the system to perturbations on length scales of order of the

horizon size rH or larger. Then de Sitter spacetime satisfies the condition for dissipation

of curvature stress-energy into matter and radiation modes, much as the electric field

background considered previously.

Actually computing the evolution away from the initial state by this effect requires

that we go beyond the simple replacement of the quantum stress tensor T b
a by its

expectation value 〈T b
a 〉 and consider fluctuations about the mean as in (15), as well as

possibly higher correlation functions of the stress tensor as well. This is not an easy task.

Nevertheless it is worth noting that whereas the Schwinger suppression factor for vacuum

tunnelling occurs in electrodynamics because there are no massless charged particles,

massless particles do couple gravitationally, and would be expected to dominate the

dissipative process. In both cases the creation of matter particle pairs with j · E > 0

and ρ+ p > 0 causes the background field parameter, Ecosm or H to decrease. In fact,

unlike the electric current which is a vector and may change sign, ρ + p for realistic

matter or radiation is always positive, so we should expect H to decrease monotonically

to zero, without the plasma oscillations that can occur in the electrodynamic case [25].

The problems with implementing these promising ideas in a realistic model are

mainly technical. As we have already noted, fluctuations about the mean stress tensor

and their backreaction on the mean geometry must be taken into account in a consistent

calculation. Infrared divergences are encountered in any direct attempt to evaluate the
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diagrams contributing to the dissipation process perturbatively. Infrared problems of

this kind due to long range forces are well known in the low frequency hydrodynamic

limit of plasmas and gauge field theories at finite temperatures [27]. In many analogous

situations of this kind, the ω → 0 limit is outside the range of validity of perturbative

expansions, due to collective effects. In hydrodynamics the long time behavior of

correlation functions (17) are non-perturbative, requiring at the least a resummation

of perturbative processes. The problem of dissipating vacuum energy by microscopic

particle creation effects may be compared in order of difficulty with the problem of

evaluating the viscosity of water and the damping of eddy currents in a stream from the

electronic structure and interactions of the H2O molecule.

Although a full calculation including self-interactions and backreaction along these

lines has not been done, even in electromagnetism, the formal similarity between charge

carrier fluctuations and Maxwell’s equation for the displacement current on the one

hand, and fluctuations in stress-energy and Einstein’s equations (1) on the other suggests

that a dissipative relaxation of the vacuum energy into ordinary matter and radiation is

possible via this mechanism. The bulk viscosity of the cosmological “fluid” of vacuum

fluctuations is the quantity controlling this dissipation. Quantum fluctuations on or

near the horizon scale are the relevant ones which need to be handled in a consistent,

reliable, non-perturbative framework, in order to convert the coherent vacuum energy

of de Sitter space to matter/radiation modes on the time scales relevant for cosmology.

2.2. Thermodynamic Instability of de Sitter Spacetime

A second set of considerations points to the role of dynamical quantum effects on the

horizon scale in de Sitter space. The existence of the observer horizon at r = rH leads in

conventional treatments to a Hawking temperature for freely falling observers [28]. The

Hawking temperature is closely related to the particle creation effect since both depend

upon a mixing between positive and negative frequency components of quantum fields

in de Sitter space at the horizon scale. It is worth emphasizing that like the Casimir

effect, this is a global effect of the spacetime, where the horizon now sets the scale,

playing the role of the boundary conditions on the conducting plates in (5). In the

BD state particle creation and annihilation effects are exactly balanced in a precisely

time symmetric manner and a configuration formally similar to that of thermodynamic

equilibrium is possible. The Hawking temperature in de Sitter space,

T
H

=
~H

2πk
B

=
~c

2πk
B

√

Λ

3
(23)

is the temperature a freely falling detector would detect in the BD state. This

temperature becomes the one which enters the fluctuation-dissipation formulae (16)-

(17) of the previous subsection in de Sitter space. Although this temperature is very

small for λ≪ 1, a thermodynamic argument similar to Hawking’s original one for black

holes implies that the BD equilibrium state in de Sitter space is thermodynamically

unstable [15].
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Consider as the “vacuum” state in de Sitter spacetime that state defined by the

analytic continuation of all of its Green’s functions by t → it. Since the resulting

geometry in (22) is a space of uniform positive curvature, i.e a sphere S4 with O(5)

isometry group and radius cH−1, the Euclidean Green’s functions are periodic in

imaginary time with period 2π/H . Continuing back to Lorentzian time, the BD state

defined by this analytic continuation is a thermal state with temperature T
H

[29],

invariant under the full O(4, 1) de Sitter symmetry group [6]. Because of that symmetry,

the expectation value of the energy-momentum tensor of any matter fields in this state

must itself be of the form ρ = −p = constant. This is the BD state usually assumed,

tacitly or explicitly by inflationary model builders.

The existence of such a maximally symmetric state does not guarantee its stability

against small fluctuations, any more than the existence of a state invariant under the 10

isometries of space with a constant electric field guarantee the stability of the vacuum

with an electric field. In fact, both the energy within one horizon volume, and the

entropy of the de Sitter horizon SH are decreasing functions of the temperature, i.e.,

E
H

= ρΛVH =
c5

2GH
=

~c5

4πGk
B
TH

; (24a)

S
H

= k
B

AH
4L2

pl

=
πc5k

B

~GH2
=

~c5

4πGk
B
T 2
H

=
3π

λ
k

B
. (24b)

Hence, by considering a small fluctuation in the Hawking temperature of the horizon

which (like the black hole case) causes a small net heat exchange between the region

interior to the horizon and its surroundings, we find that this interior region behaves

like a system with negative heat capacity [15],

dE
H

dT
H

= −EH

T
H

= −3π k
B

λ
< 0 . (25)

However, negative heat capacity is impossible for a stable system in thermodynamic

equilibrium. It corresponds to a runaway process in which any infinitesimal heat

exchange between the regions interior and exterior to the horizon will drive the

system further away from its equilibrium configuration. Since the choice of origin

of static coordinates in de Sitter space is arbitrary, the entire space is unstable to

quantum/thermal fluctuations in its Hawking temperature nucleating a kind of vacuum

bubble at an arbitrary point, breaking the global O(4, 1) de Sitter invariance down to

O(3) rotational invariance.

This thermodynamic consideration is consistent with the previous one based on

particle creation and the fluctuation-dissipation theorem, and again suggests that

collective quantum effects on the horizon scale are the relevant ones. The enormously

negative heat capacity for de Sitter space in (25) for λ ≪ 1, if taken literally suggests

that the time scale for the instability to develop may not be exponentially large given

any initial perturbation. Despite this signal of thermodynamic instability, an evaluation

of Πabcd and full dynamical analysis of the fluctuations about the BD state in de Sitter

space in real time has not been carried out, again mostly for technical reasons. The
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framework for such a linear response analysis has been laid down only recently in ref.

[30]. A linearized analysis exhibiting an unstable mode would still be only the first step

in a more comprehensive non-perturbative treatment of its effects.

2.3. Graviton Fluctuations in de Sitter Spacetime

A third route for investigating quantum effects in de Sitter spacetime leading to the

same qualitative conclusions is through studies of the fluctuations of the metric degrees

of freedom themselves. The propagator function describing these metric fluctuations

is a function of two spacetime points xa and x′ a. In flat spacetime, assuming a

Poincaré invariant vacuum state, the propagator becomes a function only of the invariant

distance squared between the points, i.e. (x − x′)2. Likewise full invariance of the

graviton propagator under the global O(4, 1) de Sitter isometry group is a necessary

condition for the gravitational vacuum in de Sitter spacetime to exist and to be stable

to perturbations. Using such covariant methods to evaluate the propagator encounters

a problem however. If one requires de Sitter invariance by computing the Euclidean

propagator on S4 with O(5) invariance group, and then analytically continuing to

de Sitter spacetime, then one obtains a graviton propagator with rather pathological

properties. Both the transverse-tracefree (spin-2) and trace (spin-0) projections of the

Feynman propagator grow without bound both at large spacelike and large timelike

separations [31, 32, 33]. Since this propagator leads to infrared divergences in physical

scattering processes [32], this large distance behavior of the propagator function cannot

be removed by a gauge transformation. This infrared behavior is a striking violation of

cluster decomposition properties of the de Sitter invariant vacuum state.

A similar situation had been encountered before in de Sitter spacetime, in the

quantization of a massless, minimally coupled free scalar field, obeying the wave

equation, Φ = 0. A covariant construction of the propagator function for Φ meets

the obstacle that has a normalizable zero mode (namely a constant mode) on the

Euclidean continuation of de Sitter space, S4. Hence a de Sitter invariant propagator

inverse for the wave operator does not exist [34]. Formally projecting out the

problematic mode leads to a propagator function which grows logarithmically for large

spacelike or timelike separations of the points x and x′. Since the wave equation for

spin-2 graviton fluctuations is identical to that of two massless, minimally coupled scalar

fields (one for each of the two polarization states of the graviton) in a certain gauge

[31, 35], it is not surprising that it shares many of the same features as the massless

scalar case.

If one abandons the method of Euclidean continuation from S4 and quantizes either

the massless scalar or the graviton by canonical methods, starting on a fixed spacelike

surface rather than imposing global de Sitter invariance, one finds a Feynman propagator

function of x and x′ that is not de Sitter invariant [36]. In other words, canonical

quantization of either the massless scalar or graviton field necessarily breaks de Sitter

invariance, and no de Sitter invariant vacuum exists in either case.
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The closest analog of this behavior in flat spacetime is that of massless scalar field

in two dimensions. The Feynman propagator G(x, x′) for a massless field in 1 + 1

dimensions satisfies

− G(x, x′) = ~ δ2(x− x′) . (26)

If we require Lorentz invariance, the propagator must be a function of the invariant

s = (x − x′)2. In that case, the wave operator becomes an ordinary differential

operator in s and the only solutions to the homogeneous wave equation (for x 6= x′) are

ln s and a constant. The coefficient of the ln s solution is fixed by the delta function in

(26), and we find

G(x, x′) = − ~

4π
ln[µ2(x− x′)2] (27)

with µ an arbitrary constant which acts as an infrared cutoff. The logarithmic growth

at large distances and infrared cutoff dependence of the propagator implies that free

asymptotic particle states do not exist for a massless field in two dimensions. In a

canonical treatment the origin of the infrared problem is the constant k = 0 Fourier

mode of the field, which grows linearly with time. A Lorentz invariant normalizable

ground state does not exist in the Fock space. In the generic case either the massless

field must develop a mass or otherwise become modified by its self-interactions or

Lorentz invariance is necessarily broken, and secular terms develop in the evolution

from generic initial conditions. From the effective field theory point of view, a mass

and other interaction terms for a scalar field in two dimensions are generically allowed,

and would be expected to control the behavior of the theory at large distances and late

times. These additional interactions are relevant operators in the infrared, and cannot

be treated as small perturbations to the massless theory. Conversely, if the masslessness

of the scalar boson is protected by a global symmetry, then that symmetry is restored

by quantum fluctuations and there are again no Lorentz invariant massless Goldstone

scalar states in the physical spectrum [37, 38].

Infrared divergences in even classical scattering amplitudes show that there is no

analog of a scattering matrix for gravitational waves in global de Sitter spacetime

[39], much as in the two dimensional massless scalar theory in flat spacetime. The

similar logarithmic behavior of the graviton propagator indicates that infrared quantum

fluctuations of the gravitational field are important in de Sitter space, and self-

interactions or additional relevant terms in the effective action will control the late time

behavior. This is the same conclusion we reached from particle creation, fluctuation-

dissipation, and thermodynamic considerations. de Sitter invariance is spontaneously

broken by quantum effects, and the ground state of the gravitational field with a

cosmological term is not global de Sitter spacetime [17].

The authors of refs. [40] have performed a perturbative analysis of long wavelength

gravitational fluctuations in non de Sitter invariant initial states up to two-loop order.

They focus on the self-interactions of gravitons generated by nonlinearities in the

classical Einstein theory itself. This work indicates the presence of secular terms in
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the quantum stress tensor of fluctuations about de Sitter space, tending to decrease the

effective vacuum energy density, consistent with our earlier considerations. The authors

of [41] have studied the stress tensor for long wavelength cosmological perturbations

in inflationary models as well, and also found a backreaction effect of the right sign to

slow inflation. Some serious technical questions concerning the gauge invariance of these

results have been raised [42], addressed [43], and raised again recently in [44].

Even if free of technical problems the perturbative backreaction of [40] and [41] is

suppressed by an effective coupling constant of order λ2. This is already very small (of

order 10−16) for an initial cosmological term at the unification scale of 1015 GeV. For the

present value of λ in (8) any secular backreaction effect of order λ2 on vacuum energy

would be completely negligible. A much larger, essentially non-perturbative effect is

needed to be relevant to the naturalness question of dark energy in cosmology.

Actually, as should be clear from the previous discussion, none of the considerations

based on particle creation, thermodynamic fluctuations or the infrared behavior of the

gravitational fluctuations in de Sitter space suggest that backreaction effects can be

treated in a uniform perturbative expansion in a small parameter like λ. On the contrary,

perturbation theory about a state which is itself infrared singular would be expected

to break down and require a non-perturbative resummation to capture the dominant

effects. In statistical systems perturbation theory certainly breaks down when there

are additional infrared relevant terms in the low energy effective field theory, and their

effects do dominate the purely perturbative contributions. For this reason we initiated

the study of new infrared relevant operator(s) in gravity in the conformal or trace sector

of gravity, generated by the quantum trace anomaly. A essentially non-perturbative

treatment of this sector indicates the existence of a infrared renormalization fixed point

in which the cosmological term is driven to zero. We review and update the present

status of this proposal next.

3. Quantum Theory of the Conformal Factor

The sensitivity to horizon scale quantum fluctuations in de Sitter spacetime reviewed in

the last section strongly suggests that there is an infrared relevant operator in the low

energy effective theory of gravity, not contained in the classical Einstein-Hilbert action.

This is also the implication of the naturalness considerations in effective field theory

with which we began our discussion. Since there is no preferred value of Λ in the purely

classical theory, a dynamical mechanism for the relaxation of Λ → 0 must be sought in

the larger quantum framework.

There are several hints for the source of new infrared relevant terms in the quantum

framework which are not contained in the classical Einstein theory. First it is the

fluctuations in the scalar or conformal sector of the metric field which are the most

infrared divergent in de Sitter spacetime [45]. These are associated with the trace of the

polarization tensor, and are parameterized by the conformal part of the metric tensor,

gab(x) = e2σ(x)ḡab(x), (28)
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where eσ is called the conformal factor and ḡab(x) is a fixed fiducial metric. The RW

scale factor a(τ) in (10) is an example of a conformal factor, fixed classically by the

Friedman eq. (11). The second clue that this is the important sector to look for

non-perturbative infrared effects is that σ couples to the trace of the energy-momentum

tensor T a
a , an operator known to have an anomaly for massless quantum fields in curved

spacetime [7]. An anomaly implies that the effects of quantum fluctuations can remain

relevant at the longest length and time scales, and therefore modify the purely classical

theory. This is certainly the lesson of two dimensional quantum gravity, which we review

next. Most importantly of all, the scalar σ field is constrained in the Einstein theory in

four dimensions, but acquires dynamics through the trace anomaly. It is the effective

action and dynamics of this field which we have proposed as the essential new ingredient

to gravity at cosmological distance scales which can provide a natural mechanism for

screening the cosmological term [45].

3.1. Quantum Gravity in Two Dimensions

Classical fields satisfying wave equations with zero mass, which are invariant under

conformal transformations of the spacetime metric, gab → e2σgab have stress tensors

with zero classical trace, T a
a = 0. In quantum theory the stress tensor T b

a becomes

an operator with fluctuations about its mean value. The mean value itself 〈T b
a 〉 is

formally UV divergent, due to its zero point fluctuations, as in (4), and requires a

careful renormalization procedure. The result of this renormalization consistent with

covariant conservation in curved spacetime is that classical conformal invariance cannot

be maintained at the quantum level. The trace of the stress tensor is generally non-zero

when ~ 6= 0, and any UV regulator which preserves the covariant conservation of T b
a

(a necessary requirement of any theory respecting general coordinate invariance and

consistent with the Equivalence Principle) yields an expectation value of the quantum

stress tensor with a non-zero trace [6, 7].

In two dimensions the trace anomaly takes the simple form,

〈T a
a 〉 =

N

24π
R , (d = 2) (29)

whereN = NS+NF is the total number of massless fields, either scalar (NS) or (complex)

fermionic (NF ). The fact that the anomalous trace is independent of the quantum state

of the matter field(s), and dependent only on the geometry through the local Ricci scalar

R suggests that it should be regarded as a geometric effect. However, no local coordinate

invariant action exists whose metric variation leads to (29). This is important because it

shows immediately that understanding the anomalous contributions to the stress tensor

will bring in some non-local physics or boundary conditions on the quantum state at

large distance scales.

A non-local action corresponding to (29) can be found by introducing the conformal

parameterization of the metric (28) and noticing that the scalar curvature densities of
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the two metrics gab and ḡab are related by

R
√−g = R̄

√−ḡ − 2
√−ḡ σ , (d = 2) (30)

a linear relation in σ in two (and only two) dimensions. Multiplying (29) by
√−g, using

(30) and noting that
√−g〈T a

a 〉 defines the conformal variation, δΓ(2)/δσ of an effective

action Γ(2), we conclude that the σ dependence of Γ(2) can be at most quadratic in σ.

Hence the Wess-Zumino effective action [48] in two dimensions, Γ
(2)
WZ is

Γ
(2)
WZ [ḡ; σ] =

N

24π

∫

d2x
√
−ḡ

(

−σ σ + R̄ σ
)

. (31)

Mathematically the fact that this action functional of the base metric ḡab and the Weyl

shift parameter σ cannot be reduced to a single local functional of the full metric

(28) means that the local Weyl group of conformal transformations has a non-trivial

cohomology, and Γ
(2)
WZ is a one-form representative of this cohomology [46, 47]. This is

just a formal mathematical statement of the fact that a effective action that incorporates

the trace anomaly in a covariant EFT consistent with the Equivalence Principle must

exist but that this Sanom[g] is necessarily non-local.

It is straightforward in fact to find a non-local scalar functional Sanom[g] such that

Γ
(2)
WZ [ḡ; σ] = S(2)

anom[g = e2σḡ] − S(2)
anom[ḡ] . (32)

By solving (30) formally for σ, and using the fact that
√−g =

√−ḡ is conformally

invariant in two dimensions, we find that Γ
(2)
WZ can be written as a Weyl shift (32) with

S(2)
anom[g] =

Q2

16π

∫

d2x
√
−g

∫

d2x′
√

−g′R(x) −1(x, x′)R(x′) , (33)

and −1(x, x′) denoting the Green’s function inverse of the scalar differential operator

. The parameter Q2 is −N/6 if only matter fields in a fixed spacetime metric are

considered. It becomes (25−N)/6 if account is taken of the contributions of the metric

fluctuations themselves in addition to those of the N matter fields, thus effectively

replacing N by N − 25 [49]. In the general case, the coefficient Q2 is arbitrary, related

to the matter central charge, and can be treated as simply an additional free parameter

of the low energy effective action, to be determined.

The anomalous effective action (33) is a scalar under coordinate transformations

and therefore fully covariant and geometric in character, as required by the Equivalence

Principle. However since it involves the Green’s function −1(x, x′), which requires

boundary conditions for its unique specification, it is quite non-local, and dependent

upon more than just the local curvature invariants of spacetime. In this important

respect it is quite different from the classical terms in the action, and describes rather

different physics. In order to expose that physics it is most convenient to recast the

non-local and non-single valued functional of the metric, S
(2)
anom into a local form by

introducing auxiliary fields. In the case of (33) a single scalar auxiliary field, ϕ satisfying

− ϕ = R (34)
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is sufficient. Then varying

S(2)
anom[g;ϕ] ≡ Q2

16π

∫

d2x
√−g

(

gab∇aϕ∇bϕ− 2Rϕ
)

(35)

with respect to ϕ gives the eq. of motion (34) for the auxiliary field, which when solved

formally by ϕ = − −1R and substituted back into S
(2)
anom[g;ϕ] returns the non-local

form of the anomalous action (33), up to a surface term. The non-local information in

addition to the local geometry which was previously contained in the specification of

the Green’s function −1(x, x′) now resides in the local auxiliary field ϕ(x), and the

freedom to add to it homogeneous solutions of (34).

The variation of (35) with respect to the metric yields a stress-energy tensor,

T
(2)
ab [g;ϕ] ≡ − 2√−g

δS
(2)
anom[g;ϕ]

δgab

=
Q2

4π

[

−∇a∇bϕ+ gab ϕ− 1

2
(∇aϕ)(∇bϕ) +

1

4
gab (∇cϕ)(∇cϕ)

]

, (36)

which is covariantly conserved, by use of (34) and the vanishing of the Einstein tensor,

Gab = Rab − Rgab/2 = 0 in two (and only two) dimensions. The classical trace of the

stress tensor,

gabT
(2)
ab [g;ϕ] =

Q2

4π
ϕ = −Q

2

4π
R (37)

reproduces the quantum trace anomaly in a general classical background (with Q2

proportional to ~). Hence (35) is exactly the local auxiliary field form of the effective

action which should be added to the action for two dimensional gravity to take the trace

anomaly of massless quantum fields into account.

Since the integral of R is a topological invariant in two dimensions, the classical

Einstein-Hilbert action contains no propagating degrees of freedom whatsoever in d = 2,

and it is Sanom which contains the only kinetic terms of the low energy EFT. In the local

auxiliary field form (35), it is clear that Sanom describes an additional scalar degree of

freedom ϕ, not contained in the classical action S
(2)
cl . This is reflected also in the shift

of the central charge from N − 26, which would be expected from the contribution of

conformal matter plus ghosts by one unit to N−25. Quantum gravity in two dimensions

acquires new dynamics in its conformal sector, not present in the classical theory. Once

the anomalous term is treated in the effective action on a par with the classical terms,

its effects become non-perturbative and do not rely on fluctuations from a given classical

background to remain small.

Extensive study of the stress tensor (37) and its correlators, arising from this

effective action established that the two dimensional trace anomaly gives rise to a

modification or gravitational “dressing” of critical exponents in conformal field theories

at second order critical points [49]. Since critical exponents in a second order phase

transition depend only upon fluctuations at the largest allowed infrared scale, this

dressing is clearly an infrared effect, independent of any ultraviolet cutoff. These dressed

exponents are evidence of the infrared fluctuations of the additional scalar degree of
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freedom ϕ which are quite absent in the classical action. The scaling dimensions of

correlation functions so obtained are clearly non-perturbative in the sense that they

are not obtained by considering perturbatively small fluctuations around flat space,

or controlled by a uniform expansion in λ ≪ 1. The appearance of the gravitational

dressing exponents and the anomalous effective action (33) itself have been confirmed

in the large volume scaling limit of two dimensional simplicial lattice simulations in the

dynamical triangulation approach [50, 51]. Hence there can be little doubt that the

anomalous effective action (35) correctly accounts for the infrared fluctuations of two

dimensional geometries.

The importance of this two dimensional example is the lessons it allows us to draw

about the role of the quantum trace anomaly in the low energy EFT of gravity, and

in particular the new dynamics it contains in the conformal factor of the metric. The

effective action generated by the anomaly in two dimensions contains a new scalar degree

of freedom, relevant for infrared physics, beyond the purely local classical action. It

is noteworthy that the new scalar degree of freedom in (34) is massless, and hence

fluctuates at all scales, including the very largest allowed. In two dimensions its

propagator −1(x, x′) is logarithmic, as in (27), and hence is completely unsuppressed at

large distances. Physically this means that the quantum correlations at large distances

require additional long wavelength information such as macroscopic boundary conditions

on the quantum state.

The action (35) due to the anomaly is exactly the missing relevant term in the low

energy EFT of two dimensional gravity responsible for non-perturbative fluctuations at

the largest distance scales. This modification of the classical theory is required by general

covariance and quantum theory, and essentially unique within the EFT framework.

4. Quantum Conformal Factor in Four Dimensions

The line of reasoning in d = 2 dimensions just sketched to find the conformal anomaly

and construct the effective action may be followed also in four dimensions. In d = 4 the

trace anomaly takes the somewhat more complicated form,

〈T a
a 〉 = bF + b′

(

E − 2

3
R

)

+ b′′ R +
∑

i

βiHi , (38)

in a general four dimensional curved spacetime. This is the four dimensional analog of

(29) in two dimensions. In eq. (38) we employ the notation,

E ≡∗Rabcd
∗Rabcd = RabcdR

abcd − 4RabR
ab +R2 , and (39a)

F ≡ CabcdC
abcd = RabcdR

abcd − 2RabR
ab +

R2

3
. (39b)

with Rabcd the Riemann curvature tensor, ∗Rabcd = εabefR
ef
cd/2 its dual, and Cabcd the

Weyl conformal tensor. Note that E is the four dimensional Gauss-Bonnet combination

whose integral gives the Euler number of the manifold, analogous to the Ricci scalar

R in d = 2. The coefficients b, b′ and b′′ are dimensionless parameters multiplied
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by ~. Additional terms denoted by the sum
∑

i βiHi in (38) may also appear in the

general form of the trace anomaly, if the massless conformal field in question couples to

additional long range gauge fields. Thus in the case of massless fermions coupled to a

background gauge field, the invariant H =tr(FabF
ab) appears in (38) with a coefficient

β determined by the anomalous dimension of the relevant gauge coupling.

As in d = 2 the form of (38) and the coefficients b and b′ are independent of the state

in which the expectation value of the stress tensor is computed, nor do they depend on

any ultraviolet short distance cutoff. Instead their values are determined only by the

number of massless fields [6, 7],

b =
1

120(4π)2
(NS + 6NF + 12NV ) , (40a)

b′ = − 1

360(4π)2
(NS +

11

2
NF + 62NV ) , (40b)

with (NS, NF , NV ) the number of fields of spin (0, 1
2
, 1) respectively and we have taken

~ = 1. Notice also that b > 0 while b′ < 0 for all fields of lower spin for which they have

been computed. Hence the trace anomaly can lead to stress tensors of either sign, and in

particular, of the sign needed to compensate for a positive bare cosmological term. The

anomaly terms can also be utilized to generate an effective positive cosmological term

if none is present initially. Such anomaly driven inflation models [52] require curvatures

comparable to the Planck scale, unless the numbers of fields in (4) is extremely large.

It is clear that conformally flat cosmological models of this kind, in which the effects of

the anomaly can be reduced to a purely local higher derivative stress tensor, are of no

relevance to the very small cosmological term (7) we observe in the acceleration of the

Hubble expansion today. Instead it is the essentially non-local boundary effects of the

anomaly on the horizon scale, much larger than LP l which should come into play.

Three local fourth order curvature invariants E,F and R appear in the trace of

the stress tensor (38), but only the first two (the b and b′) terms of (38) cannot be derived

from a local effective action of the metric alone. If these terms could be derived from

a local gravitational action we would simply make the necessary finite redefinition of

the corresponding local counterterms to remove them from the trace, in which case the

trace would no longer be non-zero or anomalous. This redefinition of a local counterterm

(namely, the R2 term in the effective action) is possible only with respect to the third b′′

coefficient in (38), which is therefore regularization dependent and not part of the true

anomaly. Only the non-local effective action corresponding to the b and b′ terms in (38)

are independent of the UV regulator and lead to effects that can extend over arbitrarily

large, macroscopic distances. The distinction of the two kinds of terms in the effective

action is emphasized in the cohomological approach to the trace anomaly [47].

The number of massless fields of each spin (NS, NF , NV ) is a property of the low

energy effective description of matter, having no direct connection with physics at the

ultrashort Planck scale. Indeed massless fields fluctuate at all distance scales and do not

decouple in the far infrared, relevant for cosmology. As in the case of the chiral anomaly

with massless quarks, the b and b′ terms in the trace anomaly were calculated originally
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by techniques usually associated with UV regularization [6]. However just as in the case

of the chiral anomaly in QCD, or two dimensional gravity, the trace anomaly can have

significant new infrared effects, not captured by a purely local metric description.

To find the WZ effective action corresponding to the b and b′ terms in (38), introduce

as in two dimensions the conformal parameterization (28), and compute
√−g F =

√−ḡ F̄ (41a)

√
−g

(

E − 2

3
R

)

=
√
−ḡ

(

E − 2

3
R

)

+ 4
√
−ḡ ∆̄4 σ , (41b)

whose σ dependence is no more than linear. The fourth order differential operator

appearing in this expression is [45, 47, 53]

∆4 ≡ 2 + 2Rab∇a∇b −
2

3
R +

1

3
(∇aR)∇a , (42)

which is the unique fourth order scalar operator that is conformally covariant, viz.
√−g∆4 =

√−ḡ ∆̄4 , (43)

for arbitrary smooth σ(x) in four (and only four) dimensions. Thus multiplying (38) by√−g and recognizing that the result is the σ variation of an effective action ΓWZ , we

find immediately that this quadratic effective action is

ΓWZ [ḡ; σ] = b

∫

d4x
√
−ḡ F̄ σ + b′

∫

d4x
√
−ḡ

{(

Ē − 2

3
R̄

)

σ + 2 σ∆̄4σ

}

, (44)

up to terms independent of σ. This Wess-Zumino action is a one-form representative

of the non-trivial cohomology of the local Weyl group in four dimensions which now

contains two distinct cocycles, corresponding to the two independent terms multiplying

b and b′. By solving (41b) formally for σ and substituting the result in (44) we obtain

ΓWZ [ḡ; σ] = Sanom[g = e2σḡ] − Sanom[ḡ], (45)

with the non-local anomalous action,

Sanom[g] =
1

2

∫

d4x
√
g

∫

d4x′
√

g′
(

E

2
− R

3

)

x

∆−1
4 (x, x′)

[

bF + b′
(

E

2
− R

3

)]

x′

(46)

and ∆−1
4 (x, x′) denoting the Green’s function inverse of the fourth order differential

operator defined by (42). From the foregoing construction it is clear that if there are

additional Weyl invariant terms in the anomaly (38) they should be included in the

Sanom by making the replacement bF → bF +
∑

i βiHi in the last square bracket of (46).

Notice from the derivation of Sanom that although the σ independent piece of

the gravitational action cannot be determined from the trace anomaly alone, the σ

dependence is uniquely determined by the general form of the trace anomaly for massless

fields. Thus, whatever else may be involved in the full quantum theory of gravity in

four dimensions at short distance scales, the anomalous effective action (46) should be

included in the gravitational action at large distance scales, i.e. in the far infrared.

Again the physics is that the quantum fluctuations of massless fields do not decouple
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and contribute to gravitational effects at arbitrarily large distances. Graviton (i.e. spin-

two) fluctuations of the metric should give rise to an effective action of precisely the

same form as Sanom with new coefficients b and b′, which can be checked at one-loop

order [46]. The effective action (46) or (47) is the starting point for studying the new

physics of quantum fluctuations of the conformal factor and infrared renormalization in

gravity which allows the bare cosmological term of the classical Einstein theory to be

screened. We postpone until Sec. 7 the discussion of the auxiliary field description of

(46) and the full low energy effective field theory of four dimensional gravity.

5. Finite Volume Scaling and Infrared Screening of λ

Let us consider the dynamical effects of the anomalous terms in the simplest case that

the fiducial metric is conformally flat, i.e. gab = e2σηab. Then the Wess Zumino effective

action simplifies to

ΓWZ [η; σ] = − Q2

16π2

∫

d4x ( σ)2 , (47)

where

Q2 ≡ −32π2b′ . (48)

This action quadratic in σ is the action of a free scalar field, albeit with a kinetic term

that is fourth order in derivatives. The propagator for this kinetic term is (p2)−2 in

momentum space, which is a logarithm in position space,

Gσ(x, x
′) = − 1

2Q2
ln

[

µ2(x− x′)2
]

(49)

the same as (27) in two dimensions. Of course this is no accident but rather a direct

consequence of the association with the anomaly of a conformally invariant differential

operator, in two dimensions and ∆4 in four dimensions, a pattern which continues

in all higher even dimensions. Because of this logarithmic propagator we must expect

the similar sort of infrared fluctuations, conformal fixed point and dressing exponents

as those obtained in two dimensional gravity.

The classical Einstein-Hilbert action for a conformally flat metric gab = e2σηab is

1

8πG

∫

d4x
[

3e2σ(∂aσ)2 − Λe4σ
]

, (50)

which has derivative and exponential self-interactions in σ. It is remarkable that these

complicated interactions can be treated systematically using the the fourth order kinetic

term of (47). In fact, these interaction terms are renormalizable and their anomalous

scaling dimensions due to the fluctuations of σ can be computed in closed form [45, 54].

Direct calculation of the conformal weight of the Einstein curvature term shows that it

acquires an anomalous dimension β2 given by the quadratic relation,

β2 = 2 +
β2

2

2Q2
. (51)
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In the limit Q2 → ∞ the fluctuations of σ are suppressed and we recover the classical

scale dimension of the coupling G−1 with mass dimension 2. Likewise the cosmological

term in (50) corresponding to the four volume acquires an anomalous dimension given

by

β0 = 4 +
β2

0

2Q2
. (52)

Again as Q2 → ∞ the effect of the fluctuations of the conformal factor are suppressed

and we recover the classical scale dimension of Λ/G, namely four. The solution of the

quadratic relations (51) and (52) determine the scaling dimensions of these couplings

at the conformal fixed point at other values of Q2. This can be extended to local

operators of any non-negative integer mass dimension p, with associated couplings of

mass dimension 4 − p, by

βp = 4 − p+
β2
p

2Q2
. (53)

In order to obtain the classical scale dimension 4 − p in the limit Q2 → ∞ the sign of

the square root is determined so that

βp = Q2

[

1 −
√

1 − (8 − 2p)

Q2

]

, (54)

valid for Q2 ≥ 8 − 2p for all p ≥ 0, and thus Q2 ≥ 8. These scaling dimensions

were computed both by covariant and canonical operator methods. In the canonical

method we also showed that the anomalous action for the conformal factor does not

have unphysical ghost or tachyon modes in its spectrum of physical states [55].

In the language of statistical mechanics and critical phenomena the quadratic action

(47) describes a Gaussian conformal fixed point, where there are no scales and conformal

invariance is exact. The positive corrections of order 1/Q2 (for Q2 > 0) in (51) and

(52) show that this fixed point is stable in the infrared, that is, both couplings G−1

and Λ/G flow to zero at very large distances. Because both of these couplings are

separately dimensionful, at a conformal fixed point one should properly speak only of

the dimensionless combination ~GΛ/c3 = λ. By normalizing to a fixed four volume

V =
∫

d4x one can show that the finite volume renormalization of λ is controlled by the

anomalous dimension,

2δ − 1 ≡ 2
β2

β0

− 1 =

√

1 − 8
Q2 −

√

1 − 4
Q2

1 +
√

1 − 4
Q2

≤ 0 . (55)

This is the anomalous dimension that enters the infrared renormalization group volume

scaling relation [46],

V
d

dV
λ = 4 (2δ − 1)λ . (56)

The anomalous scaling dimension (55) is negative for all Q2 ≥ 8, starting at 1 −
√

2 =

−0.414 at Q2 = 8 and approaching zero as −1/Q2 as Q2 → ∞. This implies that the
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dimensionless cosmological term λ has an infrared fixed point at zero as V → ∞. Thus

the cosmological term is dynamically driven to zero as V → ∞ by infrared fluctuations

of the conformal part of the metric described by (47).

We emphasize that no fine tuning is involved here and no free parameters enter

except Q2, which is determined by the trace anomaly coefficient b′ by (48). Once Q2 is

assumed to be positive, then 2δ−1 is negative, and λ is driven to zero at large distances

by the conformal fluctuations of the metric, with no additional assumptions.

The result (56) does rely on the use of (47) or its curved space generalization (46)

as the free kinetic term in the effective action for gravity, treating the usual Einstein-

Hilbert terms as interactions or “marginal deformations” of the conformal fixed point.

This conformal fixed point represents a new phase of gravity, non-perturbative in any

expansion about flat space. In this phase conformal invariance is restored and the

mechanism of screening λ due to quantum effects proposed in [45] is realized.

Identifying the fluctuations responsible for driving λ to zero within a framework

based on quantum field theory and the Equivalence Principle, free of ad hoc assumptions

or fine tuning is an important first step towards a full solution of the cosmological

constant problem. However, the application of this screening mechanism to cosmology,

in which we presume a classical or semiclassical line element of the form (10), is

unclear. Near the conformal fixed point the inverse Newtonian constant G−1 is also

driven to zero when compared to some fixed mass scale m [54]. This is clearly different

from the situation we observe in our local neighborhood. Under what conditions and

where exactly (46) can dominate the classical Einstein terms, and moreover how the

screening mechanism could be used to relax the vacuum energy to zero in a realistic

cosmological model are questions not answered by our considerations to this point.

Absent such a complete theory of cosmological vacuum energy we proposed that the

conformally invariant phase might be relevant on horizon scales in cosmology. In that

case the signatures of conformal invariance should be imprinted on and observable in

the spectrum and statistics of the CMB.

6. Conformal Invariance and the CMB

Our earlier studies of fluctuations in de Sitter space suggest that the fluctuations

responsible for the screening of λ take place at the horizon scale. In that case then the

microwave photons in the CMB reaching us from their surface of last scattering should

retain some imprint of the effects of these fluctuations. It then becomes natural to extend

the classical notion of scale invariant cosmological perturbations, pioneered by Harrison

and Zel’dovich [56] to full conformal invariance. In that case the classical spectral index

of the perturbations should receive corrections due to the anomalous scaling dimensions

at the conformal phase [57]. In addition to the spectrum, the statistics of the CMB

should reflect the non-Gaussian correlations characteristic of conformal invariance. This

generic dynamical prediction of non-Gaussian correlations in the CMB due to conformal

invariance was made for the first time to our knowledge in ref. [57].
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Scale invariance was introduced into physics in early attempts to describe the

apparently universal behavior observed in turbulence and second order phase transitions,

which are independent of the particular short distance dynamical details of the system.

The gradual refinement and development of this simple idea of universality led to the

modern theory of critical phenomena, one of whose hallmarks is well-defined logarithmic

deviations from naive scaling relations [58]. A second general feature of the theory is

the specification of higher point correlation functions of fluctuations according to the

requirements of conformal invariance at the critical point [59].

In the language of critical phenomena, the observation of Harrison and Zel’dovich

that the primordial density fluctuations should be characterized by a spectral index n =

1 is equivalent to the statement that the observable giving rise to these fluctuations has

engineering or naive scaling dimension p = 2. This is because the density fluctuations

δρ are related to the metric fluctuations by Einstein’s equations, δR ∼ Gδρ, which

is second order in derivatives of the metric. Hence, the two-point spatial correlations

〈δρ(x)δρ(y)〉 ∼ 〈δR(x)δR(y)〉 should behave like |x − y|−4, or |k|1 in Fourier space,

according to simple dimensional analysis.

One of the principal lessons of the modern theory of critical phenomena is that the

transformation properties of observables under conformal transformations at the fixed

point is not given by naive dimesnional analysis. Rather one should expect to find well-

defined logarithmic deviations from naive scaling, corresponding to a (generally non-

integer) dimension ∆ 6= p. The deviation from naive scaling ∆ − p is the “anomalous”

dimension of the observable due to critical fluctuations, which may be quantum or

statistical in origin. Once ∆ is fixed for a given observable, the requirement of conformal

invariance determines the form of its two- and three-point correlation functions up to

an arbitrary amplitude, without reliance on any particular dynamical model.

Consider first the two-point function of any observable O∆ with dimension ∆.

Conformal invariance requires [58, 59]

〈O∆(x1)O∆(x2)〉 ∼ |x1 − x2|−2∆ (57)

at equal times in three dimensional flat spatial coordinates. In Fourier space this gives

G2(k) ≡ 〈Õ∆(k)Õ∆(−k)〉 ∼ |k|2∆−3 . (58)

Thus, we define the spectral index of this observable by

n ≡ 2∆ − 3 . (59)

In the case that the observable is the primordial density fluctuation δρ, and in the

classical limit where its anomalous dimension vanishes, ∆ → p = 2, we recover the

Harrison-Zel’dovich spectral index of n = 1.

In order to convert the power spectrum of primordial density fluctuations to the

spectrum of fluctuations in the CMB at large angular separations we follow the standard

treatment [60] relating the temperature deviation to the Newtonian gravitational
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potential ϕ at the last scattering surface, δT
T

∼ δϕ, which is related to the density

perturbation in turn by

∇2δϕ = 4πG δρ . (60)

Hence, in Fourier space,
δT

T
∼ δϕ ∼ 1

k2

δρ

ρ
, (61)

and the two-point function of CMB temperature fluctuations is determined by the

conformal dimension ∆ to be

C2(θ) ≡
〈

δT

T
(r̂1)

δT

T
(r̂2)

〉

∼
∫

d3k

(

1

k2

)2

G2(k)e
ik·r12 ∼ Γ(2 − ∆)(r2

12)
2−∆ , (62)

where r12 ≡ (r̂1 − r̂2)r is the vector difference between the two positions from which

the CMB photons originate. They are at equal distance r from the observer by the

assumption that the photons were emitted at the last scattering surface at equal cosmic

time. Since r2
12 = 2(1 − cos θ)r2, we find then

C2(θ) ∼ Γ(2 − ∆)(1 − cos θ)2−∆ (63)

for arbitrary scaling dimension ∆.

Expanding the function C2(θ) in multipole moments,

C2(θ) =
1

4π

∑

ℓ

(2ℓ+ 1)c
(2)
ℓ (∆)Pℓ(cos θ) , (64)

c
(2)
ℓ (∆) ∼ Γ(2 − ∆) sin [π(2 − ∆)]

Γ(ℓ− 2 + ∆)

Γ(ℓ+ 4 − ∆)
, (65)

shows that the pole singularity at ∆ = 2 appears only in the ℓ = 0 monopole moment.

This singularity is just the reflection of the fact that the Laplacian in (60) cannot be

inverted on constant functions, which should be excluded. Since the CMB anisotropy is

defined by removing the isotropic monopole moment (as well as the dipole moment), the

ℓ = 0 term does not appear in the sum, and the higher moments of the anisotropic two-

point correlation function are well-defined for ∆ near 2. Normalizing to the quadrupole

moment c
(2)
2 (∆), we find

c
(2)
ℓ (∆) = c

(2)
2 (∆)

Γ(6 − ∆)

Γ(∆)

Γ(ℓ− 2 + ∆)

Γ(ℓ+ 4 − ∆)
, (66)

which is a standard result [60]. Indeed, if ∆ is replaced by p = 2 we obtain

ℓ(ℓ + 1)c
(2)
ℓ (p) = 6c

(2)
2 (p), which is the well-known predicted behavior of the lower

moments (ℓ ≤ 30) of the CMB anisotropy where the Sachs-Wolfe effect should dominate.

If the conformal fixed point behavior described in the previous section dominates

at these scales then the scaling dimension of an observable with classical dimension p is

given by [61]

∆p = 4

√

1 − (8−2p)
Q2 −

√

1 − 8
Q2

1 −
√

1 − 8
Q2

. (67)
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Hence consideration of the trace anomaly generated by the zero-point fluctuations of

massless fields leads necessarily to well-defined quantum corrections to the naive scaling

dimensions of observables in cosmology. In the limit Q2 → ∞, the effects of fluctuations

in the metric are suppressed and one recovers the classical scaling dimension p,

∆p = p+
1

2Q2
p (4 − p) + · · · (68)

The quantity Q−2 is determined in principle by the trace anomaly coefficient b′ through

(38) and (48), but we may regard it as simply a free parameter characterizing the

universality class of the conformal metric fluctuations, which should be determined from

the observations. From this slightly more general perspective, the conformal invariance

considerations that lead to (67) are quite independent of any particular model of their

origin.

In the analysis of physical observables in the conformal sector of gravity, the

operator with the lowest non-trivial scaling dimension corresponds, in the classical limit,

to the scalar curvature R with p = 2 [61]. Since the fluctuations which dominate at large

distances correspond to observables with lowest scaling dimensions, the conformal factor

theory in this limit selects precisely Harrison’s original choice. With p = 2, we find a

definite prediction for deviations from a strict Harrison-Zel’dovich spectrum according

to Eqns. (59) and (67) in terms of the parameter Q2. The resulting spectral index is

always greater than unity for all finite Q2 ≥ 8, approaching one as

n = 1 +
4

Q2
+ · · · (69)

as Q2 → ∞.

The latest WMAP three year CMB results now favor a spectral index for scalar

perturbations of about 0.95, some three standard deviations lower than unity. From

(38) and (48), the value of Q2 for free conformally invariant fields is

Q2 =
1

180
(NS + 11

2
NF + 62NV − 28) +Q2

grav , (70)

where Q2
grav is the contribution of spin-2 gravitons. The −28 contribution is that of

the conformal or spin-0 part of the metric itself. The main theoretical uncertainty in

determining Q2
grav is that the Einstein theory is neither conformally invariant nor free,

so that a method for evaluating the infrared effects of spin-2 gravitons is required which

is insensitive to ultraviolet physics. A purely one-loop computation gives Q2
grav ≃ 7.9

for the graviton contribution [46]. Taking this estimate at face value and including all

known fields of the Standard Model of particle physics (for which NF = 45 and NV = 12)

we find

Q2
SM ≃ 13.2 and n ≃ 1.45 , (71)

which is now firmly excluded by the WMAP data. If we require that n be within 0.05

of unity, then Q2 > 80 is needed.

It is possible that the effective number of massless degrees of freedom was much

higher at the surface of last scattering from which the CMB was emitted, leading
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to a much higher value of Q2. It is also to be noted that the same conformal fixed

point fluctuations that led to (59) and (67) also drive the cosmological term λ and the

inverse Newtonian constant to zero. These non-classical effects on the geometry have

not been taken into account in the essentially classical calculation of (60)-(63). The

scaling relations at the conformal fixed point were also derived in a four dimensional

Euclidean theory. Yet in (60)-(63) we assumed spatially flat FLRW three dimensional

sections. The actual geometry through which the CMB photons propagate from their

last scattering surface to us may be different. Finally, the cosmological parameters are

also extracted from the data through the use of models such as Λ CDM or variants

thereof. Some of the assumptions in these models may have to be re-examined if gravity

itself is modified by the anomalous terms. Accounting for these possible effects on the

spectral index requires a more complete cosmological model.

Turning now from the two-point function of CMB fluctuations to higher point

correlators, we find a second characteristic prediction of conformal invariance, namely

non-Gaussian statistics for the CMB. The first correlator sensitive to this departure

from gaussian statistics is the three-point function of the observable O∆, which takes

the form [59]

〈O∆(x1)O∆(x2)O∆(x3)〉 ∼ |x1 − x2|−∆|x2 − x3|−∆|x3 − x1|−∆ , (72)

or in Fourier space [57],

G3(k1, k2) ∼
∫

d3p |p|∆−3 |p+ k1|∆−3 |p− k2|∆−3 ∼ Γ
(

3 − ∆
2

)

[Γ
(

9−3∆
2

)

]3

∫ 1

0

∫ 1

0

du dv ×

[u(1 − u)v]
1−∆

2 (1 − v)
∆

2
−1[u(1 − u)(1 − v)k2

1 + v(1 − u)k2
2 + uv(k1 + k2)

2]−(3−∆

2
). (73)

This three-point function of primordial density fluctuations gives rise to three-point

correlations in the CMB by reasoning precisely analogous as that leading from Eqns. (58)

to (62). That is,

C3(θ12, θ23, θ31) ≡
〈

δT

T
(r̂1)

δT

T
(r̂2)

δT

T
(r̂3)

〉

∼
∫

d3k1 d
3k2

k2
1 k

2
2 (k1 + k2)2

G3(k1, k2) e
ik1·r13eik2·r23 (74)

where rij ≡ (r̂i − r̂j)r and r2
ij = 2(1 − cos θij)r

2.

From (73) and (74), it is easy to extract the global scaling of the three-point

function,

G3(sk1, sk2) ∼ s3(∆−2)G3(k1, k2) ,

C3 ∼ r3(2−∆) . (75)

In the general case of three different angles, the expression for the three-point correlation

function (74) is quite complicated, although it can be rewritten in parametric form

analogous to (73) to facilitate numerical evaluation, if desired. An estimate of its

angular dependence in the limit ∆ → 2 can be obtained by replacing the slowly varying
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G3(k1, k2) by a constant. Then (74) can be expanded in terms of spherical harmonics,

C3(θij) ∼
∑

li,mi

K∗
l1m1l2m2l3m3

(2l1 + 1)(2l2 + 1)(2l3 + 1)
×

(

1

l1 + l2 + l3
+

1

l1 + l2 + l3 + 3

)

Yl1m1
(r̂1)Yl2m2

(r̂2)Yl3m3
(r̂3) , (76)

where Kl1m1l2m2l3m3
≡

∫

dr̂Yl1m1
(r̂)Yl2m2

(r̂)Yl3m3
(r̂).

In the special case of equal angles θij = θ, it follows from (75) that the three-point

correlator is

C3(θ) ∼ (1 − cos θ)
3

2
(2−∆) . (77)

Expanding the function C3(θ) in multiple moments as in Eqn. (64) with coefficients c
(3)
ℓ ,

and normalizing to the quadrupole moment, we find

c
(3)
ℓ (∆) = c

(3)
2 (∆)

Γ(4 + 3
2
(2 − ∆))

Γ(2 − 3
2
(2 − ∆))

Γ(ℓ− 3
2
(2 − ∆))

Γ(ℓ+ 2 + 3
2
(2 − ∆))

. (78)

In the limit ∆ → 2, we obtain ℓ(ℓ + 1)c
(3)
ℓ = 6c

(3)
2 , which is the same result as for the

moments c
(2)
ℓ of the two-point correlator but with a different quadrupole amplitude.

The value of this quadrupole normalization c
(3)
2 (∆) cannot be determined by

conformal symmetry considerations alone. A naive comparison with the two-point

function which has a small amplitude of the order of 10−5 leads to a rough estimate of

c
(3)
2 ∼ O(10−7.5), which would make it very difficult to detect. However, if the conformal

invariance hypothesis is correct, then these non-Gaussian correlations should exist at

some level, in distinction to the simplest inflationary scenarios. Their amplitude is

model dependent and possibly much larger than the above naive estimate. The present

WMAP data does not show any evidence of these non-Gaussian statistics [62]. Again

we are in need of a calculation of the amplitude of the non-Gaussianity based on a

more complete model. In the meantime any detection of non-Gaussian statistics of the

CMB would be an important clue to their origin and possibly an important test for the

hypothesis of conformal invariance.

For higher point correlations, conformal invariance does not determine the total

angular dependence. Already the four-point function takes the form,

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉 ∼
A4

∏

i<j r
2∆/3
ij

, (79)

where the amplitude A4 is an arbitrary function of the two cross-ratios, r2
13r

2
24/r

2
12r

2
34

and r2
14r

2
23/r

2
12r

2
34. Analogous expressions hold for higher p-point functions. However in

the equilateral case θij = θ, the coefficient amplitudes Ap become constants and the

angular dependence is again completely determined. The result is

Cp(θ) ∼ (1 − cos θ)
p

2
(2−∆) , (80)

and the expansion in multiple moments yields coefficients c
(p)
ℓ of the same form as in

Eqn. (78) with 3/2 replaced by p/2. In the limit ∆ = 2, we obtain the universal

ℓ-dependence ℓ(ℓ+ 1)c
(p)
ℓ = 6c

(p)
2 .
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Thus the conformal invariance hypothesis applied to the primordial density

fluctuations predicts deviations both from the classical Harrison-Zel’dovich spectrum

and Gaussian statistics, which should be imprinted on the CMB anisotropy. A particular

realization of this hypothesis is provided by the metric fluctuations induced by the known

trace anomaly of massless matter fields which gives rise to fixed point with a spectral

index n > 1. Although this is disfavored by the WMAP data, lacking a complete

cosmological model which takes dark energy, dark matter, the CMB and possibly other

effects into account in a consistent way, it is premature to draw a final conclusion on

the conformal invariance hypothesis. The possibility of explaining the small value of

λ in a natural way is a strong reason to pursue a more complete cosmological model

within this framework. In order to establish the firm theoretical basis for a consistent

cosmological model, we return to consideration of the full EFT of gravity, reporting on

recent progress in the auxiliary field description of the non-local terms (46) generated

by the trace anomaly.

7. The Low Energy EFT of Gravity

The quantization of the conformal factor in certain specialized cases carried out in the

1990′s and reviewed in Secs. 4 and 5 shows that there are new degrees of freedom and

infrared quantum effects in gravity which are not contained in classical general relativity.

Moreover these new scalar degrees of freedom and their fluctuations appear to be the

relevant ones for cosmological scales and the screening of the cosmological term, which

was our initial motivation for studying them. In order to place these new degrees of

freedom on a solid footing together with Einstein’s theory, we give in this section a self-

contained systematic effective field theory (EFT) treatment of four dimensional gravity.

The EFT of gravity is determined by the same general principles as in other contexts

[63], namely by an expansion in powers of derivatives of local terms consistent with

symmetry. Short distance effects are parameterized by the coefficients of local operators

in the effective action, with higher order terms suppressed by inverse powers of an

ultraviolet cutoff scale M . The effective theory need not be renormalizable, as indeed

Einstein’s theory is not, but is expected nonetheless to be quite insensitive to the details

of the underlying microscopic degrees of freedom, because of decoupling [63]. It is the

decoupling of short distance degrees of freedom from the macroscopic physics that makes

EFT techniques so widely applicable, and which we assume applies also to gravity.

As a covariant metric theory with a symmetry dictated by the Equivalence

Principle, general relativity may be regarded as just such a local EFT, truncated at

second order in derivatives of the metric field gab(x) [64]. When quantum matter

is considered, the stress tensor T b
a becomes an operator. Because the stress tensor

has mass dimension four, containing up to quartic divergences, the proper covariant

renormalization of this operator requires fourth order terms in derivatives of the metric.

However the effects of such higher derivative local terms in the gravitational effective

action are suppressed at distance scales L ≫ LP l in the low energy EFT limit. Hence
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surveying only local curvature terms, it is often tacitly assumed that Einstein’s theory

contains all the low energy macroscopic degrees of freedom of gravity, and that general

relativity cannot be modified at macroscopic distance scales, much greater than LP l,

without violating general coordinate invariance and/or EFT principles. As we have

argued previously in two dimensions, this presumption should be re-examined in the

presence of quantum anomalies.

When a classical symmetry is broken by a quantum anomaly, the naive decoupling

of short and long distance physics assumed by an expansion in local operators with

ascending inverse powers of M fails. In this situation even the low energy symmetries

of the effective theory are changed by the presence of the anomaly, and some remnant

of the ultraviolet physics survives in the low energy description. An anomaly can have

significant effects in the low energy EFT because it is not suppressed by any large energy

cutoff scale, surviving even in the limit M → ∞. Any explicit breaking of the symmetry

in the classical Lagrangian serves only to mask the effects of the anomaly, but in the

right circumstances the effects of the non-local anomaly may still dominate the local

terms. We have mentioned in Sec. I the chiral anomaly in QCD with massless quarks,

whose effects are unsuppressed by any inverse power of the EFT ultraviolet cutoff scale,

in this case M ∼ ΛQCD. Although the quark masses are non-zero, and chiral symmetry

is only approximate in nature, the chiral anomaly gives the dominant contribution to the

low energy decay amplitude of π0 → 2γ in the standard model [65, 66], a contribution

that is missed entirely by a local EFT expansion in pion fields. Instead the existence

of the chiral anomaly requires the explicit addition to the local effective action of a

non-local term in four physical dimensions to account for its effects [48, 63].

Although when an anomaly is present, naive decoupling between the short and long

distance degrees of freedom fails, it does so in a well-defined way, with a coefficient that

depends only on the quantum numbers of the underlying microscopic theory. In fact,

since the chiral anomaly depends on the color charge assignments of the short distance

quark degrees of freedom, the measured low energy decay width of π0 → 2γ affords

a clean, non-trivial test of the underlying microscopic quantum theory of QCD with

three colors of fractionally charged quarks [63, 66, 67]. The bridge between short and

long distance physics which anomalies provide is the basis for the anomaly matching

conditions [8].

The low energy effective action for gravity in four dimensions contains first of all,

the local terms constructed from the Riemann curvature tensor and its derivatives and

contractions up to and including dimension four. This includes the usual Einstein-

Hilbert action of general relativity,

SEH[g] =
1

16πG

∫

d4x
√
−g (R − 2Λ) (81)

as well as the spacetime integrals of the fourth order curvature invariants,

S
(4)
local[g] =

1

2

∫ √
−g (αCabcdC

abcd + βR2) d4x , (82)
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with arbitrary dimensionless coefficients α and β. There are two additional fourth order

invariants, namely E =∗Rabcd
∗Rabcd and R, which could be added to (82) as well, but

as they are total derivatives yielding only a surface term and no local variation, we omit

them. All the possible local terms in the effective action may be written as the sum,

Slocal[g] =
1

16πG

∫

d4x
√
−g (R− 2Λ) + S

(4)
local +

∞
∑

n=3

S
(2n)
local . (83)

with the terms in the sum with n ≥ 3 composed of integrals of local curvature invariants

with dimension 2n ≥ 6, and suppressed by M−2n+4 at energies E ≪ M . Here M is

the ultraviolet cutoff scale of the low energy effective theory which we may take to be

of order Mpl. The higher derivative terms with n ≥ 3 are irrelevant operators in the

infrared, scaling with negative powers under global rescalings of the metric, and may

be neglected at macroscopic distance scales. On the other hand the two terms in the

Einstein-Hilbert action n = 0, 1 scale positively, and are clearly relevant in the infrared.

The fourth order terms in (82) are neutral under such global rescalings.

The exact quantum effective action also contains non-local terms in general. All

possible terms in the effective action (local or not) can be classified according to how

they respond to global Weyl rescalings of the metric. If the non-local terms are non-

invariant under global rescalings, then they scale either positively or negatively under

(28). If m−1 is some fixed length scale associated with the non-locality, arising for

example by the integrating out of fluctuations of fields with mass m, then at much

larger macroscopic distances (mL ≫ 1) the non-local terms in the effective action

become approximately local. The terms which scale with positive powers of eσ0 are

constrained by general covariance to be of the same form as the n = 0, 1 Einstein-

Hilbert terms in Slocal, (81). Terms which scale negatively with eσ0 become negligibly

small as mL ≫ 1 and are infrared irrelevant at macroscopic distances. This is the

expected decoupling of short distance degrees of freedom in an effective field theory

description, which are verified in detailed calculations of loops in massive field theories

in curved space. The only possibility for contributions to the effective field theory of

gravity at macroscopic distances, which are not contained in the local expansion of (83)

arise from fluctuations not associated with any finite length scale, i.e. m = 0. These

are the non-local contributions to the low energy EFT which include those associated

with the anomaly.

The non-local form of the anomalous effective action was given in (46). To cast

this into local form and exhibit the new scalar degrees of freedom the Sanom contains,

it is convenient as in the two dimensional case to introduce auxiliary fields. Two scalar

auxiliary fields satisfying

∆4 ϕ =
1

2

(

E − 2

3
R

)

,

∆4 ψ =
1

2
F , (84)

respectively may be introduced, corresponding to the two non-trivial cocycles of the b
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and b′ terms in the anomaly [47]. It is then easy to see that

Sanom[g;ϕ, ψ] =
b′

2

∫

d4x
√
−g

{

−ϕ∆4ϕ+

(

E − 2

3
R

)

ϕ

}

+
b

2

∫

d4x
√−g

{

−ϕ∆4ψ − ψ∆4ϕ+ Fϕ+

(

E − 2

3
R

)

ψ

}

(85)

is the desired local form of the anomalous action (46) [69, 70]. Indeed the variation of

(85) with respect to the auxiliary fields ϕ and ψ yields their Eqs. of motion (84), which

may be solved for ϕ and ψ by introducing the Green’s function ∆−1
4 (x, x′). Substituting

this formal solution for the auxiliary fields into (85) returns (46). The local auxiliary

field form (85) is the most useful and explicitly contains two new scalar fields satisfying

the massless fourth order wave equations (84) with fourth order curvature invariants

as sources. The freedom to add homogeneous solutions to ϕ and ψ corresponds to the

freedom to define different Green’s functions inverses ∆−1
4 (x, x′) in (46). The auxiliary

scalar fields are new local massless degrees of freedom of four dimensional gravity, not

contained in the Einstein-Hilbert action.

The terms in the classical Einstein-Hilbert action scale with positive powers (L4

and L2) under rescaling of distance, and are clearly relevant operators of the low energy

description. The non-local anomalous terms, rendered local by the introduction of

the auxiliary fields ϕ and ψ scale logarithmically (∼ logL) with distance under Weyl

rescalings. Unlike local higher derivative terms in the effective action, which are either

neutral or scale with negative powers of L, the anomalous terms should not be discarded

in the low energy, large distance limit. The auxiliary fields are new local scalar degrees of

freedom of low energy gravity, not contained in classical general relativity. The addition

of the anomaly term(s) to the low energy effective action of gravity amounts to a non-

trivial infrared modification of general relativity, fully consistent with both quantum

theory and the Equivalence Principle [47].

The fluctuations generated by Sanom define a non-perturbative Gaussian infrared

fixed point, with conformal field theory anomalous dimensions analogous to the two

dimensional case [45, 68]. This is possible only because new low energy degrees of

freedom are contained in Sanom which can fluctuate independently of the local metric

degrees of freedom in SEH . Thus the effective action of the anomaly Sanom should be

retained in the EFT of low energy gravity, which is specified then by the first two strictly

relevant local terms of the classical Einstein-Hilbert action (81), and the logarithmic

Sanom, i.e.

Seff [g] = SEH[g] + Sanom[g] (86)

contains all the infrared relevant terms in low energy gravity for E ≪Mpl.

The low energy (Wilson) effective action (86), in which infrared irrelevant terms are

systematically neglected in the renormalization group program of critical phenomena is

to be contrasted with the exact (field theoretic) effective action, in which the effects of

all scales are included in principle, at least in the approximation in which spacetime

can be treated as a continuous manifold. Ordinarily, i.e. absent anomalies, the
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Wilson effective action should contain only local infrared relevant terms consistent with

symmetry [58]. However, like the anomalous effective action generated by the chiral

anomaly in QCD, the non-local Sanom must be included in the low energy EFT to

account for the anomalous Ward identities, even in the zero momentum limit, and

indeed logarithmic scaling with distance indicates that Sanom is an infrared relevant

term. Also even if no massless matter fields are assumed, the quantum fluctuations of

the metric itself will generate a term of the same form as Sanom [46].

By using the definition of ∆4 and integrating by parts, we may express the

anomalous action also in the form,

Sanom = b′S(E)
anom + bS(F )

anom , (87)

with

S(E)
anom ≡ 1

2

∫

d4x
√−g

{

− ( ϕ)2 + 2

(

Rab − R

3
gab

)

(∇aϕ)(∇bϕ) +

(

E − 2

3
R

)

ϕ

}

,

S(F )
anom ≡

∫

d4x
√−g

{

− ( ϕ) ( ψ) + 2

(

Rab − R

3
gab

)

(∇aϕ)(∇bψ)

+
1

2
Fϕ+

1

2

(

E − 2

3
R

)

ψ

}

(88)

It is this final local auxiliary field form of the effective action which is to be added

to classical Einstein-Hilbert action to obtain the effective action of low energy gravity

in (86). We note also that in this form the simple shift of the auxiliary field ϕ by a

spacetime constant,

ϕ→ ϕ+ 2σ0 (89)

yields the entire dependence of Sanom on the global Weyl rescalings (28), viz.

Sanom[g;ϕ, ψ] → Sanom[e2σ0g;ϕ+ 2σ0, ψ]

= Sanom[g;ϕ, ψ] + σ0

∫

d4x
√−g

[

bF + b′
(

E − 2

3
R

)]

, (90)

owing to the strict invariance of the terms quadratic in the auxiliary fields under (28)

and eqs. (4). Thus the auxiliary field form of the anomalous action (88) contains the

same information about the global Weyl anomaly and large distance scaling as ΓWZ .

One may ask if there are any other modifications of classical general relativity at low

energies that are consistent with general covariance and EFT principles. The complete

classification of the terms in the exact effective action [47, 70] into just three categories

means that all possible infrared relevant terms in the low energy EFT, which are not

contained in Slocal of (83) must fall into Sanom, i.e. they must correspond to non-trivial

co-cycles of the local Weyl group. The Weyl invariant terms in the exact effective action

are by definition insensitive to rescaling of the metric at large distances. Hence these

(generally quite non-local) terms do not give rise to infrared relevant terms in the Wilson

effective action for low energy gravity.

Furthermore, the form of the non-trivial co-cycles in Sanom is severely restricted by

the locality and general covariance of quantum field theory. The ultraviolet divergences
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in the stress-energy tensor of quantum fields in curved spacetime are purely local. It

is these divergences when renormalized consistently with covariant conservation of the

local operator Tab(x) that give rise to the purely local form of the trace anomaly. Since

all the local gauge invariant terms with mass dimension four matched to the physical

dimension of spacetime are easily cataloged, the only non-trivial terms in Sanom at low

energies which can arise from short distance renormalization effects are exactly those

generated by the known form of the local trace anomaly (38). Decoupling fails in local

quantum field theory only in the very narrow and well-defined way dictated by local

anomalies, and these uniquely determine the non-local additions to the effective action,

up to any contributions from Sinv, which in any case have negligibly small effect on very

large distance scales. The form of the effective action Sanom at macroscopic distances

L≫ Lpl is not expected to change substantially even if the condition of strict locality of

the underlying quantum theory is relaxed or replaced eventually by a more fundamental,

microscopic description of gravitational interactions at very large mass scales of order

Mpl. If this were not the case, then the classical Einstein theory could be overwhelmed

by all sorts of non-local quantum corrections from unknown microscopic physics, and

would lose all predictive power for macroscopic gravitational phenomena. Instead, under

the defining assumptions of general covariance and the EFT hypothesis of decoupling

of physics associated with massive degrees of freedom, the infrared modification of

Einstein’s theory specified by (86)-(88) is tightly constrained and becomes essentially

unique. Notice in particular that the EFT logic precludes any inverse powers of the

Ricci scalar or other local curvature invariants appearing in the denominators of terms

in the effective action. It is the EFT of gravity defined by (86) which is the basis for the

new degrees of freedom and their fluctuations leading to the conformal fixed point of

Secs 4 and 5. It should also be the basis upon which a more comprehensive cosmological

model of dark energy incorporating these effects is constructed.

8. The Horizon Boundary

Quantum effects in global de Sitter space indicate infrared effects on the horizon scale

are important. These effects are contained in two new infrared relevant operators in the

EFT of low energy gravity described by (87) above. If we hope to construct a consistent

model of dark energy in which the quantum effects of the trace anomaly can modify

classical theory, then we must identify first where the effects of the new terms in the

EFT can be significant. This involves again a careful investigation of horizon and near

horizon effects in de Sitter spacetime.

Two familiar examples of spacetimes with horizons are the Schwarzschild metric of

an uncharged non-rotating black hole, and the de Sitter metric. Both can be expressed

in static, spherically symmetric coordinates in the form,

ds2 = −f(r) c2dt2 +
dr2

f(r)
+ r2

(

dθ2 + sin2 θ dφ2
)

. (91)
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In the Schwarzchild case,

f
S
(r) = 1 − r

S

r
, r

S
=

2GM

c2
, (92)

while in the de Sitter case, from (22),

f
dS

(r) = 1 − r2

r2
H

, r
H

=

(

3

Λ

)
1

2

, (93)

respectively. The first metric approaches flat space at large r but becomes singular at

the finite radius r
S
. The second is the static coordinates of de Sitter spacetime (22),

describing the interior of a spherical region with a coordinate singularity at the finite

radius r
H
. In both cases the metric singularities may be regarded as pure coordinate

artifacts, in the sense that they can be removed entirely by making a singular coordinate

transformation to a different set of well-behaved coordinates in the vicinity of the

horizons. Indeed by undoing (21b) we can transform de Sitter spacetime back to FLRW

coordinates. However, as we have observed already in Sec. 2 certain global effects such

as the tempearture associated with the horizon in the standard treatments cannot be

transformed away by a local coordinate transformation.

It is important to recognize that the Equivalence Principle implies invariance under

regular coordinate transformations, whereas singular transformations and the analytic

extensions of spacetime they involve require a physical assumption, namely that there

are no stress-energy sources or discontinuities of any kind at coordinate singularity.

Even in the classical theory the hyperbolic nature of Einstein’s equations allows for

sources and/or discontinuities transmitted at the speed of light on a null hypersurface,

such as the Schwarzschild or de Sitter horizon. Analytic continuation amounts then to

a physical assumption that no such discontinuities are present.

Moreover, when quantum fields are considered, matter is no longer described as

pointlike particles following classical geodesics, but as matter waves, especially on the

horizon scale. This is the origin of the particle creation and Hawking effects discussed

in Sec. 2. The matter wave equations such as the Dirac or Klein-Gordon eqs. couple to

the electromagnetic and metric potentials, not the local Maxwell or Riemann curvature

tensors. Hence quantum matter effects can depend on gauge invariant global functions of

the potentials such as exp(i
∮

Aµdx
µ), through the boundary conditions imposed on the

solutions. Like the Aharonov-Bohm effect in electron scattering or the Abrikosov vortex

in superconductors, a singular “gauge” transformation may have global physical effects

at the quantum level, even though the field curvature tensor is small or even vanishing

nearly everywhere. This is because it is not truly an allowed symmetry transformation

of the quantum theory at all. Clearly such global quantum effects of matter waves

cannot be captured by a description of matter as pointlike particles of infinitesimal size

following classical geodesics.

These quantum wavelike effects show up in the behavior of the renormalized

expectation value of the stress-energy tensor, 〈Ψ|T b
a |Ψ〉 as r → r

S
or r → r

H
. This

expectation value depends upon the quantum state |Ψ〉 of the field theory, specified by
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choosing particular solutions of the wave equation Φ = 0. The Schwarzschild or de

Sitter horizon is a characteristic surface and regular singular point of the wave equation

in static coordinates (91). Hence the general solution of the wave equation is singular

there, and so is the expectation value, 〈Ψ|T b
a |Ψ〉 in the corresponding quantum state.

This generic singular behavior is essentially kinematical in origin, since a photon with

frequency ω and energy ~ω far from the horizon has a local energy Eloc = ~ωf−
1

2 .

The stress-energy is dimension four, and its generic behavior near the event horizon is

E4
loc ∼ f−2. Calculations of 〈Ψ|T b

a |Ψ〉 both directly from quantum field theory and

through the anomaly action (85) show this diverging behavior in the vacuum state

defined by absence of quanta with respect to the static time coordinate t in (91)

[70, 72, 73]. In this “vacuum” state the stress tensor behaves like the negative of a

radiation fluid at the local temperature, Tloc = ~c|f ′|f−
1

2/4πk
B
. Hence the “vacuum”

near a spacetime horizon is sensitive to arbitarily high frequency components of quantum

fluctuations, whose backreaction effects through the stress tensor expectation, 〈T b
a 〉 may

become arbitrarily large.

Although this has been known for some time [72, 73], the attitude usually adopted

is that states which lead to such divergences on the horizon are to be excluded, and only

states regular on the horizon are allowed. However this particular boundary condition

is only one possibility and is not required by any general principles of quantum field

theory in one causally connected region of spacetime. The essence of an event horizon is

that it divides spacetime into regions which are causally disconnected from each other.

In both the de Sitter and Schwarzschild cases, there are globally regular states such

as the Bunch-Davies and Hartle-Hawking states respectively [23, 71], but these specify

that precise quantum correlations be set up and maintained in regions of the globally

extended spacetimes which never have been in any causal contact with each other.

Despite their mathematical appeal, it is by no means clear physically why one should

restrict attention to quantum states in which exact phase correlations between causally

disconnected regions are to be rigorously enforced. This is the quantum version of the

causality or horizon problem encountered with respect to the CMB in classical FLRW

cosmologies. As soon as one drops this acausal requirement, and on the contrary restricts

attention to states with correlations that could have been arranged causally in the past,

within the region r ≤ r
H

in de Sitter spacetime, for example, then states with divergent

〈Ψ|T b
a |Ψ〉 on the horizon become perfectly admissible (ignoring for the moment the large

backreaction such a stress-energy must exert on the background geometry). This is the

conclusion reached also by consideration of the solutions of the auxiliary field equations

(84) in Schwarzschild and de Sitter spacetimes [70]. In fact, the ϕ and ψ fields generally

diverge on the horizon, even though the local Riemann curvature is classically small

there. The quantum EFT which allows these states is then quite different in its basis

and consequences from an arbitrary presciption to exclude them a priori.

Again our experience with the Casimir effect suggests a physical interpretation

and resolution of the divergences in these states. In the calculation of the local

stress tensor 〈Ψ|T b
a |Ψ〉 in flat spacetime with boundaries, one also finds divergences
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in the generic situation of non-conformally invariant fields and/or curved boundaries

[74]. The divergences may be traced to the boundary conditions imposed on modes

of the high frequency components of a quantum field, and cannot be removed by

standard renormalization counterterms in the bulk. As the theory and applications

of the Casimir effect have developed, it became clear that the material properties

of the real conductors involved in the experiments must be taken into account to

regulate these mathematical divergences. Casimir’s idealized boundary conditions on

the electromagnetic field, appropriate for a perfect conductor with infinite conductivity,

must give way in more realistic calculations to boundary conditions incorporating

the finite conductivity response function of real metals [2]. The idealized boundary

conditions which led to the divergences are not to be excluded from consideration by

mathematical fiat; indeed they are the correct boundary conditions at low to moderate

frequencies, and the local stress tensor would continue to grow larger as the boundary

is approached, if no new physics were to intervene. The appropriate modification of

the boundary conditions at higher frequencies and the cutoff of this growth is obtained

by correctly incorporating the physics of the conducting boundary. Then finite results

confirmed in detail by experiment are obtained [2]. At still smaller length and time

scales approaching atomic dimensions, the approximation of a continuous or average

conductivity response function of the metal surface will have to be modified again, to

take account the electron band structure and microscopic graininess of the conductors,

which are composed finally of discrete atomic constituents. Only the physical response

function of the metal, not the mathematics of analytic continuation (which involves

an unchecked assumption of arbitrarily high Fourier components) can determine the

correct boundary conditions to be imposed at the boundary, and the behavior of the

stress tensor as the boundary is approached.

In the case of the Schwarzschild or de Sitter horizon this boundary condition

requires additional physical input. The wave equation in the spherically symmetric

static coordinates (91) can be separated by writing Φ = e−iωtYlm
ψωl

r
, and the second

order ordinary differential equation for the radial function, ψωl may be cast in the form,
[

− d2

dr∗2
+ Vl

]

ψωl = ω2ψωl . (94)

The change of radial variable from r to r∗ ≡
∫ r dr

f(r)
has been made in order to put the

second derivative term into standard form, and the scattering potential for the mode

with angular quantum number l is

Vl = f

[

1

r

df

dr
+
l(l + 1)

r2

]

. (95)

Since f → 0 linearly as r approaches the horizon, the variable r∗ → −∞ logarithmically,

and the potential goes to zero there, vanishing exponentially in r∗. Hence the solutions

of (94) define one dimensional scattering states on an infinite interval (in r∗), and the

boundary conditions on the horizon that ensure that the scattering matrix is hermitian

are free ones, allowing both incoming and outgoing plane wave modes as r∗ → −∞.
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The vacuum state defined by zero occupation number with respect to these scattering

states is the Boulware vacuum |ΨB〉, which has a divergent 〈ΨB|T b
a |ΨB〉, behaving in

fact like −T 4
loc diag(−3, 1, 1, 1) ∼ f−2 on the horizon [72, 73]. In contrast to the Casimir

effect in flat spacetime with curved boundaries, this divergence does not arise from hard

Dirichlet or Neumann boundary conditions, but from an infinite redshift surface with

free boundary conditions. Hence the properties of no ordinary material at the boundary

can remove this divergence, and the effective cutoff of horizon divergences can arise only

from new physics in the gravitational sector at ultrashort scales, i.e. in the structure of

spacetime itself very near to the horizon.

The divergence of the expectation value 〈T b
a 〉 at the horizon is completely described

by the auxiliary potentials of the anomalous action (87)-(88) [70]. As expected from

their derivation and the analogous situation in two dimensions, these auxiliary fields

carry non-local information about the global quantum state and boundary conditions.

Their fluctuations describe the higher point correlators of the stress-energy tensor in

the given quantum state. From the particle creation, thermodynamic and fluctuation-

dissipation discussion in Sec. 2, and the conformal fixed point considerations of Secs.

4 and 5, it is these fluctuations and the higher point correlators of the quantum T b
a

that generate the backreaction on the mean geometry necessary to relax the effective

cosmological term to zero. These become significant in the limit f(r) → 0 as the horizon

boundary is approached. Thus the locus of important quantum effects from Sanom is not

on superhorizon scales in the FLRW coordinates (10), but in a very thin boundary layer

very close to the Schwarzschild or de Sitter horizon in static coordinates. In other words,

the physical location of the conformally invariant phase of gravity discussed somewhat

abstractly in Secs. 4 and 5 should be just in this boundary layer very close to r = r
H
.

9. A New Cosmological Model of Dark Energy

The suggestion that a quantum phase transition may occur in the vicinity of the classical

Schwarzschild horizon r
S

has been made in [75] and [76]. The fluctuations of the auxiliary

fields of Sanom which we found previously describe a conformally invariant phase of

gravity with vanishing cosmological term, and may be responsible for this transition

near the horizon. At a first order phase transition in which the quantum ground state

rearranges itself, the vacuum energy of the state can change. Hence the region interior

to r
S

of the Schwarzschild geometry may have a different effective value of Λ than the

exterior region. We have suggested that the cosmological term itself may be viewed

as the order parameter of a kind of gravitational Bose-Einstein condensate (GBEC),

and the phase transition near the horizon where this condensate disorders would then

become similar to BEC phase transition observed in cold atomic systems [76]. Moreover,

since due to (6) the vacuum dark energy equation of state with ρv = −pv > 0 acts as

an effective repulsive term in Einstein’s equations, a positive value of Λ in the interior

serves to support the system against further gravitational collapse. For this to work the

effective value of Λ in the interior would have to adjust itself dynamically to the total
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mass of the system in order to reach a non-singular state of stable equilibrium with

r
H
≃ r

S
. The de Sitter interior is free of any singularities and the entropy of this state

is much less than the Bekenstein-Hawking entropy of a black hole. It therefore suffers

from no “information paradox” [76].

It is interesting to remark that the non-singular configuration described in [76] may

be viewed as the gravitational analog of the model of an electron, which was one of the

motivations of some of the original investigations of the Casimir effect. Since the Casimir

force on a conducting charged sphere is repulsive, it cannot cancel the classical repulsive

Coulomb self-force [77]. However a repulsive Casimir force with interior vacuum energy

pv = −ρv < 0 is exactly what is needed to balance the attractive force of gravity to

prevent collapse to a singularity. The Casimir proposal to model an elementary particle

such as the electron as a conducting spherical shell does not work as originally proposed,

but the analogous model for the non-singular final state of gravitational collapse of a

macroscopic self-gravitating object [78] appears to be perfectly viable.

The model we arrive at is one with the de Sitter interior matched to a Schwarzschild

exterior, sandwiching a thin shell which straddles the region near to r
H
≃ r

S
, cutting

off the divergences in 〈T b
a 〉 as r

H
is approached from inside and r

S
is approached from

outside. This thin shell is the boundary layer where the new physics of a quantum

phase transition takes place. In the EFT approach this new physics is described by the

fluctuations of the auxiliary scalar degrees of freedom ϕ and ψ in Sanom.

In a true quantum boundary layer, fluctuations in all the higher point correlators

of T b
a are to be expected. This boundary layer is therefore quite non-perturbative.

In effect the coupling constant λ is multiplied by inverse factors of f(r) which greatly

enhance the quantum effects in the boundary layer. Thus even if λ≪ 1 a critical surface

is reached when one approaches the horizon boundary from the interior de Sitter phase.

As a first approximation we may treat the quantum boundary layer in a mean field

approximation, in which Einstein’s equations continue to hold, but with an effective

equation of state of the material making up the layer. This “material” is the quantum

vacuum itself, with a stress tensor described by the auxiliary scalar fields of the effective

action (87)-(88). Then the divergences in this stress tensor are cut off by backreaction

on the classical geometry, replacing an infinite redshift surface at the horizon with a

finite one. This ultrarelativistic vacuum effect at a causal boundary suggests that the

most extreme equation of state consistent with causality should play a role here, namely

the Zel’dovich equation of state p = ρ, where the speed of sound becomes equal to the

speed of light. This is the critical equation of state at the limit of stability for a phase

transition to a new phase with a different value of the vacuum energy. It also arises

naturally as one component of the stress-energy tensor, 〈T b
a 〉 = diag(−ρ, p, p⊥, p⊥) in

a state such as the Boulware state. The conservation equation,

∇aT
a
r =

dp

dr
+
ρ+ p

2f

df

dr
+ 2

p− p⊥
r

= 0 , (96)

implies three independent components in the most general static, spherically symmetric

case. It is clear from (96) that the three independent components can be taken to be
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that with p = ρ/3, behaving like f−2, p = ρ, behaving like f−1, and p = −ρ, behaving

like f 0, reflecting the allowed dominant and subdominant classical scaling behaviors of

the stress tensor near the horizon.

In the simplest model possible we make the further approximation of setting the

tangential pressure p⊥ = p and consider only two independent components of the stress

tensor in non-overlapping regions of space. In that case we have three regions, namely,

I. Interior (deSitter) : 0 ≤ r < r1 , ρ = −p ,
II. Thin Shell : r1 < r < r2 , ρ = +p ,

III. Exterior (Schwarzschild) : r2 < r , ρ = p = 0 .

(97)

Because of (96), p = −ρ is a constant in the interior, which becomes a patch of de Sitter

space in the static coordinates (91), for 0 ≤ r ≤ r1 < r
H
. The exterior region is a patch

of Schwarzschild spacetime for r
S
< r2 ≤ r < ∞. The p = ρ/3 component of the stress

tensor and the smooth transition that it would make possible from one region to another

has been neglected in this simplest model. In the Boulware state this p = ρ/3 traceless

stress tensor has negative sign near r
H

or r
S
. Tangential stresses have been considered

by the authors of [79].

The location of the interfaces at r1 and r2 can be estimated by the behavior of

the stress tensor near the Schwarzschild and de Sitter horizons. If 1 − r
S
/r1 is a small

parameter ǫ, then the location of the outer interface occurs at an r1 where the most

divergent term in the local stress-energy ∝M−4ǫ−2, becomes large enough to affect the

classical curvature ∼M−2, i.e. for

ǫ ∼ Mpl

M
≃ 10−38

(

M⊙

M

)

, (98)

where Mpl is the Planck mass
√

~c/G ≃ 2 × 10−5 gm. Thus ǫ ≪ 1 for an object of the

order of a solar mass, M = M⊙, with a Schwarzschild radius of order of a few kilometers.

If instead of a collapsed star one considers the interior de Sitter region to be a

model of cosmological dark energy, then the radius r
H

is set by measured value of (7),

r
H

=

√

3

Λmeas

≃ 1.5 × 1028 cm, (99)

i.e. the size of the entire visible universe, andM ≈ 5×1022M⊙ ≃ 1056 gm becomes of the

order of the total mass-energy of the visible universe. In that case ǫ ≃ 2 × 10−61 ≃
√
λ

is very small indeed.

Since the function f(r) is of order ǫ ≪ 1 in the transition region II, the proper

thickness of the shell is

ℓ =

∫ r2

r1

dr f−
1

2 ∼ ǫ
1

2 r
S
∼

√

LplrH
≪ r

H
. (100)

Although very small, the thickness of the shell is very much larger than the Planck scale

(2). For r
H

given by (99), the physical thickness of the shell is macroscopic: ℓ ≈ .04 mm.

The energy density and pressure in the shell are of order M−2 and far below Planckian

for M ≫ Mpl, so that the geometry can be described reliably by Einstein’s equations,
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essentially everywhere, except within the thin shell. The details of the solution in region

II, the matching at the interfaces, r1 and r2, and analysis of the thermodynamic stability

of the gravitational vacuum condensate star (‘gravastar’) were studied in [76].

We note from (21b) that in this kind of cosmological model, the past boundary at

r = r
H

is at the infinite past of the RW coordinates. Thus one trades a possible special

origin of time and the spacelike singularity of the big bang in FLRW cosmologies for a

special spatial origin and location of the boundary wall. The redshift of primordial

radiation is then the gravitational redshift due to the potential change from the

cosmological horizon to an observer in the interior de Sitter geometry. For most of

the interior volume the effects of the past boundary are observed only as relic CMB

radiation and a residual vacuum energy, which would be difficult to distinguish from

a FLRW model far from the boundary. Since the universe is apparently 74% vacuum

dark energy, the cosmological model first proposed by de Sitter [9], in which ΩΛ is unity

becomes again a good first approximation to the observations.

This simple model is clearly very far from complete. The boundary layer has been

posited from the allowed behavior of the stress-energy near the horizon, rather than a full

solution of the EFT equations for the auxiliary fields following from (86). The value of

Λ in the interior is constant and can take on any value, but the solution has ΩΛ = 1 with

no matter or radiation whatsoever in the interior. Since the fluctuations of the auxiliary

scalar fields in the trace anomaly action are necessary for the dynamical relaxation of

the vacuum energy, we can obtain only a solution which is static without considering

those fluctuations in detail. This static solution does not describe the evolution of the

dark energy towards smaller values with time or the very small present value of λ.

No attempt has been made to construct a fully dynamical cosmological model which

would have to pass the many successful tests of the standard FLRW models, including

the magnitude, spectrum, and statistics of the CMB. On the other hand if we start

with a simplified cosmological model of pure dark energy in which ΩΛ is exactly one,

our challenge becomes to explain why it is actually 0.74, rather than unity, instead of

misestimating λ by 122 orders of magnitude.

Despite its drastic simplifications the interior de Sitter gravastar model of dark

energy does illustrate the possibility of ρv being a kind of order parameter which is

spacetime dependent, whose value depends on boundary conditions at macroscopic

scales. Thus the dark energy becomes a boundary effect, analogous to the Casimir

energy (5), with the role of the conducting plates being taken by a critical boundary

layer in the spacetime vicinity of the cosmological horizon. In order for the bulk vacuum

energy to scale quadratically with H , i.e. ρv ∼ c4/Gr2
H
, rather than ~c/r4

H
as might be

expected from (5), it is necessary for fluctuations of the metric itself, i.e. the stress-

energy of gravitational waves to play an important role. These fluctuations are generated

at the horizon boundary near r
H
. Because of the anomalous trace terms in (38), the

stress-energy of the gravitational waves is not tracefree, but can contain also a trace part

with p = −ρ of either sign which can change the effective value of Λ in the interior. Once

Λ becomes dynamical then its value is determined not by naturalness considerations at
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the UV cutoff scale as in (4), but by the physics at the boundary r = r
H

and its

dynamical evolution.

The basic assumption required for a solution of this kind to exist is that gravity,

i.e. spacetime itself, must undergo a quantum vacuum rearrangement phase transition

in the vicinity of the horizon, r ≃ r
H
. Clearly this cannot occur in the strictly classical

Einstein theory of general relativity with Λ constant. It requires that the fluctuations

〈T b
a (x)T d

c (x′)〉 and higher stress tensor correlators about its mean value be taken

into account near the horizon. These higher order correlators are generated in the

EFT approach by the additional scalar degrees of freedom in Sanom given by (87) and

(88). The addition of Sanom is the minimal modification of Einstein’s theory required

by quantum theory and stress tensor renormalization consistent with the Equivalence

Principle. The new degrees of freedom allow the vacuum energy density ρv to change and

adjust itself dynamically in the interior spacetime. Einstein’s theory otherwise continues

to apply almost everywhere, sufficiently far from the quantum boundary layer, with a

dynamical bulk ρv coupled to and determined by the fluctuations at the horizon.

Since allowing the effective value of Λ to change with time would require

the generation of gravitational and other radiation at the horizon boundary, this

would realize the dissipative mechanism of relaxation of coherent vacuum energy into

matter/radiation modes which we discussed in Sec. 2. From (24b) a continuously

decreasing ρv necessary to give a cosmologically acceptable solution to the problem of

dark energy requires a continuous energy inflow through the cosmological horizon. The

stress tensor of such an inflow would be expected to contain dissipative terms arising

from the bulk viscosity of fluctuations of T a
a from the trace anomaly terms, consistent

with the general fluctuation-dissipation considerations of Sec. 2. This relaxation of Λ to

smaller and smaller values would not require any detailed information about Planck scale

physics, but instead be consistent with the general hypothesis of decoupling, with the

only short distance effects essential for macroscopic cosmology coupling at the horizon

boundary, described by the effective action (86). In the limit λ→ 0, the boundary layer

is removed to infinity, the auxiliary fields in (84) have zero sources, and empty flat space

is the only stable asymptotic solution.

The analogy with atomic Bose-Einstein condensates may also be a fruitful one to

pursue. The vacuum energy density ρv is a kind of gravitational vacuum condensate [76].

This condensate is self-trapped by its own gravity. The interior vacuum energy density

depends on the total number of “atoms” in the trap. The condensate is described by

EFT methods analogous to the Gross-Pitaevskii EFT of BEC’s in terms of the long

wavelength collective modes of the system. Near the horizon boundary the condensate

disorders, due to the quantum fluctuations of the auxiliary degrees of freedom in the

EFT of gravity. At a finer level of resolution, and in particular near the boundary,

the continuum mean field description must give way to a more fundamental treatment

in terms of the analogs of the atomistic degrees of freedom that make up the vacuum

condensate [80]. An important step towards such a description would be to include

fluctuations about the mean field, and their associated dissipative effects.
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Clearly much more work remains to be done before a consistent dynamical theory

of dark energy based on this interconnected set of ideas can be proposed. Yet the

essential physical basis and EFT elements of such a dynamical theory would seem to

be in place. Only when a comprehensive cosmological model incorporating these effects

is available can we determine if it passes all observational tests of standard cosmology,

and make unambiguous predictions for future measurements. The prediction of the

magnitude of deviations from the classical Harrison-Zel’dovich spectrum at large angles

and non-Gaussian correlations in the CMB remain the most promising tests of the

conformal invariance hypothesis [57]. If cosmological dark energy is a finite size effect

of the universe in the large, whose value is determined by conformal fluctuations at the

infrared horizon scale, its dynamical relaxation to smaller values over time provides a

natural resolution to the dilemma of quantum zero-point energy, originally raised by

Pauli eighty years ago, but now made urgent by its detection (7)-(9) in the cosmos.
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