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A microscopic description of alpha decay to intruder 02
1 states in the lead region is presented. The ro

played by proton-neutron correlations is emphasized. The calculated hindrance factors of transitions
states 02

1 with respect to the corresponding ground state transitions are in good agreement with ava
experimental data. The abrupt variations in the measured hindrance factors in some cases are related t
transitions. Predictions for further measurements are given.@S0556-2813~96!03509-1#
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I. INTRODUCTION

Recently there has been an increasing interest, both
perimentally and theoretically, in studies of intruder 02

1

states near closed shell nuclei, particularly in the lead regio
These states were experimentally observed first in tw
neutron transfer reactions@1# and later in gamma spectros-
copy @2,3#, in alpha-decay experiments@4#, and in inelastic
reactions@5#. In a spherical core one expects the intrude
01 states to appear as a manifestation of two-phonon vibr
tions. There should be three 01 states of this type, namely,
one induced by surface vibrations~in Gd @6# and in Pb@7#
isotopes it is the octupole vibration! and two by pairing vi-
brations, corresponding to neutron and proton excitation
Yet, in the nucleus208Pb only two of these three states were
observed by inelastic scattering@5# and two-neutron transfer
reaction@1# probes. It was found that this is due to a very
small mixing of the proton pairing excitation, predicted a
5.5 MeV, with the other two two-phonon states@7#. For
lighter lead isotopes the energies of the states 02

1 decrease
with decreasing neutron number@8#. These states have re-
cently been found to be largely populated by alpha dec
probes in the isotopes190,192,194Pb @9,10#. One puzzling fea-
ture in these measurements is that the hindrance factor of
alpha transition feeding the 02

1 relative to the ground state
decreases as the excitation energy decreases, i.e., as one
towards lighter lead isotopes. But perhaps the most striki
feature of these experiments is that the hindrance fac
changes abruptly, from 1.1 to about 80, when departing by
few protons from theZ582 closed shell@9,10#. This may be
a sign of an unusual process occurring in these nuclei.

Several theoretical descriptions have been proposed
the intruder 01 states. In normal systems they were ex
plained as a mixing of two-phonon surface and two-phono
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pairing excitations@7#. The monotone decrease of the exc
tation energy versus decreasing neutron number was p
posed to be due to the quadrupole-quadrupole interact
between the proton and neutron systems. This study w
done in the framework of a proton-neutron interacting bos
model~IBM-2! @8# and within a quasiparticle phonon mode
@11#. The calculation of Ref.@8# suggests that the rather
small deformations that are associated with the configu
tions that determine the 02

1 states are induced by the proton
neutron interaction, as is also suggested by calculations p
formed within a spherical shell-model basis in other nucle
systems@12–14#. Even the shape transition and coexistenc
of different shapes manifested in intruder proton states@15#
may be partly due to proton-neutron correlations.

To analyze the fine structure observed in the alpha dec
process Po→Pb it is necessary to estimate the formatio
amplitude of the alpha clustering process on the nuclear s
face @16–18#.

The aim of the present paper is to give a microscop
description of the intruder 02

1 states in Pb isotopes and of the
corresponding hindrance factors. For this we will describ
the ground states within the random phase approximat
~RPA! and the excited 02

1 states in terms of two-particle–
two-hole ~2p-2h! excitations on the RPA vacuum. For iso
topes with proton number away fromZ582 we will use a
simpler model which, although phenomenological, contai
ingredients that allow one to interpret the brusque change
the hindrance factor as a signature of a transition fro
spherical to deformed shapes. A short account of these c
culations have been presented in Ref.@16#.

The formalism is given in Sec. II, applications are in Se
III, and a summary and conclusions are in Sec. IV.

II. FORMALISM

We will study the alpha decay process

B→A1a ~2.1!
er-
1169 © 1996 The American Physical Society
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1170 54D. S. DELIONet al.
within the two-step mechanism of Ref.@17#. First the four
nucleons are clustered at some point on the nuclear sur
and afterwards the already formeda cluster penetrates the
Coulomb barrier. This requires that one should be able
describe the formation of the alpha particle in the moth
nucleus well beyond the nuclear surface, where the effect
the nucleons in the daughter nucleus are felt by the ot
nucleons only through the Coulomb interaction. In particul
in that region the Pauli principle acting among the nucleo
in the two outgoing fragments is negligible. If this conditio
is fulfilled, the total width can be factorized in two parts

G~R!5P~R!g2~R!, ~2.2!

whereP(R) is the penetration factor through the Coulom
barrier at the distanceR between the center of mass of th
daughterA and the emitted alpha cluster, and

g2~R!5
\2R

2M
uF~R!u2 ~2.3!

is the so-called reduced decay width.F(R) is the formation
amplitude of the alpha cluster at the radiusR, i.e.,

FL~R!5E djadjAdV$fa~ja!cA~jA!YL~V!%JBMB
* cB~jB!,

~2.4!

wherecB , cA , andfa are the internal wave functions of th
mother, daughter, anda-particle nuclei, respectively

If the decay width is strongly dependent uponR, the
theory would make no sense, since one may then choos
appropriate value ofR to fit the experimental decay width
Actually this is a positive feature of the theory because
provides a self-consistent way of controlling that the con
tions mentioned above are fulfilled. That is, the descript
of the a-decay process would be trustworthy if the dec
width, Eq. ~2.2!, would have a quasiconstant behavior as
function ofR in a region around the nuclear surface@18#.

Usually the penetration factor in Eq.~2.2! depends very
strongly on the excitation energy. In order to compare
ground-state to ground-state alpha decay process with
corresponding decay to an excited 01 state it is more conve-
nient to introduce the hindrance factor~HF!, which is just the
ratio between the two corresponding formation amplitude

HF5
uF~R;01

1→01
1!u2

uF~R;01
1→02

1!u2
. ~2.5!

Light lead isotopes can be described within a spheri
BCS representation consisting of neutron degrees of freed
@19#. But as one departs from208Pb the proton core become
softer and one needs to include explicitly the proton degr
of freedom also, especially for the so-called ‘‘intruder’’ sta
02

1 .
While going from 208Pb towards lighter lead isotopes th

spectra show the rare feature of states that are built u
spherical degrees of freedom coexisting with deformed sta
@10,15,19#. This process is even more conspicuous for nuc
with a few protons outsideZ582. We will therefore study
these two regimes within two different models. The intrud
states in lead will be described microscopically in terms
face
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pairing vibrations. In nuclei outsideZ582 we will describe
the states 01 within a simple two-dimensional basis consist-
ing of the 01

1 and 02
1 states calculated before.

A. Proton-neutron pairing vibration model

For light lead isotopes we will evaluate all wave functions
microscopically within a spherical harmonic oscillator basis
Since our interest will be focused on 01→01 transitions, one
has in Eq.~2.4! that L5JB50 and the formation amplitude
can be written in terms of a coherent superposition of har
monic oscillator wave functionsFNaLa50(R). One can then
perform the integrals analytically, since the internal wave
function of thea particle itself can be written as a product of
0s states@20#. That is, expanding the mother and daughte
wave functionsc in terms of a harmonic oscillator basis and
assuming a monopole coupling for the proton-proton an
neutron-neutron interactions, one obtains@18#

F~R!5(
Na

FNa
~R!(

j kj l
GNa

p ~ j k!GNa

n ~ j l !

3^Bu~cp j k
† cp j k

† !0~cn j l
† cn j l

† !0uA&, ~2.6!

where t j k denotes the set of quantum numbers that labe
the single-particle spectra. For protons~neutrons! it is
t5p(n). The corresponding creation operators are denote
by ct j k

† . The coefficientsGNa

t ( j k) contain recoupling geo-

metrical factors and Moshinsky brackets that appear whe
transforming to center-of-mass and relative coordinates. De
tails of this can be found in Ref.@18#. In Eq. ~2.6! the index
La was omitted in the harmonic oscillator wave function
althoughLa50 is implied.

We have assumed in deriving Eq.~2.6! that the mother
nucleusuB& is in its ground state and the corresponding wave
function is a product of proton and neutron BCS wave func
tions. The daughter nucleusuA&, instead, will be left after the
emission of thea particle either in the ground state or in the
excited 02

1 state. We will first assume that the state 02
1 is a

two-particle–two-hole proton excitation on the ground state
@15#. A simple description of such states can be given as th
tensorial product of the particle times the hole pairing vibra
tions @7#. Since this is an important point which is basic for
our model, we will present with some detail the proton-
proton pairing modes and their use to construct the state
02

1 . But we want to stress that this is only for clarity of
presentation, since light lead isotopes cannot be describ
within a spherical representation excluding proton-neutro
interactions@19#.

The RPA phonons describing the creationGpk
† (2) and

anihilationGpk8
† (22) of two protons are defined by the fol-

lowing relation:

S Gpk
† ~2!

Gpk8~22!D 5S Xp j m
k Yp j i

k

Yp j m
k8 Xp j i

k8 D S Bp j m
†

Bp j i
D , ~2.7!

where
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Bp j m
† 5~cp j m

† cp j m
† !0[

1

ĵ m
Pp j m
† Bp j i

5~cp j i
† cp j i

† !0[
1

ĵ i
Pp j i
†

~2.8!

are the monopole proton operators entering the proton pa
the formation amplitude~2.6!. Here we denote states abov
the Fermi sea~particle states! by j m , j n and those below the
Fermi sea~hole states! by j i , j j . When they are not specifie
we will use j k , j l . Notice that in Eq.~2.7! the operator
Gpk8(22) @and notG†pk8(22)# appears. One expects th
the forward-going amplitudesX are, in absolute value, muc
larger than the backward-going amplitudesY ~the terms
‘‘forward going’’ and ‘‘backward going’’ are related to the
ladder diagrams that correspond to the RPA in the tw
particle Green function@21#!. The RPA values of these am
plitudes as well as the corresponding energies can be
tained from the equation of motion

@H,Gk
†~62!#5Ek~62!Gk

†~62!. ~2.9!

For the monopole proton excitations that we want to desc
the Hamiltonian is

Hp5(
j k

~ep j k
2lp!Np j k

2
Gp

4 (
j kj k8

Pp j k
† Pp j k8

,

~2.10!

whereNp j k
is the particle number operator,Pp j k

† the pairing

operator defined in Eq.~2.8!, ep j k
the single-particle energie

for protons, andlp the Lagrange multiplier that is dete
mined by the conservation, on average, of the total num
of protons.

Defining the states 02
1 as a correlated two-particle–two

hole ~2p-2h! excitation on the corresponding ground stat
i.e., on the RPA vacua, one obtains

u02
1&5Gpk1

† ~2!Gpk2
† ~22!uRPA&, ~2.11!

wherek1 and k2 denote the first collective particle-partic
and hole-hole RPA states, respectively. That is,k1 (k2) la-
bels the particle~hole! pairing vibration. These collective
states have the property that the wave function compon
X have all the same sign while the componentsY have all the
opposite sign. This property, which induces the enhancem
of two-particle transfer form factors, can easily be und
stood within a separable interaction, as the pairing inter
tion that we are using, since the wave function compone
behave in this case asXp j m

k ;1/(2ep j k
2Ek) and

Yp j m
k ;1/(2ep j k

1Ek) ~notice that for the collective state it i

uEku&u2ep j k
u). These expressions also show thatuXu.uYu.

These and other details on pairing excitations can be fo
in, e.g., Ref.@22#.

In the harmonic approximation the energy of the state,
~2.11!, is given by

E0
2
15Ek2

~2!2Ek1
~22!. ~2.12!

These energies can be evaluated as a function of the stre
parameterGp in the pairing Hamiltonian~2.10!. We have
found that there are always reasonable values ofGp that
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provide energies agreeing with experiment. However, th
hindrance factors~HF’s! calculated within this approach dif-
fer greatly with the corresponding experimental values. Th
failure is due to the fact that the proton-neutron interactio
was neglected. That is, without the proton-neutron intera
tion the formation amplitude is just a product of proton an
neutron parts, as will be shown below. As a result the ne
trons participate in the 2p-2h excitation process only throug
the RPA vacuum, which is common for all the calculate
01 states, and in the ratio determining the hindrance fact
~2.5! only the protons contribute, which is an unreasonab
feature.

The simplest way to include the proton-neutron interac
tion is by generalizing the standard monopole pairing vibra
tion. This has to be done consistently with the monopo
character of the proton and neutron combinations enteri
the overlap in the formation amplitude~2.6!. With this in
mind, we define the two-particle creation operators as

S Gk
†~2!

Gk8~22!D 5S Xt j m
k Yt j i

k

Yt j m
k8 Xt j i

k8 D S Bt j m
†

Bt j i
D , ~2.13!

where now a sumation over the indext5p,n is understood.
The corresponding generalized pairing Hamiltonian is

Hpn5(
j k

~ep j k
2lp!Np j k

1(
j k

~en j l
2ln!Nn j l

2
Gp

4 (
j kj k8

Pp j k
† Pp j k8

2
Gn

4 (
j l j l 8

Pn j l
† Pn j l 8

2
Gpn

4 (
j kj l

~Pp j k
† Pn j l

1Pn j l
† Pp j k

!, ~2.14!

where the notation is as in Eq.~2.10!. The formally simple
proton-neutron Hamiltonian in Eq.~2.14!, which we expect
to account even for the slightly deformed configurations th
determine the states 02

1 , violates isospin. But this violation
may be small, since the mean value of the conmutat
@H,Tz# within BCS states vanishes. Notice that eve
@H,Nn1Np#, whereNn (Np) is the neutron~proton! num-
ber operator, vanishes. Moreover, it is important in this con
text to mention that in the calculations below the strengt
Gpn is an order of magnitude smaller than the proton-proto
and neutron-neutron strengths.

As before, the forward- and backward-going amplitude
can be obtained either by performing the conmutators in th
equation of motion~2.9! keeping only linear terms or by
calculating the two-particle Green function within the ladde
approximation. Both procedures provide the same RPA s
lutions.

Outside closed shell nuclei~e.g., light lead isotopes! the
neutron system becomes superfluid and one can use a B
representation. The formalism remains the same, but now t
interaction matrix elements will depend on the occupatio
numbersU andV and the RPA equation becomes the quas
random phase approximation~QRPA!. Details of this can be
found in, e.g., Ref.@19#. In our case the protons occupy
normal orbits; that is, the numbersU andV have sharp dis-
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tributions, and the proton system decouples into norm
particle-particle, hole-hole, and particle-hole components
in Ref. @7#.

The state 02
1 is now

u02
1&5Gk1

† ~2!Gk2
† ~22!uRPA&, ~2.15!

where the RPA vacuum has the structure@21#

uRPA&5NexpF (
t j mj i

Zjmj i
t Bt j m

† Bt j i
† G , ~2.16!
al
, as
with N a normalization constant and

Zjmj i
t 5(

k
Yt j i
k ~Xt j m

k !21. ~2.17!

The overlap entering the formation amplitude~2.6! corre-
sponding to the 01

1→01
1 decay becomes, to first order in

XY,
^Bu~cp j m
† cp j m

† !0~cn j n
† cn j n

† !0uA&5NUp j m
A Vp j m

B Un j n
A Vn j n

B S 122(
j i

Zjmj i
p 22(

j j
Zj nj j

n D , ~2.18!

while for the decay 01
1→02

1 it is

^Bu~cp j m
† cp j m

† !0~cn j n
† cn j n

† !0Gk1
1 ~22!Gk2

1 ~2!uA&52NUp j m
A Vp j m

B Un j n
A Vn j n

B F(
j m8

Xp j m8

k1 Xp j m8

k2 1(
j i 8

Yp j i 8

k1 Xp j m

k2

22 (
j m8 j i 8

Xp j m8

k1 Yp j i 8

k2 Zjm8 j i 8

p 1(
j n8

Xn j n8

k1 Xn j n8

k2 1(
j j 8

Yn j j 8

k1 Xn j n

k2

22 (
j n8 j j 8

Xn j m8

k1 Yn j j 8

k2 Zjn8 j j 8

n G . ~2.19!
d

,
cu-
-

e

e

The productUV in Eq. ~2.18! is the usual one entering the
ground-state to ground-state alpha decay formation amp
tude @18#. The normalizationN is common to all transitions
and will thus cancel out in the evaluation of the hindranc
factor.

One sees that without the proton-neutron interaction th
hindrance factor only depends upon proton degrees of fre
dom, since in this case it isXn5Yn50.

B. Two-level model

The detailed microscopic theory presented above cann
be applied when there are valence protons, besides the 2p
excitations, without including explicitly the additional de-
grees of freedom introduced by the valence protons, whi
eventually may even induce deformations in the assum
spherical core. It would be possible to construct such
theory, but it would be so complicated, both from a concep
tual and a computational point of view, that it is questionab
whether it is of any value to proceed along that line. But w
can try to apply the experience gained above to describe
01 states in those nuclei. That is, we have seen that t
monopole-correlated states play a fundamental role in buil
ing up the intruder states. We have constructed the collect
monopole vibrations starting from single-particle degrees
freedom. These vibrations were the building blocks that a
lowed us to calculate the 01 states in light lead isotopes.
Now we can extend this procedure and use the most cor
lated of these 01 states as building blocks to describe th
ground and intruder states of the other isotopes. This tw
li-
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level model to describe interacting bands was first propose
in Ref. @23#, but was used in the spirit of this paper in Refs.
@24,25#.

The idea of calculating nuclear spectra in different steps
such that in each step one uses the correlated states cal
lated previously as building blocks, is behind the quasiparti
cle multistep shell-model method@19#. In a similar fashion
we will use here as basis vectors the states 01 in the nuclei
that are closest to the spherical core. That is, we choos
194Pb~g.s.! and 194Pb(02

1) as basis vectors to describe neu-
tron excitations,198Po~g.s.! and 198Po(02

1) as basis vectors
to describe proton-particle excitations, and184Hg~g.s.! and
184Hg(02

1) for proton-hole excitations.
As in Refs.@9,16#, we will call the basis vectors used to

describe the mother nuclei by the lettersu and v, e.g.,
uu&5u198Po~g.s.!& and uv&5u198Po(02

1)&, while the corre-
sponding basis vectors for the daughter nuclei are
ux&5u194Pb~g.s.!& and uy&5u194Pb(02

1)&. These basis vectors
are not the same as those use in Refs.@9,16#.

Therefore the states in the mother nucleus will have th
form

u01
1&m5auu&1buv&,

u02
1&m52buu&1auv&. ~2.20!

The wave function amplitudesa and b are related by
a21b251. In the daughter nucleus it is
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u01
1&d5cux&1duy&,

u02
1&d52dux&1cuy&, ~2.21!

with c21d251.
The hindrance factor can then be written as

HF5S d^01
1uTu01

1&m

d^02
1uTu01

1&m
D 25S acT11adT21bcT31bdT4

2adT11acT22bdT31bcT4
D 2,

~2.22!

whereTi5124 is the matrix element of the operatorT be-
tween the basis states, e.g.,T15^xuTuu&.

The expansion coefficients in Eqs.~2.20! and ~2.21! are,
in general, complex. Ideally, they are obtained after dia
nalizing the many-body Hamiltonian. Taking these coe
cients as real numbers, as we do here, their signs will
influence the unitarity of the transformations~2.20! and
~2.21!, although the value of Eq.~2.22! will change. A simi-
lar problem was found in Ref.@23#. In the applications below
we determine these signs by fitting the HF for a given dec
and keep the same sign for the other decays.

III. APPLICATIONS

We will here apply the formalism described above. Fi
the decay to light lead isotopes will be treated by using
microscopic model of Sec. II A and then the two-lev
model of Sec. II B will be applied to analyze the decay
isotopes outsideZ582.

A. Light lead isotopes

The ground states of the mother nuclei, i.e., Po isotop
as well as the 01 states in the daughter lead nuclei will b
described microscopically within a realistic single-partic
basis consisting of the eigenvectors of a Woods-Saxon
tential with the so-called universal parametrization@26#. The
diagonalization of this potential will be performed by e
panding the eigenfunctions in terms of spherical harmo
oscillator wave functions with size parameter correspond
to that of the alpha particle. The advantage of this choice
that the integrals in the formation amplitude~2.4! can all be
performed analytically and the coefficientsG in Eq. ~2.6! can
readily be evaluated@18#. To construct the RPA basis up t
the shellN55 for protons andN56 for neutrons, up to two
major shells above the Fermi level will be included.

The first step of the calculation is to evaluate the BC
parameters, particularly the occupation numbersU and V
that enter in the QRPA matrix@19# as well as in Eqs.~2.18!
and~2.19!. For this we choose the pairing strengthGn 5 0.1
MeV, which provides values for the neutron pairing ga
that reproduce well the corresponding experimental value
190,192,194Pb as well as in194,196,198Po.
In the same fashion, we reproduce the proton gap in

isotopes by takingGp 5 0.15 MeV.
The strengthGpn can be evaluated by adjusting it to ob

tain the experimental energies of the intruder state accord
to the harmonic expression~2.12!. This is an appealing pre
scription since the nonharmonic effects@neglected in Eq.
o-
fi-
not

ay
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~2.12!# are due to the influence of the proton-neutron corr
lations. ChoosingGpn to simulate those efects seems to be
reasonable procedure of renormalizing the interaction. T
is what one usually does with the strengthkl in effective
interactions like separable or surface delta interaction~SDI!
interactions, wherekl is adjusted to obtain the experimenta
energy of a state~usually the yrast! with angular momentum
l and parity (21)l @21#. But in order to be acceptable, the
value thus obtained forGpn should be reasonable; i.e., i
should be small in comparison to the strengthsGp andGn

~to minimize the effects of isospin violation! and it should
not change drastically from nucleus to nucleus even as
function of the other strength parameters. To probe the
points we show in Fig. 1 the relation between the streng
parametersGp andGpn for a fixed energy of the intruder
state. In this figure the casesE0

2
1 5 1 MeV ~solid line! and

E0
2
1 5 0.7 MeV ~dashed line! are presented. The values o

Gp are chosen in this figure in the neighborhood of the val
that fits the proton gap (Gp 50.15 MeV!. One sees that
Gpn varies very smoothly and within a reasonable and rath
small range in this figure. Moreover, a difference of 300 ke
in the calculated energies~i.e., the difference between the
two curves! requires very small changes in the paramete
That is, a rather wide range of reasonable values of the p
ing strengthsGp andGpn will all provide the energies of the
intruder states. Perhaps even more important, the stren
Gpn is about one order of magnitude smaller than the oth
strengths.

We thus choose the starting values ofGp andGpn such
that the HF corresponding to the state190Pb(02

1) at the
experimental energy is obtained. This is achieved withGpn

50.015 MeV andGp50.16 MeV, which also fits reasonably
well the experimental proton pairing gaps. This is expect
since this value ofGp is very close to the one determined
previously as ‘‘best choice’’ for that purpose~i.e.,
Gp50.15 MeV!. From this point we variedGpn ~with the
values ofGn 5 0.1 MeV andGp50.16 MeV fixed! to obtain
the energiesE0

2
1 as a function ofGpn . For each one of these

points we calculated the BCS occupation parameters,

FIG. 1. Pairing strengthGp as a function of the strengthGpn for
energies of the intruder state@Eq. ~2.12!# of E0

2
1 5 1 MeV ~solid

line! and 0.7 MeV~dashed line!.
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QRPA amplitudesX andY, and the HF according to Eqs
~2.18! and~2.19!. The results of the calculation are shown
Fig. 2. Notice thatGpn is chosen as a free parameter only
the starting point, i.e., the point of lowest energy in Fig.
Afterward we got the energies and the HF as a function
Gpn such that for a given energy of Fig. 2 one can assign
corresponding HF. For the measured energies of192,194Pb,
Fig. 2 shows that the calculated values of the HF agree v
well with the corresponding experimental values. Moreov
we give in Fig. 2 also the values of the HF for higher en
gies in the hope that they may be useful as a guide in ev
tual experimental searches. In particular, we predict that
ing towards heavier lead isotopes, where the increas
energy of the intruder state would eventually lie above
MeV ~in 208Pb! @7#, the HF increases very rapidly. Beside
the problem that one may reach the decay threshold, Fi
shows that even from a spectroscopy point of view an
perimental detection of the intruder states in heavy lead
topes through alpha-decay experiments would be difficul

It is worthwhile also to notice from Figs. 1 and 2 that th
increase in energy implies a decrease in the proton-neu
strengthGpn ~with all other parameters fixed!. Therefore
when approaching the normal nucleus208Pb the monopole
proton-neutron correlation diminishes, as it should be si
the superfluidity of the neutrons tends to disappear in t
situation. Eventually, in the normal system, the different c
relations are related to the decoupled particle-particle, h
hole, and particle-hole states, as discussed in Ref.@7#.

B. Isotopes outsideZ582

Hindrance factors corresponding to decays to intru
states in the nuclei196,198Po, 182,184Hg, and176,178,180Pt were
recently measured@9,10#. The unexpected feature in this ca
is that the hindrance factors show large and sudden cha
in some nuclei, as shown in Table I. In fact the HF corr
sponding to the decay of200Rn is the largest,D l50, ever
measured. As comparison one also sees in Table I the
corresponding to the decay of the Po isotopes discus
above. There is a factor 80 between the HF measured in

FIG. 2. Hindrance factor as a function of the energy of t
intruder states 02

1 in Pb isotopes. The experimental data~squares!
are taken from Ref.@10#.
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decay of 194Po and the one in200Rn. Furthermore, one no-
tices a systematic trend in the HF values for the decay of Hg
isotopes of Table II. In contrast to the decay of Pb isotopes
where the HF is essentially constant, the HF rises from 2.4 in
184Hg to 17 in the case of180Hg. This outstanding feature
may be the signature of an uncommon process occurring in
nuclei.

In the cases of Table I, which we will analyze first, the
active particles occupy particle states. As discussed in the
previous section, we choose the basis vectors that will de
scribe the states 01 as those corresponding to the decay of
198Po. Therefore for this decay it isa51, b50, c51, and
d50.

The matrix elementsTi are in this case

T15^198Po~g.s.!uTu194Pb~g.s.!&,

T25^198Po~g.s.!uTu194Pb~02
1!&,

T35^198Po~02
1!uTu194Pb~g.s.!&,

and

T45^198Po~02
1!uTu194Pb~02

1!&,

where the operatorT creates ana particle. Since the basis
states are just the modes that connect these transitions, it
uT1u5uT4u. In the matrix elementT2 the operatorT creates
two protons in the two-proton hole states that are available in
u194Pb(02

1)& while the neutrons occupy the superfluid states
just leading tou198Po(g.s.)&. A comparison of the experimen-
tal values for the alpha reduced widths@27# allows one to
estimate that (T1)

2 is about 3 times (T2)
2. Finally, in T3 the

operatorT can only create protons in states above the Ferm
level, and since in the stateu198Po(02

1)& there are unoccupied
proton hole states, one getsT350. One may argue that this

e

TABLE I. Calculated hindrance factor~HF! in proton-particle
nuclei. The numbersa and c are the ground-state wave function
amplitudes as defined in Eqs.~2.20! and ~2.21!, respectively. The
componentb(d) is given by the normalization condition.

Mother Daughter HF~HFexpt) a c

198Po 194Pb 3.0~2.86 0.5! 1.00 1.00
196Po 192Pb 2.5~2.56 0.1! 0.99 0.99
194Po 190Pb 1.0~1.16 0.1! 0.82 0.98
202Rn 198Po 19~19.06 6! -0.94 1.00
200Rn 196Po 78.8~79 6 7! -0.95 0.99
200Rn 196Po 13295~79 6 7! -0.92 0.99

TABLE II. As in Table I for proton-hole nuclei.

Mother Daughter HF~HFexpt) a c

188Pb 184Hg 21.1~21 6 3! 0.95 1.00
186Pb 182Hg 21.0~21 6 4! 0.92 0.90
184Hg 180Pt 0.62~2.46 0.4! 1.00 0.62
182Hg 178Pt 3.0~3.56 0.6! 0.90 0.71
180Hg 176Pt 130~17 6 5! 0.80 0.92
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estimation ofT3 is very crude because the real vacua a
correlated states. However, it has to be considered t
throughout this paper we are assuming that the shellZ582 is
not badly broken as the number of neutrons decreases. T
is an approximation that we accept, particularly in this se
tion, to avoid introducing too many parameters, which wou
spoil the simplicity and elegance of the model. Besides, t
main conclusions of this paper will not be changed if reaso
able values ofT3 are allowed@16#.

The neutron-deficient Pb isotopes are quasispherical a
have a rather sharply defined Fermi surface with a compl
filled Z582 proton shell. This can be deduced from lifetim
measurements of the Pb(02

1) states@28# as well as from the
excitation energy of the states 21

1 . Therefore, within our
model the mixing amplitudec is close to unity for all the Pb
isotopes considered in Table I, starting withc51 in 194Pb, as
mentioned above. This is in good agreement with the resu
of Ref. @28#, from where we took the values ofc for the other
Pb isotopes in Table I.

For the mother Po isotopes in this table we start wi
a51 in 198Po, as also discussed above, obtaining HF53 for
the corresponding alpha decay, in good agreement with
periment~HF52.860.5!. For the lighter Po isotopes we ad
just the amplitudea to reproduce the experimental HF val
ues. One notices in Table I that in194Po the amplitudea is
rather small, indicating that here mixing between the tw
01 states appears.

The values ofc in the decays of the Rn isotopes in Tabl
I correspond to the wave functions of the now daughter
isotopes. That is, the parametersc in this case are the param-
etersa in the decay of Po isotopes analyzed above, i.
c(198Po)51.00 and c(196Po)50.99. The value ofa in
202Rn was chosen such that it fits the corresponding H
value. One thus obtains thata is close to unity, but negative,
as seen in Table I. This is an example of the determination
the signs of the wave function components in a given type
excitation~in this case proton particles! by adjusting the ex-
perimental data. From the nucleus202Rn thus calculated, we
analyzed next the decay of200Rn by smoothly changing the
corresponding wave function componenta. But here we no-
tice a very strong dependence of HF upona. With
a520.95 we obtain the experimental HF, but with
a520.92 one obtains HF513 295, as shown in Table I.
This is a typical feature of unstable systems that undergo
phase transition process. That is, the extremely large exp
mental HF value observed in the decay of200Rn is a sign that
a phase transition occurs in this nuclear region.

For the proton-hole excitations that appear in the deca
of Pb and Hg isotopes the basis vectors are determined
the states184Hg~g.s.! and 184Hg(02

1), as discussed above
with the assumption that the conditionsT15T4, T250, and
(T3)

253(T1)
2 are approximately fulfilled. That means tha

for the daughter nucleus184Hg in Table II it is c51. We
determine the corresponding value ofa by smoothly extrapo-
lating the values of the neutron components in Table I~i.e.,
the values ofc for 194,192,190Pb!. This would givea50.97,
very close to the valuea50.95 which was chosen just to
reproduce the experimental data for HF in Table II. Extrap
lating one obtainsa(186Pb!50.92 and withc(182Hg!50.90,
re
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which is a rather smooth variation from the valuec51 as-
signed to184Hg, and one obtains again the experimental HF

Finally, for the decay of Hg isotopes we take the wav
functions previously evaluated, i.e.,a(184Hg!51.00 and
a(182Hg!50.90, and extrapolating for180Hg one obtains
a(180Hg!50.80. The wave function components of the cor
responding Pt isotopes are, according to Ref.@24#,
c(180Pt!50.62, c(178Pt!50.71, and c(176Pt!50.92. With
these values ofa andc one obtains values of the HF that are
surprisingly close to the corresponding experimental value
Particularly the strong variation of the experimental HF go
ing from 182Hg to 180Hg is strongly marked, indicating even
here that a phase transition has taken place.

It is worthwhile to point out the simplicity of the model
used in this section. This may be compared with the rath
involved formalism used before.

IV. SUMMARY AND CONCLUSIONS

In this paper we have calculated hindrance factors~HF’s!
of alpha decay transitions into the ground state with respe
to the corresponding intruder 02

1 transitions from Po, Rn, Pb,
and Hg isotopes. The interest of this calculation lies in som
puzzling features found in the corresponding experimen
values that were recently reported@9,10#. In the decay to the
intruder states of Pb isotopes the HF is small~and, therefore,
the transitions to the intruder states are large! and decreases
with decreasing energy of the intruder state. Already this
remarkable. But even more interesting is that for the oth
isotopes the HF may change drastically when going from o
nucleus to its neighbor.

To understand these features we analyzed first light le
isotopes within the framework of a RPA calculation usin
standard pairing interactions for identical particles. We d
scribed the intruder states as a correlated two-particle–tw
hole ~2p-2h! proton excitation. As expected, we found tha
protons in the mother Po isotopes as well as in the intrud
states in Pb move in normal orbits; i.e., the occupation num
bersU and V have a sharp distribution in this case. We
found that the energies of the intruder states calculat
within this model can be fitted by appropiate choices of th
proton pairing strengthGp . However, within this calculation
we could not obtain the corresponding experimental energ
and HF simultaneously. We ascribed this deficiency to th
lack of a proper interaction between neutrons and proton
although the pairing strengths that are determined by fittin
the experimental pairing gaps@21# partially include the
proton-neutron (p-n) interaction in an effective way. To
consider this interaction, we introduced ap-n force that is a
generalization of the standard pairing force but which vio
lates isospin. We have argued that this violation is not larg
We found that even in this case the protons mostly move
normal orbits but the 2p-2h excitations include now bot
neutrons and protons. We found that the dependence of
experimental HF upon the excitation energy of the intrud
state~i.e., upon thep-n strengthGpn) is very well repro-
duced by the calculation. We obtained the experimental va
ues in the three isotopes so far measured by choosingGpn so
as to reproduced the HF in one of those isotopes. We ha
even presented the calculated HF for other values of the e
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ergy in the hope that they may be useful as a guide in ev
tual experimental searches.

For the other cases observed experimentally we use
very simple model consisting of a basis that includes tw
states 01, which represent the ground and intruder stat
without correlations@23,24#. By adjusting the mixing ampli-
tude to reproduce the hindrance factor we observed tha
194Po a mixing between the ground state and the 02

1 state
appears. In contrast, in Hg isotopes those mixings are sm
We have also found that in light Pt isotopes a change in t
en-

d a
o
es

t in

all.
he

structure of the ground states occurs, confirming previou
results@24#. Finally, we found that in the decay of Rn iso-
topes the HF is very sentitive to small changes in the corre
sponding wave functions. This is a typical feature of system
that undergo a phase transition. We therefore ascribed t
large value of the HF observed in the decay of200Rn to a
phase transition in this nuclear region and, more generall
we conclude that the study of alpha decay hindrance facto
may provide a powerful tool to detect those phase trans
tions.
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