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A microscopic description of alpha decay to intrudef tates in the lead region is presented. The role
played by proton-neutron correlations is emphasized. The calculated hindrance factors of transitions to the
states § with respect to the corresponding ground state transitions are in good agreement with available
experimental data. The abrupt variations in the measured hindrance factors in some cases are related to shape
transitions. Predictions for further measurements are gi&0656-28186)03509-1

PACS numbds): 23.60+¢e, 21.60.Jz, 27.86.w

[. INTRODUCTION pairing excitationg7]. The monotone decrease of the exci-
tation energy versus decreasing neutron number was pro-
Recently there has been an increasing interest, both eyosed to be due to the quadrupole-quadrupole interaction
perimentally and theoretically, in studies of intrudej 0 between the proton and neutron systems. This study was
states near closed shell nuclei, particularly in the lead regiorflone in the framework of a proton-neutron interacting boson
These states were experimentally observed first in twoModel(IBM-2) [8] and within a quasiparticle phonon model
neutron transfer reactiorfd] and later in gamma spectros- (11l The calculation of Ref[8] suggests that the rather
copy [2,3], in alpha-decay experimend], and in inelastic §ma|| deformauo_ns that are assomqted with the configura-
tions that determine the,Ostates are induced by the proton-

reactions[5]. In a spherical core one expects the intruder : . , s
0" states to appear as a manifestation of two-phonon vibr neutron |r_1te_ract|on, asis also suggested py_calculatlons per-
ormed within a spherical shell-model basis in other nuclear

. + .
tions. There should be three' Gstates of this type, namely, systemg12-14. Even the shape transition and coexistence

;g?omgs(i:teg ?Kesg(r:fticil\e”?/riztr:tliﬁg]ar? dd tESE) %nd Igirlianb[?v]i- of different shapes manifested in intruder proton stai&s
P P yp 9 may be partly due to proton-neutron correlations.

brations, corresponding to neutron and proton excitations. . ;
; 0 To analyze the fine structure observed in the alpha decay
Yet, in the nucleus®®b only two of these three states were L . :
process Po—Pb it is necessary to estimate the formation

ObSET"ed by inelastic scatterifg] and twq-n_e utron transfer amplitude of the alpha clustering process on the nuclear sur-
reaction[1] probes. It was found that this is due to a very face[16-18

small mixing of the proton pairing excitation, predicted at The aim of the present paper is to give a microscopic

5.'5 MeV, W.'th the other two Fwo-phonon Statgg]. For description of the intruder ) states in Pb isotopes and of the
lighter lead isotopes the energies of the statgsd@crease . : ; ) .
corresponding hindrance factors. For this we will describe

with decreasing neutron numb8]. These states have re- the ground states within the random phase approximation

cently been found to be largely populated by alpha deca . . .
probes in the isotope&®192.1%61 9 10]. One puzzling fea- ¥RPA) and the excited 9 states in terms of two-particle—

ture in these measurements is that the hindrance factor of t )Q'O'hOIe (2p-2h excitations on the RPA vacuum. For iso-

alpha transition feeding thejOrelative to the ground state s?r%eTe\;vﬂogg?t\?v?ﬂQ# mat)ltehroiwr?y ff:oﬁu=82 V\I'e \.N'HI use a .
1P , gh phenomenological, contains

decreases as the excitation energy decreases, i.e., as one YRGFedients that allow one to interpret the brusque change of

towards lighter lead isotopes. But perhaps the most strikinghe hindrance factor as a signature of a transition from

feature of these experiments is that the hindrance factosc herical to deformed shapes. A short account of these cal-
changes abruptly, from 1.1 to about 80, when departing by gP PES.

- . Culations have been presented in Réb].
fevv_ protons from the =82 closed sh(_el[[9,_10]. This may l.)e The formalism is given in Sec. Il, applications are in Sec.
a sign of an unusual process occurring in these nuclei.

. o Ill, and a summary and conclusions are in Sec. IV.
Several theoretical descriptions have been proposed for y

the intruder 0 states. In normal systems they were ex-
plained as a mixing of two-phonon surface and two-phonon Il. FORMALISM

We will study the alpha decay process
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within the two-step mechanism of Rdfl7]. First the four pairing vibrations. In nuclei outsidé=82 we will describe

nucleons are clustered at some point on the nuclear surfatke states 0 within a simple two-dimensional basis consist-

and afterwards the already formedcluster penetrates the ing of the 0 and 0, states calculated before.

Coulomb barrier. This requires that one should be able to

describe the formation of the alpha particle in the mother o

nucleus well beyond the nuclear surface, where the effects of A. Proton-neutron pairing vibration model

the nucleons in the daughter nucleus are felt by the other For light lead isotopes we will evaluate all wave functions

nucleons only through the Coulomb interaction. In particular microscopically within a spherical harmonic oscillator basis.

in that region the Pauli principle acting among the nucleonssince our interest will be focused ofi-@-0" transitions, one

in the two outgoing fragments is negligible. If this condition has in Eq.(2.4) thatL=Jg=0 and the formation amplitude

is fulfilled, the total width can be factorized in two parts  can be written in terms of a coherent superposition of har-
I'(R)=P(R) y4(R). 2.2 monic oscillator wave functlonéNaLfo(R). One can then

perform the integrals analytically, since the internal wave

where P(R) is the penetration factor through the Coulomb function of thea particle itself can be written as a product of

barrier at the distancR between the center of mass of the 0s states[20]. That is, expanding the mother and daughter

daughterA and the emitted alpha cluster, and wave functiongy in terms of a harmonic oscillator basis and
assuming a monopole coupling for the proton-proton and

) #°R ) neutron-neutron interactions, one obtajih8]
Y(R)ZW|F(R)| 2.3

FR)=20 @y (R12 GF (106N, (i1)

is the so-called reduced decay widE(R) is the formation T

amplitude of the alpha cluster at the radRsi.e., X<B|(C;jkC;jk)O(CIjlczjl)dA)v 2.6
FL(R)ZJ dgadgAdQ{d’a(ga)¢A(§A)YL(Q)}§BMB¢/B(§B),
(2.4) where 7j,, denotes the set of quantum numbers that label
the single-particle spectra. For protorieeutron$ it is
whereyg, ¥, andg, are the internal wave functions of the 7=(v). The corresponding creation operators are denoted
mother, daughter, and-particle nuclei, respectively by cf_jk. The coefficient@,ﬁa(jk) contain recoupling geo-

If the decay width is strongly dependent up® the  metrical factors and Moshinsky brackets that appear when
theory would make no sense, since one may then choose &&nsforming to center-of-mass and relative coordinates. De-
appropriate value oR to fit the experimental decay width. tajls of this can be found in Ref18]. In Eq. (2.6) the index
Actually this is a positive feature of the theory because it \as omitted in the harmonic oscillator wave function
provides a self-consistent way of controlling that the Condi'althoughLazo is implied.
tions mentioned above are fulfilled. That is, the description \we have assumed in deriving E(.6) that the mother
of the a-decay process would be trustworthy if the decaynycleugB) is in its ground state and the corresponding wave
width, Eq. (2.2), would have a quasiconstant behavior as &ynction is a product of proton and neutron BCS wave func-
function of R in a region around the nuclear surfgde]. tions. The daughter nuclelis), instead, will be left after the

Usually the penetration factor in E.2) depends very  emjssion of thex particle either in the ground state or in the
strongly on the excitation energy. In order to compare thycited g state. We will first assume that the staté & a
ground-state to ground-state alpha decay process with thg,, narticle—two-hole proton excitation on the ground state

corresponding decay to an excited 6tate it is more conve- 15]" A simple description of such states can be given as the
nient to introduce the hindrance factétF), whichis just the  (onsorial product of the particle times the hole pairing vibra-

ratio between the two corresponding formation amplitudes: jons [7]. Since this is an important point which is basic for
IF(R;0; —07)|2 our mode_l,_ we will present W_ith some detail the proton-
— 1t A (2.5  proton pairing modes and their use to construct the states
[F(R;0; —0,)[? 0, . But we want to stress that this is only for clarity of
resentation, since light lead isotopes cannot be described

Light lead isotopes can be described within a sphericalyjihin 5 spherical representation excluding proton-neutron
BCS representation consisting of neutron degrees of freedoriﬂteractions[lQ].

[19]. But as one departs frorff%Pb the proton core becomes The RPA phonons describing the creatiﬁrf; (2) and
softer and one needs to include explicitly the proton degrees inilationT"" . (—2) of t ¢ def dkb the fol
of freedom also, especially for the so-called “intruder” state anihiiation _wk’( ) of two protons are defined by the fol-
0} . lowing relation:

While going from2%%Pb towards lighter lead isotopes the
spectra show the rare feature of states that are built upon rt (2 X< vk /gt
spherical degrees of freedom coexisting with deformed states =k(2) _ Mm 7 Tim 2.7
[10,15,19. This process is even more conspicuous for nuclei '
with a few protons outsid€=82. We will therefore study
these two regimes within two different models. The intruder
states in lead will be described microscopically in terms ofwhere

Fﬂ'k’(_z) YI;-,Jm XI;.,J'i 7
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: R 1, - 1, p_rovide energies agreeing with experiment. However, the
Brj, = (Cxj, Cxj Jo=7"Pzj Barj,=(CzjCrj)o=Pr hindrance factor$HF’s) calculated within this approach dif-

Im Ji 2.9 fer greatly with the corresponding experimental values. This

' failure is due to the fact that the proton-neutron interaction

are the monopole proton operators entering the proton part 8¥as neglected. That is, without the proton-neutron interac-
the formation amplitudé2.6). Here we denote states above tion the formation amplitude is just a product of proton and
the Fermi sedparticle statesby j,,j, and those below the Nheutron parts, as will be shown below. As a result the neu-

Fermi seghole statesby j; ,j;. When they are not specified trons participate in the 2p-2h excitation process only through
we will use j,,j,. Notice that in Eq.(2.7) the operator the RPA vacuum, which is common for all the calculated

I (—2) [and notl' T 7k’ (—2)] appears. One expects that 0" states, and in the ratio determining the hindrance factor
the forward-going amplitudeX are, in absolute value, much (2.5 only the protons contribute, which is an unreasonable
larger than the backward-going amplitud¥s (the terms ~feature. _ _

“forward going” and “backward going” are related to the _ 1he simplest way to include the proton-neutron interac-
ladder diagrams that correspond to the RPA in the twolion iS by generalizing the standard monopole pairing vibra-
particle Green functiofi21]). The RPA values of these am- tion. This has to be done consistently with the monopole

plitudes as well as the corresponding energies can be ofgharacter of the proton and neutron combinations entering
tained from the equation of motion the overlap in the formation amplitud®.6). With this in

mind, we define the two-particle creation operators as

[H,TH(£2)]=E(=2)I'}(+2). (2.9
For the monopole proton excitations that we want to describe k _ m : MIm (2.13
the Hamiltonian is I (—2) vk oxk I\ B |’ '
Tim i 7l
G, t : : .
H,=> (evjk—)\ﬂ)Nﬂjk—le Pl P where now a sumation over the index , v is understood.
Tk Jdw (2.10 The corresponding generalized pairing Hamiltonian is
WhereNm-k is the particle number opera’[d?,,,jk the pairing szz (Eﬂjk_)\w)Nﬂ'ij’_E (€Vj|_)\v)ij|
operator defined in Eq2.9), € the single-particle energies Tk Ik
for protons, andx , the Lagrange multiplier that is deter- G, ,
mined by the conservation, on average, of the total number - —E Pjﬂ Pﬂk,——E P,tj Pyjl,
of protons. 4ide T 4fm
Defining the states D as a correlated two-particle—two- G,,
hole (2p-2h excitation on the corresponding ground states, —TE (Pijij|+ P;tjlpwjk)a (2.14
i.e., on the RPA vacua, one obtains T
|02+>:r;k1(2)r;k2(_2)|RpA>, (2.11)  where the notation is as in EQ.10. The formally simple

proton-neutron Hamiltonian in Eq2.14), which we expect
wherek, andk, denote the first collective particle-particle t© account even for the slightly deformed configurations that
and hole-hole RPA states, respectively. Thatkis(k,) la-  determine the states,Q violates isospin. But this violation
bels the particle(hole) pairing vibration. These collective May be small, since the mean value of the conmutator
states have the property that the wave function componentdd, T;] within. BCS states vanishes. Notice that even
X have all the same sign while the componenitsave all the [H,Nv+Nm], whereNv (N) is the neutror(protor) num-
opposite sign. This property, which induces the enhanceme€r operator, vanishes. Moreover, it is important in this con-
of two-particle transfer form factors, can easily be under-1€xt to mention that in the calculations below the strength
stood within a separable interaction, as the pairing interacG, is an order of magnitude smaller than the proton-proton

tion that we are using, since the wave function componentdnd neutron-neutron strengths. _ .
behave in this case asxkj ~1/(2¢,;, ~E,) and As before, the forward- and backward-going amplitudes
TIm Tk

can be obtained either by performing the conmutators in the

YWJ'm 1/(267TJK+EK) (notice that for the collective state it is equation of motion(2.9 keeping only linear terms or by

|Exl)|2¢€4,). These expressions also show tha{>[Y|.  calculating the two-particle Green function within the ladder
These and other details on pairing excitations can be foundpproximation. Both procedures provide the same RPA so-
in, e.g., Ref[22]. lutions.
In the harmonic approximation the energy of the state, Eq. Outside closed shell nuclée.g., light lead isotopgghe
(2.1)), is given by neutron system becomes superfluid and one can use a BCS
representation. The formalism remains the same, but now the
Eor=E,(2)— B, (—2). (212 interaction matrix elements will depend on the occupation

numbersl andV and the RPA equation becomes the quasi-
These energies can be evaluated as a function of the strengdndom phase approximati¢@RPA). Details of this can be
parameterG,, in the pairing Hamiltonian(2.10. We have found in, e.g., Ref[19]. In our case the protons occupy
found that there are always reasonable valueGgfthat  normal orbits; that is, the numbets andV have sharp dis-
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tributions, and the proton system decouples into normalith N a normalization constant and
particle-particle, hole-hole, and particle-hole components, as

in Ref. [7].
The state § is now
=2 Y0 (2.17
|07)=T (2)Tk,(~2)|RPA), (2.19
where the RPA vacuum has the struct{2é] The overlap entering the formation amplitud2.6) corre-

sponding to the p—0; decay becomes, to first order in

|RPA) = Nexp{E zj Bl ;}, (216 XY,

m

(Bl(ch; ek Jo(cl; el )olA)=NU%; VB, U% v (1 22 Z7 - 2; z7. ], (2.18
]
while for the decay §—0; it is

Tim i mm

(Bl(cl; cli )o(cl; cli ol (—2)T\ (2)|A)=2NU%; V2, UﬁjHVE,»nLE X3 X +2 vl xte
=~

23 x4 yke zm +Z Xk x'e +ZY"1 XL

TJ ’7Tjr lm'Jf Vi Vj Vin
imdir

2> X4 yke zv } (2.19

ln’JJ Vim! vJI/ J ’JJ

The productUV in Eq. (2.18 is the usual one entering the level model to describe interacting bands was first proposed
ground-state to ground-state alpha decay formation amplin Ref.[23], but was used in the spirit of this paper in Refs.
tude[18]. The normalizatiorN is common to all transitions [24,25.
and will thus cancel out in the evaluation of the hindrance The idea of calculating nuclear spectra in different steps,
factor. such that in each step one uses the correlated states calcu-
One sees that without the proton-neutron interaction thdated previously as building blocks, is behind the quasiparti-
hindrance factor only depends upon proton degrees of freele multistep shell-model methdd9]. In a similar fashion
dom, since in this case it ¥,=Y,=0. we will use here as basis vectors the statésrOthe nuclei
that are closest to the spherical core. That is, we choose
199Pp(g.s) and 1%Pb(0;) as basis vectors to describe neu-
B. Two-level model tron excitations,'*3Po(g.s) and °%Po(0}) as basis vectors

The detailed microscopic theory presented above cannde describe proton-particle excitations, at®fHg(g.s) and
be applied when there are valence protons, besides the 2p-2f*Hg(0,) for proton-hole excitations.
excitations, without including explicitly the additional de-  As in Refs.[9,16], we will call the basis vectors used to
grees of freedom introduced by the valence protons, whicldescribe the mother nuclei by the letteusand v, e.g.,
eventually may even induce deformations in the assumefl)=|%Pa(g.s)) and |v)=|'P0o(0;)), while the corre-
spherical core. It would be possible to construct such &ponding basis vectors for the daughter nuclei are
theory, but it would be so complicated, both from a concep{x)=|1%Ph(g.s)) and|y)=|'Pb(0;)). These basis vectors
tual and a computational point of view, that it is questionableare not the same as those use in REFs16].
whether it is of any value to proceed along that line. But we Therefore the states in the mother nucleus will have the
can try to apply the experience gained above to describe thierm
0" states in those nuclei. That is, we have seen that the .
monopole-correlated states play a fundamental role in build- 07 )m=2alu)+blv),
ing up the intruder states. We have constructed the collective
monopole vibrations starting from single-particle degrees of
freedom. These vibrations were the building blocks that al- 07 )m=—b|u)+alv). (2.20
lowed us to calculate the*Ostates in light lead isotopes.
Now we can extend this procedure and use the most corre-
lated of these 0 states as building blocks to describe theThe wave function amplitudes and b are related by
ground and intruder states of the other isotopes. This twoa?+b?=1. In the daughter nucleus it is
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|07 )g=c|x)+d[y), o R D ]

105 )a=—d|x)+cly), (2.21)

oA — —
with c?+d?=1. i
The hindrance factor can then be written as

G, (MeV)

. d<OI|T|OI>m

( )2 acT,+adT,+bcT;+bdT, |2
a(02 [T107 )m

—adT,+acT,—bdTz+bcT,/ ’
(2.22

whereT;_,_, is the matrix element of the operatdr be-

tween the basis states, e.§y,=(X|T|u). N P L
The expansion coefficients in EqR.20 and(2.21) are, “0.00 0.01 0.02 0.03

in general, complex. Ideally, they are obtained after diago- Gp, (MeV)

nalizing the many-body Hamiltonian. Taking these coeffi-

cients as real numbers, as we do here, their signs will not FIG. 1. Pairing strengti® , as a function of the strengt® ., for

influence the unitarity of the transformatiori@.20 and  energies of the intruder stafeq. (2.19] of Eg; = 1 MeV (solid

(2.2, although the value of Eq2.22 will change. A simi-  line) and 0.7 MeV(dashed ling

lar problem was found in Ref23]. In the applications below

we determine these signs by fitting the HF for a given decay

and keep the same sign for the other decays. (2.12] are due to the influence of the proton-neutron corre-
lations. Choosings ., to simulate those efects seems to be a
reasonable procedure of renormalizing the interaction. This

. APPLICATIONS is what one usually does with the strength in effective

We will here apply the formalism described above. First!nteractlons like separable or surface delta interactisinl)

the decay to light lead isotopes will be treated by using thé:rirracugfn:'s\{ggza;ﬁ iﬂgSt?a%tt\?vi?hb?r:n Jr:r ii(grigwtimal
microscopic model of Sec. IIA and then the two-level 9y y y 9

: : \ and parity 1)* [21]. But in order to be acceptable, the
model of Sec. Il B will be applied to analyze the decay to . . )
isotopes outsid& =82. value thus obtained fo6 ., should be reasonable; i.e., it

should be small in comparison to the strengths and G,

(to minimize the effects of isospin violatiprand it should

not change drastically from nucleus to nucleus even as a

function of the other strength parameters. To probe these
The ground states of the mother nuclei, i.e., Po isotopesoints we show in Fig. 1 the relation between the strength

as well as the 0 states in the daughter lead nuclei will be parameter$s . and G, for a fixed energy of the intruder

described microscopically within a realistic single-particle state. In this figure the casEsJ; = 1 MeV (solid line) and

basis consisting of the eigenvectors of a Woods-Saxon poE02+ = 0.7 MeV (dashed lingare presented. The values of

tential with the so-called universal parametrizatj@]. The o . .
diagonalization of this potential will be performed by ex- G, are chosen in this figure in the neighborhood of the value

panding the eigenfunctions in terms of spherical harmonic’fhat f|ts. the proton gapQ,, 20215. MeV). One sees that
oscillator wave functions with size parameter correspondinfw varies very gmqothly and within a rgasonable and rather
to that of the alpha particle. The advantage of this choice i mall range in this f|gur¢. Moreover, a difference of 300 keV
that the integrals in the formation amplitu¢®4) can all be In the calculateql energiege., the d'fferef?ce between the
performed analytically and the coefficier@sin Eq. (2.6) can two curves$ requires very small changes in the parameters.

readily be evaluateffl8]. To construct the RPA basis up to That Is, a rather wide range of reaspnable value_s of the pair-
the shellN=>5 for protons and\=6 for neutrons, up to two ing strengthss . andG ., will all provide the energies of the
major shells above the Fermi level will be inclljded intruder states. Perhaps even more important, the strength

The first step of the calculation is to evaluate the BCsC+v is about one order of magnitude smaller than the other
parameters, particularly the occupation numbersaand V strengths.

that enter in the QRPA matrix.9] as well as in Eqs(2.18 We thus choose the starting values?g,opandfam such
and(2.19. For this we choose the pairing strengih = 0.1  that the HF corresponding to the stat€Pb(0;) at the

MeV, which provides values for the neutron pairing gaps&XPerimental energy is obtained. This is achieved \@th,
that reproduce well the corresponding experimental values ifr 0-015 MeV and5 . =0.16 MeV, which also fits reasonably

A. Light lead isotopes

190,192,196 as well as int94196.19 g well the experimental proton pairing gaps. This is expected
In the same fashion, we reproduce the proton gap in psince this value of5; is very close to the one determined
isotopes by takings.. = 0.15 MeV. previously as “best choice” for that purpossi.e.,

The strengthG_., can be evaluated by adjusting it to ob- G==0.15 MeV). From this point we varied,, (with the
tain the experimental energies of the intruder state accordin§@/ues ofG, = 0.1 MeV andG;=0.16 MeV fixed to obtain
to the harmonic expressid@.12. This is an appealing pre- he energie€,; as a function o5, . For each one of these
scription since the nonharmonic effedtseglected in Eq. points we calculated the BCS occupation parameters, the



1174 D. S. DELIONet al. 54

TABLE I. Calculated hindrance factdHF) in proton-particle

20
[ nuclei. The numbera and ¢ are the ground-state wave function
amplitudes as defined in EqR.20 and (2.21), respectively. The
& 5 | component(d) is given by the normalization condition.
S L
Q
I Mother Daughter HRHF o) a c
& o . 19%pg 19y 3028+ 05 100  1.00
c L J
© L 19%pg 19%pp 2.5(25=* 0.1 0.99 0.99
5 I ] 1%%po 190pp 1.0(1.1+ 0.1) 082  0.98
S ] 2%Rn %P0 19(19.0 = 6) -0.94  1.00
200Rn 19po 78.8(79 = 7) -0.95  0.99
- | | | | | 200Rn 196pq 1329579 = 7) -0.92 0.99
o= ‘0.8‘ = ‘O.BI = I1‘0I = ILZI = I1.4I = I1.6‘ I
Eo+ (MeV)

decay of 1%Po and the one if°Rn. Furthermore, one no-
FIG. 2. Hindrance factor as a function of the energy of thetices a systematic trend in the HF values for the decay of Hg

intruder states D in Pb isotopes. The experimental désguares  isotopes of Table II. In contrast to the decay of Pb isotopes,
are taken from Ref.10]. where the HF is essentially constant, the HF rises from 2.4 in

18449 to 17 in the case of®™Hg. This outstanding feature

may be the signature of an uncommon process occurring in
QRPA amplitudesX andY, and the HF according to EQs. nuclei.
(2.18 and(2.19. The results of the calculation are shownin  |n the cases of Table I, which we will analyze first, the
Fig. 2. Notice thaG,, is chosen as a free parameter only atactive particles occupy particle states. As discussed in the
the starting point, i.e., the point of lowest energy in Fig. 2.previous section, we choose the basis vectors that will de-
Afterward we got the energies and the HF as a function okcribe the states'Oas those corresponding to the decay of

G, such that for a given energy of Fig. 2 one can assign thé%pg_ Therefore for this decay it =1, b=0, c=1, and
corresponding HF. For the measured energies®%f%Pb, g=0.

Fig. 2 shows that the calculated values of the HF agree very The matrix elementd; are in this case
well with the corresponding experimental values. Moreover,

we give in Fig. 2 also the values of the HF for higher ener- T.=(%qg.s)|T|*%Ph(g.s)),
gies in the hope that they may be useful as a guide in even-
tual experimental searches. In particular, we predict that go- T,=(1%Pqg.s)|T|*%PW03)),
ing towards heavier lead isotopes, where the increasing
energy of the intruder state would eventually lie above 5 T:={(%%Pq0,)|T|*%Ph(g.s)),

MeV (in 2%%Pb) [7], the HF increases very rapidly. Besides

the problem that one may reach the decay threshold, Fig. and

shows that even from a spectroscopy point of view an ex-

perimental detection of the intruder states in heavy lead iso- T,={'%Pa0;)|T|**Ph0;)),
topes through alpha-decay experiments would be difficult.

It is worthwhile also to notice from Figs. 1 and 2 that the where the operatol creates anv particle. Since the basis
increase in energy implies a decrease in the proton-neutrggfates are just the modes that connect these transitions, it is
strengthG,,, (with all other parameters fix¢d Therefore |T1|=|T,|. In the matrix elemenT, the operatofT creates
when approaching the normal nucled®Pb the monopole two protons in the two-proton hole states that are available in
proton-neutron correlation diminishes, as it should be sincé"**Pb(0;)) while the neutrons occupy the superfluid states
the superfluidity of the neutrons tends to disappear in thigust leading td'%%Po(g.s.). A comparison of the experimen-
situation. Eventually, in the normal system, the different cor-tal values for the alpha reduced widtf&7] allows one to
relations are related to the decoupled particle-particle, holeestimate thatT;)? is about 3 timesT,)?. Finally, in T the
hole, and particle-hole states, as discussed in [Réf. operatorT can only create protons in states above the Fermi

level, and since in the stal¥’®Po(0;)) there are unoccupied
proton hole states, one gefg=0. One may argue that this
B. Isotopes outsideZ =82

Hindrance factors corresponding to decays to intruder TABLE Il As in Table I for proton-hole nuclei

states in the nuclet®®1%Po, 18218Hg, and 176:178.18pt were

recently measuref®,10]. The unexpected feature in this case Mother Daughter HRHF crp) a ¢

is that the hindrance factors show large and sudden changé®rb 1849 21.1(21 * 3) 0.95 1.00
in some nuclei, as shown in Table I. In fact the HF corre-18pp 182Hg 21.0(21 = 4) 0.92 0.90
sponding to the decay of°®Rn is the largestAl =0, ever 84g 180p¢ 0.62(2.4 + 0.4 1.00 0.62
measured. As comparison one also sees in Table | the HP24g 178py 3.0(35+ 0.6 0.90 0.71
corresponding to the decay of the Po isotopes discussedoqg 176p¢ 130(17 + 5) 0.80 0.92

above. There is a factor 80 between the HF measured in the
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estimation ofT3 is very crude because the real vacua arewhich is a rather smooth variation from the valoel as-
correlated states. However, it has to be considered thatigned to'®*Hg, and one obtains again the experimental HF.
throughout this paper we are assuming that the gheB2 is Finally, for the decay of Hg isotopes we take the wave
not badly broken as the number of neutrons decreases. Thisnctions previously evaluated, i.eg(*®*#Hg)=1.00 and

is an approximation that we accept, particularly in this seca(**2Hg)=0.90, and extrapolating for®Hg one obtains
tion, to avoid introducing too many parameters, which woulda(*8®Hg)=0.80. The wave function components of the cor-
spoil the simplicity and elegance of the model. Besides, theesponding Pt isotopes are, according to RE24],
main conclusions of this paper will not be changed if reasone(*8%P1)=0.62, c(*’%)=0.71, and c(*’%1)=0.92. With
able values ofl; are allowed 16]. these values ad andc one obtains values of the HF that are

The neutron-deficient Pb isotopes are quasispherical arglrprisingly close to the corresponding experimental values.
have a rather sharply defined Fermi surface with a complet®articularly the strong variation of the experimental HF go-
filled Z=82 proton shell. This can be deduced from lifetime ing from *#Hg to **Hg is strongly marked, indicating even
measurements of the Pbjp states[28] as well as from the here that a phase transition has taken place.
excitation energy of the states’ 2 Therefore, within our It is worthwhile to point out the simplicity of the model
model the mixing amplitude is close to unity for all the Pb !Jsed in this section. This may be compared with the rather
isotopes considered in Table |, starting with 1 in **4Pb, as involved formalism used before.
mentioned above. This is in good agreement with the results
of Ref.[28], from where we took the values offor the other
Pb isotopes in Table I.

For the mother Po isotopes in this table we start with |n this paper we have calculated hindrance factbiB’s)
a=1in %%, as also discussed above, obtaining=#3For  of alpha decay transitions into the ground state with respect
the corresponding alpha decay, in good agreement with exe the corresponding intruder,Otransitions from Po, Rn, Pb,
periment(HF=2.8+0.5). For the lighter Po isotopes we ad- and Hg isotopes. The interest of this calculation lies in some
just the amplitudea to reproduce the experimental HF val- puzzling features found in the corresponding experimental
ues. One notices in Table | that #%Po the amplitudea is  values that were recently reporte@{10]. In the decay to the
rather small, indicating that here mixing between the twointruder states of Pb isotopes the HF is snfaiid, therefore,

0" states appears. the transitions to the intruder states are largied decreases

The values ot in the decays of the Rn isotopes in Table with decreasing energy of the intruder state. Already this is

| correspond to the wave functions of the now daughter p(_gemarkable. But even more interesting is that for the other

isotopes. That is, the parameter# this case are the param- 'SOtopes the HF may change drastically when going from one
nucleus to its neighbor.

etersa in the decay of Po isotopes analyzed above, i.e., o
c(1%P0)=1.00 and c(*°P0)=0.99. The value ofa in . To understand these features we analyzed first light lead
202Rn was chosen such that it fits the corresponding ppSotopes within the framework of a RPA calculation using
: . . : standard pairing interactions for identical particles. We de-

value. O_ne thus obtams.thatls close to unity, but Negative, ¢ rihed the intruder states as a correlated two-particle—two-
as seen in Table I. This is an example of the_ determlnatlon ole (2p-2h proton excitation. As expected, we found that
the signs of the wave function components in a given type ofotons in the mother Po isotopes as well as in the intruder
excitation(in this case proton particleby adjusting the ex-  siates in Pb move in normal orbits; i.e., the occupation num-
perimental data. From the nucled¥Rn thus calculated, we pers U and V have a sharp distribution in this case. We
analyzed next the decay 6f°Rn by smoothly changing the found that the energies of the intruder states calculated
corresponding wave function componentBut here we no-  within this model can be fitted by appropiate choices of the
tice a very strong dependence of HF up@n With  proton pairing strengtfs,.. However, within this calculation
a=—0.95 we obtain the experimental HF, but with we could not obtain the corresponding experimental energies
a=—0.92 one obtains HF13 295, as shown in Table I. and HF simultaneously. We ascribed this deficiency to the
This is a typical feature of unstable systems that undergo fack of a proper interaction between neutrons and protons,
phase transition process. That is, the extremely large experiithough the pairing strengths that are determined by fitting
mental HF value observed in the decay’®Rn is a sign that  the experimental pairing gapi1] partially include the
a phase transition occurs in this nuclear region. proton-neutron 6-n) interaction in an effective way. To

For the proton-hole excitations that appear in the decaysonsider this interaction, we introducegen force that is a
of Pb and Hg isotopes the basis vectors are determined kyeneralization of the standard pairing force but which vio-
the states'®Hg(g.s) and *®¥Hg(0;), as discussed above, lates isospin. We have argued that this violation is not large.
with the assumption that the conditiofis=T,, T,=0, and  We found that even in this case the protons mostly move in
(T3)2=3(T,)? are approximately fulfilled. That means that normal orbits but the 2p-2h excitations include now both
for the daughter nucleus®Hg in Table Il it isc=1. We  neutrons and protons. We found that the dependence of the
determine the corresponding valueaoby smoothly extrapo- experimental HF upon the excitation energy of the intruder
lating the values of the neutron components in Tableel, state(i.e., upon thep-n strengthG,.,) is very well repro-
the values ofc for 19419219 This would givea=0.97, duced by the calculation. We obtained the experimental val-
very close to the valu@=0.95 which was chosen just to ues in the three isotopes so far measured by chod@singso
reproduce the experimental data for HF in Table Il. Extrapo-as to reproduced the HF in one of those isotopes. We have
lating one obtainga(**%h)=0.92 and withc(*®Hg)=0.90, even presented the calculated HF for other values of the en-

IV. SUMMARY AND CONCLUSIONS
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ergy in the hope that they may be useful as a guide in everstructure of the ground states occurs, confirming previous
tual experimental searches. results[24]. Finally, we found that in the decay of Rn iso-

For the other cases observed experimentally we used t@pes the HF is very sentitive to small changes in the corre-
very simple model consisting of a basis that includes twasponding wave functions. This is a typical feature of systems
states 0, which represent the ground and intruder stateshat undergo a phase transition. We therefore ascribed the
without correlationg23,24]. By adjusting the mixing ampli- large value of the HF observed in the decay?8fRn to a
tude to reproduce the hindrance factor we observed that iphase transition in this nuclear region and, more generally,
1990 a mixing between the ground state and t§edlate  we conclude that the study of alpha decay hindrance factors
appears. In contrast, in Hg isotopes those mixings are smalnay provide a powerful tool to detect those phase transi-
We have also found that in light Pt isotopes a change in th&ons.
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