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The NA49 fixed-target experiment studied high energy–density matter pro-
duced in nucleus–nucleus reactions at the CERN SPS. In central Pb+Pb colli-
sions at 158A GeV the energy density at the early stage substantially exceeds the
threshold for quark deconfinement predicted by lattice QCD.The produced mat-
ter shows strong transverse and longitudinal flow. Ratios ofyields of produced
particles are approximately consistent with statistical equilibration. An energy
scan through the SPS range revealed structure in the energy dependence ofπ and
K yields as well as of the inverse slopes of transverse mass distributions. These
features suggest that a deconfined phase starts to be produced at around 30A GeV
in central Pb+Pb collisions. The analysis of fluctuations and correlations has not
yet provided evidence for the predicted critical point of QCD.
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F. Pühlhofer12 , R. Renfordt9, C. Roland5, G. Roland5, M. Rybczyński11 , A. Rybicki6,10,
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1. Introduction

Qualitative considerations based on the finite size of hadrons [1] as well as
quantum chromodynamics (QCD) calculations on the lattice [2, 3] predict that at
sufficiently high energy density strongly interacting matter will transform into a
state of quasi-free quarks and gluons, the quark gluon plasma (QGP). Theoretical
investigations also found [4] that this phase transition isof first order for finite
quark masses and large non–zero baryon density. The phase boundary is predicted
to end in a critical point and turn into a rapid crossover as the net baryon density
decreases.
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Fig. 1. Schematic layout of the NA49 experiment at the CERN SPS showing beam detec-
tors, superconducting dipole magnets, time projection chambers (VTPC, MTPC), time-of-
flight arrays (TOF) and calorimeters (RCAL, VCAL). A thin solid target T is used for A+A
collisions (a), which is surrounded by a detector of slow protons (CD) for p+A collisions
(c). A liquid H2 target is employed for p+p collisions (b)

The initial stage of high energy collisions of large nuclei provides the best en-
vironment to produce the deconfined phase of matter in the laboratory [5, 6]. Lead
ions first became available at the CERN SPS in 1994. In the firstpublication from
this programme [7] NA49 demonstrated that in central Pb+Pb collisions at top
SPS energy the initial energy density exceeds the critical value of≈ 1 GeV/fm3.
The SPS experiments found that the reactions produced an explosively expanding
fireball. Moreover, originally proposed signatures of the QGP, i.e.J/Ψ suppres-
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sion, strangeness enhancement, and possibly thermal photons and dileptons were
observed [8]. However, these signatures are not specific fordeconfinement. The
NA49 collaboration therefore performed an energy scan from20 - 158A GeV in
order to search for structure in the energy dependence of hadron production charac-
teristics which could indicate the onset of deconfinement [9]. The measurements
indeed suggest structure around 30A GeV [10] which will be discussed below.
NA49 also searched for fluctuations which might occur if distinct phases coex-
isted in the early stage of the reactions or if hadrons froze out close to the critical
point estimated [3] to lie in a region accessible at the SPS.

2. Experiment NA49 at the CERN SPS

The main features of the NA49 experiment [11] located in the H2 beam line
of the North Experimental Hall (see fig. 1) are large acceptance precision tracking
(∆p/p2 ≈ (0.3−7) ·10−4(GeV/c)−1) and particle identification in the central and
forwards rapidity regions using time projection chambers (TPCs). Charged parti-
cles (π, K, p, p̄) are identified mostly from the measurement of their energy loss in
the TPC gas (accuracy 3 – 6 %). Yields are obtained by fitting a sum of Gaussian
functions for the various particle species to the dE/dx distributions in small bins of
momentum p and transverse momentumpT . At central rapidity the identification
is further improved by measurement of the time-of-flight (resolution 60 ps) to ar-
rays of scintillation counter tiles. Strange particles (K0

s, Λ, Ξ, Ω) are detected via
decay topology and invariant mass measurement. A forward calorimeter measures
the energy of the projectile spectators from which the impact parameter in A+A
collisions and the number of participating nucleons are deduced. Also reactions
of C and Si ions as well as of deuterons were studied. These beams were pro-
duced by fragmentation of the primary Pb beam and selected bymagnetic rigidity
and by specific energy loss in transmission detectors in the beam line. In addition
NA49 pursued an extensive program of proton induced collisions for a study of the
evolution of particle production from p+p via p+Pb to Pb+Pb reactions.

3. Analysis procedure

All events used for physics analysis were required to have a good vertex in the
respective target. Tracks of accepted particles had to fulfill quality requirements
on the number of measured points and the distance of closest approach to the
event vertex. Particle yields have been corrected for acceptance, reconstruction
efficiency and feed-down contamination from weak decays. Results on particle
yields for the upper 3 energies have been published in [12, 13, 14] where more
details on the analysis procedures may be found. Results at 20A and 30A GeV are
preliminary.
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Fig. 2. Transverse massmt spectra at midrapidity in central Pb+Pb collisions at 20A

(left), 40A (center) and 158A (right) GeV. The curves show the result of a blast wave fit
[16] with parameters: temperature Tf and surface radial flow velocityρ0.

4. Thermal freezeout parameters from spectra and correlations

Midrapidity invariant yields as a function of the transverse massmt are shown
in fig. 2 at 20A, 40A and 158A GeV as examples for the large variety of par-
ticle species measured by NA49. The spectra become progressively flatter with
increasing particle mass, a fact that can be explained by thecombined effect of
the random thermal momentum distribution and strong radialflow in the produced
matter droplet. The development of collective flow is generally attributed to the hy-
drodynamic pressure generated in the dense early stage [15]. A hydrodynamically
based ”blast wave” parameterization [16] indeed provides areasonable description
of all the spectra with two parameters: a temperature Tf ≈ (90 - 110) MeV and a
radial flow velocity ofρ0 ≈ 0.8 c at the surface. These parameters characterize the
thermal/kinetic freezeout of the fireball. The pion spectrum overshoots the model
curve at lowmt due to the feed-down contribution from resonance decays andthis
region was therefore not used in the fit. More detailed analyses [17, 14] seem to
suggest an earlier freezeout of multistrange hyperons at higher temperature and
smaller radial flow velocity.

Collective flow also affects quantum statistics induced correlations of identical
particles. For negative pion pairs the range of these Bose-Einstein (BE) corre-
lations in momentum difference, which is inversely proportional to the effective
pion source size, is reduced by flow. This reduction gets stronger with increasing
transverse momentum (see fig. 3 (left)). In the NA49 publication [18] this effect
together with themt spectrum of pions was used for the first time to demonstrate
strong collective radial flow in Pb+Pb collisions, i.e. the correlation of the radial
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Fig. 3. Left: Projections of theπ−π− correlation function on momentum difference q
in the transverse (side, out) and beam (long) directions forcentral Pb+Pb collisions at
158A GeV. Right: Effective radius parameters R of the pion sourceversus mean transverse
momentumkt of the pion pairs in central Pb+Pb collisions at the five SPS energies. The
curves show results of simultaneous fits of the blast wave model to the radius parameters
and the transverse massmt spectra of pions and protons. All results refer to midrapidity
pion pairs.

position of the emission points with the transverse momentum of the produced
particle. This information cannot be obtained from transverse mass spectra alone.
The fitted effective source sizes, the so-called radius parameters R, are shown as
a function of averaged transverse momentumkt of the pion pairs for all the SPS
energies in fig. 3 (right). The decrease of R with increasingkt due to radial flow
is clearly observed. On the other hand, as shown in fig. 4 (left) the radius parame-
ters show remarkably little energy dependence over the whole energy range from
AGS to RHIC. In particular, there is no indication of an increase of Rout at the
SPS which might be expected from a first order phase transition. In fact, hydro-
dynamic calculations with a simple freezeout procedure overpredict the values of
Rout and Rlong [15]. A solution of this so-called HBT puzzle seems to lie in amore
sophisticated treatment of the frezzeout process [19].

The hydrodynamics inspired blast wave parameterisation provides a compre-
hensive description of the kinetic freezeout stage of nucleus–nucleus reactions.
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The parameterization [16] assumes a uniform pion emission density in a cylinder
of radius R and a radial flow velocity increasing linearly with radius to a surface
maximum ofρ0. Further parameters of the model are the kinetic freezeout tem-
perature T (mainly determined by themt spectra), the lifetimeτ of the fireball
(derived mostly from Rlong) and the duration∆τ of the pion emission burst (ob-
tained from the difference of Rout and Rside). Resulting parameter values from
simultaneous fits to radii andmt spectra from AGS to RHIC energies are plotted
versus collision energy in fig. 4 (right). The correspondingradius parameters at the
SPS are shown as curves in fig. 3 (right). The fit results demonstrate that the mat-
ter droplet at freezeout has increased radially by a factor of two and has attained
strong collective radial flow. While frezeout temperature and fireball lifetime ap-
pear to to increase slowly with energy, the surface radial flow velocity seems to
saturate at SPS energies.
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Fig. 4. Left: Energy dependence of radius parameters R of thepion source at mean trans-
verse momentumkt= 0.2 GeV/c and midrapidity in central Pb+Pb and Au+Au collisions.
Results from AGS, SPS and RHIC are shown as squares, filled (NA49) and open (NA45)
circles, and triangles respectively. Right: Freezeout parameters obtained from simulta-
neous fits of the blast wave model [16] to radius parameters from π−π− Bose-Einstein
correlations andmt spectra of pions and protons at midrapidity in central Pb+Pb(Au+Au)
collisions from AGS (blue dots) through SPS (red dots, NA49 data) to RHIC (green dots)
energies.

While radial flow manifest inmt spectra and BE correlations builds up over
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the full lifetime of the fireball, anisotropic flow generatedin non-central collisions
is particularly sensitive to the properties of the producedmatter during the early
phase of the reaction. In the almond shaped interaction region anisotropic pressure
gradients and rescattering lead to an azimuthally anisotropic momentum distribu-
tion. Since the spatial anisotropy disappears quickly, themomentum anisotropy
is generated predominantly at early times in the reaction. The pressure rise with
initial energy density is qualitatively expected to slow down when deconfinement
sets in. Anisotropic flow is quantified by the Fourier expansion coefficients of the
azimuthal angular distribution with respect to the reaction plane. At midrapidity
the dominant effect is observed in the second coefficient v2, termed elliptic flow.
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Fig. 5. Left: Azimuthal distribution ofΛ hyperons with respect to the reaction plane as
determined from pions. Full dots show data, open dots mixed events. Right: v2 of π, p,Λ
versus transverse momentumpT at midrapidity in Pb+Pb collisions at 158A GeV. Curves
show results from the blast wave model [16].

NA49 measured anisotropic flow of pions and protons in Pb+Pb collisions at
40A and 158A GeV [20] and ofΛ hyperons [21] at 158A GeV. An example of
theΛ azimuthal distribution with respect to the reaction plane as determined from
pions is displayed in fig. 5 (left). The elliptic flow coefficient v2 at midrapid-
ity is plotted versus transverse momentumpT for the different particle species in
fig. 5 (right). One observes a strong increase withpT and a clear mass hierarchy
as predicted by hydrodynamic models [15]. Values of v2 are about 30 % higher
at RHIC (not shown) than at SPS. Both at the SPS and at RHIC the observed el-
liptic flow v2 can be reproduced by the blast wave model parameterisation [16]
with parameters consistent with those describing spectra and Bose–Einstein cor-
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relations [21]. Pure hydrodynamic model calculations overpredict v2 particularly
at SPS energies. However, coupling of a hadronic rescattering phase to the initial
deconfined hydrodynamic phase results in reasonable description of the measured
energy dependence from SPS to RHIC [22].
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Fig. 6. Rapidity distributions in central Pb+Pb collisionsat 20A – 158A GeV. Solid dots
show measurements, open dots were obtained by reflection around midrapidity.

5. Hadron freezeout parameters from particle yields

The large acceptance of the NA49 detector allows measurements of rapidity
spectra from midrapidity up to almost beam rapidity (see fig.6). Rapidity distribu-
tions of most particles are peaked at midrapidity. OnlyΛ hyperons, sharing a va-
lence quark with the projectile, show a flattening at higher collision energy. Due to
the reflection symmetry of Pb+Pb collisions 4π yields can be determined. Particle
yield ratios in A+A (as well as elementary) collisions are consistent with statistical
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model predictions from threshold to the highest energies using only 3 parameters:
a temperature T, a baryo-chemical potentialµB and a strangeness suppression pa-
rameterγs. These parameters characterize the freezeout of particle composition
after which only the momentum distributions further evolvevia elastic scattering.
An example of the results of the fit with the statistical modelfor central Pb + Pb
collisions at 158A GeV [23] is shown in fig. 7 (left).
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The resulting parameters T andµB [23] are plotted in the phase diagram of
hadronic matter in fig. 7 (right) together with the phase boundary predicted by
lattice QCD [3]. One observes that the freezeout points at SPS energies approach
the phase boundary and and are closest to the critical point at about 60A GeV.

6. Indications for the onset of deconfinement

A detailed overview of the energy dependence of strangenessproduction is
presented in fig. 8. The〈K+〉/〈π+〉 ratio (left) shows a steep rise from the thresh-
old of kaon production, a maximum around the lowest SPS energy and a decrease
to a somewhat lower plateau value. Although the microscopictransport models
RQMD, UrQMD [25] and the statistical hadron gas model (full equilibrium ver-
sion (γs = 1) supplemented by the freezeout condition 1 GeV/hadron [24]) follow
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the gross trend, they do not reproduce the pronounced peak ofthe〈K+〉/〈π+〉 ratio
at the SPS. Since anti-baryon production yields are small,〈K+〉 counts essentially
half of all s̄ quarks in the final state (the other half is contained in K0). In con-
trasts quarks are distributed between anti-kaons and hyperons (mainly Λ) because
of the large net baryon density at SPS energies. As a consequence of the rapid
decrease of the net baryon density over the SPS energy range,the sharp peak in
〈K+〉/〈π+〉 is reflected in a break in the energy dependence of the〈K−〉/〈π−〉 ratio
(fig. 8 (center)) and a wider maximum in the〈Λ〉/〈π〉 ratio (fig. 8 (right)).
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Using isospin symmetry as well as predictions from the hadron gas model
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for some unmeasured strange particle species one can obtainan estimate of the
number ofs and s̄ valence quarks contained in the produced particles. The re-
sult shown in fig. 9 (left) demonstrates that there is a break in the energy depen-
dence of total strangeness production at 30A GeV. Dividing by the pion multiplic-
ity (fig. 9 (right)) confirms the sharp peak already seen in the〈K+〉/〈π+〉 ratio. It
has been pointed out that these features coincide with a transition from a baryon
to a meson dominated final state [26]. However, as seen from the statistical model
curve in fig. 9 (right) this effect cannot adequately describe the measurements.
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A close approximation of the total strangeness to pion production ratio can also
be calculated from measured yields via the observable ES = (〈K+K̄〉+ 〈Λ〉)/〈π〉
which is plotted in fig. 10 (left) as a function of collision energy. As expected, it
shows the same sharp peak followed by a plateau as the〈K+〉/〈π+〉 ratio, which
is not seen in p+p collisions and not reproduced by hadronic models. On the
other hand this feature can be understood in a reaction scenario with the onset of
deconfinement around 30A GeV as proposed in the statistical model of the early
stage (SMES [9], dash-dotted curve in fig. 10 (left)). ES reflects the behavior of
the ratio of the number of s +̄s quarks to entropy in the model. It shows a steep
threshold rise while the system stays in the hadron phase butdrops to the value
expected in the QGP at higher collision energies when the fireball initially reaches
the deconfined partonic phase. At the same transition energyof 30A GeV the rate
of increase of the number of produced pions per participating nucleon (a measure
of the entropy per baryon in the model) was predicted to increase. As seen in
fig. 10 (center), this seems to be confirmed by the measurements for collisions of
heavy nuclei, while there is no change in energy dependence for p+p reactions.

The transverse mass spectrum of kaons is well described by anexponential
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functione−mt/T . As shown in fig. 10 (right) for K+ the inverse slope parameter T
rises steeply at low energies, stays at an approximately constant value through the
SPS energy range and ends up slighly higher at RHIC energy. Similar behavior
is seen for K− (not shown), but is not observed in p+p collisions. These features
have been attributed [27] to the constant pressure and temperature when a mixed
phase is present in the early stage of the reaction. In fact, ahydrodynamic calcu-
lation [28] modeling both the deconfined and the hadronic phases can provide a
quantitative description (dash-dotted curve in fig. 10 (right)). The spectra of other
abundantly produced particles are not well fitted by exponential functions (see e.g.
fig. 2) but their shape can be characterised by the average value of the transverse
mass〈mt〉 minus the rest mass m0. The results in fig. 11 show that the near con-
stancy of the slope of the spectra in the SPS energy range is a common feature for
all these particles species.

7. Results on fluctuations

If the fireball freezeout occurs close to the boundary of a first order phase
transition or near the QCD critical point then large event-to-event fluctuations may
be expected. The NA49 detector was therefore designed with alarge acceptance
to allow for a wide range of fluctuation and correlation measurements.

The average transverse momentum〈pT 〉 in the event is related to the temper-
ature and radial flow in the fireball. The latter might fluctuate with the initial
energy density and the fraction of deconfined matter at the early stage of the col-
lision. The distributions for event-wise〈pT 〉 are shown in fig. 12 (left) for central
Pb+Pb , Si+Si and p+p collisions at 158A GeV by the data points [29]. These
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Pb+Pb, Si+Si and p+p collisions at 158A GeV. Right: Distribution of the event-wise K/π

ratio in central Pb+Pb collisions at 158A GeV for laboratory momenta> 3 GeV/c. Results
from real events are shown by data points from mixed events byhistograms.

are compared to results from mixed events (histograms) in which correlations are
destroyed by construction while preserving the inclusivepT and multiplicity distri-
butions. Clearly, the fluctuations are close to the statistical limit as represented by
the mixed events and no distinct event classes are observed.A quantitative analysis
was performed using the quantityΦpT

which is defined to vanish for purely statis-
tical fluctuations and which is furthermore independent of the number of collison
participants in superposition models. The results forΦpT

in the rapidity range
1.1 < yπ < 2.6 are plotted versus collision system size in fig. 13 (left). The
measuredΦpT

values are smaller than 5 MeV/c and thus below a few percent of
the 〈pT 〉. Interestingly a significant system size dependence is observed with a
maximum for peripheral Pb+Pb collisions. A similar dependence was found for
the fluctuations of the multiplicity of negatively charged particles [10]. The two
observations may be related due to a possible correlation between〈pT 〉 and multi-
plicity [30].

The energy dependence of the fluctuation measureΦpT
at the SPS for cen-

tral Pb+Pb collisions is plotted in fig. 13 (right). The observed values are small
and approximately constant. Somewhat larger results have been obtained near
midrapidity by experiment NA45 [31]. At RHIC the〈pT 〉 fluctuations increase
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of the NA49 detector. Right (preliminary): Energy dependence of 〈pT 〉 fluctuation mea-
sureΦpT

for negatively charged particles in central Pb+Pb collisions. The curve shows
predictions from the UrQMD model filtered through the acceptance of the NA49 detector.
Results are for the rapidity interval1.1 < yπ < 2.6.

substantially due to the rise of jet production [32].
Fluctuations of the K/π ratio are believed to increase near the critical point. It

has also been pointed out [33] that at the onset of deconfinement there could be a
significant decrease. The majority of strange quarks in the produced particles are
contained in kaons at SPS and RHIC energies. The mass of strangeness carriers
in the hadron phase (kaons) is much larger than the temperature whereas in the
deconfined phase (strange quarks) it is smaller. Therefore fluctuations in the initial
energy density at fixed collision energy are expected to leadto large fluctuations
of the K/π ratio when the system stays in the hadronic phase. However, these K/π
ratio fluctuations should significantly decrease if deconfinement occurs during the
early stage of fireball evolution [9, 33]. The SMES model curve in fig. 10 (left)
provides an illustration of this generic prediction when one looks at the change of
the K/π ratio for small variations of the energy variable F in the respective regions.

The(K++K−)/(π++π−) (as well as(p+p̄)/(π++π−)) ratio was extracted
event by event with a maximum likelihood fit method for particles with laboratory
momenta larger than 3 GeV/c in central Pb+Pb collisions at the five SPS energies
[34]. The momentum cut is necessary to allow identification by specific energy
loss of the particles in the TPCs. This leads to acceptances which shift to larger
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Fig. 14. Energy dependence of dynamical fluctuations of the(K+ + K−)/(π+ + π−)

ratio (left) and the(p + p̄)/(π+ + π−) ratio (right) in central Pb+Pb collisions at the SPS.
(preliminary)

cms rapidities with increasing particle mass. An example ofthe distribution of
the(K+ + K−)/(π+ + π−) ratio at 158A GeV is shown in fig. 12 (right) where
it is also compared to the results from mixed events (histogram) [35]. Clearly,
both distributions are very similar and indicate that non-statistical fluctuations are
small. Quantitatively, dynamical fluctuations were calculated by comparing the
width σdata of the ratio distribution to the one obtained for mixed events from
the formulaσ2

dyn = σ2
data − σ2

mixed. As seen from fig. 14 (left) the dynamical
fluctuations of the(K+ + K−)/(π+ + π−) ratio amount to only around 5 % of
the average ratio (about 0.15), but they show a decrease towards higher energy.
Preliminary results from the STAR experiment at RHIC for higher energies also
indicate values close to those at the highest SPS energy [36]. Such a behaviour
is not seen in typical reaction models, e.g. UrQMD, but is consistent with the
qualitative expectations from the onset of deconfinement [33].

The dynamical fluctuations of the(p + p̄)/(π+ + π−) ratio are plotted for the
five SPS energies in fig. 14 (right). The observed negative values are described
quantitatively by the UrQMD model and are most likely due to the correlated pro-
duction of p andπ via baryon resonances.

Electric charge fluctuations were predicted to be strongly reduced if the fireball
passed through a QGP phase [37]. Fig. 15 (left) depicts the distribution of net
charge in the papidity range−1.4 < y < 2.4 for central Pb+Pb collisions at
158A GeV as an example. As a consequence of charge conservation the data (full
histogram) display a narrower distribution than mixed events in which this effect
is removed. Fig. 15 (right) shows the measurements of electric charge fluctuations
in terms of the variable∆Φq [38] in which effects of global charge conservation
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are subtracted. Neither significant energy dependence nor the predicted reduction
are observed. However, more recent model calculations suggest that hadronisation
effects [39] and at SPS also resonance decays [40] probably mask the reduction.

A first order phase transition from the deconfined to the hadronic phase during
the early stage of Pb+Pb collisions is expected to result in asoftening of the equa-
tion of state and consequently in a long lifetime of the mixedphase. The study
of the balance function (BF) was suggested as a method to investigate the time of
hadron formation [41]. In many models pions are assumed to becreated in charge
neutral pairs. Due to the buildup of longitudinal flow and rescattering during the
evolution of the fireball, the rapidity correlation of opposite charges will be diluted
for pairs formed early in the process but will remain narrow for late hadronisation
as expected in a mixed phase scenario. This correlation is quantified by the BF
which is plotted as a function of the pseudorapidity difference∆η of the pairs in
fig. 16 (left). The data are compared to shuffled events, in which the pseudo rapidi-
ties of the particles are scrambled while the charges are retained. In this way one
obtains an estimate of the maximum decorrelation under the condition of charge
conservation. It is evident that the data show increasinglyshorter range opposite
charge correlations beyond the effects of charge conservation as the centrality of
Pb+Pb collisions increases.

The widths〈∆η〉 are calculated numerically from the BF distributions and the
results are plotted in fig. 16 (right,top) for the top SPS energy [42] and for RHIC
[43]. The width decreases by 17 % respectively 14 % for central compared to pe-
ripheral collisions for data while it remains constant for shuffled events. Thus the
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predicted narrowing is observed, although it is now believed that a large part of
this effect is due to the increasing strength of radial flow. In fact a model assum-
ing hadron formation by quark coalescence as well as collective radial flow can
reproduce the observed width of the BF [44].

In order to be able to compare measurements at different energies and with dif-
ferent acceptance one may calculate the normalized difference (in percent) W =100·
(〈∆ηshuff 〉 − 〈∆η〉))/〈∆ηshuff 〉 of the widths of the BF for shuffled and real
events. The energy dependence of the normalised narrowing parameter W is plot-
ted in fig. 16 (right,bottom). It shows a steady rise, i.e. more narrowing of the BF
with respect to uncorrelated particle production throughout the SPS energy range
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up to RHIC. One does not observe a significant structure at 30A GeV, where other
observables suggest the onset of deconfinement.

8. Conclusions

Results from a comprehensive study of nucleus–nucleus collisions in the SPS
energy range were presented. The produced matter shows strong transverse and
longitudinal flow. Ratios of yields of produced particles are approximately consis-
tent with statistical equilibration. The freezeout parameters of the hadron compo-
sition are close to the phase boundary predicted by QCD. The main charcteristics
of nucleus–nucleus collisions at the highest SPS energy arequite similar to those
found at RHIC.

The energy scan of central Pb+Pb collisions revealed that ataround 30A GeV
the ratio of strangeness to pion production shows a sharp maximum, the rate of
increase of the produced pion multiplicity per wounded nucleon increases and the
effective temperature of pions and kaons levels to a constant value. These features
are not reproduced by present hadronic models but find a natural explanation in a
reaction scenario with the onset of deconfinement in the early stage of the reaction
at low SPS energy. Further support for this scenario is provided by the decrease of
fluctuations of the K/π ratio in the SPS energy range. On the other hand, measure-
ments of fluctuations of the average transverse momentum, ofthe electric charge,
as well as of correlations such as the balance function andππ Bose-Einstein cor-
relations exhibit a smooth energy dependence.

The present results suggest that further study of the role ofthe initial volume in
the onset of deconfinement and the search for the predicted critical point of QCD
are of great interest. This led to an initiative for a low energy program at RHIC
[45] and the proposal of a future light-ion program at the SPS[46, 47].
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