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Abstract

Taking into account the recent progress in the understanding of the lepton
flavour effects in leptogenesis, we investigate in detail the possibility that the
CP-violation necessary for the generation of the baryon asymmetry of the Uni-
verse is due exclusively to the Dirac and/or Majorana CP-violating phases in
the PMNS neutrino mixing matrix U , and thus is directly related to the low
energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We
first derive the conditions of CP-invariance of the neutrino Yukawa couplings
λ in the see-saw Lagrangian, and of the complex orthogonal matrix R in the
“orthogonal” parametrisation of λ. We show, e.g. that under certain conditions
i) real R and specific CP-conserving values of the Majorana and Dirac phases
can imply CP-violation, and ii) purely imaginary R does not necessarily imply
breaking of CP-symmetry. We study in detail the case of hierarchical heavy
Majorana neutrino mass spectrum, presenting results for three possible types
of light neutrino mass spectrum: i) normal hierarchical, ii) inverted hierarchical,
and iii) quasi-degenerate. Results in the alternative case of quasi-degenerate in
mass heavy Majorana neutrinos, are also derived. The minimal supersymmetric
extension of the Standard Theory with right-handed Majorana neutrinos and
see-saw mechanism of neutrino mass generation is discussed as well. We illus-
trate the possible correlations between the baryon asymmetry of the Universe
and i) the rephasing invariant JCP controlling the magnitude of CP-violation in
neutrino oscillations, or ii) the effective Majorana mass in neutrinoless double
beta decay, in the cases when the only source of CP-violation is respectively
the Dirac or the Majorana phases in the neutrino mixing matrix.
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1 Introduction

Baryogenesis through Leptogenesis [1] is a simple mechanism to explain the observed baryon
asymmetry of the Universe. A lepton asymmetry is dynamically generated and then con-
verted into a baryon asymmetry due to (B + L)-violating sphaleron interactions [2] which
exist within the Standard Model (SM). A simple scheme in which this mechanism can be
implemented is the “seesaw”(type I) model of neutrino mass generation [3]. In its minimal
version it includes the Standard Model (SM) plus two or three right-handed (RH) heavy
Majorana neutrinos. Thermal leptogenesis [4, 5, 6] can take place, for instance, in the case
of hierarchical spectrum of the heavy RH Majorana neutrinos. The lightest of the RH Ma-
jorana neutrinos is produced by thermal scattering after inflation. It subsequently decays
out-of-equilibrium in a lepton number and CP-violating way, thus satisfying Sakharov’s
conditions [7]. In grand unified theories (GUT) the masses of the heavy RH Majorana
neutrinos are typically by a few to several orders of magnitude smaller than the scale of
unification of the electroweak and strong interactions, MGUT

∼= 2 × 1016 GeV. This range
coincides with the range of values of the heavy Majorana neutrino masses, required for a
successful thermal leptogenesis.

Compelling evidence for existence non-zero neutrino masses and non-trivial neutrino
mixing have been obtained during the last several years in the experiments studying os-
cillations of solar, atmospheric, reactor and accelerator neutrinos [8, 9, 10, 11, 12]. The
currently existing data imply the presence of 3-neutrino mixing in the weak charged-lepton
current (see, e.g., [13]):

νlL =

3∑

j=1

Ulj νjL, l = e, µ, τ, (1)

where νlL are the flavour neutrino fields, νjL is the field of neutrino νj having a mass mj

and U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix [14]. The existing
data, including the data from the 3H β-decay experiments [15], show that the massive
neutrinos νj are significantly lighter than the charged leptons and quarks 2. The see-saw
mechanism of neutrino mass generation [3] provides a natural explanation of the smallness
of neutrino masses: integrating out the heavy RH Majorana neutrinos generates a mass
term of Majorana type for the left-handed flavour neutrinos, which is inversely proportional
to the large mass of the RH ones.

Establishing a connection between the low energy neutrino mixing parameters and high
energy leptogenesis parameters has received much attention in recent years [18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29]. These studies showed, in particular, that the number
of phenomenological parameters of the seesaw mechanism is significantly larger than the
number of quantities measurable in the “low energy” neutrino experiments.

In the present article we investigate the link between the high energy CP-violation
responsible for the generation of baryon asymmetry through leptogenesis and the leptonic

2The data from the 3H β-decay experiments [15] imply mj < 2.3 eV (95%C.L.). More stringent
upper limit on mj follows from the constraints on the sum of neutrino masses obtained from cosmologi-
cal/astrophysical observations, namely, from the CMB data of the WMAP experiment [16] combined with
data from large scale structure surveys (2dFGRS, SDSS) (see, e.g., [17]).
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CP violation at low energy, which can manifest itself in non-zero CP-violating asymmetry in
neutrino oscillations and, in an indirect way, in the effective Majorana mass in neutrinoless
double beta ((ββ)0ν-) decay, |〈m〉| (see, e.g., [30, 31]).

It was concluded in a large number of studies of leptogenesis performed in the so-called
“one-flavor approximation”, that no direct link exists between the leptogenesis CP-violating
parameters and the CP-violating Dirac and Majorana phases in the PMNS neutrino mixing
matrix, measurable at low energies. In particular, an observation of leptonic low energy CP-
violating phases would not automatically imply a non-vanishing baryon asymmetry through
leptogenesis in the one-flavour case. This conclusion, however, does not universally hold
[32, 33, 34]. Moreover, as was shown in [35] (see also [36]) and will be discussed in detail in
the present article, the low-energy Dirac and/or Majorana CP-violating phases in U , which
enter into the expressions respectively of the leptonic CP-violating rephasing invariant
JCP [37], controlling the magnitude of the CP-violation effects in neutrino oscillations,
and of the effective Majorana mass |〈m〉| [38, 31, 39] can be the CP-violating parameters
responsible for the generation of the baryon asymmetry of the Universe. Consequently, the
leptogenesis mechanism can be maximally connected to the low energy CP-violating phases
in U : within the scenario under discussion, the observation of CP-violation in the lepton
(neutrino) sector would generically ensure the existence of a baryon asymmetry.

The possibility of a direct connection between the high-energy leptogenesis and the low-
energy leptonic CP-violation is based on the fact that a new ingredient has been recently
accounted for in the leptogenesis mechanism, namely, the lepton flavour effects [32, 33, 34].
As we have indicated above, the dynamics of leptogenesis was usually addressed within
the ‘one-flavour’ approximation. In the latter, the Boltzmann equations are written for the
abundance of the lightest RH Majorana neutrino, N1, responsible for the out of equilibrium
and CP-asymmetric decays, and for the total lepton charge asymmetry. However, this ap-
proximation is rigourously correct only when the interactions mediated by charged lepton
Yukawa couplings are out of equilibrium. Supposing that leptogenesis takes place at tem-
peratures T ∼ M1, where M1 is the mass of N1, the ‘one-flavour’ approximation holds only
for T ∼ M1

>∼ 1012 GeV. For M1
>∼ 1012 GeV, i.e., at temperatures higher than 1012 GeV,

all lepton flavours are indistinguishable - there is no notion of flavour. The lepton asym-
metry generated in N1 decays is effectively “stored” in one lepton flavour. However, for
T ∼ M1 ∼ 1012 GeV, the interactions mediated by the τ -lepton Yukawa couplings come into
equilibrium, followed by those mediated by the muon Yukawa couplings at T ∼ M1 ∼ 109

GeV, and the notion of lepton flavour becomes physical.

The impact of flavour in thermal leptogenesis has been recently investigated in detail in
[40, 32, 33, 34] and in [29, 41] including the quantum oscillations/correlations of the asym-
metries in lepton flavour space [32]. The Boltzmann equations describing the asymmetries
in flavour space have additional terms which can significantly affect the result for the final
baryon asymmetry. The ultimate reason is that realistic leptogenesis is a dynamical pro-
cess, involving the production and destruction of the heavy RH Majorana neutrinos, and
of a lepton asymmetry that is distributed among distinguishable lepton flavours. Contrary
to what is generically assumed in the one-single flavour approximation, the ∆L = 1 in-
verse decay processes which wash-out the net lepton number are flavour dependent, that
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is the lepton asymmetry carried by, say, electrons can be washed out only by the inverse
decays involving the electron flavour. The asymmetries in each lepton flavour, are therefore
washed out differently, and will appear with different weights in the final formula for the
baryon asymmetry. This is physically inequivalent to the treatment of wash-out in the
one-flavour approximation, where the flavours are taken indistinguishable, thus obtaining
the unphysical result that, e.g., an asymmetry stored in the electron lepton charge may be
washed out by inverse decays involving the muon or the tau charges.

When flavour effects are accounted for, the final value of the baryon asymmetry is the
sum of three contributions. Each term is given by the CP asymmetry in a given lepton
flavour l, properly weighted by a wash-out factor induced by the same lepton number
violating processes. The wash-out factors are also flavour dependent. In the present article
we perform a detailed analysis of the indicated flavour effects in leptogenesis. We show
that the low energy Dirac and/or MajoranaCP -violating phases in U can be responsible
for the generation of the baryon asymmetry of the Universe. We study also in detail the
possible correlations between the physical low energy observables which depend on the CP-
violating phases in UPMNS - the rephasing invariant JCP and the effective Majorana mass
in neutrinoless double beta decay |〈m〉|, and the baryon asymmetry.

The paper is organized as follows. In Section 2 we briefly review the existing data
on the neutrino mixing parameters and the phenomenology of the low energy Dirac and
Majorana CP-violation in the lepton sector. We note, in particular, that searching for
CP-violation effects in ν- oscillations is the only practical way to get information about the
CP-violation due to the Dirac phase in the neutrino mixing matrix U (Dirac CP-violation),
and that the only feasible experiments which at present have the potential of establishing
the Majorana nature of light neutrinos νj and of providing information on the Majorana
CPV phases in U are the the neutrinoless double beta decay experiments searching for the
process (A,Z) → (A,Z+2)+e−+e−. In Sections 3-7 we present a detailed discussion of the
possible connection between the CP-violation at high energy in leptogenesis and the CP-
violation in the lepton sector at low energies. We first derive the conditions of CP-invariance
of the see-saw Lagrangian, i.e. of the neutrino Yukawa couplings, taking into account that
the light and heavy neutrinos with definite mass are Majorana particles, and thus have
definite CP-parities in the case of exact CP-symmetry (Section 3). We review briefly the
arguments, based on the “one-flavour” approximation, leading to the conclusion that the
connection between leptogenesis CP-violating parameters and the CP-violating phases in
the PMNS matrix generically does not hold. We next discuss the conditions under which
the lepton flavour effects in leptogenesis become important and present a brief summary
of the results obtained recently on these effects, which are used in our analysis (Section
4). In Sections 5, 6 and 7 we investigate the possibility that the CP-violation necessary
for the generation of the baryon asymmetry of the Universe is due exclusively to the Dirac
and/or Majorana CP-violating phases in the PMNS matrix, and thus is directly related to
the low energy CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). The
case of hierarchical heavy Majorana neutrino mass spectrum is studied in detail in Section
5, where we present results for three possible types of light neutrino mass spectrum: i)
normal hierarchical, ii) inverted hierarchical, and iii) quasi-degenerate. In Section 6 results
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in the alternative case of quasi-degenerate in mass heavy Majorana neutrinos are derived,
while in Section 7 we discuss how the results on leptogenesis in Section 4 - 6 will be
modified in the minimal supersymmetric extension of the Standard Theory with right-
handed Majorana neutrinos and see-saw mechanism of neutrino mass generation. Section
8 represents Conclusions.

2 Neutrino Mixing Parameters and Low Energy Dirac

and Majorana CP-Violation

We will use the standard parametrisation of the PMNS matrix:

U =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 diag(1, ei

α21

2 , ei
α31

2 ) (2)

where cij ≡ cos θij , sij ≡ sin θij , θij = [0, π/2], δ = [0, 2π] is the Dirac CP-violating (CPV)
phase and and α21 and α31 two Majorana CPV phases [42, 43]. We standardly identify
∆m2

⊙=∆m2
21 ≡ m2

2 − m2
1 > 0, where ∆m2

⊙ drives the solar neutrino oscillations. In this
case |∆m2

A|=|∆m2
31| ∼= |∆m2

32|, θ23 = θA and θ12 = θ⊙, |∆m2
A|, θA and θ⊙ being the ν-mass

squared difference and mixing angles responsible respectively for atmospheric and solar
neutrino oscillations, while θ13 is the CHOOZ angle [44]. The existing neutrino oscillation
data, including the recent results of the MINOS experiment [45], allow us to determine
∆m2

⊙, |∆m2
A|, sin2 θ12 and sin2 2θ23 with a relatively good precision and to obtain rather

stringent limits on sin2 θ13 (see, e.g., [46, 47, 48]). The best fit values and the 95% C.L.
allowed ranges of ∆m2

⊙, sin2 θ12 |∆m2
A| and sin2 2θ23 read:

(|∆m2
A|)BF = 2.5 × 10−3 eV2, 2.1 × 10−3 eV2 ≤ |∆m2

A| ≤ 2.9 × 10−3 eV2, (3)

(∆m2
⊙)BF = 8.0 × 10−5 eV2, 7.3 × 10−5 eV2 ≤ ∆m2

⊙ ≤ 8.5 × 10−5 eV2, (4)

(sin2 θ12)BF = 0.31, 0.26 ≤ sin2 θ12 ≤ 0.36 (5)

(sin2 2θ23)BF = 1, sin2 2θ23 ≥ 0.90 . (6)

A combined 3-ν oscillation analysis of the global neutrino oscillation data gives [46, 47]

sin2 θ13 < 0.027 (0.041) at 95% (99.73%) C.L. (7)

The neutrino oscillation parameters discussed above can (and very likely will) be measured
with much higher accuracy in the future (see, e.g., [13]).

Depending on the sign of ∆m2
A ≡ ∆m2

31
∼= ∆m2

32 which cannot be determined from
presently existing data, the ν-mass spectrum can be of two types:
– with normal ordering m1 < m2 < m3, ∆m2

A = ∆m2
31 > 0, and

– with inverted ordering m3 < m1 < m2, ∆m2
A = ∆m2

32 < 0, mj > 0,
where we have employed the standardly used convention to define the two spectra. De-
pending on the sign of ∆m2

A, sgn(∆m2
A), and on the value of the lightest neutrino mass
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(i.e., absolute neutrino mass scale), min(mj), the ν-mass spectrum can be

– Normal Hierarchical: m1≪ m2 ≪m3, m2
∼=(∆m2

⊙)
1

2∼ 0.009 eV, m3
∼=|∆m2

A|
1

2∼ 0.05 eV;

– Inverted Hierarchical: m3 ≪ m1 < m2, with m1,2
∼= |∆m2

A|
1

2 ∼ 0.05 eV;
– Quasi-Degenerate: m1

∼= m2
∼= m3

∼= m, m2
j ≫ |∆m2

A|, m >∼ 0.10 eV.

Determining the nature of massive neutrinos, obtaining information on the type of ν-
mass spectrum, absolute ν-mass scale and on the status of CP-symmetry in the lepton
sector are among the fundamental problems in the studies of neutrino mixing [13].

2.1 CP and T Violation in Neutrino Oscillations

Searching for CP-violation effects in ν- oscillations is the only practical way to get infor-
mation about Dirac CP-violation in the lepton sector, associated with the phase δ in U . A
measure of CP- and T - violation is provided by the asymmetries [49, 42, 50, 37]:

A
(l,l′)
CP = P (νl → νl′) − P (ν̄l → ν̄l′) , A

(l,l′)
T = P (νl → νl′) − P (νl′ → νl) , l 6= l′ = e, µ, τ .

(8)
For 3-ν oscillations in vacuum, which respect the CPT-symmetry, one has [37]:

A
(e,µ)
T = A

(µ,τ)
T = −A(e,τ)

T = JCP F
vac
osc , A

(l,l′)
CP = A

(l,l′)
T , (9)

JCP = Im
{
Ue1Uµ2U

∗
e2U

∗
µ1

}
=

1

4
sin 2θ12 sin 2θ23 cos2 θ13 sin θ13 sin δ , (10)

F vac
osc = sin

(
∆m2

21

2E
L

)
+ sin

(
∆m2

32

2E
L

)
+ sin

(
∆m2

13

2E
L

)
. (11)

Thus, the magnitude of CP-violation effects in neutrino oscillations is controlled by the
rephasing invariant associated with the Dirac phase δ, JCP [37]. The existence of Dirac CP-
violation in the lepton sector would be established if, e.g., some of the vacuum oscillation
asymmetries A

(e,µ)
CP(T), etc. are proven experimentally to be nonzero. This would imply that

JCP 6= 0, and, consequently, that sin θ13 sin δ 6= 0 3. One of the major goals of the future
experimental studies of neutrino oscillations is the searches for CP-violation effects due to
the Dirac phase in U (see, e.g., [13, 52]).

2.2 Majorana CP-Violating Phases and (ββ)0ν-Decay

As is well-known, the theories with see-saw mechanism of neutrino mass generation [3] of
interest for our discussion, predict the massive neutrinos νj to be Majorana particles. We
will assume in what follows that the fields νj(x) satisfy the Majorana condition:

C(ν̄j)
T = νj , j = 1, 2, 3, (12)

3 Let us note that the oscillations in matter, e.g., in the Earth, are neither CP- nor CPT- invariant [51]
as a consequence of the fact that the Earth matter is not charge-symmetric (it contains e−, p and n, but
does not contain their antiparticles). This complicates the studies of CP-violation due to the Dirac phase
δ in ν-oscillations in matter (Earth) (see, e.g., [52]). The matter effects in ν-oscillations in the Earth to a
good precision are not T-violating [37], however. In matter with constant density, e.g., Earth mantle, one

has [37]: A
(e,µ)
T = Jm

CPFm
osc, Jm

CP = JCP RCP, where the function RCP does not depend on θ23 and δ.
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where C is the charge conjugation matrix: C−1γµC = −γT
µ , CT = −C, C† = C−1.

Determining the nature of massive neutrinos is one of the most formidable and pressing
problems in today’s neutrino physics (see, e.g., [13, 53]). If νj are proven to be Majorana
fermions, getting experimental information about the Majorana CPV phases in U , α21

and α31, would be a remarkably difficult problem. The oscillations of flavour neutrinos,
νl → νl′ and ν̄l → ν̄l′ , l, l

′ = e, µ, τ , are insensitive to the phases α21,31 [42, 51]. The
Majorana phases of interest α21,31 can affect significantly the predictions for the rates of
(LFV) decays µ → e+ γ, τ → µ+ γ, etc. in a large class of supersymmetric theories with
see-saw mechanism of ν-mass generation (see, e.g., [54]).

In the case of 3-ν mixing under discussion there are, in principle, three independent CP
violation rephasing invariants. The first is JCP - the Dirac one, associated with the Dirac
phase δ, we have discussed in the preceding subsection. The existence of two additional
invariants, S1 and S2 is related to the two Majorana CP violation phases in U . The
invariants S1 and S2 can be chosen as 4 [55, 56, 31]:

S1 = Im {U∗
τ1 Uτ2} , S2 = Im {U∗

τ2 Uτ3} . (13)

The rephasing invariants associated with the Majorana phases are not uniquely deter-
mined. Instead of S1 defined above we could have chosen, e.g., S ′

1 = Im {Ue1U
∗
e2}

or S ′′
1 = Im

{
Uµ1U

∗
µ2

}
, while instead of S2 we could have used S ′

2 = Im {Ue2 U
∗
e3}, or

S ′′
2 = Im

{
Uµ2 U

∗
µ3

}
. The Majorana phases α21 and α31, or α21 and α32 ≡ (α31 − α21),

can be expressed in terms of the rephasing invariants thus introduced [31]: cosα21 =
1 − (S ′

1)
2/(|Ue1Ue2|2), etc. The expression for cosα21 in terms of S1 is somewhat more

cumbersome (it involves also JCP) and we will not give it here. Note that CP-violation due
to the Majorana phase α21 requires that both S1 = Im {Uτ1U

∗
τ2} 6= 0 and Re {Uτ1U

∗
τ2} 6= 0.

Similarly, S2 = Im {U∗
τ2Uτ3} 6= 0 would imply violation of the CP-symmetry only if in

addition Re {U∗
τ2Uτ3} 6= 0.

The only feasible experiments which at present have the potential of establishing the
Majorana nature of light neutrinos νj and of providing information on the Majorana CPV
phases in U are the experiments searching for the neutrinoless double beta ((ββ)0ν-) decay,
(A,Z) → (A,Z+2)+ e− + e− (see, e.g., [30, 53, 39]). The (ββ)0ν-decay effective Majorana
mass, |〈m〉| (see, e.g., [30]), which contains all the dependence of the (ββ)0ν-decay amplitude
on the neutrino mixing parameters, is given by the following expressions for the normal
hierarchical (NH), inverted hierarchical (IH) and quasi-degenerate (QD) neutrino mass
spectra (see, e.g., [39]):

|〈m〉| ∼=
∣∣∣∣
√

∆m2
⊙ sin2 θ12e

iα21 +
√

∆m2
A sin2 θ13e

i(α31−2δ)

∣∣∣∣ , m1 ≪ m2 ≪ m3 (NH),

(14)

|〈m〉| ∼=
√

|∆m2
A|
∣∣cos2 θ12 + eiα21 sin2 θ12

∣∣ , m3 ≪ m1 < m2 (IH), (15)

|〈m〉| ∼= m
∣∣cos2 θ12 + eiα21 sin2 θ12

∣∣ , m1,2,3
∼= m >∼ 0.10 eV (QD) . (16)

4The expressions for the invariants S1,2 we give and will use further correspond to the Majorana con-
ditions (12) for the fields of neutrinos νj , which do not contain phase factors, see, e.g., [31].
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Obviously, |〈m〉| depends strongly on the Majorana CPV phase(s): the CP-conserving
values of α21 = 0,±π [57], for instance, determine the range of possible values of |〈m〉| in the
cases of IH and QD spectrum, while the CP-conserving values of (α31−α21) ≡ α32 = 0,±π,
can be important in the case of NH spectrum. As is well-known, in the case of CP-invariance
the phase factors

η21 ≡ eiα21 = ±1 , η31 ≡ eiα31 = ±1 , η32 ≡ eiα32 = ±1 , (17)

have a very simple physical interpretation [57, 30]: ηik is the relative CP-parity of Majorana
neutrinos νi and νk, ηik = (ηνCP

i )∗ηνCP
k , ηνCP

i(k) ± i being the CP-parity of νi(k).

As can be shown, in the general case of arbitrary min(mj), |〈m〉| depends on the two
invariants S1 and S2 [31]. In the chosen parametrisation of the PMNS matrix, Eq. (2),
|〈m〉| depends also on JCP.

The (ββ)0ν-decay experiments of the next generation, which are under preparation at
present (see, e.g., [53]), are aiming to probe the QD and IH ranges of |〈m〉|. If the (ββ)0ν-
decay will be observed in these experiments, the measurement of the (ββ)0ν-decay half-life
might allow to obtain constraints on the Majorana phase α21 [31, 38, 58].

3 The CP-Invariance Constraints

In the next Section, we will summarize the arguments leading to the conclusions that the
leptogenesis CPV phases, responsible for the generation of the baryon asymmetry, can
indeed be directly connected to the low energy CPV phases in U and, correspondingly, to
CP violating phenomena, e.g., in neutrino physics. The starting point of our discussion is
the Lagrangian of the Standard Model (SM) with the addition of three heavy right-handed
Majorana neutrinos Ni (i = 1, 2, 3) with masses M3 > M2 > M1 > 0 and Yukawa couplings
λil. It will be assumed (without loss of generality) that the fields Nj satisfy the Majorana
condition:

C(N j)
T = Nj , j = 1, 2, 3. (18)

We will work in the basis in which the Yukawa couplings for the charged leptons are
flavour-diagonal. In this basis the leptonic part of the Lagrangian of interest reads:

Llep(x) = LCC(x) + LY(x) + LN
M(x) , (19)

where LCC(x) and LY(x) are the charged current (CC) weak interaction and Yukawa cou-
pling Lagrangians, while LN

M(x) is the mass term of the heavy Majorana neutrinos Ni:

LCC = − g√
2
lL(x) γα νlL(x)W α†(x) + h.c. , (20)

LY(x) = λilNiR(x)H†(x)ψlL(x) + hl H
c(x) lR(x)ψlL(x) + h.c. , (21)

LN
M(x) = − 1

2
MiNi(x)Ni(x) . (22)

Here ψlL and lR denote respectively the left-handed (LH) lepton doublet and right-handed
lepton singlet fields of flavour l = e, µ, τ , ψT

lL = (νlL lL), W α(x) is the W±-boson field,

8



and H is the Higgs doublet field whose neutral component has a vacuum expectation value
equal to v = 174 GeV. Obviously, LY(x) + LN

M(x) includes all the necessary ingredients of
the see-saw mechanism. At energies below the heavy Majorana neutrino mass scale M1, the
heavy Majorana neutrino fields are integrated out and after the breaking of the electroweak
symmetry, a Majorana mass term for the LH flavour neutrinos is generated:

mν = v2λT M−1 λ = U∗mU † , (23)

where M and m are diagonal matrices formed by the masses of Nj and νj , M ≡
Diag(M1,M2,M3), m ≡ Diag(m1, m2, m3), Mj > 0, mk ≥ 0, and U is the PMNS ma-
trix. The diagonalisation of the Majorana mass matrix mν , Eq. (23), leads to the relation
(1) between the LH flavour neutrino fields νlL and the fields νjL of neutrinos with definite
mass and, correspondingly, to the appearance of the PMNS neutrino mixing matrix in the
charged current weak interaction Lagrangian LCC(x).

In what follows we will often use the well-known “orthogonal parametrisation“ of the
matrix of neutrino Yukawa couplings [59]:

λ =
1

v

√
M R

√
mU † , (24)

where R is, in general, a complex orthogonal matrix, R RT = RT R = 1.

Before discussing leptogenesis and the violation of CP-symmetry associated with it,
it proves useful to analyze the constraints which the requirement CP-invariance imposes
on the Yukawa couplings λjl, on the PMNS matrix U and on the matrix R. If the CP-
symmetry is unbroken, the Majorana fields Nj and νk have definite CP-parities (see, e.g.,
[30, 57]) ηNCP

j = ±i, ηνCP
k = ±i, and transform in the following way under the CP-symmetry

transformation:

UCPNj(x)U
†
CP = ηNCP

j γ0Nj(x
′) , ηNCP

j = iρN
j = ±i , (25)

UCP νk(x)U
†
CP = ηνCP

k γ0 νk(x
′) , ηνCP

k = iρν
k = ±i . (26)

The sign factors ρN
j and ρν

k, and correspondingly, the CP-parities of the heavy and light
Majorana neutrinos Nj and νk, are determined by the properties of the corresponding RH
and LH flavour neutrino Majorana mass matrices [30]. They will be treated as free discrete
parameters in what follows.

Obviously, the mass term LN
M(x), Eq. (22), is CP-invariant. The requirement of CP-

invariance of the Lagrangian LY(x), Eq. (21), leads, as can be shown, to the following
constraint on the neutrino Yukawa couplings:

λ∗jl = λjl (η
NCP
j )∗ ηl ηH∗ , j = 1, 2, 3, l = e, µ, τ, (27)

where ηl and ηH are unphysical phase factors which appear in the CP-transformations of
the LH lepton doublet and Higgs doublet fields, ψlL(x) and H(x), respectively. These phase
factors do not affect any of the physical observables and, for convenience, we will set them
to i and 1: ηl = i, ηH = 1. Thus, in what follows we will work with the constraint (27) in
the form

λ∗jl = λjl ρ
N
j , ρ

N
j = ±1 , j = 1, 2, 3, l = e, µ, τ, (28)

9



where we have used Eq. (25). Note that if the CP-parity of a given heavy Majorana neutrino
Nj is equal to (−i), i.e., if ρN

j = −1, the elements λjl, l = e, µ, τ , of the matrix of neutrino
Yukawa couplings λ will be purely imaginary.

It follows from Eqs. (23) and (28) that if CP-invariance holds, the Majorana mass matrix
of the LH flavour neutrinos generated by the see-saw mechanism is real (in the convention
for the various unphysical phase factors employed by us): mν∗ = mν . This leads to the
following CP-invariance constraint on the PMNS matrix U [30]:

U∗
lj = Ulj ρ

ν
j , , j = 1, 2, 3, l = e, µ, τ . (29)

In the parametrisation (2) we are using these conditions imply that the Dirac phase δ =
πq, q = 0, 1, 2, ..., and that the Majorana phases should satisfy: α21 = πq′, α31 = πq′′,
q′, q′′ = 0, 1, 2, ....

Using Eqs. (23), (28) and (29) it is easy to derive the constraints on the matrix R
following (in the convention we are using) from the requirement of CP-invariance of the
“high-energy” Lagrangian of interest (19):

R∗
jk = Rjk ρ

N
j ρ

ν
k, j, k = 1, 2, 3 . (30)

Obviously, this would be a condition of reality of the matrix R only if ρN
j ρ

ν
k = 1 for any

j, k = 1, 2, 3. However, we can also have ρN
j ρ

ν
k = −1 for some j and k and in that case the

corresponding elements of R will be purely imaginary.

The preceding results lead to the following (perhaps obvious) conclusions.
i) If CP-invariance holds at “high” energy, i.e., if the neutrino Yukawa couplings satisfy (in
the convention used) the constraints (28), it will also hold at “low” energy in the lepton
sector, i.e., the elements of the PMNS matrix will satisfy (in the same convention) Eq. (29).
ii) If the CP-symmetry is violated at “low” energy, i.e., if the PMNS matrix does not satisfy
conditions (29) and the CC weak interaction is not CP-invariant, it will also be violated
at “high” energy, i.e., the neutrino Yukawa couplings will not satisfy Eq. (28) and the
Lagrangian LY(x) will not be CP-invariant. Obviously, it is not possible to use the matrix
R in order to render the Yukawa couplings CP-conserving.
iii) If CP-invariance holds at “low” energy, i.e., if the CC weak interaction (20) is CP-
invariant and the PMNS matrix satisfy conditions (29), it can still be violated at “high”
energy, i.e., the neutrino Yukawa couplings will not necessarily satisfy Eq. (28) and the
Lagrangian LY(x) will not necessarily be CP-invariant. The CP-violation in this case can
be due to the matrix R.

As we will see, of interest for our further analysis is, in particular, the product

Pjkml ≡ Rjk RjmU
∗
lk Ulm , k 6= m. (31)

If CP-invariance holds, we find from Eqs. (29) and (30) that Pjkml is real:

P ∗
jkml = Pjkml (ρ

N
j )2 (ρν

k)
2 (ρν

m)2 = Pjkml , Im(Pjkml) = 0 . (32)

Let us consider next the case when conditions (29) are satisfied and Re(U∗
τkUτm) = 0,

k < m, i.e., U∗
τkUτm is purely imaginary. This can be realised, as Eqs. (2) and (29) show,

10



for δ = πq, q = 0, 1, 2, ..., and ρν
kρ

ν
m = −1, i.e., if the relative CP-parity of the light

Majorana neutrinos νk and νm is equal to (−1), or, correspondingly, the Majorana phase
αmk = π(2q′ +1), q′ = 0, 1, 2, .... If JCP = 0 and both Re(U∗

τ1Uτ2) = 0 and Re(U∗
τ2Uτ3) = 0,

CP-invariance holds in the lepton sector at low energies. In order for CP-invariance to
hold at “high” energy, i.e., for Pjkml to be real, the product RjkRjm, in the case under
consideration, has also to be purely imaginary, Re(RjkRjm) = 0. Thus, purely imaginary
U∗

τkUτm 6= 0 and purely real RjkRjm 6= 0, i.e., Re(U∗
τkUτm) = 0, Im(RjkRjm) = 0, in

particular, imply violation of the CP-symmetry at “high” energy by the matrix R.

4 Leptogenesis and the Baryon Asymmetry

In this Section we will repeat briefly the arguments leading to the conclusion that the
connection between leptogenesis CP-violating parameters and the CP-violating phases in
the PMNS matrix generically does not hold. We will therefore first restrict our discussion
to the “one-flavour” approximation. Then, we will review the recent results on leptogenesis
which take into account the lepton flavour effects [32, 33, 34]. In this case, the baryon
asymmetry depends explicitly on the parameters of the lepton mixing matrix U .

4.1 The One Flavour Case

We assume that the heavy Majorana neutrinos Ni have a hierarchical mass spectrum,
M2,3 ≫ M1, so that studying the evolution of the number density of N1 suffices. The
final amount of (B − L) asymmetry can be parametrized as YB−L = nB−L/s, where s =
2π2g∗T

3/45 is the entropy density and g∗ counts the effective number of spin-degrees of
freedom in thermal equilibrium (g∗ = 217/2 in the SM with a single generation of right-
handed neutrinos). After reprocessing by sphaleron transitions, the baryon asymmetry is
related to the (B − L) asymmetry by [60] YB = (12/37) (YB−L).

One defines the CP asymmetry generated by N1 decays as

ǫ1 ≡
∑

l[Γ(N1 → Hℓl) − Γ(N1 → Hℓl)]∑
l[Γ(N1 → Hℓl) + Γ(N1 → Hℓl)]

=
1

8π

∑

j 6=1

Im
[
(λλ†)2

j1

]

[λλ†]11
g

(
M2

j

M2
1

)
. (33)

The wavefunction plus vertex contributions are included giving g(x) ≃ − 3
2
√

x
for x ≫ 1.

Notice, in particular, that ǫ1 denotes the CP asymmetry in the total lepton charge (i.e.,
trace over the lepton flavour index).

Besides the CP parameter ǫ1, the final baryon asymmetry depends on a single parameter,
(
m̃1

m̃∗

)
≡
∑

l Γ(N1 → Hℓl)

H(M1)
, (34)

where H(M1) denotes the value of the Hubble rate evaluated at a temperature T = M1,
m̃∗ ∼ 3 × 10−3 eV and

m̃1 ≡
(λλ†)11v

2

M1

(35)
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is proportional to the total decay rate of the heavy RH Majorana neutrino N1. Notice
again that m̃1 is obtained by computing the total decay rate of the N1, that is by summing
over all the flavours.

The asymmetry in the total lepton charge is then given by

YL ≃ ǫ1
g∗
η (m̃1) , (36)

where η (m̃1) accounts for the washing out of the total lepton asymmetry due to inverse
decays.

The final baryon asymmetry in the “one flavour approximation” depends always upon
the trace of the CP asymmetries over flavours, ǫ1, times a function of the trace over flavours
of the decay rate of the RH neutrino N1. This is an unexpected result because it suggests,
in particular, that the lepton asymmetry, say, in the electron lepton number can be washed
out by inverse decays involving the second and/or the third family (which erase only the
muon and/or tau lepton charges).

Let us turn now to the issue of the connection between the CP violating parameters
in leptogenesis and the low energy CP-violating phases in the lepton sector, i.e., in the
PMNS matrix U . The CP asymmetry ǫ1 can be written in terms of the diagonal light and
heavy Majorana neutrino mass matrices introduced earlier, m = Diag(m1, m2, m3) and
M = Diag(M1,M2,M3), and the orthogonal complex matrix R:

ǫ1 = − 3M1

16πv2

Im
(∑

lβρm
1/2
β m

3/2
ρ U∗

lβUlρR1βR1ρ

)

∑
β mβ |R1β |2

= − 3M1

16πv2

Im
(∑

ρm
2
ρR

2
1ρ

)

∑
β mβ |R1β|2

, (37)

where we have summed over all lepton flavours l = e, µ, τ . In particular, if the elements
of the matrix R satisfy CP-invariance condition (30), i.e., if R1ρ, ρ = 1, 2, 3, is real or
purely imaginary, the leptogenesis CP-asymmetry ǫ1 = 0. In the top-down approach,
working in the basis in which the matrix of charged lepton Yukawa couplings and the RH
neutrino Majorana mass matrix are diagonal, the matrix of neutrino Yukawa couplings can
be written as λ = V †

RDiag(λ1, λ2, λ3)VL and the low energy leptonic phases can arise from
the phases in VL, i.e. in the left-handed (LH) sector, in VR, i.e. in the RH sector, or from
both VL and VR. However, from λλ† = V †

R Diag(λ2
1, λ

2
2, λ

2
3)VR = M1/2RmR†M1/2/v2, one

sees that the phases of R are related to those of VR. This means that in the “one-flavour”
approximation a future possible observation of CP-violating phases at low energies in the
neutrino sector does not imply the existence of a baryon asymmetry. Indeed, low energy
CP-violating phases might stem entirely from the LH sector, i.e. VL, and hence be irrelevant
for leptogenesis which would be driven by the phases in R, i.e. of the RH sector.
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4.2 Taking the Flavour Effects into Account

As we mentioned in the Introduction, the ‘one-flavour’ approximation rigorously holds only
when the interactions mediated by the charged lepton Yukawas are out of equilibrium, that
is at T ∼ M1

>∼ 1012 GeV. In this regime, flavours are indistinguishable and one may
indeed perform a rotation is flavour space to store all the asymmetry in a single flavour.
At smaller temperatures, though, this operation is not possible. The τ (µ) lepton doublet
is a distinguishable mass eigenstate for T ∼ M1

<∼ 1012 (109) GeV. Flavoured Boltzmann
equations may be written down for the asymmetry Y∆l

in each flavour ∆l = B/3 − Ll

[32, 33, 34]. For the case of hierarchical RH neutrinos, they read 5

dYN1

dz
=

−z
sH(M1)

(γD + γS,∆L=1)

(
YN1

Y eq
N1

− 1

)
, (38)

dY∆l

dz
=

−z
sH(M1)

[
ǫl(γD + γS,∆L=1)

(
YN1

Y eq
N1

− 1

)
−
(
γl

D

2
+ γl

W,∆L=1

) ∑
β AlmY∆m

Y eq
ℓ

]
, (39)

where z = M1/T , T being the temperature, and there is no sum over l in the last term in the
right-side of Eq. (39). In the above equation YN1

is the density of the lightest right-handed
neutrino N1 with mass M1. Y∆l

are defined as Y∆l
≡ YB/3 − YLl

, where YLl
are the total

lepton number densities for the flavours l = e, µ, τ and YB is the total baryon density. One
has to solve the Boltzmann equations for Y∆l

instead of for the number densities Yl of the
lepton doublets ℓl, since (∆l ≡ B/3 − Ll) is conserved by sphalerons and by the other SM
interactions. Furthermore, all number densities Y , normalization to the entropy density s
is understood and Y eq

N1
and Y eq

ℓ stand for the corresponding equilibrium number densities;
γD is the thermally averaged total decay rate of N1 and γS,∆L=1 represents the rates for
the ∆L = 1 scattering processes in the thermal bath. Notice, in particular, that γS,∆L=1

contributes to the asymmetry, as was recently pointed out in [34]. The corresponding
flavour-dependent rates for wash-out processes involving the lepton flavour l are γl

D (from
inverse decays involving leptons ℓl) and γl

W,∆L=1, while ∆L = 2 scatterings may be safely
neglected. The matrix A, which appears in the wash-out term connects the asymmetries
in the lepton doublets to the asymmetries in the charges ∆l by Yl =

∑
mAlm Y∆m

. The
values of its elements depend on which interactions, in addition to the weak and strong
sphalerons, are in thermal equilibrium at the temperatures where leptogenesis takes place.
Below 109 GeV in the SM, A is given by [34]

A =




−151/179 20/179 20/179
25/358 −344/537 14/537
25/358 14/537 −344/537


 . (40)

In what regards the charged leptons, in the SM only the interaction mediated by the τ
Yukawa coupling is in equilibrium between 109 and 1012 GeV, and the lepton asymmetries

5The equations of motion should include the terms accounting for the quantum oscillations among the
different flavours [32]. They become relevant only in the proximity of the transition between the one-single
flavour and the two-flavour state when the τ flavour becomes distinguishable.
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and B/3 − Ll asymmetries in the e and µ flavour can be combined to Y2 ≡ Ye+µ and
Y∆2

≡ Y∆e+∆µ
. In this temperature range, A is given by [34]

A =

(
−920/589 120/589
30/589 −390/589

)
. (41)

Above 1012 GeV, all asymmetries can be combined to YB−L, and A is given by A = −1.

The asymmetry in each flavour is given by

ǫl = − 3M1

16πv2

Im
(∑

βρm
1/2
β m

3/2
ρ U∗

lβUlρR1βR1ρ

)

∑
β mβ |R1β|2

, l = e, µ, τ . (42)

Obviously, the trace over the flavours of ǫl coincides with ǫ1. It should be clear from
Eq. (42) that we can have ǫl 6= 0 even if, e.g., R is a real matrix and R 6= 1. If, however,
R is a diagonal matrix, e.g., if R = 1, all three lepton number asymmetries vanish: ǫl = 0,
l = e, µ, τ .

Similarly, one has to define a “wash-out mass parameter” for each flavour l [32, 34]:

(
m̃l

3 × 10−3 eV

)
≡ Γ(N1 → H l)

H(M1)
,

m̃l ≡
|λ1l|2 v2

M1
=

∣∣∣∣∣
∑

k

R1km
1/2
k U∗

lk

∣∣∣∣∣

2

, l = e, µ, τ . (43)

The quantity m̃l parametrizes the decay rate of N1 to the leptons of flavour l. The trace∑
l m̃l coincides with the m̃1 parameter defined in the previous section.

What is more relevant is that the total baryon asymmetry is the sum of each individ-
ual lepton asymmetry. In the rest of the paper we will be concerned with temperatures
(109 <∼ T ∼M1

<∼ 1012) GeV. In this range only the interactions mediated by the τ Yukawa
coupling are in equilibrium and the final baryon asymmetry is well approximated by [34]

YB ≃ − 12

37g∗

(
ǫ2 η

(
417

589
m̃2

)
+ ǫτ η

(
390

589
m̃τ

))
, (44)

where ǫ2 = ǫe + ǫµ, m̃2 = m̃e + m̃µ and

η (m̃l) ≃
((

m̃l

8.25 × 10−3 eV

)−1

+

(
0.2 × 10−3 eV

m̃l

)−1.16
)−1

. (45)

Notice that the wash-out masses m̃2 and m̃τ in Eq. (44) are multiplied by some numerical
coefficients which account for the dynamics involving the lepton doublet asymmetries and
the asymmetries stored in the charges ∆l = (1/3)B − Ll [34].

From the generic expression for the baryon asymmetry, we deduce that the CP asym-
metry in each flavour is weighted by the corresponding wash-out parameter. Therefore, the
total baryon number is generically not proportional to ǫ1.
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The dependence of ǫl on the PMNS matrix elements is such that nonvanishing low energy
leptonic CP-violating phases imply, in the context of leptogenesis and barring accidental
cancellations, a nonvanishing baryon asymmetry. In the general case of complex matrix
R, the low energy phases in the neutrino mixing matrix U could stem from the phases in
the left-handed sector, in the RH sector, or in both sectors. This result only follows when
the lepton flavour effects are correctly taken into account in the Boltzmann equations. In
previous analyses of leptogenesis ignoring the flavour effects, the observation of low energy
CP violation did not automatically imply the existence of a baryon asymmetry, since the
possibility existed that the low energy phases could stem exclusively from the left-handed
sector and hence be irrelevant for leptogenesis.

This conclusion is by itself already quite interesting. However, we can go even further.
Let us consider, for instance, the case in which the CP parities of the heavy and light
Majorana neutrinos are such that ρN

i = ρν
j = 1 for all i, j = 1, 2, 3. In such a case,

CP invariance corresponds to having all the elements of the matrix R real, see Eq. (30)
and δ = α21 = α31 = 0 (mod 2π)6. In the top-down approach, a real matrix R would
correspond to the class of models where CP is an exact symmetry in the RH neutrino sector.
The reason for this can be more easily understood working in the basis where the charged
lepton Yukawa coupling and the RH mass matrix are diagonal, so that the neutrino Yukawa
matrix is the only coupling in the leptonic Lagrangian that violates CP. More specifically,
since the neutrino Yukawa coupling can be written in its singular value decomposition,
λ = V †

RDiag(λ1, λ2, λ3)VL, CP violation in the RH neutrino sector is encoded in the phases in
VR, that can be extracted from diagonalizing the combination λλ† = V †

RDiag(λ2
1, λ

2
2, λ

2
3)VR.

On the other hand, as we have seen, using the parametrization of the Yukawa coupling (24),
this same combination of matrices can be written as λλ† = M1/2RmR†M1/2/v2. Comparing
the two expressions it is apparent that R is real if and only if VR is real, i.e. when there is
no CP violation in the RH sector. It has been recently pointed out that the case of a real
R matrix is naturally realized within the class of models based on sequential dominance
[61]. In the case of R real, the flavour CP asymmetries and the baryon asymmetry depend
exclusively on the phases of the left-handed sector, that are in turn uniquely determined by
the low energy phases. Consequently, for real matrix R 6= 1, the leptogenesis mechanism
is directly connected to the low energy CP-violating phases in UPMNS. This connection is
more apparent from the expression of the flavour CP asymmetries in the parametrization
(24):

ǫl = − 3M1

16πv2

Im
(∑

β

√
mβR1βU

∗
lβ

∑
ρ

√
m3

ρR1ρUlρ

)

∑
γ mγ |R1γ|2

= − 3M1

16πv2

∑
β

∑
ρ>β

√
mβmρ(mρ −mβ)R1βR1ρIm

(
U∗

lβUlρ

)
∑

γ mγ |R1γ|2
. (46)

If R1βR1ρ is purely imaginary, R1βR1ρ = ±i |R1βR1ρ|, we would get ±(mρ +

6Alternatively, one may consider the case in which the CP parities of the heavy and light neutrinos
are such that CP invariance is realized for the elements of the matrix R purely imaginary and δ = 0,
α21 = α31 = π (mod 2π).
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mβ)|R1βR1ρ|Re(U∗
lβUlρ) instead of (mρ −mβ)R1βR1ρIm(U∗

lβUlρ) in Eq. (46). Purely imag-
inary R1βR1ρ and real (U∗

lβUlρ) implies violation of CP-invariance. In order for the
CP-symmetry to be broken at low energies, we should have both Re(U∗

lβUlρ) 6= 0 and
Im(U∗

lβUlρ) 6= 0.

In the next Section we will study in greater detail the possibility that the baryon
asymmetry stems only from the low energy measurable CP violating phases in the neutrino
mixing matrix U .

5 Baryon Asymmetry from Low Energy CP-Violating

Dirac and Majorana Phases in UPMNS: RH Neutrinos

with Hierarchical Mass Spectrum

In what follows we shall assume that the matrix R has real and/or purely imaginary
elements and that the heavy Majorana neutrinos possess a hierarchical mass spectrum,
M1 ≪ M2 ≪ M3, with M1 having a value in the interval of interest, 109 GeV <∼M1

<∼ 1012

GeV. We will investigate the case when the RG running of mj and of the parameters in U
from MZ to M1 is relatively small and can be neglected. This possibility is realised (in the
class of theories under discussion) for sufficiently small values of the lightest neutrino mass
min(mj) [62], e.g., for min(mj) <∼ 0.05 eV. The latter condition is fulfilled for the normal
hierarchical (NH) and inverted hierarchical (IH) light neutrino mass spectrum. Under the
indicated condition mj , and correspondingly ∆m2

A and ∆m2
⊙, and U in Eqs. (46) and

Eqs. (43) can be taken at the scale ∼ MZ , at which the neutrino mixing parameters are
measured.

Taking into account that in the case under discussion ǫ2 = ǫe + ǫµ = −ǫτ , we can cast
Eq. (44) in a somewhat more convenient form:

YB = −12

37

ǫτ
g∗

(
η

(
390

589
m̃τ

)
− η

(
417

589
m̃2

))
, (47)

where m̃2 = m̃e + m̃µ and m̃l and η(m̃l) are given in Eqs. (43) and (45).

5.1 Normal Hierarchical Light Neutrino Mass Spectrum

Given the inequalities m1 ≪ m2 ≪ m3, we will assume that the terms ∝ √
m1 give sub-

leading contributions to the lepton flavour asymmetries ǫl, Eq. (46), and to the mass param-
eters m̃l related to the wash-out effects, and we neglect them with respect to those ∝ √

m2,3

giving the dominant contribution. This requires that
√
m1|R11| ≪

√
m2|R12|,

√
m3|R13|.

In the indicated approximation, we find using Eq. (46) and the fact that m2
∼=
√

∆m2
⊙,
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m3
∼=
√

∆m2
A:

ǫl ≃ − 3M1

√
∆m2

A

16πv2

(
1 −

√
∆m2

⊙√
∆m2

A

) (
∆m2

⊙
∆m2

A

) 1

4 |R12R13|
(

∆m2
⊙

∆m2
A

) 1

2

|R12|2 + |R13|2

×
[
Im
(
eiβ23 U∗

l2Ul3

)
+

2
√

∆m2
⊙√

∆m2
A −

√
∆m2

⊙
Im
(
eiβ23 Re (U∗

l2Ul3)
)
]

(48)

= − 3M1

√
∆m2

A

16πv2

(
∆m2

⊙
∆m2

A

) 1

4 |R12R13|
(

∆m2
⊙

∆m2
A

) 1

2

|R12|2 + |R13|2

×Im

[(
1−
√

∆m2
⊙√

∆m2
A

)
ei(β23+ π

2
)Im (U∗

l2Ul3) +

(
1+

√
∆m2

⊙√
∆m2

A

)
eiβ23Re (U∗

l2Ul3)

]
,(49)

where β23 ≡ β̃12+β̃13 ≡ arg(R12R13), β̃1j ≡ arg(R1j). The phase β23 parametrises the effect
of CP-violation due to the matrix R in the asymmetry ǫl. In the case of CP-invariance,
β23 = 0 or π/2 7 depending on whether Im(U∗

l2Ul3) = 0 or Re(U∗
l2Ul3) = 0, respectively, and

ǫl = 0, l = e, µ, τ .

From Eq. (2), it is straightforward to obtain Im(eiβ23U∗
l2Ul3) and Im(eiβ23Re(U∗

l2Ul3)).
The expressions, e.g., for Im(eiβ23U∗

l2Ul3) read:

Im
(
eiβ23 U∗

e2Ue3

)
= −s12c13s13 sin

(
δ −

(α32

2
+ β23

))
, (50)

Im
(
eiβ23 U∗

µ2Uµ3

)
= −c13

[
−c23s23c12 sin

(α32

2
+ β23

)
− s2

23s12s13 sin
(
δ−
(α32

2
+ β23

))]
,

(51)

Im
(
eiβ23 U∗

τ2Uτ3

)
= −c13

[
c23s23c12 sin

(α32

2
+ β23

)
− c223s12s13 sin

(
δ−
(α32

2
+ β23

))]
,

(52)

where α32 ≡ α31 −α21. Thus, ǫl depend on the same Majorana phase difference (or phase)
the effective Majorana mass in (ββ)0ν-decay, |〈m〉|, depends (see Eq. (15)) on. It follows
from Eq. (49) that, as could be expected, for real or purely imaginary R12 and R13 we have
ǫe + ǫµ + ǫτ = 0.

We are interested in the case in which the CP-violating phases in U play the role of
leptogenesis CP-violating parameters. It follows from the preceding discussions that one
has to consider two cases: i) β23 = 0 (or more generally, β23 = πq, q = 0, 1, 2, ...), and ii)
β23 = π/2 (or more generally, β23 = (2q + 1)π/2, q = 0, 1, 2, ...). We have to remember
that if Im(U∗

l2Ul3) 6= 0 (Re(U∗
l2Ul3) 6= 0) but Re(U∗

l2Ul3) = 0 (Im(U∗
l2Ul3) = 0), the case of

β23 = 0, π (β23 = π/2, 3π/2) corresponds to violation of the CP-symmetry by the matrix R.

Consider first the possibility of β23 = 0 (π). It is quite remarkable that, as it follows from
Eqs. (49) and (52), for β23 = 0 (π) the asymmetry ǫτ depends on the rephasing invariant S2,

7More precisely, in the case of CP-invariance we have β23 = πq or (2q + 1)π/2, q = 0, 1, 2, ....
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Eq. (13): we have ǫτ ∝ Im (U∗
τ2Uτ3) ≡ S2. The requirement of a nonzero asymmetry, ǫτ 6= 0,

implies S2 6= 0, and correspondingly α32 6= 2πk and/or (δ − α32/2) 6= πk′, k, k′ = 0, 1, ....
In order to reproduce the observed value of the baryon asymmetry, | sin(α32/2)| and/or
| sin θ13 sin(δ − α32/2)| have to be sufficiently large (see further). Since in the case under
study β23 = 0 or π, the sign of ǫτ is not uniquely determined by the sign of Im (U∗

τ2Uτ3).

In the alternative possibility of β23 = π/2 (3π/2) we have |ǫτ | ∝ |Re(U∗
τ2Uτ3)|. Now

ǫτ 6= 0 provided α32 6= π(2k + 1) and/or (δ − α32/2) 6= (π/2)(2k′ + 1), k, k′ = 0, 1, .... In
this case | cos(α32/2)| and/or | cos θ13 cos(δ − α32/2)| have to be sufficiently large in order
for leptogenesis to be successful. The sign of ǫτ is again not uniquely determined by the
sign of Re (U∗

τ2Uτ3).

The maximal value of |Im(eiβ23U∗
τ2Uτ3)| and of |ǫτ |, is reached for β23 = 0; π (β23 =

π/2; 3π/2) at 8 α32 = π(2k + 1) and δ = 2πk (α32 = 2πk and δ = π(2k + 1)), k = 0, 1, ...:

max
∣∣Im

(
eiβ23 U∗

τ2Uτ3

)∣∣ = c23c13 (s23c12 + c23s12s13) <∼ 0.47 , β23 =
π

2
q , q = 0, 1, 2, ...,

(53)
where we have used the best fit values of sin2 2θ23 and sin2 θ12 given in Eq. (5) and the upper
limit s13 ≤ 0.2 (see Eq. (7)). For s13 = 0 we get |Im(eiβ23U∗

τ2Uτ3)| <∼ 0.42 | sin(α32/2)| ≤ 0.42
while if α32 = 0, one obtains |Im(eiβ23U∗

τ2Uτ3)| ∼= 0.27 |s13 sin δ| <∼ 0.054. Thus, the effect
of the term ∝ |s13 sin δ| in |S2|, and correspondingly in |ǫτ |, can be significant only if
| sin(α32/2)| <∼ 0.20. Note that for β23 = 0; π (β23 = π/2; 3π/2) max (|Im(eiβ23U∗

τ2Uτ3)|)
corresponds to Re(U∗

l2Ul3) = 0 (Im(U∗
l2Ul3) = 0), l = e, µ, τ , i.e., to CP-conserving values of

α32 and δ. Nevertheless, in this case we still have |ǫτ | 6= 0 as a consequence of the violation
of the CP-symmetry by the matrix R.

We turn next to the dependence on the parameters in R. Taking into account that R
is, in general, a complex orthogonal matrix, we get for the elements of R of interest, R1j ,
j = 1, 2, 3, obeying the CP-invariance constraints:

(
|R11|2 ρν

1 + |R12|2 ρν
2 + |R13|2 ρν

3

)
ρN

1 = 1 . (54)

The CP-asymmetry |ǫτ | is proportional to the factor r:

r ≡ |R12R13|
(

∆m2
⊙

∆m2
A

) 1

2

|R12|2 + |R13|2
. (55)

It is clear that as long as |R12| ∼ |R13|, r will not act as a suppression factor for the
asymmetry |ǫτ |; the latter can be suppressed if, for instance, |R12| ≪ |R13| or |R13| ≪
(∆m2

⊙/∆m
2
A)

1

4 |R12|.
We now focus on the wash-out effects. The mass parameters m̃l related to the wash-out

effects for the three lepton number asymmetries read:

m̃l
∼=
√

∆m2
A

∣∣∣∣∣

(
∆m2

⊙
∆m2

A

) 1

4

R12 U
∗
l2 +R13 U

∗
l3

∣∣∣∣∣

2

, l = e, µ, τ . (56)

8Note that for β23 = π/2; 3π/2 we have |Im(eiβ23U∗

τ2Uτ3)| = |Re(U∗

τ2Uτ3)|, and the maximum of
|Im(eiβ23U∗

τ2Uτ3)| coincides with the maximum of |Re(U∗

τ2Uτ3)|.
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Using the unitarity of the PMNS matrix U we obtain:

m̃e + m̃µ + m̃τ =
√

∆m2
A

[(
∆m2

⊙
∆m2

A

) 1

2

|R12|2 + |R13|2
]
. (57)

Since m̃l ≥ 0, l = e, µ, τ , each of the individual wash-out mass parameters is limited from
above by the expression in the right-hand side of Eq. (57).

Except for strong fine tuning, the contribution due to sin θ13 is subdominant and can
be neglected at first order. Therefore, for simplicity, we take sin θ13 = 0 in the following
analysis and we get:

m̃2 ≃
√

∆m2
A

((∆m2
⊙

∆m2
A

) 1

2

|R12|2(1 − c212s
2
23) + |R13|2s2

23 (58)

+ 2

(
∆m2

⊙
∆m2

A

) 1

4

|R12R13| s23c23c12 cos((β̃13 − β̃12 −
α32

2
)
)
,

m̃τ ≃
√

∆m2
A

((∆m2
⊙

∆m2
A

) 1

2

|R12|2c212s2
23 + |R13|2c223 (59)

−2

(
∆m2

⊙
∆m2

A

) 1

4

|R12R13| s23c23c12 cos((β̃13 − β̃12 −
α32

2
)
)
.

It follows from Eq. (44) that the baryon asymmetry |YB| can be zero if |η(0.66m̃τ ) −
η(0.71m̃2)| = 0, although |ǫτ | 6= 0 and |ǫe + ǫµ| 6= 0. This corresponds to the physical case
when the asymmetries generated in the lepton doublet charges τ and (e + µ) are equal in
magnitude, but have opposite signs. Such a possibility can occur if the following relation
holds:

η

(
390

589
m̃τ

)
= η

(
417

589
m̃2

)
. (60)

One solution is given by:

m̃2 =
390

417
m̃τ

∼= 0.935 m̃τ . (61)

For fixed |R12|2 and |R13|2, Eqs. (57) and (61) determine the value of m̃τ for which we can
have |YB| = 0:

m̃τ =

√
∆m2

A

1 + 0.935

[(
∆m2

⊙
∆m2

A

) 1

2

|R12|2 + |R13|2
]
. (62)

Since m̃τ is calculated from Eq. (56), given the neutrino oscillation parameters and |R12|
and |R13|, the requirement that the value of m̃τ obtained from Eq. (56) coincides with
that determined by Eq. (62) leads to a combined constraint on the quantities |Uτ2|2 and
2 Re(R12U

∗
τ2R

∗
13 Uτ3) which depend on the phases δ and α32. The phase factors associated

with the latter vary only between (−1) and 1. Therefore it is not guaranteed that condition
(61) can be satisfied and we can have |YB| = 0 with |ǫτ | 6= 0 and |ǫe+ǫµ| 6= 0 for any possible
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values of R12 and R13. Taking for simplicity (β̃13 − β̃12 − α32/2) = π/2, a solution is given
by:

|R12|2 = 0.94|R13|2
cos 2θ23 − 0.069s2

23

1 − 2.069c212s
2
23

, (63)

which holds for 2.069 c212s
2
23 6= 1 and (cos 2θ23−0.069s2

23)/(1−2.069c212s
2
23) ≥ 0. For example,

if c212 = 0.69, it can be satisfied for s2
23
<∼ 0.48.

A general solution of Eq. (60) can also be found and is given by:

m̃2 m̃τ ≃ 5892

390 417
10−6 eV2

(
y − 1

y1.16 − 1
y0.08

) 2

2.16

(64)

where y ≡ (417/390)m̃2/m̃τ . If, for instance, β̃13 − β̃12 −α32/2 = π/2 and |R13|2 dominates
in m̃τ and m̃2, y does not depend on the parameters in R and we can solve Eq. (64):

|R13| ≃
(

10−6 eV2

∆m2
A

1

c223s
2
23

589

390

589

417

( y − 1

y1.16 − 1
y0.08

) 2

2.26

) 1

4

≃ 0.25 . (65)

We will analyse next the dependence of the baryon asymmetry on the parameters in
R. For simplicity, we take the values of α32 and of β̃12, β̃13 = 0, π/2, which maximize the
CP-asymmetry in Eq. (49). The wash-out parameters read:

m̃2 ≃
√

∆m2
A

(√∆m2
⊙

∆m2
A

|R12|2(1 − c212s
2
23) + |R13|2s2

23

)
, (66)

m̃τ ≃
√

∆m2
A

(√∆m2
⊙

∆m2
A

|R12|2c212s2
23 + |R13|2c223

)
. (67)

Case A: Strong wash-out. This case is realized if m̃2,τ ≫ 2 × 10−3 eV. The latter
condition is satisfied for |R12|2 ≫ 2 × 10−3eV/(

√
∆m2

⊙c
2
12s

2
23)

∼= 0.64, and/or for |R13|2 ≫
2 × 10−3 eV/(

√
∆m2

Ac
2
23)

∼= 0.08. The baryon asymmetry can be approximated as:

|YB| ∼ C |R12||R13|
(∆m2

⊙
∆m2

A

) 1

2 |R12|2 + |R13|2

∣∣∣∣
(589

390

2 × 10−4 eV

m̃τ

)1.16

−
(589

417

2 × 10−4 eV

m̃2

)1.16
∣∣∣∣ . (68)

The constant C is defined as

C ≡ 9M1

74πg∗v2

√
∆m2

A

(∆m2
⊙

∆m2
A

) 1

4

c23 s23 c12 ≃ 1.1 × 10−8

(
M1

1011 GeV

)
, (69)

where we have used the present best fit values of the neutrino oscillation parame-
ters. If the |R13|2 term in the wash-out factors dominates, i.e. if |R12|2/|R13|2 ≪(
∆m2

A/∆m
2
⊙

)1/2

s2
23/(1 − c212s

2
23)

∼= 4.3, the dependence on the R parameters becomes:

|YB| ∼ 2.7 × 10−3 C |R12|
|R13|3.32c2.32

23

∣∣∣∣1 −
(390

417

c223
s2
23

)1.16
∣∣∣∣ . (70)

20



For maximal atmospheric neutrino mixing there is a strong cancellation and the resulting
baryon asymmetry has an additional suppression factor ∼ 0.075:

|YB| ∼ 4.5 × 10−4 C |R12|
|R13|3.32

. (71)

Taking into account the dependence of ǫτ on sin 2θ23, we find that for sin2 θ23 = 0.34 (0.66)
|YB| is larger by a factor of 9 (11). Notice that the asymmetry changes sign when sin2 θ23
increases from 0.34 to 0.66. Thus, there is also a value of sin2 θ23 in the interval [0.34,0.66],
for which YB = 0 (up to corrections ∼ s13). The asymmetry decreases very rapidly with
|R13| and therefore the maximal asymmetry should correspond to relatively small |R13|.

In the alternative case when |R12|2 dominates in m̃τ,2, which is realised for |R12|2 ≫
7.9 |R13|2, the asymmetry |YB| is proportional to:

|YB| ∼ 2.7 × 10−3 C
(∆m2

A

∆m2
⊙

)1.08 |R13|
|R12|3.32

∣∣∣∣
(
c212s

2
23

)−1.16

−
(417

390
(1 − c212s

2
23)
)−1.16

∣∣∣∣ . (72)

In this case, |YB| is not suppressed for maximal atmospheric neutrino mixing. Varying the
solar and atmospheric angles within their 95% C.L. ranges induces a factor of a few in
the predicted baryon asymmetry. Also in this case the baryon asymmetry is a decreasing
function of |R12|.

Case B: weak wash-out. For sufficiently small values of |R12| and |R13|, one enters the
weak wash-out regime. The asymmetry is given approximately by:

|YB| ∼ C |R12||R13|
(∆m2

⊙
∆m2

A

) 1

2 |R12|2 + |R13|2

∣∣∣∣
390

589

m̃τ

8.25 × 10−3 eV
− 417

589

m̃2

8.25 × 10−3 eV

∣∣∣∣ . (73)

If the term ∝ |R13|2 dominates in m̃τ,2, we can have again a partial cancellation between
the two leading terms in |YB| for maximal atmospheric neutrino mixing, θ23 = π/4:

|YB| ≃ 4.0 C |R12||R13|
∣∣∣∣cos 2θ23 −

27

390
s2
23

∣∣∣∣ ≃ 0.12 C |R12||R13| . (74)

The asymmetry |YB| is bigger by approximately a factor of 10 if the atmospheric mixing
angle assumes the values sin2 θ23 = 0.34, 0.66. The asymmetry has opposite sign for these
two values, indicating that |YB| goes through zero (up to corrections ∼ s13) when sin2 θ23
is varied from 0.34 to 0.66.

If the term ∝ |R12|2 is the dominant one in m̃τ,2, one finds:

|YB| ∼ 4.0 C ∆m2
⊙

∆m2
A

|R12||R13|
(

417

390
+

27

390
c212s

2
23

)
≃ 0.14 C |R12||R13| . (75)

We notice that in the case of weak wash-out one finds that the asymmetry increases with
the values of |R12| or |R13|.

On the basis of the above discussion, we can conclude that more than one local max-
imum of |YB| is present and that the absolute one is found, in general, in a regime which
interpolates between the weak and strong wash-out regimes. However, it is possible to show
that in this region YB can be even zero if Eq. (60) is satisfied.

21



5.2 The case of N3 decoupling

We will assume further for simplicity that |R11|2 ≪ ||R12|2 ± |R13|2|. This corresponds to
the case of “decoupling” of the heaviest Majorana neutrino N3 [63, 64, 28]. For β23 = 0; π
(β23 = π/2; 3π/2), which implies ρν

2ρ
ν
3 = 1 (−1), we get:

|R12|2 +
(−)|R13|2 = ρν

2 ρ
N
1 . (76)

Obviously, if β23 = 0; π we have |R12|2 + |R13|2 = 1, while for β23 = π/2; 3π/2, one finds
|R12|2 − |R13|2 = ±1. It is not difficult to find the maximal value of r for ρν

2 ρ
N
1 = 1:

max r =
1

2

(
∆m2

A

∆m2
⊙

) 1

4 ∼= 1.2 , ρν
2 ρ

N
1 = 1 , β23 =

π

2
k , k = 0, 1, 2, ... (77)

The maximum is reached when β23 = 0; π at |R12|2 = (1 +
√

∆m2
⊙/
√

∆m2
A)−1 ∼= 0.85,

while for β23 = π/2; 3π/2 it corresponds to |R12|2 = (1 −
√

∆m2
⊙/
√

∆m2
A)−1 ∼= 1.22. In

the latter case |R12|2 − |R13|2 = 1 and |R12|, |R13|, in general, are not limited from above
9. However, it is not difficult to convince oneself that we can have successful leptogenesis
only if |R12| and |R13| are not exceedingly large, namely for |R12|, |R13| <∼ 10. Indeed,
barring accidental cancellations, the wash-out mass parameters m̃l, l = e, µ, τ , increase
with the increasing of |R12| (|R13|2 = |R12|2 − 1), and for |R12| ∼ |R13| ∼ 10, one would
typically have m̃l ∼ 1 eV. The corresponding efficiency factors would be exceedingly small
and |η

(
390
589
m̃τ

)
− η

(
417
589
m̃2

)
| ∼ 10−4 (extremely strong wash-out regime), which makes it

impossible to reproduce the observed value of the baryon asymmetry for M1
<∼ 1012 GeV.

The preceding rather qualitative analysis can obviously be refined to obtain more precise
upper limits on |R12| and |R13| satisfying |R12|2 − |R13|2 = 1.

If β23 = π/2; 3π/2 and ρν
2ρ

N
1 = −1, one always has r < 1. In this case |R12|2 < |R13|2.

For |R12| ≪ |R13| we have r ≪ 1 and the asymmetry |ǫτ | will be suppressed by the r-factor,
Eq. (55). We will not analise this case further.

Given the fact that
√

∆m2
A
∼= 0.05 eV,

√
∆m2

⊙/
√

∆m2
A
∼= 0.18, r <∼ 1.2, Eq. (77), and

|Im(U∗
τ2Uτ3)| <∼ 0.47, we obtain for the maximal value of the asymmetry |ǫτ | in the cases of

interest (|R12|2 +
(−)|R13|2 = 1, β23 = (π/2)k, k = 0, 1, 2, ...):

|ǫτ | ≤ 3M1

√
∆m2

A

32πv2

(
1 −

(+)

√
∆m2

⊙√
∆m2

A

)
∣∣Im

(
eiβ23 U∗

l2Ul3

)∣∣ (78)

<∼ 0.19 (0.27)
3M1

√
∆m2

A

16πv2
≃ 1.9 (2.7) × 10−8

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, (79)

where the minus (plus) sign and the value 0.19 (0.27) correspond to β23 = πk, k = 0, 1, 2, ...
(β23 = (π/2)(2k + 1), k = 0, 1, 2, ...).

9Note that if |R12|2 + |R13|2 = 1, one can obviously use the parametrisation R12 = cosω, R13 = sin ω,
while in the case of |R12|2 − |R13|2 = 1, we have R12 = cos(iω) = coshω, R13 = sin(iω) = i sinhω, ω being
a real parameter.
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Let us note that, although for the values of the parameters we have used the asymmetry
|ǫτ | has a maximal value, the baryon asymmetry |YB| does not necessarily has a maximum
since the maximum of |ǫτ | does not correspond, in general, to a maximum of the effective
wash-out factor |η(0.66m̃τ) − η(0.71m̃2)| in the expression for |YB| (see Eq. (44)). As can
be shown and Figs. 1 and 2 illustrate, however, for real R12 and R13 (β23 = 0; π) satisfying
|R12|2 + |R13|2 = 1, the maximum of |ǫτ | with respect to the parameter R12 practically
coincides for δ = 0 (δ = πk, k = 0, 1, ...) and CP-violation due only to the Majorana phase
α32, with the maximum of |YB|. In the case of CP-violation generated only by the Dirac
phase δ (α32 = 0), the maximum of |YB| occurs for β23 = 0 at slightly smaller value of |R12|,
namely at |R12| ∼= 0.86, compared to the value of |R12| ∼= 0.92 at which the maximum of
|ǫτ | takes place. We will work for convenience with R12 and R13 maximising |ǫτ |, for which
we have simple analytic expressions in terms of the ratio ∆m2

⊙/∆m
2
A. In most of the cases

we will discuss these values of R12 and R13 maximise also |YB|.
Consider next the wash-out parameters m̃l, l = e, µ, τ . In the case of real R12 and R13

we have β23 = 0; π and |R12|2 + |R13|2 = 1. Taking into account this constraint we get
from Eq. (57) [28, 63]:

√
∆m2

⊙ ≤ m̃e + m̃µ + m̃τ ≤
√

∆m2
A . (80)

The maximum and the minimum are reached respectively for |R12|2 = 0 and |R13|2 = 0, and
in both cases |ǫτ | = 0. If β23 = π/2; 3π/2, we have |R12|2−|R13|2 = 1 and for m̃e+m̃µ +m̃τ

we get the same lower bound as in Eq. (80), but no upper bound, in general, since |R12|2
is not limited from above. The requirement of successful leptogenesis leads to an upper
bound roughly of the order of 1 eV. For |R12|2 = (1 +

(−)

√
∆m2

⊙/
√

∆m2
A)−1, corresponding

to the maximum of r and of |ǫτ |, we find

m̃e + m̃µ + m̃τ = 2
√

∆m2
⊙

[
1 +

(−)

(
∆m2

⊙
∆m2

A

) 1

2

]−1

∼= 0.30 (0.44)
√

∆m2
A . (81)

In what follows we will analyse the case of real R12 and R13. For real R12 and R13 we
have β23 = 0; π corresponding to sgn(R12R13) = +1; (−1).

5.2.1 Leptogenesis due to Majorana CP-Violation in UPMNS

We shall consider first the interesting possibility of CP-symmetry being violated by the
Majorana phase α32 in U , and not by the Dirac phase δ. To be concrete, we choose
δ = 0 and real R12 and R13 (β23 = 0; π) which maximise r, |ǫτ | and |YB|, i.e., |R12|2 =
(1 +

√
∆m2

⊙/
√

∆m2
A)−1 ∼= 0.85, |R13|2 = 1 − |R12|2 ∼= 0.15. For α32 = 0; 2π, the CP-

symmetry is not violated. If α32 takes the CP-conserving value of α32 = π, CP-symmetry
is violated by R and |ǫτ | 6= 0. It should also be noted that the terms ∝ sin θ13 in the
expressions for ǫτ and the wash-out mass parameters m̃l are sub-dominant in the case
being studied.
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With the choices for δ, R12 and R13 made we get using Eqs. (2), (52) and (56):

∣∣Im
(
eiβ23U∗

τ2Uτ3

)∣∣ = c23 c13 (s23c12 + c23s12s13)
∣∣∣sin α32

2

∣∣∣ ∼= 1

2
(c12 + s12s13)

∣∣∣sin α32

2

∣∣∣ ,
(82)

m̃τ =
√

∆m2
A

∣∣∣∣∣

(
∆m2

⊙
∆m2

A

) 1

4

|R12| (s23c12 + c23s12s13) e
i

α32

2 − κ |R13| c23

∣∣∣∣∣

2

(83)

∼= 1

2

√
∆m2

A

1 +

(
∆m2

A

∆m2
⊙

) 1

2

[
1 + (c12 + s12s13) (c12 + s12s13 − 2 κ cos

α32

2
)
]
, (84)

m̃2 ≡ m̃e + m̃µ =
2
√

∆m2
A

1 +

(
∆m2

A

∆m2
⊙

) 1

2

− m̃τ , (85)

where κ ≡ eiβ23 = sgn(R12R13) = ±1 and we have set s23 = c23 = 1/
√

2, used |R12| and
|R13| specified above and neglected the terms ∝ s2

13 in Eqs. (82) and (84).

It follows from Eqs. (49), (82) and (83) that in the case under discussion the following
relations hold: |ǫτ (α32)| = |ǫτ (2π−α32)|, and m̃τ (α32, β23 = 0) = m̃τ (2π−α32, β23 = π). As
a consequence we have from Eq. (44): |YB(α32, β23 = 0)| = |YB(2π − α32, β23 = π)|. Thus,
we will consider values of α32 in the interval [0, 2π] and limit our discussion to β23 = 0 (i.e.,
κ ≡ sgn(R12R13) = 1). After fixing the value of β23 the only free parameter left in the
problem being studied is the Majorana phase α32.

For α32 = 0; 2π, obviously |ǫτ | = 0 and therefore |YB| = 0. We can have |YB| = 0 also
even if |ǫτ | 6= 0, provided the efficiency factor in the expression for |YB|, Eq. (44), is zero,
i.e., if the condition given in Eq. (61) is fulfilled. For the values of |R12| and |R13| considered
and α32 having a value in the interval [0, 2π], this condition is satisfied for α32

∼= 1.2π. Thus,
in this case we have |ǫτ | 6= 0 but |YB| = 0 for α32

∼= 1.2π.

The absolute maximum of the baryon asymmetry |YB| as a function of α32 is reached
close to α32

∼= π/2. We have at the absolute maximum for s13 = 0 (0.2):

|ǫτ | ∼= 1.2 × 10−8

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, (86)

|YB| ∼= 2.0 (2.2) × 10−12

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
. (87)

As we have already indicated, the values of |R12| and |R13| we have chosen in this analysis
maximise not only ǫτ , but also |YB|. Thus, the observed baryon asymmetry having a value
in the interval 8.0 × 10−11 <∼ |YB| <∼ 9.2 × 10−11, can be reproduced for M1

>∼ 3.6 × 1010

GeV. A second (local) maximum of |YB| occurs close to α32 = 3π/2 (at α32
∼= 1.7π). At

this maximum the value of |YB| for s13 = 0 (0.2) is approximately by a factor of 3 (1.8)
smaller than that at the absolute maximum in Eq. (87). Given the fact that the flavour
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effects of interest can be substantial for values of M1 up to M1 ∼ 1012 GeV, leptogenesis
can be successful even for rather small values of the Majorana phase α32, or more precisely,
of | sin(α32/2)|. If, for instance, M1 ∼ 5 × 1011 GeV, the observed baryon asymmetry can
be generated for | sin(α32/2)| ∼= 0.15.

The results obtained in this subsection are illustrated in Figs. 1 and 2 we have already
discussed, and in Fig. 3 where the dependence of the baryon asymmetry |YB| on the
Majorana phase α32 is shown for M1 ∼ 5 × 1010 GeV in the case analised above: δ = 0,
real R12 and R13 which maximise |YB|, i.e., |R12| ∼= 0.92 and |R13| ∼= 0.39, and β23 = 0,
i.e., κ ≡ sgn(R12R13) = 1 (Fig. 3), and β23 = π, i.e., κ = −1 (Fig. 4). The figures have
been obtained using the best fit values of the oscillation parameters ∆m2

A, ∆m2
⊙, sin2 θ23

and sin2 θ12. Results for two values of sin θ13 are presented: sin θ13 = 0; 0.20. Figure 3
shows, in particular, that in the case being studied, the predicted baryon asymmetry |YB|
exhibits very weak dependence on sin θ13 for α32

<∼ π. If sin θ13 has a value close to the
existing upper limit, the effect of sin θ13 ∼ 0.2 can be noticeable in the region of the local
maximum of |YB| at α32

∼= 1.7π: it can lead to an increase of |YB| by a factor of 1.7. For
M1 = 1011 GeV, for instance, we can have successful leptogenesis for π/4 <∼ α32

<∼ 0.9π,
and, if s13 ∼ 0.2, also for 1.4π <∼ α32

<∼ 1.9π. We note that, as Figs. 1 and 2 show, that
the predicted value of |YB| exhibits a relatively strong dependence on the elements of the
matrix R.

It follows from the results obtained in the present subsection that as long as | sin(α32/2)|
is not exceedingly small 10 and M1

>∼ 3.5 × 1010 GeV, we can have successful leptogenesis
even if |s13 sin δ| = 0 (JCP = 0) and the only CP-violating parameter is the low energy
Majorana phase α32.

5.2.2 Dirac CP-Violation in UPMNS and Leptogenesis

The next question we would like to address is under what conditions we could have a
successful leptogenesis if the only CP-violating parameter is the Dirac phase in U , i.e., if,
e.g., β23 = 0, π, the Majorana phase α32 takes a CP-conserving value and sin(α32/2) = 0
11, so that α32 = 2πk, k = 0, 1, .... We choose for concreteness again real R12 and R13

which for α32 = 0 (2π) and β23 = π (0) maximise |ǫτ | and |YB|, i.e., |R12|2 = (1 +√
∆m2

⊙/
√

∆m2
A)−1 ∼= 0.85, |R13|2 = 1 − |R12|2 ∼= 0.15. We will present results for the

baryon asymmetry |YB| also for the values of R12 and R13 which maximise |YB| in the case
of α32 = 0 (2π) and β23 = 0 (π), |R12|2 = 0.75 and |R13|2 = 0.25. For δ = πq, q = 0, 1, 2, ...,
the CP-symmetry is not violated and |ǫτ | = 0.

For the chosen CP-conserving values of α23 and β23 we get from Eqs. (2), (52) and (56):
∣∣Im

(
eiβ23U∗

τ2Uτ3

)∣∣ = c223 s12 s13 |sin δ| , (88)

10Obviously, α32 should have a value sufficiently different from the “special” one for which |η(0.66m̃τ )−
η(0.71m̃2)| = 0.

11 By imposing the condition sin(α32/2) = 0 we exclude the possibility of α32 taking the CP-conserving
values α32 = π, 3π, in which case the term associated with the violation of CP-symmetry due to the matrix
R will dominate in |Im(U∗

τ2Uτ3)|, and correspondingly in |ǫτ |. If β23 = π/2, 3π/2, the indicated possibility
would be avoided if α32 takes a CP-conserving value and | sin(α32/2)| = 1.
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m̃τ =
√

∆m2
A

∣∣∣∣∣

(
∆m2

⊙
∆m2

A

) 1

4

|R12|
(
s23c12 + c23s12s13 e

iδ
)
− κ′ |R13| c23 c13

∣∣∣∣∣

2

∼=
√

∆m2
A

1 +

(
∆m2

A

∆m2
⊙

) 1

2

∣∣(c23c13 − κ′ s23c12) + c23s12s13 e
iδ
∣∣2 , κ′ ≡ ei(β23+

α32

2
) = ±1 ,(89)

where in Eq. (89) we have used the values of |R12| and |R13| specified earlier. Taking into
account that |Im(eiβ23U∗

τ2Uτ3)| ∼= 0.027|s13 sin δ|, we find from Eq. (79):

|ǫτ | ∼= 2.2 × 10−9

( |s13 sin δ|
0.20

)(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
. (90)

Thus, the maximal asymmetry |ǫτ | in the case of CP-violation due only to the Dirac phase
δ in UPMNS is approximately by a factor of 6 smaller than the maximal asymmetry due to
violation of the CP-symmetry by the Majorana phase α32 of UPMNS.

Given m̃τ , one can determine m̃2 from Eq. (85). It follows from Eqs. (89) and (90)
that |YB(δ)| = |YB(2π − δ)|. One has to analyze the cases of κ′ ≡ ei(α32/2+β23) = +1
(α32/2 + β23 = 2πk, k = 0, 1, ...) and κ′ = −1 (α32/2 + β23 = π(2k + 1), k = 0, 1, 2, ...)
separately.

For κ′ = −1 we find m̃τ
∼= 0.25

√
∆m2

A > m̃2
∼= 0.05

√
∆m2

A. For the values of the
parameters employed in this analysis (chosen, in particular, to maximise |ǫτ | and |YB|), m̃τ

and m̃2 exhibit weak dependence on sin θ13 (and therefore on δ), which can be neglected.
This implies that the maximum of the baryon asymmetry |YB| as a function of the Dirac
phase δ, will take place at values of δ = (π/2)(2k + 1), k = 0, 1, ..., for which |ǫτ | also
has a maximum. Using Eq. (45) to calculate the relevant efficiency factors η(0.66m̃τ) and
η(0.71m̃2), we get from Eq. (44):

|YB| ∼= 2.8 × 10−13 | sin δ|
(s13

0.2

)( M1

109 GeV

)
. (91)

The asymmetry of interest is predominantly in the lepton number Le +Lµ. Thus, in order
to reproduce the observed baryon asymmetry, taken to lie in the interval 8.0 × 10−11 <∼
|YB| <∼ 9.2 × 10−11, s13| sin δ| and M1, in the case analised, should satisfy

2.9 <∼ | sin δ|
(s13

0.2

)( M1

1011 GeV

)
<∼ 3.3 . (92)

Given that s13| sin δ| <∼ 0.2, the lower bound in this inequality can be satisfied only for
M1

>∼ 2.9× 1011 GeV. Recalling that the flavour effects in leptogenesis of interest are fully
developed for M1

<∼ 5 × 1011 GeV, we obtain a lower bound on the values of |s13 sin δ| and
s13 for which we can have successful leptogenesis in the case considered:

| sin θ13 sin δ| >∼ 0.11 , sin θ13 >∼ 0.11 . (93)
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The lower limit (93) corresponds to

|JCP| >∼ 2.4 × 10−2 , (94)

where we have used the best fit values of sin 2θ12 and sin 2θ23. Values of s13 in the range
given in Eq. (93) can be probed in the forthcoming Double CHOOZ [65] and future reactor
neutrino experiments [66]. CP-violation effects with magnitude determined by |JCP| satisfy-
ing (94) are within the sensitivity of the next generation of neutrino oscillation experiments,
designed to search for CP- or T- symmetry violations in the oscillations [67]. Actually, since
in the case under discussion the wash-out factor |ηB| ≡ |η(0.66m̃τ)− η(0.71m̃2)| in the ex-
pression for |YB| practically does not depend on s13 and δ, while both |YB| ∝ |s13 sin δ|
and |JCP| ∝ |s13 sin δ|, there is a direct relation between |YB| and |JCP| for given neutrino
oscillation parameters, R12, R13 and M1:

|YB|
M1/(1011 GeV)

∼= 3.0 × 10−8 |ηB| |JCP| ∼= 1.3 × 10−9 |JCP| , (95)

where we have used the best fit values of the neutrino oscillation parameters, |R12| = 0.92,
|R13| = 0.39 and κ′ = −1.

For κ′ = +1, the maximum of |YB| as a function of |R12| (|R13|) takes place in the
case being investigated at |R12| = 0.86 (|R13| = 0.51) and we will employ this value of
|R12| (|R13|) in the remaining part of the current analysis. If κ′ = +1, a strong cancellation
between the terms in the round bracket in Eq. (89) takes place and we have typically m̃τ ≪
m̃2. Indeed, for s23 = c23 = 1/

√
2, s12 = 0.2 and δ = π/2 one finds m̃τ

∼= 2.5×10−2
√

∆m2
A

and m̃2
∼= 0.28

√
∆m2

A. Using Eq. (45) to calculate the corresponding efficiency factors, we
get from Eq. (47) for the baryon asymmetry:

|YB| ∼= 3.6 (0.38) × 10−13 | sin δ|
(

M1

109 GeV

)
. (96)

The numerical factor in the round brackets corresponds to the value of |R12| = 0.92 (|R13| =
0.39) which maximises |ǫτ |, but does not maximise |YB|.

The result we get for the maximal value of |YB|, i.e., for |R12| = 0.86 (|R13| = 0.51), are
quite similar to those we have obtained in the case of κ′ = −1, the only difference being
that now the generated lepton asymmetry is predominantly in the tau lepton charge. The
observed baryon asymmetry lying in the interval 8.0 × 10−11 <∼ |YB| <∼ 9.2 × 10−11, can
be reproduced if M1

>∼ 2.2 × 1011 GeV. For the flavour effects to fully develop one must
have M1

<∼ 5 × 1011 GeV, which, together with the requirement of successful leptogenesis,
implies

| sin θ13 sin δ| >∼ 0.09 , sin θ13 >∼ 0.09 . (97)

This lower limit corresponds to

|JCP| >∼ 2.0 × 10−2 , (98)

where we have used again the best fit values of sin 2θ12 and sin 2θ23. The ranges of values
of sin θ13 and of |JCP| we find in the case being studied are also within the sensitivity
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respectively of the planned θ13 reactor neutrino experiments [65, 66] and of the neutrino
oscillation experiments on CP- (T-) violation [67].

It is interesting to note that, as it follows from Eq. (96), for |R12| = 0.92 and |R13| =
0.39, which maximise |ǫτ | but do not maximise |YB|, the predicted baryon asymmetry |YB|
is smaller by approximately one order of magnitude in spite of the fact that the indicated
values of |R12| and |R13| are rather close to the values |R12| = 0.86, |R13| = 0.51 which
maximise |YB|. As |R12| increases beyond 0.86, |YB| rapidly decreases, as is also clearly
seen in Fig. 1. Actually, for |R12| = 0.92 and |R13| = 0.39, the observed baryon asymmetry
cannot be reproduced for M1

<∼ 1012 GeV and sin θ13 ≤ 0.20: we get |YB| <∼ 4 × 10−11.
Figures 1 and 2 show also that for real R12 and R13, satisfying |R12|2 + |R13|2 = 1, and CP-
violation generated only by the Dirac phase in UPMNS, we can have successful leptogenesis if
both sin θ13 and |R12| have relatively large values: the observed baryon asymmetry cannot
be reproduced if |R12| <∼ 0.6 and/or sin θ13 ≪ 0.1.

The results obtained in the present subsection are illustrated in Figs. 1 and 2, as well
in Fig. 5. In Fig. 5 we show the dependence of |YB| on the Dirac phase δ which was varied
in the interval [0, 2π], for s13 = 0.1; 0.2, M1 = 5× 1011 GeV and for κ′ = +1 and κ′ = −1.
The correlation between the rephasing invariant JCP which controls the magnitude of the
CP-violation effects in neutrino oscillations and the baryon asymmetry YB is illustrated in
Fig. 6 for s13 = 0.2, M1 = 5 × 1011 GeV and κ′ = +1. Both figures are obtained for real
R12 and R13 which maximise |YB|.

In conclusion of the present subsection we note that one can treat in a similar way the
alternative possibility of β23 = π/2 (3π/2). In this case we have ǫτ ∝ Re(U∗

τ2Uτ3). The
CP symmetry will be violated at low energies if both Re(U∗

τ2Uτ3) 6= 0 and Im(U∗
τ2Uτ3) 6= 0.

Maximal asymmetry |ǫτ | is obtained for cos(α32/2) = ±1, and, if s13 is non-negligible, for
cos(δ−α32/2) = ±1. These conditions are satisfied for the CP-conserving values of α32 and
δ: α32 = 0; 2π, δ = 0; π. The CP-symmetry is broken by the matrix R (β23 = π/2 (3π/2)).
It is easy to convince oneself that the expression for the asymmetry |ǫl|, l = e, µ, τ , for
β23 = π/2 or 3π/2, α32 = 0 (2π) and δ = 0( π), coincides with the expression for the
same asymmetry in the case respectively of β23 = 0 or π, α32 = π (3π/2) and δ = 0 (2π).
Although, for β23 = π/2; 3π/2 we also have max(r) ∼= 1.2, the maximum of r corresponds
to |R12|2 = (1−

√
∆m2

⊙/
√

∆m2
A)−1 ∼= 1.22, |R13|2 = |R12|2−1 ∼= 0.22. Therefore the wash-

out factors m̃l will differ from those in the case of β23 = 0; π and maximal asymmetry |ǫτ |.
The values of |R12| and |R13| which maximise |ǫτ | are not guaranteed to maximise also the
baryon asymmetry |YB|. Further investigation of this case is, however, outside the scope of
the present study.

5.3 Inverted Hierarchical Light Neutrino Mass Spectrum

Given the inequalities m3 ≪ m1 < m2, it seems natural to assume that the terms ∝ √
m3

are sufficiently small and give negligible contributions to the lepton flavour asymmetries ǫl
and to the wash-out mass parameters m̃l. In the “one-flavour” approximation this case was
studied in [28]. It was found that the lepton asymmetry is strongly suppressed by the factor
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∆m2
⊙/∆m

2
A and leptogenesis can produce the observed value of the baryon asymmetry only

if the lightest heavy Majorana neutrino N1 has a relatively large mass: M1
>∼ 7×1012 GeV.

Using Eq. (46) and the fact that in the case of interest we have m1,2
∼=
√

∆m2
A and

(m2 − m1) ∼= ∆m2
⊙/(2

√
∆m2

A), it is not difficult to obtain the conditions under which
the indicated terms ∝ √

m3 in ǫl can be neglected. The latter depend on whether the

R11R12 ≡ eiβ12 |R11R12| is real or purely imaginary. In the case of β12 ≡ β̃11 + β̃12 = πq,
q = 0, 1, 2, ..., we get:

2

(
m3√
∆m2

⊙

) 1

2
(

∆m2
A

∆m2
⊙

) 3

4 |R13|∣∣R12(11)

∣∣ ≪ 1 , β12 = πq, q = 0, 1, 2, ... . (99)

Since 2(∆m2
A/∆m

2
⊙)

3

4 ∼= 26.4 ≫ 1, this inequality suggests two possibilities.
i) Equation (99) holds and the terms ∝ √

m3 in ǫl and m̃l are indeed negligible. The
simplest realisation of this possibility corresponds to [28] setting R13 = 0, which in turn
implies the decoupling of the heaviest RH Majorana neutrino N3.
ii) The alternative possibility is that terms ∝ √

m3 in ǫl and m̃l are dominant in spite of
the fact that m3 ≪ m1, m2. This would require the ratio in the left-hand side in Eq. (99)
to be much bigger than 1. A possible simple realisation corresponds to setting R11 = 0 or
R12 = 0. Since in the latter case |ǫl| ∝

√
m3/m2, the asymmetry |ǫl| will not be suppressed

only if m3 is sufficiently large. The latter condition is satisfied for values of m3 in the
interval 10−2

√
∆m2

⊙ <∼ m3
<∼ 0.5

√
∆m2

⊙, for which we still have m3 ≪ m1,2.

If, however, β12 = π/2(2q + 1), q = 0, 1, 2, ..., i.e., if R11R12 = ±i |R11R12|, we obtain a
very different condition:

(
m3√
∆m2

A

) 1

2 |R13|∣∣R12(11)

∣∣ ≪ 1 , β12 = (π/2)(2q + 1), q = 0, 1, 2, ... . (100)

For m3 ≪ m1,2,, this condition can be naturally satisfied if |R13| is sufficiently small and,
in particular, if |R13| = 0.

5.3.1 The case of Real R11R12 and N3 Decoupling (R13 = 0)

The terms ∝ √
m3 in ǫl and m̃l are negligible and we get:

ǫl ≃
3M1

√
∆m2

A

32πv2

(
∆m2

⊙
∆m2

A

) (
∆m2

⊙
∆m2

A

) 1

4 |R11R12|
|R11|2 + |R12|2

Im
(
eiβ12 U∗

l1Ul2

)
, l = e, µ, τ ,

(101)
where β12 ≡ arg(R11R12). The phase β12 parametrises the effect of CP-violation due to the
matrix R in the asymmetries ǫl. In the case of CP-invariance, β12 = 0 or π/2 depending on
whether Im(U∗

l1Ul2) = 0 or Re(U∗
l1Ul2) = 0, respectively, and ǫl = 0, l = e, µ, τ . Note that

the asymmetries ǫl are suppressed by the factor ∆m2
⊙/(2∆m2

A) ∼= 1.6 × 10−2 with respect
to the asymmetries ǫl we have obtained in the case of NH light neutrino mass spectrum.
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From Eq. (2) we get for the quantity Im(eiβ12U∗
τ1Uτ2) of interest:

Im
(
eiβ12 U∗

τ1Uτ2

)
= −Im

[
eiβ12 ei

α21

2

(
c12s23 + s12c23s13 e

iδ
) (
s12s23 − c12c23s13 e

−iδ
)]
,

(102)
where α21 is the Majorana phase which enters also into the expression for |〈m〉| in (ββ)0ν-
decay. The wash-out mass parameters m̃l for the three lepton asymmetries read [28]:

m̃l
∼=
√

∆m2
A |R11 U

∗
l1 +R12 U

∗
l2|2 , l = e, µ, τ . (103)

Using the unitarity of the PMNS matrix U we obtain:

m̃e + m̃µ + m̃τ =
√

∆m2
A

(
|R11|2 + |R12|2

)
. (104)

In what follows we limit our discussion to the case of real R11 and R12. In this case we
have |R11|2 + |R12|2 = 1, and β12 = 0; π which correspond to sgn(R11R12) = +1; (−1).
Obviously, the values of |R11| = |R12| = 1/

√
2 maximise the asymmetries ǫl. As can be

shown, for generic values of the phases α21 and δ, these values of |R11| and |R12| maximise
also |YB|. Now we have

m̃e + m̃µ + m̃τ =
√

∆m2
A . (105)

Using the best values of the neutrino oscillation parameters sin2 2θ23, sin2 θ12, ∆m2
⊙ and

∆m2
A, given in Eq. (5) and the upper limit s13 ≤ 0.2, we get maximal |ǫτ | and |YB| as can

be shown, for α21 = π/2, δ = π and β12 = 0:

|ǫτ | ∼= 1.5 × 10−10

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, (106)

|YB| ∼= 2.2 × 10−14

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
. (107)

Clearly, for M1
<∼ 1012 GeV for which the flavour effects in leptogenesis can be substantial,

it is impossible to reproduce the observed baryon asymmetry in the case of IH light neutrino
mass spectrum, R13 = 0 and real R11 and R12, |R11|2 + |R12|2 = 1. The main reason for
this result lies in the fact that the lepton asymmetries ǫl are suppressed by the factor
∆m2

⊙/(2∆m2
A) ∼= 1.6 × 10−2, while the wash-out effects are rather large owning to the

constraint (105).

5.3.2 Generating YB Compatible with the Observations

Consider next the case of β12 = (π/2)(2q + 1), q = 0, 1, 2, .... Now the product R11R12

is purely imaginary: R11R12 = iκ|R11R12|, iκ ≡ eiβ12 , κ = ±1. We shall assume further
that condition (100) holds and thus the terms ∝ √

m3 in ǫl and m̃l are negligible. A simple
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realisation of this scenario corresponds to R13 = 0 (N3 decoupling), and to |R11|2−|R12|2 =
1. Under the indicated conditions we have:

|ǫτ | ≃
3M1

√
∆m2

A

16πv2

2 |R11R12|
|R11|2 + |R12|2

|Re (U∗
τ1Uτ2)| , l = e, µ, τ , (108)

where

|Re (U∗
τ1Uτ2)| ∼=

∣∣∣c12s12s
2
23 cos

α21

2
− c23s23s13

[
c212 cos

(α21

2
− δ
)
− s2

12 cos
(α21

2
+ δ
)]∣∣∣ ,
(109)

and we have neglected the term ∝ s2
13c12s12c

2
23 in the expression for |Re(U∗

τ1Uτ2)|. The
maximal value of the factor r′ ≡ 2|R11R12|/(|R11|2 + |R12|2) is r′ = 1 and is reached for
|R11|2 ≫ 1. However, even for |R11|2 = 1.5 and |R12|2 = 0.5, r′ is rather close to its
maximal value: r′ =

√
3/2 ∼= 0.87. In the case of purely Majorana or Dirac CP-violation

from the PMNS matrix we obtain:

|Re (U∗
τ1Uτ2)| ∼= s23 (c12 s12 s23 ± s13 c23 cos 2θ12)

∣∣∣cos
α21

2

∣∣∣ , δ = 0, π, 2π , (110)

|Re (U∗
τ1Uτ2)| ∼= s13 c23 s23 |sin δ| , cos

α21

2
= 0 . (111)

A. Majorana CP-Violation from UPMNS

In what follows we first set s13 = 0. The CP-symmetry is violated by the Majorana
phase α21 only. Both |ǫτ | and |YB| vanish for α21 = π(2q + 1), q = 0, 1, .... The wash-out
parameters m̃τ and m̃2 are given by

m̃τ
∼=
√

∆m2
A

[
s2
12 s

2
23 |R11|2 + c212 s

2
23 |R12|2 + 2 κ c12 s12 s

2
23 |R11R12| sin

α21

2

]
, (112)

m̃2 =
√

∆m2
A

(
|R11|2 + |R12|2

)
− m̃τ . (113)

Obviously, we have |ǫτ (α21)| = |ǫτ (2π − α21)|, m̃τ (α21) = m̃τ (2π − α21), and therefore
|YB(α21)| = |YB(2π − α21)|. Numerical calculations we have performed show that the
maximal value of the baryon asymmetry |YB| in the case under discussion corresponds to
|R11|2 ∼= 1.1− 1.4 (see Fig. 7) and we will use these values of |R11|2 and the corresponding
values of |R12|2 = 0.1 − 0.4, in our further analysis. The results we obtain for |YB| depend
strongly on whether κ = +1 or κ = −1.

For κ = +1 and |R11|2 ∼= 1.1 − 1.4, one has m̃τ , m̃2 ≫ 2 × 10−3 eV, which corresponds
to a strong wash-out regime. The baryon asymmetry is maximal for α21 = 2πq, q = 0, 1, ...,
for which both |ǫτ | and the efficiency factor |ηB| ≡ |η(0.66m̃τ)− η(0.71m̃2)| are maximal 12

(| cos(α21/2)| = 1). Numerical studies show that the absolute maximum of |YB| for κ = +1
is reached at |R11|2 ∼= 1.1 (Figs. 7 and 8).

12Note that for α21 = 2πq, q = 0, 1, ..., and s13 = 0 we have Im(U∗

τ1Uτ2) = 0 and JCP = 0. Corre-
spondingly, the CP-invariance is not violated by α21 and δ; it is violated at high energies by the matrix
R.
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In the case of κ = −1 and values of |R11|2 indicated above, which maximise |YB|, there
is a strong partial compensation between the three terms in m̃τ . As a consequence, the
efficiency factor |ηB| and the asymmetry |YB| are for, e.g., α21 = π/2 and the values of
|R11|2 which maximise |YB|, approximately by a factor of 5 bigger than the values they
have in the case of κ = +1. Moreover, the maximum of |YB| takes place at |R11|2 ∼= 1.4 and
α21

∼= 2π/3; 4π/3 (Figs. 7 and 9), rather than at |R11|2 ∼= 1.1 and α21 = 2πq, q = 0, 1, ....
In both cases of κ = +1 and κ = −1 we have |YB| = 0 for α21 = π(2q + 1).

We get for the maximal baryon asymmetry (i.e., at |R11|2 ∼= 1.1 and α21 = 0; 2π for
κ = +1, and at |R11|2 ∼= 1.4 and α21

∼= 2π/3; 4π/3 for κ = −1, see Figs. 7 - 9):

|YB| ∼= 1.5 (0.5) × 10−12

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, κ = −1 (κ = +1) . (114)

It follows from the preceding analysis that the observed value of the baryon asymmetry
|YB| >∼ 8 × 10−11 can be reproduced in the case being studied for M1

>∼ 5.3 × 1010 GeV if
κ = −1, and for M1

>∼ 1.6 × 1011 GeV when κ = +1. Since both the baryon asymmetry
|YB| and the effective Majorana mass in (ββ)0ν-decay, |〈m〉| depend on the Majorana phase
α21, for given values of the other parameters there exists a direct correlation between the
values of |YB| and |〈m〉|. The latter is illustrated in Fig. 10.

B. Dirac CP-Violation from UPMNS (α21 = π)

One can treat in a similar manner the case of s13 6= 0 and CP-violation generated only
by the Dirac phase δ in UPMNS, α21 = π(2k + 1), k = 0, 1, .... We have eiα21/2 = iκ′, where
κ′ = 1 for k = 0, 2, 4, ..., and κ′ = −1 if k = 1, 3, .... It follows from eqs. (108) and (110)
that in this case the asymmetry |ǫτ | ∝ |s13 sin δ| and one can expect the baryon asymmetry
|YB| to be suppressed by s13. Obviously, we have |ǫτ | = 0 and |YB| = 0 for δ = 0; π; 2π.
For the wash-out mass parameters m̃τ and m̃2 we get:

m̃τ
∼=
√

∆m2
A

∣∣s23 (s12 |R11| − κκ′ c12 |R12|) − c23 s13 e
−iδ (c12 |R11| + κκ′ s12 |R12|)

∣∣2 ,
(115)

and m̃2 =
√

∆m2
A(|R11|2 + |R12|2)− m̃τ . The two possibilities κκ′ = −1 and κκ′ = +1 lead

to drastically different results.

For κκ′ = −1, the term with the factor s23 in the expression for m̃τ in Eq. (115) gives the
dominant contribution and determines the magnitude of m̃τ . For, e.g., δ = π/2 (for which
|ǫτ | is maximal), the maximum of the baryon asymmetry |YB| takes place at |R11| ∼= 1.05
(|R12| ∼= 0.32). For these values of δ and |R11|, both wash-out mass parameters satisfy
m̃τ,2

>∼ 2 × 10−2 eV. Thus, the baryon asymmetry is generated in the strong wash-out
regime. Correspondingly, the efficiency factor |ηB| is relatively small, |ηB| <∼ 6× 10−3. The
observed value of the baryon asymmetry |YB| ∼= (8.0 − 9.2) × 10−11 can be reproduced
only if s13

∼= 0.2 and M1
∼= (4 − 5) × 1011 GeV; for s13

∼= 0.1, this requires a value of
M1

∼= 8 × 1011 GeV.

We obtain completely different results in the case of κκ′ = +1. In this case there can
be a deep mutual compensation between the two terms in the bracket multiplied by s23
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in the right-hand side of Eq. (115) and we can have m̃τ
∼= (1.5 − 2.0) × 10−3 eV for the

values of |R11| (|R12|) which maximise the baryon asymmetry |YB|. Correspondingly, |YB|
can be generated in the weak wash-out regime and can be much larger than in the case of
κκ′ = −1.

More specifically, the maximum of |YB| with respect to the Dirac phase δ and |R11|
(|R12|) takes place approximately at (or relatively close to) δ ∼= π/2; 3π/2 for any s13

<∼ 0.2
of interest, and at |R11| ∼= 1.30; 1.60 (|R12| ∼= 0.83; 1.25) for s13 = 0.20; 0.10, respectively
(Figs. 11 and 12); for s13

<∼ 0.02 it is located at |R11| ∼= 1.07 (|R12| ∼= 0.38). We have
used again the best fit values of ∆m2

A, sin 2θ12 and sin 2θ23 to obtain the location of the
maxima in |R11|. In the case of s13 = 0.10 there exists a second local maximum of |YB| at
|R11| ∼= 1.15 (|R12| ∼= 0.57), at which |YB| is approximately by a factor of 1.4 smaller than
at the absolute maximum at |R11| ∼= 1.60 (see Fig. 11). The positions of the indicated
maxima of |YB| are determined essentially by the position of the absolute maximum of the
efficiency factor |ηB| ∼= |η(0.66m̃τ) − η(0.71m̃2)|. The latter corresponds approximately to
m̃τ

∼= 1.5−1.8×10−3 eV and negligible 13 |η(0.71m̃2)|. At the maximum, |ηB| ∼= 6.7×10−2.
In the case of s13

∼= 0.20, as can be shown, m̃τ
>∼ 2.3 × 10−3 eV and the minimal value of

m̃τ corresponds to negligible s2
23(s12|R11| − c12|R12|)2 ∼= 0. The latter condition is fulfilled

approximately for |R11|2 ∼= c212/ cos 2θ12 ∼= 1.75 and |R12|2 ∼= s2
12/ cos 2θ12 ∼= 0.75, which

is very close to the value |R11|2 ∼= 1.69 obtained by numerical calculations. Thus, for
s13

∼= 0.20 we have for m̃τ which maximises |ηB| (|YB|): m̃τ
∼=
√

∆m2
A c

2
23s

2
13(c12|R11| +

s12|R12)
2 ∼= (c223s

2
13/ cos 2θ12)

√
∆m2

A.

In the case of s13
∼= 0.10, both terms in Eq. (115) “conspire” to produce m̃τ

∼= 1.75×10−3

eV, and thus maximal |ηB| (and |YB|), at |R11
∼= 1.60. The second local maximum of |YB| at

|R11| ∼= 1.15 corresponds to m̃τ
∼= 10−3 eV. Again both terms in Eq. (115) contribute, the

term ∝ c223s
2
13 being approximately by a factor 1.5 smaller than the term ∝ s2

23. In contrast,
the local minimum of |YB| at |R11| ∼= 1.28 (Fig. 11) is associated with m̃τ

∼= 6 × 10−4 eV.
In this case the contribution of the term ∝ s2

23 in m̃τ is negligible.

Finally, for s13
<∼ 0.02, the term with the factor ∝ c23s13 in the expression for m̃τ ,

Eq. (115), plays no role in the determination of the maxima of |ηB| and |YB|. Thus, in this
case, in particular, |YB| depends on s13 and δ only through ǫτ and we have |YB| ∝ s13| sin δ|.

For the maximal value of the baryon asymmetry |YB| for s13 = 0.20 (0.10) and δ = π/2
(|R11| ∼= 1.30 (1.60)) we get (Fig. 11):

|YB| ∼= 1.7 (1.0) × 10−12

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, δ =

π

2
, s13 = 0.20 (0.10) . (116)

It follows from the above result that if, e.g., s13 = 0.10, we can obtain baryon asymmetry
|YB| >∼ 8 × 10−11 compatible with the observations for M1

>∼ 8 × 1010 GeV.

What is the minimal value of s13| sin δ| for which we can have successful leptogenesis?
For sufficiently small values of s13 we get maximal |ηB| ∼= 6.5×10−2 (m̃τ

∼= 1.75×10−3 eV)
at |R11| ∼= 1.07 independently of the value of s13 (see the discussion preceding Eq. (116)).

13Indeed, since |R11|2 + |R12|2 > 1, we have m̃2 > 5.0 × 10−2 eV and therefore |η(0.71m̃2)| < 2 × 10−3.
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The baryon asymmetry at the maximum is given by:

|YB| ∼= 8.1 × 10−12 s13 | sin δ|
(√

∆m2
A

0.05 eV

)(
M1

109 GeV

)
. (117)

Thus, for M1
<∼ 5 × 1011 GeV, we can have successful leptogenesis and get |YB| ∼= (8.0 −

9.2) × 10−11 provided

| sin θ13 sin δ| >∼ 0.02 , sin θ13 >∼ 0.02 . (118)

The preceding lower limit corresponds to

|JCP| >∼ 4.6 × 10−3 . (119)

Values of sin θ13 and of |JCP| as small as 0.02 and 4.6 × 10−3, respectively, can be probed
in neutrino oscillation experiments at neutrino factories [67].

The results in the case under discussion are illustrated in Figs. 11 and 12. In Fig.
11 we show the baryon asymmetry YB as a function of |R11| for δ = π/2, while Fig. 12
exhibits the dependence of |YB| on the Dirac phase δ for the values of |R11| from the in-
terval |R11| ∼= (1.05 − 1.7), which maximise |YB|. The results presented in both figures
are for s13 = 0.1; 0.2, α21 = π (κ′ = +1), κ = +1, κ = −1 and M1 = 2 × 1011 GeV.
In Fig. 13 we show the correlation between the rephasing invariant JCP (in blue) and the
baryon asymmetry YB in the case under discussion, (CP-violation due to the Dirac phase
δ α21 = π) for s13 = 0.2, M1 = 2 × 1011 GeV, κ = +1 and |R11| = 1.3. The Dirac phase δ
is varied in the interval [0,2π].

C. CP-Violation due the Dirac Phase in UPMNS and R (α21 = 0; 2π)

We will consider next briefly the “mixed” case of CP-violation corresponding to α21 =
2πk, k = 0, 1, ..., δ taking values in the interval [0,2π], and purely imaginary R11R12,
R11R12 = iκ|R11R12|, κ ± 1. For δ = 0; π, this case provides an interesting example of
breaking of CP-symmetry due to R11R12 being purely imaginary.

It proves convenient to write eiα21/2 = κ′, where κ′ = ±1. We have in the case under
discussion:

|Re (U∗
τ1Uτ2)| ∼=

∣∣c12 s12 s
2
23 − c23 s23 cos 2θ12 s13 cos δ

∣∣ . (120)

Obviously, the term ∝ s13 cos δ plays a sub-dominant role in the asymmetry |ǫτ |. The
wash-out mass parameter m̃τ reads:

m̃τ =
√

∆m2
A

[
s2
23

(
s2
12 |R11|2 + c212 |R12|2

)
+ c223 s

2
13

(
c212 |R11|2 + s2

12 |R12|2
)

− 2 c23 s23 s13 (c12 s12 cos δ + κκ′ |R11R12| sin δ)] . (121)

It follows from eqs. (108), (120) and (121) that |ǫτ (δ)| = |ǫτ (2π−δ)|, m̃τ (δ, κκ
′) = m̃τ (2π−

δ,−κκ′), and therefore |YB(δ, κκ′)| = YB(2π − δ,−κκ′)|.
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For s13
<∼ 0.01, the terms ∝ s13 and ∝ s2

13 in the expressions for |ǫτ | and m̃τ can be
neglected. The CP-violation effects are practically due to the purely imaginary R11R12:
the baryon asymmetry YB does not depend on s13 and δ. However, even in this case it is
possible to have successful leptogenesis. The baryon asymmetry YB can be generated in a
regime which is intermediate between the weak and strong wash-out ones: m̃τ

>∼ 8 × 10−3

eV. The asymmetry |YB| has two very similar (in magnitude) maxima at |R11| ∼= 1.05; 1.12.
At these maxima we obtain:

|YB| ∼= 5.2 (5.1) × 10−13

(√
∆m2

A

0.05 eV

)(
M1

109 GeV

)
, s13 = 0, |R11| ∼= 1.05 (1.12) . (122)

Thus, one can have |YB| = (8.0 − 9.2) × 10−11 for M1
>∼ 1.6 × 1011 GeV.

If s13 ≫ 0.01, the effects of the Dirac CP-violating phase δ are non-negligible; for
s13

∼= (0.1 − 0.2), they are substantial for any value of δ. The magnitude of the baryon
asymmetry |YB| depends on the value of s13 and, through the wash-out mass parameters
m̃τ and m̃2, on the sign factor κκ′. In the case of δ = π/2, the maximum of |YB| is located
approximately at |R11| ∼= (1.05 − 1.10) (Fig. 14). For κκ′ = +1, the baryon asymmetry at
the maximum is by a factor ∼ 2 larger than that for κκ′ = −1. We can have successful
leptogenesis in the case of s13 = 0.1 (0.2) for M1

>∼ 1.2 (1.0)× 1011 GeV. These results are
illustrated in Figs. 14 and 15. In Fig. 16 we show the correlation between the rephasing
invariant JCP and the baryon asymmetry YB for α21 = 0, s13 = 0.2, κ = +1, |R11| = 1.05
and M1 = 2 × 1011 GeV. The Dirac phase δ is varied in the interval [0,2π].

As we have indicated at the beginning of this subsection, the observed value of the
baryon asymmetry can be reproduced in the case of real R1j , j = 1, 2, 3, if the terms
∝ √

m3 in ǫl and m̃l are dominant in spite of the fact that m3 ≪ m1, m2. A simple
realisation of this possibility corresponds to having R11 = 0 or R12 = 0, and sufficiently
large m3 still obeying the inequality m3 ≪ m1,2. The latter conditions can be satisfied for
m3 possessing a value in the interval 10−2

√
∆m2

⊙ <∼ m3
<∼ 0.5

√
∆m2

⊙. A more detailed
discussion of this case will be presented elsewhere.

5.4 Quasi-Degenerate Light Neutrino Mass Spectrum

We turn now to the QD spectrum, for which m1 ≃ m2 ≃ m3 ≫
√

∆m2
⊙,
√

∆m2
A and we

take as conventional lower limit on the masses m1
>∼ 0.1 eV. In this case the contribution

of all the masses to the CP-asymmetry ǫτ needs to be taken into account. We study
the two cases in which the products of the parameters in R entering in the asymmetry,
R1iR1j , are either real or purely imaginary. This corresponds to having βij ≡ β̃1i + β̃1j =
2kπ/2, (2k+ 1)π/2, k = 0, 1, ...., respectively. We consider first the case of R1iR1j real and
equal to ±|R1iR1j |. The CP-asymmetry can be written as:

|ǫτ | =
3M1

16πv2

1∑
i |R1i|2

∣∣∣(m2 −m1)|R11R12|eiβ12Im
(
U∗

τ1Uτ2

)

+(m3 −m1)|R11R13|eiβ13Im
(
U∗

τ1Uτ3

)
+ (m3 −m2)|R12R13|eiβ23Im

(
U∗

τ2Uτ3

)∣∣∣ , (123)
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≃ 3M1

16πv2

1∑
i |R1i|2

∣∣∣∣
∆m2

⊙
2m1

|R11R12|eiβ12Im
(
U∗

τ1Uτ2

)

±∆m2
A

2m1

|R11R13|eiβ13Im
(
U∗

τ1Uτ3

)
± ∆m2

A

2m1

|R12R13|eiβ23Im
(
U∗

τ2Uτ3

)∣∣∣∣ , (124)

where we have neglected terms of order ∆m2
⊙/∆m

2
A. The signs ± in Eq. (124) refer to the

quasi-degenerate spectrum with a normal or inverted hierarchy. This information could
not be obtained in experiments which are sensitive to the overall neutrino mass scale, as
neutrinoless double beta decay or direct neutrino mass searches. However, by exploiting
matter effects, long baseline neutrino oscillation and atmospheric neutrino experiments
might be able to establish if the spectrum is with normal or inverted hierarchy. Neglecting
the terms proportional to ∆m2

⊙, we can further simplify the expression in Eq. (124):

|ǫτ | ≃
3M1m1

16πv2

1∑
i |R1i|2

∆m2
A

2m2
1

s23c23c13|R13|

×
∣∣∣∣|R11|

(
s12 sin

α31

2
−c12

c23
s23

s13 sin
(α31

2
−δ
))

±|R12|
(
− c12 sin

α32

2
−s12

c23
s23

s13 sin
(α32

2
−δ
))∣∣∣∣ ,(125)

where ± refer to the case of β̃11 = β̃12 and β̃12 = kπ + β̃11, k = 0, 1, ..., respec-
tively. Notice that, in general, the asymmetry is suppressed by ∆m2

A/m
2
1. For compar-

ison with the NH case studied in Section 5.1, we can have a mild suppression of order
(∆m2

A)3/4/(m1(∆m
2
⊙)1/4) ∼ 0.2 (1 eV/m1) for large values of m1. If R13 is negligible (N3

decoupling), the dominant contribution is proportional to ∆m2
⊙ which amounts to an ad-

ditional suppression factor of ∆m2
⊙/∆m

2
A ∼ 0.03 [28]. Typically, we get a CP-asymmetry

of order

|ǫτ | ∼ 1.2 × 10−6 M1

1011 GeV

0.1 eV

m1

|R13R11|

×
∣∣∣0.55 sin

α31

2
− 0.17

s13

0.2
sin (

α31

2
− δ) − 0.84 sin

α32

2
− 0.11

s13

0.2
sin
(α32

2
− δ
)∣∣∣ ,(126)

where we have taken for definiteness R12 = R11 and
∑

i |R1i|2 = 1. The asymmetry
decreases linearly with m1 and we have evaluated it for the minimal value of m1 which is
allowed for the QD spectrum. Notice that, as far as α31, α32 is not too small, sin α31

2
≫

0.1 (s13/0.2), the contribution of the δ phase will be subdominant. The phases α21 and α31

enter in the effective Majorana mass parameter for neutrinoless double beta decay. For the
QD light neutrino mass spectrum, we have

|〈m〉| = m1

∣∣c212c213 + s2
12c

2
13e

iα21 + s2
13e

i(α31−2δ)
∣∣ . (127)

The dependence on the phase difference (α31 − 2δ) is suppressed by s2
13 and can be ne-

glected. In principle, the phase α21 can be measured in future neutrinoless double beta
decay experiments if a sufficient precision will be achieved in the measurement of |〈m〉| and
of the masses, and if the problem of the computation of nuclear matrix elements will be
solved [58]. The prospects of measuring the other Majorana phase α31 are far beyond the
sensitivities of the present and future planned experiments.
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In the case ofR1iR1j purely imaginary, i.e. β̃1i+β̃1j = (2k+1)π/2, k = 0, 1, ..., in general,
there is no suppression as the masses enter in the CP-asymmetry via the combination
mi +mj. We get

|ǫτ | =
3M1m1

8πv2

1∑
i |R1i|2

×
∣∣∣± |R11R12|Re(U∗

τ1Uτ2) ± |R11R13|Re(U∗
τ1Uτ3) ± |R12R13|Re(U∗

τ2Uτ3)
∣∣∣ , (128)

where the +(−) refer to βij = π/2 (3π/2). The expression in Eq. (128) is rather lengthy
but can be simplified if we neglect θ13. In this case it reads:

|ǫτ | =
3M1m1

8πv2

1∑
i |R1i|2

×
∣∣∣±|R11R12|(−s12c12s

2
23 cos

α21

2
) ± |R11R13|(s12s23c23 cos

α31

2
) ± |R12R13|(−c12s23c23 cos

α32

2
)
∣∣∣ .(129)

As we have neglected the terms ∝ s13, there is no dependence on the phase δ. However,
both Majorana phases enter in the expression for ǫτ .

Let’s now turn to the wash-out factors. Using the unitarity condition on U , we find:

m̃2 + m̃τ = m1

∑

k

|R1k|2. (130)

In the case of real R1k, for instance, this implies [28] m̃2 + m̃τ = m1. Therefore, we can
expect that the wash-out mass parameters will typically be much larger than 3× 10−3 eV,
leading to a strong suppression of the baryon asymmetry. More specifically, m̃τ is given
by:

m̃τ = m1 |R11U
∗
τ1 +R12U

∗
τ2 +R13U

∗
τ3|2 . (131)

We will study first the case of real Rij . Taking, for example, R11 = R12 = R13, we
obtain m̃τ = 0.053 m1, for α21 = π and α31 = π. In this case the strong wash-out regime
formulas apply and we have

η(390/589 m̃τ) = 3.3 × 10−2
(0.1 eV

m1

)1.16

, (132)

resulting in a baryon asymmetry which is substantially smaller than the observed one.

A larger efficiency factor can be achieved in the regime interpolating between the ones
of strong and weak wash-out effects. However, it should be noticed that η(m̃τ ) and ǫτ
depend on the same parameters and they cannot be maximized independently. In fact, for
real Rij, we can rewrite the CP-asymmetry as:

|ǫτ | ≃ 3M1m1

32πv2

∆m2
A

m2
1

∑
i |R1i|2

∣∣∣∣∣Im(R13Uτ3

∑

β

R1βU
∗
τβ)

∣∣∣∣∣ ,

≤ 3M1m1

32πv2

∆m2
A

m2
1

∑
i |R1i|2

√
m̃τ

m1
|R13Uτ3| . (133)
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Therefore, while the efficiency factor η(m̃τ ) increases when m̃τ decreases as the wash-out
regime changes from strong to weak, |ǫτ | decreases accordingly. In the strong wash-out
regime in the τ flavour and m̃τ ≪ m1, the baryon asymmetry has an upper bound:

|YB| ≤
12

37g∗

3M1m1

32πv2

∆m2
A

m2
1

|R13|c23

√
m̃τ

m1

(
0.2 × 10−3 eV

m̃τ

589

390

)1.16

. (134)

Conversely, for weak wash-out in the τ flavour, we have

|YB| ≤
12

37g∗

3M1m1

32πv2

∆m2
A

m2
1

|R13|c23

√
m̃τ

m1

(
m̃τ

0.2 × 10−3 eV

390

589

)
. (135)

Thus, the maximal baryon asymmetry is obtained for intermediate wash-out effect. For
definiteness we can estimate the upper bound on YB at m̃τ ≃ 3×10−3 eV. For the smallest
allowed value of m1 for the QD spectrum, m1 = 0.1 eV, we get:

|YB| <∼ 5 × 10−11|R13|
M1

1011 GeV
. (136)

Requiring that m̃τ ≪ m1 imposes a fine tuning on the values of the parameters R1i.
For simplicity, we search for the solution of the equation m̃τ ∼ 3 × 10−3 eV ≃ 0, which
corresponds to:

R11|Uτ1| −R12|Uτ2| cos (
α21

2
) +R13|Uτ3| cos (

α31

2
) ≃ 0 , (137)

R12|Uτ2| sin (
α21

2
) −R13|Uτ3| sin (

α31

2
) ≃ 0 . (138)

If α21 (α31) [α32] = 0, we have that R13 (R12) [R11] = 0 as well. Otherwise, the solution of
Eqs. (137) and (138) is given by:

R11 = R13
c23
s12s23

sinα32/2

sinα21/2
and R12 = R13

c23
c12s23

sinα31/2

sinα21/2
. (139)

Another possibility consists in having m̃τ ≃ m1 and small m̃2. However, also in this
case the baryon asymmetry is suppressed due to the values of the CP-violating phases
required to have m̃2 ≪ m1, namely, α21, α31 ∼ 0, π. In conclusion, for real R, it might be
possible to reproduce the observed baryon asymmetry, but only for relatively large values
of M1 ≫ 1011 GeV and small values of m1. A careful and detailed analysis should be
performed on a case by case basis. A measurement of m1 in the upper end of the range of
allowed values [0.1 eV, 2.3 eV] in the quasi-degenerate spectrum would strongly disfavour,
if not rule out, the possibility of having leptogenesis due uniquely to the low energy CP-
violating phases, for hierarchical RH neutrinos and real R.

For R1iR1j = ±i|R1iR1j |, the CP-asymmetry is enhanced by a factor 4m2
1/∆m

2
A. Also in

this case an upper bound on |YB| can be derived, and it depends on m̃τ . A sufficiently large
baryon asymmetry might be obtained for relatively large values of M1. A more detailed
analysis of this case is beyond the scope of the present study.
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6 Baryon Asymmetry from Low Energy CP-Violating

Dirac and Majorana Phases in U : the Case of Quasi-

Degenerate RH Neutrinos

In this Section we extend our previous findings to the case in which the RH neutrinos are
quasi-degenerate in mass, M1 ≃M2 ≃M3 and the matrix R is real. We therefore consider
the case in which the CP parities of the heavy and light Majorana neutrinos are such that
ρN

i = ρν
j = 1 for all i, j = 1, 2, 3. In such a case, indeed, CP invariance corresponds to

having all the elements of the matrix R real, see Eq. (30), and δ = α21 = α31 = 0. The
degenerate pattern for the RH neutrino masses may arise if, for instance, there is a slightly
broken SO(3) symmetry in the RH sector. The baryon asymmetry receives a contribution
from the decay of all three RH neutrinos. The CP asymmetry in a given flavour l generated
by the decay of the RH neutrino Ni (i = 1, 2, 3) is dominated by the one-loop self energy
contribution [68] and reads

ǫli = −
∑

j 6=i

Mi

Mj

Γj

Mj
Sij I

l
ij , Γj =

λλ†jjMj

8π
,
(
λλ†
)

ii
=
Mi

v2

∑

ℓ

mℓR
2
iℓ ,

Sij =
M2

j ∆M2
ij(

∆M2
ij

)2
+M2

i Γ2
j

, ∆M2
ij = M2

j −M2
i ,

I l
ij =

1

(λλ†)ii

1

(λλ†)jj

MiMj

v4

∑

ℓ

(RiℓRjℓmℓ)
∑

t s

√
mtmsRitRjsIm (UlsU

∗
lt) . (140)

Notice, in particular, that I l
ij = −I l

ji and Sij = −Sji. The CP asymmetry ǫli is resonantly
enhanced when Γj = ∆M2

ij/Mi. At the resonance

Sij ≃
Mi

2 Γj
≃ Mj

2 Γj
, ǫlij ≃ −1

2

∑

j 6=i

I l
ij . (141)

The washing out of a given flavour l is now operated by the ∆L = 1 scatterings involving
all three RH neutrinos. Therefore, the parameter m̃l is given by

m̃l ≃
∑

j

|λjl|2 v
Mj

≃
(
λ†λ
)

ll
v

M1
=
∑

ℓ

mℓ |Ulℓ|2 , (142)

where we have set the nearly equal masses of the RH neutrinos approximately equal to M1.
If the resonance operates for all three RH neutrinos, the CP asymmetry in the flavour l is

ǫl = 2
∑

i<j

ǫlij = −
∑

i<j

I l
ij = 2

∑
i<j

∑
ℓts RiℓRjℓRitRjsmℓ

√
msmtIm (UlsU

∗
lt)(∑

p mp R2
ip

)(∑
q mq R2

jq

) . (143)
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It does not depend upon the mass of the RH neutrinos (if the running of the parameters
is neglected). The elements of the matrix R can be parametrized by introducing a real
antisymmetric matrix A [54]

R ≡ eA = 1 +
1 − cos r

r2
A2 +

sin r

r
A , r =

√
A2

12 + A2
23 + A2

13 , (144)

where 1 is the 3× 3 unity matrix and Aij = −Aji are the elements of the matrix A. In the
limiting case where the RH neutrinos are exactly degenerate, one can perform an orthogonal
rotation on the RH neutrino states which leaves the mass matrix of the RH neutrinos
proportional to the unity matrix and defines a physically equivalent reparametrization of
the RH neutrinos. This amounts to saying that for M1 = M2 = M3, the real matrix R can
be set equal to the unity matrix (or A12 = A23 = A13 = 0). The flavour asymmetries in
Eq. (140) vanish if R = 1 which reflects the fact that no baryon asymmetry can be obtained
in the exactly degenerate case. On the other hand, if the degeneracy is slightly broken,
the elements of the matrix A are expected to be tiny, but not all vanishing and the baryon
asymmetry is typically different from zero. We are now ready to study all three possible
cases for the spectrum of the light neutrinos. We will restrict ourselves to the case in which
the resonant condition is not satisfied for all couples of RH neutrinos and work under the
condition that M1 ≃ M2

<∼M3; the flavour asymmetries are generated resonantly only by
the decays of N1 and N2 and we will set I13 ≃ I23 ≃ 0.

We find

ǫl ≃ −
∑

I<j

[
Ri3Rj3

(
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)1/2 |Ul3|2 (145)

in the normal hierarchical case;

ǫl ≃ −
∑
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in the inverted hierarchical case and, finally,

ǫl ≃ − 1

2m2

∑

i<j

1

2m2

[
−Ri3Rj3

(
∆m2

A

)
− Ri1Rj1

(
∆m2

⊙
)]

× [(Ri2Rj1 − Ri1Rj2) Im (Ul1U
∗
l2)

+ (Ri3Rj2 − Ri2Rj3) Im (Ul2U
∗
l3)

+ (Ri3Rj1 − Ri1Rj3) Im (Ul1U
∗
l3)] ,

m̃l ≃ m (147)

in the degenerate case. In this latter case, since the washing-out factors are approximately
same, the expressions for the baryon asymmetries may be simplified if R is real. Indeed,
the total asymmetry ǫ1 vanishes and, if (109 <∼ M1

<∼ 1012) GeV, the flavour asymmetry
ǫ2 = −ǫτ while m̃2 ≃ 2m ≃ 2m̃τ . One finds

YB ≃ −12

37

222

417
Yτ . (148)

In Fig. 17, we show the correlation of the baryon asymmetry with the effective Majorana
mass in neutrinoless double beta decay for the case of quasi-degenerate RH neutrinos
and QD spectrum of light neutrinos. A number of projects aim to reach a sensitivity
to |〈mν〉| ∼ (0.01 − 0.05) eV [69] and can certainly probe the region of values of |〈mν〉|
for successfull baryon asymmetry from the PMNS phases only. In particular, a direct
information on the Majorana phase α21 may come from the measurement of 〈mν〉, m, and
sin2 2θ12,

sin2 α21

2
≃
(

1 − |〈mν〉|2
m2

)
1

sin2 2θ12
, (149)

and might tell us if enough baryon asymmetry may be generated uniquely from the PMNS
Majorana phases.

7 Extension to the MSSM

The extension to our findings to the supersymmetric version of the SM, the so-called Min-
imal Supersymmetric Standard Model (MSSM) is rather straightforward [29]. One has to
consider the presence of the supersymmetric partners of the RH heavy neutrinos, the so-
called sneutrinos Ñi (i = 1, 2, 3), which also give a contribution to the flavour asymmetries,
and of the supersymmetric partners of the lepton doublets, the so-called slepton doublets.
Since the effects of supersymmetry breaking may be safely neglected, the flavour CP asym-
metries in the MSSM are twice those in the SM and double is also the possible channels by
which a lepton flavour asymmetry is reproduced. However, the ∆L = 1 scatterings washing
out the asymmetries are also doubled and the number of relativistic degrees of freedom is
almost twice the one for the SM case. As a result, introducing new degrees of freedom
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and interactions does not appreciably change the flavour asymmetries with respect to the
values obtained within the SM.

There are however two other and important differences with respect to the SM case.
First, in the MSSM, the flavour-independent formulae can only be applied for tempera-
tures larger than (1 + tan2 β) × 1012 GeV, where tan β indicates the ratio of the vacuum
expectation values of the two Higgs fields of the MSSM. Indeed, the squared charged lepton
Yukawa couplings in the MSSM are multiplied by (1 + tan2 β). Consequently, charged µ
and τ lepton Yukawa couplings are in thermal equilibrium for (1 + tan2 β) × 105 GeV ≪
T ≪ (1 + tan2 β) × 109 GeV and all flavours in the Boltzmann equations are to be treated
separately. For (1 + tan2 β)× 109 GeV ≪ T ≪ (1 + tan2 β)× 1012 GeV, only the τ Yukawa
coupling is in equilibrium and only the τ flavour is treated separately in the Boltzmann
equations, while the e and µ flavours are indistinguishable. This implies that the range of
the RH (s)neutrino masses where flavour is relevant in leptogenesis is greater than the one
in the SM by the factor (1 + tan2 β) which is large even for moderate values of tanβ. As a
consequence, the lower bounds given in Eqs. (93) - (94) change approximately to

| sin θ13 sin δ|, sin θ13 >∼ 0.11 (1 + tan2 β)−1 , (150)

|JCP| >∼ 2.4 × 10−2 (1 + tan2 β)−1 . (151)

The lower bounds in Eqs. (97) - (98) and in Eqs. (118) - (119) change in a similar way.
The shift of the range of the heavy Majorana neutrino masses, in which the lepton flavour
effects are significant, to larger values has important implications also if the spectrum of
the RH (s)neutrinos is hierarchical and the light neutrinos possess inverted hierachical (IH)
spectrum. This is illustrated in Fig. 18, where we plot the baryon asymmetry versus the
quantity JCP for the IH spectrum of light neutrinos in the supersymmetric case for a given
set of parameters. Let us recall that for real R matrix elements R11 and R12, it was impos-
sible to obtain baryon asymmetry compatible with the observations in the corresponding
non-SUSY case. The reader should be also warned that, for values of tan β >∼ 30, radiative
corrections to the physical neutrino parameters should be accounted for [62].

Secondly, the relation between the baryon asymmetry and the lepton flavour asym-
metries has to be modified to account for the presence of two Higgs fields. Between
(1 + tan2 β) × 109 and (1 + tan2 β) × 1012 GeV, the relation is

Y MSSM
B ≃ − 10

31g∗

(
ǫ̂2η

(
541

761
m̃2

)
+ ǫ̂τη

(
494

761
m̃τ

))
, (152)

where the hat superscripts indicates that the flavour lepton asymmetries are computed
including leptons and sleptons. Notice that if the spectrum of RH (s)neutrinos is quasi-
degenerate as well as that of the light neutrinos, the wash-out factor are also the approx-
imately same and the expressions for the baryon asymmetries may be simpliflied if R is
real. Indeed, the total asymmetry ǫ1 vanishes and one of the flavour asymmetries may be
expressed in terms of the others. Under these circumstances, one finds

Y MSSM
B ≃ −10

31

447

988
Y MSSM

τ . (153)
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Finally, in the case of supersymmetric leptogenesis one should also face the problem
arising from the so-called gravitino bound. The latter is posed by the possible overpro-
duction of gravitinos during the reheating stage after inflation. Being only gravitationally
coupled to the SM particles, gravitinos may decay very late jeopardising the successfull pre-
dictions of Big Bang nucleosynthesis. This does not happen, however, if gravitinos are not
efficiently generated during reheating, that is if the reheating temperature TRH is bounded
from above, TRH

<∼ 1010 GeV [70]. The severe bound on the reheating temperature makes
the generation of the RH neutrinos problematic (for a complete study in the one-flavour
case see [4]), if the latter are a few times heavier than the reheating temperature, rendering
the thermal leptogenesis scenario difficult. There are, though, two possible ways out to this
problem. First, leptogenesis might occur in a non-thermal way, that is the RH neutrinos
might be generated not through thermal scatterings, but by other mechanisms, e.g. at the
preheating stage [71]. Alternatively, and maybe more interestingly, as we have previously
seen if the two lightest RH neutrinos are quasi-degenerate in mass, the final baryon asym-
metry does not depend upon their common mass. The latter, therefore, might be smaller
than the largest possible reheating temperature and thermal leptogenesis might take place
without any limitation from the gravitino bound.

8 Conclusions

In this paper we have systematically investigated the connection between the leptogenesis
and the low energy CP-violation in the lepton (neutrino) sector. Our study was stimulated
by the recent progress in the understanding of the importance of lepton flavour effects in
leptogenesis. It lead to the realization that these effects can play a crucial role in the
leptogenesis scenario, both from the quantitative and the qualitative point of view. When
the lepton flavour effects are taken into account, the final baryon asymmetry is the sum
of three different contributions given by the CP asymmetries generated in each flavour
(lepton charge), properly weighted by the corresponding wash-out factor. In the one-
flavour approximation, which holds only if leptogenesis is taking place at a temperature
higher than about 1012 GeV, the final baryon asymmetry is proportional to the total baryon
CP asymmetry (summed over the three flavours) and weighted by a single wash-out factor
(obtained by summing the wash-out factor of the three lepton flavours).

There are many differences between the predictions for the baryon asymmetry YB ob-
tained in the one-flavour approximation and in the case when the flavour effects are ac-
counted for. The baryon asymmetry YB, derived in the one-flavour approximation, for
instance, vanishes if the light neutrinos are degenerate in mass. Correspondingly, YB has to
be proportional to a difference of masses of the light neutrinos. In the “flavour” case this
suppression can be absent even when the leptogenesis CP violation is due entirely to the
low energy phases in the PMNS matrix. However, the most significant difference is that
in the one flavour approximation there is no direct connection between the leptogenesis
CP-violating parameters and the CP-violating parameters - Dirac and Majorana phases,
present in the lepton (neutrino) sector. In particular, a possible future observation of CP
violation in neutrino oscillations would not automatically imply, within the “one-flavour”

43



leptogenesis scenario, the existence of a baryon asymmetry. In the “flavoured” treatment
of leptogenesis, however, this conclusion does not universally hold and the observation of
CP violation in the lepton (neutrino) sector would generically imply a nonvanishing baryon
asymmetry. Including the effects of lepton flavour, therefore, allows to build a new bridge
between the CP violation in leptogenesis and the observables depending on the CP-violating
Dirac and Majorana phases in the PMNS neutrino mixing matrix, such as the CP violating
rephasing invariant JCP which controls the magnitude of CP-violation effects in neutrino
oscillations, the effective Majorana mass |〈m〉| in neutrinoless double beta decay, etc. The
study of such a connection has been the main subject of our paper.

We have first derived the constraints the requirement of CP-invariance imposes on
the neutrino Yukawa couplings λ and on the elements of the complex orthogonal matrix R
appearing in the “orthogonal” parametrisation of λ. The CP-parities of the light and heavy
Majorana neutrinos, which take the values ±i, play a special role in these constraints. The
CP-invariance constraints are useful for understanding the source of CP violation generating
the CP asymmetries in the heavy Majorana neutrino decays. One example is the case of real
matrix R and specific CP-conserving values of the Majorana and Dirac phases in the PMNS
neutrino mixing matrix, which corresponds to violation of CP-symmetry at high energy
in leptogenesis, leading to the generation of non-zero baryon asymmetry. The indicated
constraints help to clarify also under which conditions the leptogenesis CP-asymmetries
are due entirely to the low energy CP-violating phases of the PMNS matrix.

Taking into account the lepton flavour effects in leptogenesis, we have subsequently
investigated in detail the possibility that the CP-violation necessary for the generation of
the baryon asymmetry of the Universe is due exclusively to the Dirac and/or Majorana
CP-violating phases in the PMNS matrix, and thus is directly related to the low energy
CP-violation in the lepton sector (e.g., in neutrino oscillations, etc.). We have derived
results for two types of spectrum of the heavy RH Majorana neutrinos: i) hierarchical, in
which the lightest RH neutrino N1 is much lighter than the other two RH neutrinos, and
ii) quasi-degenerate, in which the two lightest RH neutrinos N1,2 are almost degenerate in
mass and have masses which are smaller than the mass of the third one. For each of the two
cases, we have presented predictions for the baryon asymmetry for three types of spectra
of the light Majorana neutrinos: normal hierarchical (NH), inverted hierarchical (IH) and
quasi-degenerate (QD). In all numerical calculations we have used the best fit values of the
solar and atmospheric neutrino oscillation parameters, ∆m2

A, ∆m2
⊙, sin2 θ23 and sin2 θ12,

given in Section 2.

For hierarchical RH neutrino mass spectrum, the lepton flavour effects are relevant in
leptogenesis for M1

<∼ ×1012 GeV. The predicted baryon asymmetry YB depends linearly
on M1. In order to reproduce the observed baryon asymmetry, generically values of M1

>∼
3×1010 GeV are required. We have shown that if the light neutrinos have a NH spectrum,
the requisite baryon asymmetry can be produced if the only source of CP violation is either
the Majorana phases or the Dirac phase in the PMNS matrix, UPMNS (Figs. 1 - 6). When the
only CP-violating parameter is the low energy Majorana phase α32 ≡ α31−α21, we can have
successful leptogenesis as long as | sin(α32/2)| is not exceedingly small and M1

>∼ 3.5×1010

GeV. If the only source of CP violation is the Dirac phase δ in UPMNS, the observed baryon
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asymmetry can be reproduced provided M1
>∼ 2 × 1011 GeV and | sin θ13 sin δ| >∼ 0.1, θ13

being the CHOOZ angle. This condition leads to the inequality sin θ13 >∼ 0.1 and to the
following lower bound on the CP-violating rephasing invariant JCP, associated with the
Dirac phase in the PMNS matrix: |JCP| >∼ 2.0 × 10−2. Values of sin θ13 >∼ 0.1 can be
probed in the forthcoming Double CHOOZ and Daya Bay reactor neutrino experiments.
CP-violation effects with magnitude determined by |JCP| >∼ 2.0 × 10−2 are within the
sensitivity of the next generation of neutrino oscillation experiments, designed to search
for CP- or T- symmetry violation in the oscillations. Moreover, since in this case both
|YB| ∝ | sin θ13 sin δ| and |JCP| ∝ | sin θ13 sin δ|, given the other parameters on which |YB|
and |JCP| depend, there exists a correlation between the rephasing invariant JCP, which
controls the magnitude of the CP-violation effects in neutrino oscillations, and the baryon
asymmetry YB (Fig. 6).

In the case of IH light neutrino mass spectrum and negligible lightest neutrino mass
m3, the observed baryon asymmetry cannot be reproduced if the product of the elements
of the matrix R, R11R12, is purely real: the generated baryon asymmetry is generically
small, being suppressed by the additional factor ∆m2

⊙/∆m
2
A. However, if R11R12 is purely

imaginary (and CP-conserving), a sufficiently large baryon asymmetry compatible with the
observations can be obtained both when the only source of CP-violation is the Majorana
phase α21, or the Dirac phase δ, in UPMNS (Figs. 7 - 13). In the case of Majorana CP-
violation, depending on the sgn(Im(R11R12)), values of M1

>∼ 5 × 1010 GeV or somewhat
larger (e.g., M1

>∼ 1.6×1011 GeV) are required. Since both the baryon asymmetry |YB| and
the effective Majorana mass in (ββ)0ν-decay, |〈m〉|, depend on the Majorana phase α21, for
given values of the other parameters there exists a direct correlation between the values
of |YB| and |〈m〉| (Fig. 10). We have shown that one can have successful leptogenesis in
the case under discussion also if s13 6= 0 and the CP-violation is generated only by the
Dirac phase δ in UPMNS (Figs. 11 and 12). For M1

<∼ 5 × 1011 GeV, the observed baryon
asymmetry can be reproduced if | sin θ13 sin δ| >∼ 0.02. This requirement implies that we
should have also sin θ13 >∼ 0.02 and |JCP| >∼ 4.6 × 10−3. Values of sin θ13 and of |JCP| as
small as 0.02 and 4.6×10−3, respectively, can be probed in neutrino oscillation experiments
at neutrino factories. There exists a correlation between the rephasing invariant JCP and
the baryon asymmetry YB in this case as well (Fig. 13).

The analysis we have performed showed that if the light neutrinos have QD spectrum,
the baryon asymmetry is generically too small mainly due to the large wash-out suppression
factor.

For heavy RH Majorana neutrinos with QD spectrum, leptogenesis takes place through a
resonance effect. The main new feature is that the final baryon asymmetry does not depend
on the mass of the RH neutrinos. This property is crucial, allowing the generation of a
sufficiently large baryon asymmetry even in the case of QD light neutrino mass spectrum.
In the latter case the predicted baryon asymmetry is correlated with the effective Majorana
mass in the neutrinoless double beta decay (Fig. 17).

Finally, we have discussed how the results on leptogenesis we have obtained will be
modified in the minimal supersymmetric extension of the Standard Theory (MSSM) with
right-handed Majorana neutrinos and see-saw mechanism of neutrino mass generation. We
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have noticed, in particular, that for hierarchical heavy Majorana neutrino mass spectrum,
the range of the lightest RH neutrino mass M1 for which the lepton flavour effects are
relevant in leptogenesis is greater than the one in the non-supersymmetric case by the factor
(1+tan2 β), M1

<∼ (1+tan2 β)×1012 GeV, tan β being the ratio of the vacuum expectation
values of the two Higgs fields of the MSSM. This can have important implications especially
in the cases when the generation of the baryon asymmetry in the non-supersymmetric case
is strongly suppressed. We have also stressed that a quasi-degenerate spectrum of the
heavy RH Majorana neutrinos is welcome in the case of supersymmetric leptogenesis since
it renders the gravitino bound harmless.

The results obtained in the present article underline the importance of understanding
the status of the CP-symmetry in the lepton sector and, correspondingly, of the experiments
aiming to measure the CHOOZ angle θ13 and of the experimental searches for Dirac and/or
Majorana leptonic CP-violation at low energies.
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Figure 1: The baryon asymmetry YB as a function of R12 in the case of real R12 and R13,
sign (R12R13) = +1 (β23 = 0), R2

12 + R2
13 = 1, s13 = 0.20, hierarchical RH neutrinos and

NH light neutrino mass spectrum and a) Majorana CP-violation (blue line), δ = 0 and
α32 = π/2 (κ = +1), and b) Dirac CP-violation (red line), δ = π/2 and α32 = 0 (κ′ = +1),
for M1 = 5 × 1011 GeV. The neutrino oscillation parameters ∆m2

⊙, sin2 θ12, ∆m2
A and

sin2 2θ23 are fixed at their best fit values.
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Figure 2: The same as in Fig. 1 but for sign (R12R13) = −1 (β23 = π) and a) Majorana
CP-violation (blue line), δ = 0 and α32 = π/2 (κ = −1), and b) Dirac CP-violation (red
line), δ = π/2 and α32 = 0 (κ′ = −1).
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Figure 3: The baryon asymmetry as a function of the Majorana phase α32 varying in the
interval α32 = [0, 2π] in the case of Majorana CP-violation, hierarchical RH neutrinos and
NH light neutrino mass spectrum, for δ = 0, real R12 and R13, |R12| = 0.92, |R13| = 0.39,
sgn(R12R13) = +1 (β23 = 0, κ = +1), M1 = 5 × 1010 GeV, and two values of s13: s13 = 0
(blue line) and 0.2 (red line).
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Figure 4: The same as in Fig. 3 but for real R12 and R13 having opposite signes,
sgn(R12R13) = −1 (β23 = π, κ = −1), |R12| = 0.92, |R13| = 0.39, and two values of
s13: s13 = 0 (red line) and s13 = 0.1 (blue line).
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Figure 5: The baryon asymmetry |YB| as a function of the Dirac phase δ varying in the
interval δ = [0, 2π] in the case of Dirac CP-violation, α32 = 0; 2π, hierarchical RH neutrinos
and NH light neutrino mass spectrum, for M1 = 5× 1011 GeV, real R12 and R13 satisfying
|R12|2 + |R13|2 = 1, |R12| = 0.86, |R13| = 0.51, sign (R12R13) = +1, and for i) α32 = 0
(κ′ = +1), s13 = 0.2 (red line) and s13 = 0.1 (dark blue line), ii) α32 = 2π (κ′ = −1),
s13 = 0.2 (light blue line).
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Figure 6: The correlation between the rephasing invariant JCP (in blue) and the baryon
asymmetry YB when varying the Dirac phase δ = [0, 2π], in the case of hierarchical RH
neutrinos and NH light neutrino mass spectrum and for s13 = 0.2, α32 = 0 (2π), |R12| =
0.86, |R13| = 0.51, sign (R12R13) = +1 (−1) (β23 = 0 (π), κ′ = +1), M1 = 5 × 1011 GeV .
The red region denotes the 2σ allowed range of YB.
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Figure 7: The baryon asymmetry YB as a function of |R11| in the case of hierarchical
RH neutrinos and IH light neutrino mass spectrum, Majorana CP-violation, δ = 0 and
α32 = π/2, M1 = 2 × 1011 GeV, purely imaginary R11R12 = iκ|R11R12| and κ = +1 (dark
blue and red lines), κ = −1 (light blue and green lines), |R12|2−|R13|2 = 1, and for s13 = 0.2
(green and red lines) and s13 = 0 (light and dark blue lines).
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Figure 8: The baryon asymmetry as a function of the Majorana phase α32 varying in the
interval α32 = [0, 2π] in the case of hierarchical RH neutrinos and IH light neutrino mass
spectrum, Majorana CP-violation, δ = 0, purely imaginary R11R12 = iκ|R11R12|, κ = +1
(β12 = π/2), |R11|2 − |R12|2 = 1, |R11| = 1.05, and for M1 = 2 × 1011 GeV, and two values
of s13: s13 = 0 (blue line) and 0.2 (red line).
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Figure 9: The same as in Fig. 8, but for κ = −1 (β12 = 3π/2) and |R11| = 1.2.
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Figure 10: The baryon asymmetry |YB| versus the effective Majorana mass in neutrinoless
double beta decay, |〈m〉|, in the case of Majorana CP-violation, hierarchical RH neutrinos
and IH light neutrino mass spectrum, for δ = 0, s13 = 0, purely imaginary R11R12 =
iκ|R11R12|, κ = +1 (β12 = π/2), |R11|2 − |R12|2 = 1, |R11| = 1.05 and M1 = 2 × 1011 GeV.
The Majorana phase α21 is varied in the interval [−π/2, π/2].
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Figure 11: The baryon asymmetry |YB| as a function of |R11| in the case of hierarchical RH
neutrinos and IH light neutrino mass spectrum and Dirac CP-violation, δ = π/2, α21 = π
(κ′ = +1), purely imaginary R11R12 = iκ|R11R12| (|R12|2 − |R13|2 = 1), for κ = −1 (red
and dark blue lines) and κ = +1 (light blue and green lines), s13 = 0.2 (light blue and dark
blue lines) and s13 = 0.1 (green and red lines), and M1 = 2 × 1011 GeV.
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Figure 12: The asymmetry |YB| as a function of the Dirac phase δ in the case of hierarchical
RH neutrinos, IH light neutrino mass spectrum, Dirac CP-violation, α21 = π (κ′ = +1),
R11R12 = i κ |R11R12| (|R11|2 − |R12|2 = 1), κ = −1 (red and dark blue lines), κ = +1
(light blue and green lines), for M1 = 2 × 1011 GeV, and s13 = 0.1 (red and green lines)
and s13 = 0.2 (dark blue and light blue lines). Values of |R11|, which maximise |YB| have
been used: |R11| = 1.05 in the case of κ = −1, and |R11| = 1.3 (1.6) for κ = +1 and
s13 = 0.2 (0.1).
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Figure 13: The correlation between the rephasing invariant JCP (in blue) and the asym-
metry YB in the case of hierarchical RH neutrinos, IH light neutrino mass spectrum, Dirac
CP-violation, α21 = π (κ′ = +1), R11R12 = i κ |R11R12| (|R11|2 − |R12|2 = 1), κ = +1,
and for s13 = 0.2, M1 = 5 × 1010 GeV and |R11| = 1.3. The Dirac phase δ is varied in the
interval [0, 2π]. The red region denotes the 2σ allowed range of YB.
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Figure 14: The baryon asymmetry YB as a function of |R11| in the case of hierarchical RH
neutrinos and IH light neutrino mass spectrum, δ = π/2, α21 = 0, and purely imaginary
R11R12 = iκ|R11R12| satisfying |R12|2 − |R13|2 = 1, for κ = +1 (red and dark blue lines),
κ = −1 (light blue and green lines), M1 = 2 × 1011 GeV and two values of s13: s13 = 0.2
(red and light blue lines) and s13 = 0.1 (dark blue and green lines).
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Figure 15: The baryon asymmetry as a function of the Dirac phase δ in the case of
hierarchical RH neutrinos and IH light neutrino mass spectrum, for α21 = 0, M1 = 2×1011

GeV, purely imaginary R11R12 = i κ |R11R12| (|R11|2 − |R12|2 = 1), with κ = +1 (green
and light blue lines ) and κ = −1 (red and dark blue lines), and for |R11| = 1.05 and two
values of s13: s13 = 0.1 (light and dark blue lines), s13 = 0.2 (red and green lines).
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Figure 16: The correlation between the rephasing invariant JCP (in blue) and the baryon
asymmetry YB in the case of hierarchical RH neutrinos and IH light neutrino mass spectrum
for α21 = 0, s13 = 0.2, M1 = 2 × 1011 GeV, R11R12 = i κ |R11R12| (|R11|2 − |R12|2 = 1),
and for κ = +1 and |R11| = 1.05. The Dirac phase δ is varied in the interval [0, 2π]. The
red region denotes the 2σ allowed range of YB.
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Figure 17: The baryon asymmetry versus the (ββ)0ν-decay effective Majorana mass |〈mν〉|
in the case of QD heavy RH neutrinos and QD light neutrino mass spectrum, and for
δ = π/3, s13 = 0.01, M1 = 1010 GeV and m = 0.1 eV. The Majorana phase α32 is varied in
the interval [0, π/3].
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Figure 18: The rephasing invariant JCP versus the baryon asymmetry in the case of
supersymmetric hierarchical RH neutrinos and IH light neutrino mass spectrum and for
α32 = π/4, s13 = 0.1, R12 = 0.86, R13 = 0.5, sign (R12R13) = +1 and M1 = 6 × 1012 GeV.
The Dirac phase δ is varied in the interval [0,2π].
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