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1 Introduction

Baryogenesis through Leptogenesis (1] is a sin ple m echanisn to explain the observed baryon
asymm etry of the Universe. A lepton asym m etry is dynam ically generated and then converted
nto a baryon asymm etry due to (B + L )-violating sphaleron interactions [2]which exist w ithin
the Standard M odel (SM ). A sinple schem e In which this m echanian can be In plem ented
is the ‘scesaw ’ (type I) m odel of neutrino m ass generation [3]. In its m Inin al version it
includes the SM plus two or three righthanded (RH ) heavy M aprana neutrinos. T hem al
leptogenesis 4, 15, 16] can take place, for instance, In the case of hierarchical spectrum of
the heavy RH M aprana neutrinos. T he lightest of the RH M ajprana neutrinos is produced
by them al scattering after In ation. It subsequently decays outofequilbrium in a lepton
num ber and Charge and Parity (CP ) violating way, thus satisfying Sakharov’s conditions [7].
O n the other hand, the seesaw m echanisn of neutrino m ass generation 3]provides a natural
explanation of the sm allness of neutrino m asses: integrating out the heavy RH M aprana
neutrinos generates am ass term of M a prana type for the left-handed avour neutrinos, w hich
is iInversely proportional to the Jarge m ass of the RH ones.
The in portance of the lepton avour e ects In them al leptogenesis has been recently
realized in [8,9,110,[11]. T he dynam ics of leptogenesis was usually addressed w ithin the ‘one-
avour’ approxin ation. In the latter, the Boltzm ann equations are w ritten for the abundance
of the Iightest RH M ajprana neutrino, N, responsible for the out of equillbbriim and CP-
asymm etric decays, and for the total kpton charge asymm etry. However, this ‘one- avour’
approxin ation is rigorously correct only when the interactions m ediated by charged lepton
Yukawa couplings are out of equilbbrium . A ssum ing for the m om ent that leptogenesis takes
place at tem peratures T M.,whereM ; isthemass ofN,and that theRH spectrum ishi-
erarchical, the one- avour’ approxin ation hodsonly orT M > 102 GeV .ForM ; > 10%?
G eV ,alllepton avours are notdistinguishable. T he lepton asym m etry generated in N 1 decays
ise ectively “‘stored’ in one lepton avour. However, for T M, < 10'? G &V, the interactions
m ediated by the —epton Yukawa couplings com e into equilbrium , followed by those m edi-
ated by the muon Yukawa couplings at T M; < 10° G&V, and the notion of lepton avour
becom es physical. Flavour e ects are In portant because leptogenesis is a dynam ical process,
involring the production and destruction of the heavy RH M a jprana neutrinos,and of a lepton
asym m etry that is distrbbuted am ong distinguishabl avours. Contrary to what is generically
assum ed in the one- avour approxin ation, the L = 1 inverse decay processes which wash
out the net legpton num ber are avour dependent. T he asym m etries in each lepton avour, are
therefore washed out di erently, and w ill appear w ith di erent weights In the nal formula
for the baryon asym m etry. T his is physically nequivalent to the treatm ent of washout in the



one- avour approxin ation, where the avours are taken indistinguishable.
The In pact of avour In themm al leptogenesis has been recently investigated in detail in
9,10,11,12,13], including the quantum oscillations/correlations of the asym m etries in Jepton
avour gpace [9]. The interactions related to the charged Yukawa couplings enter in the
dynam ics by inducing nonvanishing quantum oscillations am ong the lepton asymm etries in
avour gpace [9]. Therefore the lepton asymm etries m ust be represented as a matrix Y in
avour space, the diagonal elem ents are the avour asym m etries, and the o diagonals encode
the quantum correlations. The o -diagonals should decay away when the charged Yukawa
couplings m ediate very fast processes. T he Boltzm ann equations therefore contain new temm s
encoding all the inform ation about the action of the decoherent plagn a onto the coherence
of the avour oscillations: if the dam ping rate is large, the quantum correlations am ong the
avours asym m etries are quickly dam ped away. If leptogenesis takes place when the charged
Yukawa couplings do not m ediate processes in them al equilbbrium , the quantum correlators
play a crucial role to recover the one- avour approxin ation. O n the other hand, if leptogenesis
takes place w hen the charged Yukawa couplingsm ediate processes well in themm al equilbbrium
quantum correlations play no role in the dynam ics of leptogenesis.
T hegoalofthispaper is to study the transition from the one- avour to the two— avour case.
In the case of hierarchical RH m ass spectrum , the baryon asym m etry is directly proportional
to themass M ; of the lightest RH neutrino. A Jarge enough baryon asymm etry is obtained
only for a su ciently large value ofM ;. T herefore, we w ill restrict ourselves to the transition
from the one- avour state, to be denti ed w ith the total lepton num ber, to the two- avour
states, to be denti ed with the Ilepton doublet / and a linear com bination of the and
e doublets. The m ost Interesting region is for values of m asses of the lightest RH neutrino
centered around M ; 10° G eV where we expect the quantum correlators to play a signi cant
role In profcting the lepton state on the avour basis and, eventually, in the generation of the
baryon asymm etry. Studying the details of the transition is relevant to understand if it is a
good approxin ation to com pute the baryon asymm etry just solving the Boltzm ann equations
with only the diagonal entries of the m atrix Y for the lepton asymm etries (as usually done
In the recent literature for the avoured leptogenesis [11/,112,/13]]) and neglecting altogether
the o diagonal entries. W e would lke to see under which conditions on the leptogenesis
param eters the full tw o— avour regin e is attained.
T he paper is organized as llow s. In Section [ we sum m arize the general fram ew ork and
the Boltzm ann equations. In Section [§ we describbe in detail the one- avour lim it, while the
wo— avour lin it is described in Section [4. Section[d contains them ain body of our results; we

present both analytical and num erical results for the various regin es. F inally our conclusions



are contained in Section [ together w ith som e com m ents.

2 Two—- avour Boltzm ann equations

T he lagrangian we consider consists of the SM one plus three RH neutrinosN; (1= 1;2;3),
with M ajprana m assesM ;. Such RH neutrinos are assum ed to be heavy (ie. w ith m asseswell
above the weak scale) and hierarchical M 4 M 23),s0 that we can safely focus our attention
on the dynam ics of N1 only. T he iInteractions am ong RH neutrinos, H iggs doublets H , lepton
doublts / and singletse ( = e; ; ) aredescribed by the lagrangian

1
Lie = iNi’H+he‘HC+5MiNiNi+h:c:; (1)

with summ ation over repeated indeces. The lagrangian is written in the m ass eigenstate
basis of RH neutrinos and charged leptons. T he interactions m ediated by the charged lepton
Yukawa couplings are out of equilibrium for T M; > 10 Gev.In thisregin e, avours are
indistinguishable and one can perform a rotation In avour space to store all the asym m etry in
a single avour. At an aller tem peratures, though, this operation isnotpossble. The  avour
becom esdisthguishable for T  M; < 102 G eV . A swe already discussed in the Introduction,
we will restrict ourselves to the study of the transition occuring around T M4 102
G eV . T his choice is m otived by the follow ing considerations. In the case of hierarchical RH
m ass spectrun , the baryon asym m etry is directly proportional to them assM ; of the lightest
RH neutrino. T herefore, a Jarge enough baryon asymm etry is obtained only for a su ciently
large value of M 1. Since the transition which m akes the avour distinguishable occurs at
T M4 10 G eV , the corresponding valie ofM ; isgenerically too sm all to provide a baryon
asymm etry In the observed range. T herefore, we w ill study the transition from the one- avour
state, to be denti ed w ith the total lepton num ber stored in the lepton doublets, to the two-
avour states, to be identi ed with the Ilepton doublet / and a linear com bination of the

and e doublets (which at tem peratures between 10? and 10*2 Gev are indistinguishable),
1=2

7

2= (1e'et 1 )= J1eF+ 317

H aving therefore in m ind the transition between a one- avour and a tw o— avour system ,we
study a toy m odelw ith two lepton doublets = 1;2 and generically represent the lepton asym —
metrymatrix by a2 2density m atrix Y given by the di erence of the density m atrices for the
lepton and antidepton num ber densities (nomm alized to the entropy density s). T he diagonal
elam ents are the lepton asymm etries stored in each avour while the o diagonal elem ents
describe the quantum correlations between di erent avours. T he total lepton asymm etry is
given by the trace of thism atrix.



In order to follow the evolution of the lepton asymm etry, one needs to write down the
equations of m otion for the m atrix Y . T he proper evolution equations for the m atrix Y has
been found and discussed in [9], neglecting the transform ations to bring the asym m etries in
the lepton doublets to the the SM conserved charges = B=3 L ),wherel isthe total
lepton num ber in a single avour. Including these transform ations only change the nalresult
by a factor of order unity and therefore we w ill also neglect them for the sake of presentation.
T he interactions m ediated by the Yukawa couplings h are also taken into account. W e will
assum e a large hierarchy between the Yukawa couplings (which holds for the realistic case,
since h h ).

T he system of Boltzm ann equations for the generic com ponentsY  of the density m atrix,
as a function of the varjab%e z= M =T, read

! #
dy ~ 1 - ) LTI 1 - N _YO
dz szH (z) Bt Yo oy3 P Reb
h i
2Re( )+ (Jm()JY Y =Y ; (2)
while the Boltzm ann equation for the N; abundance (Yy, ) is
|
dYy, 1 Yy,
= + _ 1 3
a4z p— (z)( D L=1) YNe? (3)

w here the equilbrium N 1 abundance is given by YNe? (z) = ﬁ Z°K 2(z),and g isthe num ber of
e ective degrees of freedom In the therm albath. N otice that we have Included the contribution
to the CP asymm etry from the L = 1 scatterings [[11]].

W e ram ark that to obtain Eq. (J) we have assum ed that the lepton asym m etries oscillate
w ith an approxin ately m om entum =independent frequency. T he oscillation frequency in avour
space depends on the energy (m om entum ) of the leptons and, w ithin one oscillation tin escale,
leptons are nvolved in m any m om em tum changing Interactions caused by the fast, but avour-
blind, gauge interactions. O ur assum ption am ounts to adopting the them ally averaged energy
EE i to estim ate tPlge oscillation frequency. In other words, we have approxin ated the integral

iEdtwith ilE i dtalong the path from one lepton num ber violating interaction to the next.

T hisapproxin ation iswell justi ed in [14], w here ithasbeen shown that fast gauge interactions
do not a ect the coherence of the avour oscillations.

B efore discussing the Egs. (2) and (3), we explain the various quantities appearing in them .
Thematrix ( p) represents the them ally averaged N ;decay rates ant it is given by

1 1 1 1
P (4)

[y]u:D i1 3

(p) = b»

3Asusual, f;g stands or anticom m utator while the ’s are Paulim atrices.



nom alized in such a way that the totaldecay rate p isthe trace ofthematrix. The L =1
scatterings w ere also included in the equations (see [111] for a discussion about thispoint). T he
therm ally averaged interaction ratematrix ( -1 ) hasthesameform as(p) in {d)with
p replaced by the total scattering rate -1 . The explicit expressions for the total rates p
and -1 can be found in the literature (see eg. [4]).
It is possible to generalize the usualdecay param eter to the two— avour case. T he natural
de nition isa 2 2matrix

K = — ; (5)
H z=1
w here
(p)
T yeiki@ 6)
Ni1Kz(z)

and K i(zP) are m odi ed Bessel function of the second kind. T he trace of K w ill be denoted
by K = K

The CP-asymm etry m atrix is given by [9]:

1 1 x _n : °© MZ
= T [ YDy 1 [ by £ — (7)

v 3 i3 2

16 [ Y}, 61 M ]

w here the loop function f is [15]
p— 1 1 x 1 3
fx)= x 1 1+ x)bg 1+ — + ! o= (8)
1 x 2 x

N otice that
= 9)

and the nom alization is such that the trace of the CP asymm etries reproduces the total
CP asymm etry produced by the decays of the Iightest RH neutrino N1, in the single- avour
approxin ation I
X 1 1 X M §
1 ST T m o[ Y f M—JZ : (10)
Lier 1

Ifm denotes the heaviest Iight neutrino m ass (= m 54, for the non-degenerate case) then the

entries of the CP-asym m etry m atrix are sub gct to the bounds 9]

r r_ r__!
3M m K 3M im K1 K
sv: K ' A 6 vl K = K

w here v is the vacuum expectation value of the H iggs doublet.



The param eter accounts for nteractions m ediated by the dom nant Yukawa coupling,
which from now on we denote by h;. It is given by
' i

_ ; 12
HM1) 7oy, )

having de ned the therm almass !; / h?T=16 and the interaction rate 1’ 8 10 *h?T [1d].
T he dependence on M ; is easily m ade explicit:
Re( )’ 4 10 %fM—P;En()' 5 10%§M—P;Re<)'1ojﬁn()j; (13)
M 1 M1
whereMp = 12 10° G &V is the Planck m ass. In the realistic case, one should dentify h;
with h . The avour 1 w ill therefore becom e distinguishable when M 1 < 1012 (h,=h )2 Géev.

The param eter will play a crucial role In what follows. It contains all the inform a—
tions about the action of the decoherent plaan a onto the coherence of the avour oscillations.
Changing the param eter , that is changing the value of themass M ;, and assum Ing that
leptogenesis takes place at a tem perature T M., one can analyze the various regin es: for
73 1,the Yukawa coupling h 1 does not m ediate processes in them al equilbrium and one
expects therefore that the one- avour approxin ation holds. In this regin e the o -diagonalen—
triesY are expected to be nonvanishing. For j j 1 the transition between the one- avour
and the two— avour states takes place. For j j 1 the transition is occured, there are two

avours In the system and one expects the o diagonal entries in them atrix Y to be decaying
very fast since the quantum correlations am ong the avours is e ciently dam ped away by the
decoherent interactions w ith the plagm a.

Tt is sin pler to work with the Boltzm ann equations cbtained from (2)-(3) by elim inating
the them ally averaged rates in favor of the decay param eter m atrix K and two functions,
fi1(z) and £, (z),which account for the L = 1 scatterings in the N ; themm alization and in the
wash-out of the asym m etry, respectively (see [11l,/4]). T heir asym ptotic behaviours are

1 for z 1
f1(z)’ N 2m 2 (14)
T 2Tz forz. 1;
and (
£ (2) 1 for z 1 15)
2\Z ! 2.2
% forz . 1;
2 2
w here I;%mzt 0: param etrizes the strength of the L = 1 scatterings and ax = 4=3 (2) for

v
the weak (strong) wash out case. A good approxin ation to the total wash-out tem (inverse
decays and L = 1 scatterings) at small z is given by 10 'ax K .



A frer a short m anipulation the Boltzm ann equations read
1 h i
v o=y Sh@K ¥ g Re( )+ 1Jm()FY (16)

K1) 2y

0
Y Z
M K2 (z) !

v ; (17)

1

w here prin es denote derivatives w ith respect to z and h(z) %23K 1(z)f2(z). These equations
are the starting point ofouranalysis. A lthough they are jist classical equations, they reproduce
the correct expected lim its (as shown In the next two Sections) and also have the virtue of

providing Inform ation on the transition between the one- avour and the two- avour regim es.

3 The one- avour lm it

In this section we dealw ith the one- avour lin it, corresponding to 7 j 1. M ore precisly,
inspecting Eq. (Id), one leams that the quantum correlators need to be accounted for i

1
j3 5h<z)K : (18)
which i plies
M, 2 19)
1012 G ev Kh(z)

This condition has to be satis ed at the tine when the asymm etry is generated. In the
weak wash-out regin e, K < 1, and supposing that the initial abundance of RH neutrinos is
vanishing, the production of the baryon asymm etry takes place at scme z~ 1. Since the
wash-out temm forK < 1 isalways sn aller than unity, we conclude that in the weak wash-out
regin e the one- avour Iin it is reached forM ; > 10*? G &V .

In the strong wash-out regin e, K 1, the baryon asymm etry is generated at some z
MK+ (5=2) nz” 1whenK h(z)=2 ’ 1. Since the wash-out function K h (z)=2 is Jarger than
unity for z < z, we conclude that in the strong-wash out regin e the condition (I8) im plies
i3 (1=2)K h(z) 1,thatisM,; 10 Gev.

U nder the conditions that the -temm sm ay be dropped in Eq. ([16), the latter reads

¥ - ¢ %h(z)[K Y +K Y ] h@K Y ; (20)

vo = 0 }h } .
= x\]l > (z)Tr(Y )K 2h(Z)K Y ; (21)

4 W e thank P.D iBarifor sharing w ith us prior to publication his paper in collaboration w ith B lanchetand Ra elt
[L7]w here sin ilar considerations have been presented.



with 6 and no summ ation over repeated indices. N otice that these equations are in plicit,
since the trace of Y appears in the right hand side. Now , we perform an ad hoc rotation in the

avour gpace. T he quantities referred to the new basis w illbe denoted by a “*hat’. In general,
we are free to rotate the lepton doublets by a unitary m atrix A :

=A ' (22)

(AAY = 1) and this is equivalent to a basis change In the avour space. A useful choice for A
is !
1 11 12

A=p—— ; (23)
[ YIi (12)  (11)

where [ Y}1 = juuf+ juf = ("Y1 by the unitarity of A, which leads to the rotated
Yukawa couplings:

A 1 juf+ Jof 0
= p— ; (24)
[ YIa (11) 21+ (12) 22 det[]
wjthéjet[ 1= 11 f)z 12 22. The zero entry m akes m anifest that N1 is coupled only to
f= —12 1 = [ Yh.
ThematricesK  and n the new basis are obtained by replacing ! % i particular,
one nds
K=K ; Kip=Kp=Kpn=0 (25)
M1= 1 "2 =0: (26)

Thanks to these relations, the equations for the diagonal com ponents (20) give ‘fgg = 0, s0
the lepton asymm etry is concentrated on the lepton ‘Al only and it evolves according to the
equation

YA,A? = xqol 1 h(z)K Y\fl ; 27)
w hich exactly reproduces the Boltzm ann equation for the one single avour. T he latter can be
denti ed with the total lepton asym m etry, that is w ith the trace of the lepton asym m etries.
T he total lepton asymm etry in the lepton doublets is indeed the only quantity which treats
Indistinguishably all the avours.

4 The two—- avour lim it

Let us now tum to the opposite regin e where the temn s are In portant, ie. we are in the
full two— avour regim e. Again, we split (I6) in equations for the diagonal and o -diagonal



com ponents of Y :

Y = ¥ %h(z)[K Y +K Y ] h@zK Y ; (28)

v'o= oy, %h(z)Tr(Y K %h(z)K + Jm () () Re() Y ;(29)
with € and no summ ation over repeated indices. The temm s appear in the wash-out
of the o -diagonal elem ents. T herefore, the solutions of (29) w ill contain exponential factors
of the form €' ? . The realpart of leads to oscillating behaviours, while the in agihary part
controls thedam ping. T he latter is originated by the decoherence e ect ofthehigh tem perature
plasna on the avour oscillations: if Yukawa coupling h; m ediates processes which are fast
enough, the correlations between di erent avours are rapidly lost. Such correlations are
encoded in the o -diagonal com ponents of the lepton asymm etry density matrix ¥ . As Iong
as the o -diagonal entries becom e negligbly am all, Eq. (28) reduces to that studied in [11],
w here the avours are considered as com pletely decoupled and the system of equations reduces
to two equations for the diagonal entries of the Y m atrix. M ore in detail, we can say that the
tw o— avour state is reached when the oscillations are e ciently dam ped, ie when the follow ing
condition holds

1
g ()3~ Eh(Z)K (30)
or 2
Mg < .
1012G ev Kh(z)' (31)

around the point when the baryon asymm etry in a given avour is generated. In the weak

wash-out regin e for all avours, K ;K < 1, the avour asymm etry is generated at z ~ 1

and the function (1=2)K h(z) is always an aller than unity. T herefore, we ocbtain that the two
avour regin e is dynam ically relevant forM ; < 10*? G &V .

In the strong wash-out regin e for all avours, K ;K 1, the condition (3I) on the
mass of theRH neutrno isM; < K =K )10 GeV Prz hK + (5=2)Inz > 1.The
m ost stringent bound is obtained for the smallest K , which corresponds to the sm allest
wash-out. O f course the bound should be applied only if the same avour gives also the
largest asym m etry. This depends upon the CP asymm etry . In particular, if K takes
the an allest value com patible w ith the strong wash-out, K 3 and if the CP asymm etry

is the largest, then one obtains the m ost stringent bound, M ¢ < (3=K )1012 Géev.

In the case of strong wash-out for scme avour ,K > 1, but weak wash-out Hor som e

other avour ,K < 1,theasymm etry in the avour isgenerated atz= 0O (5) [1l]and the



condition on them ass of the lightest RH neutrino isgiven by M ; < (10=K )10'? G &V , provided
that the nalbaryon asymm etry ism ainly generated by the avour . If this is not the case,
one shoud apply the condition M ; < (K =K )10'? Gev 102 Gev.

Let us close this section w ith a comm ent. W e expect the bounds obtained in this section
com paring rates to be in fact too restrictive. They have been derived jist com paring the
rate of the L = 1 inverse decays and scatterings w ith the rate of dam ping of the avour
oscillations. H ow ever, the realdynam ics ism ore involved. For instance, the avour oscillations
are characterized by a rapidly oscillating behaviour. T he oscillation rate isdictated by Re( )j
which is a factor about ten larger than the dam ping rate of the avour oscillations, Re( )
10jIm ( )j. T his is relevant because com puting the avour asym m etries involves Integrals over
tin e. Since the avour oscillations decay and also have an oscillatory behaviour, this restricts
the range of tin e Integration, thus leading to a suppression of the contribution from the avour
oscillations. W e therefore expect the in uence of the the avour oscillations to disappear even
in the vicinity of M ¢ 10 G &V . O ur num erical results support this expectation.

5 The transition betw een the one—and the tw o— avour
case

Having elaborated about the two extram e regin es, we now investigate what happens in the
Interm ediate region where theone avour { two avours transition takesplace. To achieve this,
we perform an analytical study of the solutions of (28) and (29), in two representative regin es
of K ’s, show ing also som e num erical sin ulations to enforce our ndings. In the gureswe
w ill present two di erent quantities which m ay serve as indicators of the transition. The rst
quantity isY =(Y )gec Which is the ratio between the avourasymmetry Y in the avour

com puted solving the full system of Boltzm ann equations ([28) and (29) over the sam e
asymmetry (Y )gee com puted neglecting the o -diagonal temm s In the sam e equations. This
ratio should tend to unity in the fill two- avour regim e because the o diagonal correlators
have been e ciently dam ped out. The second indicator is the ratio of the the trace of the
2 2matrix Y, TrlY ] com puted solving Egs. [28) and (29) and the asym m etry com puted
In the one- avour approxin ation, Y1  ayours @SSUm Ing a single avour with CP asymm etry 1
and wash-out param eter K = K17 + K5,. This ratio should tend to unity in the one- avour
regin e, when the o -diagonal term s are not dam ped.

10



5.1 Strong wash-out regim e for all avours

In thiscase K 11K 22 1. This in plies that the N; abundance closely follow the equilbbrium
abundance, YNOl ! (YNe? )P = %h(z)=z. The integrals giving the lepton asymm etries are
evaluated by using the steepest descent m ethod twice. One nds the follow ing analytical

estin ates

1
Y r— — K Y z )+ K Y z 32
X 25 2 > (z ) (z ) (32)
2 12
Yio(z>z ) ' e 29 z EKlzTrfY (z )]
ei(z z Re( ) g (2 z)Jm ( )3 (33)
2 21
Yoi1(z>z ) ' % 29 z EKlerfY (z )]
e i(z z)Re( la (2 z )jm ( )j,. (34)

where z 1=Tm ( ) and the z ’'sare mplicitly de ned by K h(z )’ 1. W e ram ark that
therelation Y = (Y ) holds,thisassures that the diagonalasym m etries are real. Toa st
approxin ation we can take z; V) z, which is true up to logarithm ic corrections. From
Egs. (32)-{(34) it is possible to nd an expression for the trace of Y , which allow s us to w rite
the diagonal asym m etries explicitly :

1 1 e (2 z)jm ()]
Y11 ! + -
29z K11 KK KK KpKogpjcos[(z  z )Re( )]e & 2)3m ()]
)
z )
(11K22+ 22K11)K 12Ko1cosl(z z )Re( )] Z—K 1K 22 Ko 10e!® 2 Re0) 4 cp: ;
( (35)
1 25 e (2 z)jm ()]
Yoo 7 + -
29z Kz KpK KpKap KpKpcosliz z )Re()]e & 2303
)
A .
(11K22+ 22K11)K 12Ko1cosl(z z )Re( )] Z—K 1K 22 Ko 10e!® 2 ReC) 4 cp:

(36)

T he term sproportionalto =K  arethe fam iliarasym m etries in the strong wash-out regin e,
while the ram aining term s are the corrections due to the correlation between avours. Such
corrections are quickly dam ped by the in aginary partof ,and thisbehaviourisalso con m ed
by num erical sin ulations. In the limit ! 1 we recover the total lepton asymm etry of two
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decoupled avours:

! 1 11 22
TrlY 1= Yoo + Yoo 1 + ; 37
Y] 11 22 29z Ko K, O (37)
as expected. On the otherhand,the Iimit ! 0 leads to
| 1 K + K K + K
Try ] P 11 22 2211 (Ko1 12 12 21) : (38)

29 z K11K22 KK 21

It is easy to see that the quantity on the right hand side is left Invariant by a transform ation
of them atrices K , of the form

K ! MKN ; ' M N ; (39)

whereM ;N are two generic 2 2 non-singular m atrices. Tn fact, the denom mator in [38) is
just the determ inant of K which sin ply transform sas: det(K ) ! detM )det(N )det(K ).On
the other hand, the num eratorm ay be w ritten as "ij"nw nK 4o ,where " is the antisym m etric
Levi€ wita symbol in two din ensions and sum m ation over repeated indices is assum ed. So,
the num erator in (38) transform s as:

n

"M nKm 90 ! "ii"Ma M KN ) M N )y =

= "i5"inM™ K agNp )M gp pgNan) =
= ("M 12M ) ("a nNm Ngn K ap pg =
= detM )detMN )"ap"igK ab pg

= detM™ )detN )"i5"nnK im 5n (40)

under (39). T herefore the num erator picks up an extra factor, nam ely det(M )det(N ), which
exactly cancels that in the denom inator and the invariance of (38)) is proved. T his fact m eans
that a transform ation of K and m atrices does not a ect the trace n (38). In particular, we
can evaluate it in the rotated avour basis de ned in Section [3, and obtain

+ 1
TrlY ] ——— = —
Ki11K 22 K

; (41)

which is the single- avour result, as expected. In the one- avour lim it, M ; 10*? Gev, the
e clency factor (K ) for the nalbaryon asymm etry depends only upon K . In the opposite
lim it, M ¢ 10'? Gev, the nalbaryon asymm etry depends upon two di erent e ciency
factors, one for each K . Asdiscussed In [18]], K =K . 2 for large m ixing angles and
therefore the e ciency is enhanced by O (2) when going from M ; 10?2 Gev toM;  10%?
Gev.
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Figure 1: The ratio between the lepton asymm etries Y11 (green) and Yo, (red) com puted including
the o -diagonal term s of Egs. (28) and (29) and the ones neglecting them (see text) as a function
of M ; (kft). T he trace of the lepton asym m etry divided by the sam e trace com puted in the single-

avour approxin ation (see text) asa function ofM ; (right). T he param etersareK = 50,K ; = 40,
Ko = 10,K1 = Koy = 20, 11 = 04, =01, 1, = 5 = 02. Here and In the follow ing, the
relative m agnitudes of the entries are chosen consistent w ith the bounds (11]).

Fiure[llon the left showsY =(Y )gec,thediagonallepton asymm etriesY ,asfinctions
of M 1. In this gure, as well as in all others, we have chosen com patible values for the
param eters K by xing the Yukawa couplings ; . The analytical results reproduce the
num erical ones w ithin 10% . On the right we show Tr[Y EY; Lsuour @S a function of M ;. W e
see that the ratio tends to unity or M > 2 10? Gev i agreem ent with our previous

ndings. In our num erical exam ple, the two avours give rise to the sam e asymm etries,
and for the bound discussed in Section [4 to be in the fill two- avour state would require
M;< (K=K )02 Gev 2 10' Gev.However,we see from our num erical results that the
tw o— avour state is reached for larger values of M ;. To our understanding this is due to the
rapidly oscillating behaviour of the o diagonal term s. A s we already m entioned, com puting
the avour asymm etries involves an integral over tim e (or, better, over the param eter z).
Since the quantum correlators not only decay, but also have a rapid oscillatory behaviour, this
restricts the range of tin e integration, thus leading to a suppression of the contribution from
the avour oscillations. This e ect ism agni ed by the fact that the oscillations have a tim e
scales which isabout a factor of ten amn aller than the dam ping tim escale. W e deduce from our
results that even for values ofM 10? G eV the fill tw o- avour regin e is attained.
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Kop=10,K2=Ko =20, 11 =04, =01, 1=

051

10

0.05

0.02
0.01
5 0.005

0.002
0.001

0.1

21 = 02.

0.02
0.01
0.005

~ 0002
> 0.001
0.0005
0.0002
0.0001

0.001
~ 0
o
-0.001
— Re(Yr2)
-0.002 — Im(Yy2)
0 3 4 5
10" Gev, K 50, K. = 40,
0.0075
0.005
0.0025
~ 0
& 00025
—-0.005
—0.0075 — Re(Y1p)
-0.01 — Im(Yy2)
3 4 5

Figure 3: The tin e evolution of the asymm etries forM ; = 102 Ge&vV ,,K = 50,K 1; = 40,K ,, = 10,
Kip=Koy=20, 1=04, ,,=01, 1=

0.02

0.01

o 0.005
>_

0.002
0.001

0.1

Figure 4: The tin e evolution of the asymm etries for M 4
Kop=10,K12=Kz =20, 1 =04, =01, 1=

008
. 00008
"~ o

0.00001

21 = 02.

14

= 02.

0
_ —0005
> -0.01
-0.015 — Re(Yr2)
0,02 — Im(¥Y12)
0 8 10 12

10 Gev, K = 50,K,; = 40,




In Figs. [2,[3 and [4 we present the evolution of the asymm etries for a given choice of the
param eters. A s expected, for an aller values of M 1 the o diagonal tem s die out for larger
values of z. H ow ever, by the tin e the asym m etries stored In the diagonal term s are frozen out,
the avour oscillations have already been w Iped out.

5.2 Strong wash-out for one avour and weak wash-out for the

other one

T his regin e is characterized by K ,; 1 K11. Themai contrbution to the total decay
param eter com es from the strongly interacting avour K ’ K 11 1,which means thatN’s
are aln ost in equilibbrium , as in the previous case. Since the dam ping of the o diagonal term s
is sensitive to K , it is still possble to perform the Integrals for Y1 and Yy, by m eans of the
steepest descent m ethod, getting the sam e estin ates as in the previous regine. W e nd

1 11 1
Y1 " — - KoYor1 () + Ko1Yi2(z) (42)
K 11 Zg Z1 2
, 04 1 21 12
Y22 — 2K22 — Ku I()+ K21 I() KoK o1 TrlY (z )] (43)
g K 29 z 29 z
w here Z 4
I()= dzz’K 1 (z)e '* *Re)e (= 2)m ()] (44)
z
satis estheproperty I( ! 1 )= 0.AsIn the previouscase,one rst ndsan expression for

the trace of Y and then uses it to w rite the diagonal entries in an explicit form

1
Yy, _11
29 z1K 11
e (@ z)Jm()] .
+ 5 b p_— : [0:4 22K 22K 12K o1 cos(z; z )Re( )]
12 21
gKll 1 ﬁRe(I( ))
1 i(zy z )Re()
g Ko 12€ + CC. H (45)
vy, ! 0:4h 22K 22 5
9 1 FEHERe(I())
+—h : — > 11Re(I( ))
g 1 EEarem()y = Ki
1
P K21 12I( )+ cc.) (46)
11
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Figure 5: The ratio between the lepton asymm etrdes Y11 (green) and Yo, (red) com puted including
the o -diagonal term s of Egs. (28) and (29) and the ones neglecting them (see text) as a function
of M; (kft). The trace of the lepton asymm etry divided by the sam e trace com puted in the
single- avour approxim ation (see text) as a function of M | (right). T he param eters are K 1; = 30,
Kyp=10 4K p=Kyn=0%6, 13=03, =5 10 % ;= , = 0:006.

If ! 1 thepreviousexpressions reduce to those usually found In the literature [11], where
the o diagonal correlations are neglected and the two avours are com pletely decoupled

1 11 04

Y1’ Yoo ! g_ 22K 22 ¢ (47)

29 z1 K11

Figure[d on the right shows Tr[Y EY1 avour @S @ function of M ;. W e see that the ratio
tends to unity for large values ofM 1, as expected and it does it very fast, in agreem ent w ith our
previous ndingsthat,assoonM 1 ~ 102 G &V , then the two- avour regin e is reached. Figure
[H on the left shows Y =(Y )gec as functions of M ;. The analytical results reproduce the
num ericalonesw ithin 10% . From this gure we deduce that neglecting the o -diagonal term s
In evaluating the diagonal term s of the matrix Y is a good approxim ation for the strongly
washed-out avour for valiesofM ; 10 G eV .For theweakly coupled avour the transition
occurs at M ; > (10=K )10'? Gev 3 18! Gev, as derived in Section 4. This tim e the
transition does not occur for values of M 1 10% G &V because, for the set of param eters
chosen, the asym m etry stored In theweakly coupled avour is com parable w ith the one stored
In the o diagonal term s. T his illustrates the fact that the contribution from the o -diagonal
term s may in uence the nalasymm etry in the weakly coupled avour if the choice of the
param eters is such that the o diagonal CP asymm etries and wash out factors are not too
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Figure 6: T he ratio between the lepton asymm etries Y11 (green) and Yo, (red) com puted including
the o diagonal term s and the ones neglecting them (see text) asa function of M | forK ; = 24,
Kop=06,Kp=Ky=12, 3= 025, =006, 2= , = 0d2.

an all. Thism ight be relevant if the weakly coupled avour gives the largest contribution to

the nalbaryon asymm etry. O n the other hand, one would expect that, when the asym m etry

stored in the weakly coupled avour is lJarge enough, then the values of Y,, com puted with

and w ithout taking into account the o -diagonal term s should be very close. T his expectation

is shown to be correct in Figureld. It illustrates also our previous estim ates that, ifK 3,
then the fulltwo avour regin e should be recovered forM | < (3=K )10 Gev 102 Gev.
In Fis. [1,[8 and [@ we present the evolution of the asymm etries for a given choice of the
param eters. Again, for large values of M ; the o diagonal term s die out for larger values of z.

H owever, by the tin e the asym m etries stored in the diagonal tem s are frozen out, the avour
oscillations have already been w iped out.
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Figure 8: The tin e evolution of the asymm etrdes forM ; = 102 Ge&V,, K ’ 30,K1; = 30,K o =
10 4K1,=Kp =06, 11=03, =5 10 % 1,= , = 0:006.
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Figure 9: The tin e evolution of the asymm etrdes forM | = 5 10" Gev,K ' 30,K;; = 30,
Kyp=10 2 Ki,=K,;n=06, 11=03, ,,=5 10 3, 1,= , = 0:006.
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6 Commentsand Conclusions

In this paper we have studied the in pact of the oscillations am ong the lepton asym m etries in
leptogenesis and investigated the transition from the one- avour to the two— avour states. W e
also accounted for the L = 1 scatterings both in the CP asymm etries and in the wash-out
term s. T he transition m in ics the realistic onewhen the  avour becom esdistinguishable from
the other two avours. W e have rst form ally shown that forM | > 102 Gev, the quantum
correlators are relevant to reduce the system of Boltzm ann equations to a single equation for
the total lepton asym m etry. In this regin e the one- avour approxin ation holds. Subsequently,
wehave shown that in theregin eM ; 102 G eV , the fulltw o— avour state is recovered thanks
to thedam ping of the quantum correlators. W e have subsequently solved both analytically and
num erically the Boltzm ann equations for the lepton asymm etries in  avour space. Particular
attention has been devoted to the case M ; 10 G &V where we expected the rolk played by
the quantum correlators to bem axin al.

Letussumm arize our results. Ifall avoursare in theweak wash-outregin e, thetwo avour
state is reached and the avour oscillations m ay be safely neglected ifM ; < 102 Gev . Ifall

avours are In the strong wash-out regin e, we have estin ated analytically that thetwo avour
state isreached and the avouroscillationsm ay be safely neglected M ; < (K =K )10'° Gev.
W e point out how ever that our num erical studies show that the realbound isweaker. Thetwo

avour state is reached even for valies of M ; close to 102 GeV . The avour oscillations seem
to e ciently projct the lepton state on the avour basis. To our understanding this is due
to the short tin escale of the avour oscillations com pared to the dam ping tin escale. F lavour
oscillations decay and have a rapid oscillatory behaviour, thus restricting the range of tin e
integration. T his suppresses the contribution from the avour oscillations to all the dynam ics,
rendering the transition easier.

W e conclude that for the strong wash out case it is a good approxin ation to solve the
Boltzm ann egquations just for the asym m etries stored in the lepton doublets. T his procedure
is usually ollowed in the recent literature regarding the avoured leptogenesis. O ur results
Jastify it.

T he sam e conclusion is obtained if all the avours are in the so-called m id regin e. This
occurs when the lepton asymm etry is generated only by the low energy CP violating phases
in the PM NS matrix [13].

In the extram e case n which one of the avour is very weakly coupled and the other is
strongly coupled, the approxin ation of neglecting the avour oscillations is a good one for the
strongly coupled avour even forM 102 G eV . For the weakly coupled avour neglecting
the o diagonal term sm ay be too drastic forM 1 102 G &V , especially if the param eters of
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the o diagonaltem s are such that they induce large asym m etries. H owever, as soon asM 1 is
an aller than the analytically estim ated value (10=K )10 G eV, neglecting the o -diagonal
tem s is safe.

Our ndings therefore indicate that the avour e ects In leptogenesis becom e generically
relevant at M 1 102 Gev. Let us conclude with som e comm ents. In this paper we have
dealt with classical Boltzm ann equations. However, a full treatm ent based on the quantum
Boltzm ann equations would be welcom e to study in detail the transition from one- to the
two— avour state. A full quantum treatm ent usually introduces m em ory e ects [19] leading
to relaxation tin es which are longer than the one dictated by the them alization rates of the
particles in the plhana. In the quantum approach, particle num ber densities are replaced
by G reen functions. The latter are sub fct both to exponential decays and to an oscillatory
behaviour which restrict the range of tin e integration for the scattering temm s, thus leading to
larger relaxation tim es and to a decrease of the wash-out rates. Thism ight further help the

avour oscillations to e ciently proEct the lepton state on the avour basis.

IftheRH spectrum isquasidegenerate, leptogenesis takes place through a resonance e ect.
In such a case the nalbaryon asymm etry does not depend any longer on them ass oftheRH
neutrinos. Therefore, M ; m ay be chosen to well reproduce the full avour regin e w ithout
causing any suppression in the nalbaryon asymm etry.

Finally, let us com m ent about the upper bound on the neutrinom ass from leptogenesis. In
the one- avour approxin ation there isa bound on the largest light neutrinom assm because the
totalCP asymm etry isbounded from above. T he upper lin it scales 1keM ;=m [20/]]. T herefore,
larger values of m needs larger values of M ; to explain the observed baryon asymm etry.
However, M 1 m ay not be increased inde nitely, because at M 1 (ev=m 71010 gev , L=2
scatterings enter in them alequilbrium and w ipe out the asym m etry. T his leads to the upper
bound m < 0.5 eV.In avour leptogenesis the bound on the individual CP asymm etries
(I1l) scales ke and therefore it was conclided that no bound stringent exists on the largest
light neutrino m ass [9]. From these considerations it is clear that the bound on m depends
very m uch on w hich regin e leptogenesis is occuring, ie either the one- avor or the two— avour
regim e. For large values of m , the strong wash-out regin e applies and, as we have seen in
Sec.[, the full avour regin e roughly (because our num erical results indicate that the bound
isweaker) hodsonly forM 4 < (K =K )1O12 G &V . T herefore, one would expect that,again,m
cannot be large at willsince K scalesasm . Indeed,atm 2 &V the full avour regin e would
seem not to apply [17]. To get this estin ate it is assum ed that both avours are In the strong
wash-out regin e, have roughly the sam e CP asym m etries, but that one of the two hasa wash-

out coe cient m uch sn aller than the other, 1 K K . Under these circum stances the
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nalbaryon asymm etry Yp is dom inated by the avour

r
01 3Mm K

gKl:l6 8V2 K

K
Yy < ; M, < 1012K—Gev (48)

w here we have applied the upper bound (11l) and rem ind the reader about the bound on M ;
for the full avour regim e to hold. Since the upper bound is Inversely proportionalto K, the
m ost favourable value for the wash-out factor of the avour in the strong wash-out regin e

isK 33. Therefore, the m axin albaryon asymm etry would be
3:3)°3 3m _
Yg 00 B2V Oy seigigey (49)
g 8 v2

SettingK ’ @ =05 10 eV ), we reproduce the statem ent that form > 2 &V one is entering
the one- avour regim e [17]. This conclusion would seem to indicate that a bound on the
light neutrino m assm from Jleptogenesis m ght be present (even though not useful, given the
conservative upper bound m < 2 &V from cosm ology (211]). W e notice, how ever, that upper
lin iton M ; to be in the two— avour regin e becom esweaker ifall avours have the sam e wash-
out tem . A ssum e that the totalCP asymm etry ; isvery close to zero (for exactly degenerate
light neutrinom asses ; = 0 and = ). Asbefore, all avours are in the strong wash-
out regin e, but this tin e we suppose that K " K 9]. Under these circum stances the nal
baryon asym m etry reads

, 01 222

B a7 K16’

K
M < 1012K—Gev; (50)

where the avour can be denti ed with the - avour and we have applied the form ulae
in Ref. [11]which account for the connection am ong the asym m etries in the lepton doublets
and the ones In the charges. Taking K =K ' 1=2,K " m=0:5 10 3ev ), and, for
instance, M ; 5 18° Gev (which ismuch larger than 1012 (3=K )G &v 10 Gev ), we are
well in the full avour regin e. U sing the condition (Idl), the Bllow ing m axim al value of the
baryon asym m etry is achieved

0:1
ev 016

— 10 (51)

Yg ' 6
It show s that, even for light neutrino m asses in the few &V range, a large baryon asymm etry

is generated. W e therefore conclude that the bound on the largest of light neutrino m ass is

evaded in avour leptogenesis.
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