
10 NPM SECURITY BEST PRACTICES

Add an npm proxy within your control by using a private
registry

Add an extra layer of security by using a
private registry

Use a Bytesafe private registry to cache packages and
centralize dependency management

Scan for potential issues

Control what packages and versions are allowed

bytesafe.dev

1.

Don’t just rely on triggered scans (like ‘npm audit’!).
Continuously scan and monitor your packages and
dependencies for security issues

Continuously scan and monitor all
packages for security issues

Enable security scanning and monitoring with Bytesafe

Only allow scanned and secure packages to automatically
be added to your registry

Get notifications where you are working. Get notifications
directly in your Slack

2.

Only add dependencies that you trust!

Enable a dependency firewall to block
packages at the door

Enable Scanned & Secure Policies to only allow scanned
and secure packages to be added to your registry

Enable and configure a Blacklist to block specific packages
or versions

4.

Using a package with the wrong license could have
catastrophic consequences, so don’t leave licenses as an
afterthought! Scan packages for license issues

Stay on top of your open source licenses

Use tools like Bytesafe to identify license information in all
files. Packages can have multiple licenses

Unlicensed packages are a problem

Scan packages for license issues and get notified when
issues are identified.

3.

When installing packages there are often scripts executed as
part of the installation process. The feature is convenient and
useful, but executing random scripts is also a major risk. Make
sure you know what is executed when installing packages.

Don’t run scripts by default when
installing packages

6.

Take responsibility for project dependencies as a team. Review
and exercise caution when adding new dependencies to not
add unnecessary complexity.

Shift responsibility for dependencies from
individuals to teams

Add only packages when needed and with intention

5.

4.4.

The devil is in the details. Make sure to only install intended
packages!

Be aware of typosquatting risks

Double check what you install. Review before you run!

Be aware of typosquatting risks

7.

Centralize token management and avoid accidental
publishing of secrets

Keep your tokens and passwords secure
and secret

Store maintainer tokens and publish directly with
Bytesafe

Update ignore files to avoid accidentally publishing
secrets

8.

Use the right tools to get deterministic results across
different environments

Build applications using the exact same
package versions

Understand and use lock files (package-lock, yarn-lock
etc.)

Use `npm ci` and not `npm install` if you want to
reproduce a specific node_module state

Make an entire registry read-only with Bytesafe Freeze
policy

9.

Your team’s code supply chain is only as strong as its weakest
link. Source all packages from a central source.

If you need any guidance or consultation you can email me
at daniel@bytesafe.dev. We are here to help you.

Make sure the whole team uses the
private registry

We are here to help!

Connect additional package sources to Bytesafe as
upstreams (git repositories or other private/public
registries)

Make sure that the whole team uses the private registry

10.

https://bytesafe.dev/
https://bytesafe.dev/
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
https://bytesafe.dev/posts/npm-security-best-practices
mailto:daniel@bytesafe.dev
https://bytesafe.dev/posts/npm-security-best-practices

