Idi na sadržaj

Razlika između verzija stranice "Inverzna funkcija"

S Wikipedije, slobodne enciklopedije
[pregledana izmjena][pregledana izmjena]
Uklonjeni sadržaj Dodani sadržaj
zagrada krivo postavljena
U prvom odlomku sam u zagradi u kojoj piše kako čitati f inverzno stilski izmijenio tekst tako da sam stavio znak točka zarez (;) umjesto zareza i veznika a. U istoj sam zagradi izbrisao slovo "e" koje je bilo višak. Zatim sam dodao razmak između "funkcije" i "x". Za kraj, umjesto "Svaka funkcija nema svoju inverznu funkciju" napisao sam "Nema svaka funkcija svoju inverznu funkciju" da rečenica bude jasnija.
 
Red 1: Red 1:
{{Nedostaju izvori}}
{{Nedostaju izvori}}
[[Datoteka:Inverse Function.png|mini|desno|Funkcija ƒ i njena inverzija ƒ<sup>–1</sup>. Pošto ƒ preslikava ''a'' u 3, inverzna ƒ<sup>–1</sup> preslikava 3 nazad u ''a''.]]
[[Datoteka:Inverse Function.png|mini|desno|Funkcija ƒ i njena inverzija ƒ<sup>–1</sup>. Pošto ƒ preslikava ''a'' u 3, inverzna ƒ<sup>–1</sup> preslikava 3 nazad u ''a''.]]
U [[matematika|matematici]], ako je ƒ [[funkcija (matematika)|funkcija]] od ''A'' do ''B'', tada je '''inverzna funkcija''' od ƒ funkcija u suprotnom smijeru, od ''B'' do ''A'', sa osobinom da je [[kompozicija funkcija|kompozicija]] od ''A'' do ''B'' do ''A'' (ili od ''B'' do ''A'' do ''B'') vraća svaki element početnog skupa u njega samoga. Zbog toga, ako za argument ''x'' u funkciji ƒ dobijemo vrijednost funkcije ''y'', tada za vrijednost argumenta ''y'' u inverznoj funkciji ƒ<sup>−1</sup> (čitajte: ''f inverzno'', a ne miješati sa [[stepenovanje]]e) dobijamo vijednost inverzne funkcije''x'', dakle, dobijamo početni argument funkcije ƒ. Svaka funkcija nema svoju inverznu funkciju; one koje imaju nazivaju se '''inverzne funkcije'''.
U [[matematika|matematici]], ako je ƒ [[funkcija (matematika)|funkcija]] od ''A'' do ''B'', tada je '''inverzna funkcija''' od ƒ funkcija u suprotnom smijeru, od ''B'' do ''A'', sa osobinom da je [[kompozicija funkcija|kompozicija]] od ''A'' do ''B'' do ''A'' (ili od ''B'' do ''A'' do ''B'') vraća svaki element početnog skupa u njega samoga. Zbog toga, ako za argument ''x'' u funkciji ƒ dobijemo vrijednost funkcije ''y'', tada za vrijednost argumenta ''y'' u inverznoj funkciji ƒ<sup>−1</sup> (čitajte: ''f inverzno''; ne miješati sa [[stepenovanje]]) dobijamo vijednost inverzne funkcije ''x'', dakle, dobijamo početni argument funkcije ƒ. Nema svaka funkcija svoju inverznu funkciju; one koje imaju nazivaju se '''inverzne funkcije'''.


Na primjer, neka ƒ bude funkcija koja konvertuje temperaturu u stepenima [[Stepen Celzijusa|Celzijusa]] u temperaturu u stepenima [[Stepen Fahrenheita|Fahrenheita]]:
Na primjer, neka ƒ bude funkcija koja konvertuje temperaturu u stepenima [[Stepen Celzijusa|Celzijusa]] u temperaturu u stepenima [[Stepen Fahrenheita|Fahrenheita]]:

Trenutna verzija na dan 27 februar 2022 u 14:00

Funkcija ƒ i njena inverzija ƒ–1. Pošto ƒ preslikava a u 3, inverzna ƒ–1 preslikava 3 nazad u a.

U matematici, ako je ƒ funkcija od A do B, tada je inverzna funkcija od ƒ funkcija u suprotnom smijeru, od B do A, sa osobinom da je kompozicija od A do B do A (ili od B do A do B) vraća svaki element početnog skupa u njega samoga. Zbog toga, ako za argument x u funkciji ƒ dobijemo vrijednost funkcije y, tada za vrijednost argumenta y u inverznoj funkciji ƒ−1 (čitajte: f inverzno; ne miješati sa stepenovanje) dobijamo vijednost inverzne funkcije x, dakle, dobijamo početni argument funkcije ƒ. Nema svaka funkcija svoju inverznu funkciju; one koje imaju nazivaju se inverzne funkcije.

Na primjer, neka ƒ bude funkcija koja konvertuje temperaturu u stepenima Celzijusa u temperaturu u stepenima Fahrenheita:

tada njena inverzna funkcija konvertuje stepen Fahrenheita u stepena Celzijusa:

Definicije

[uredi | uredi izvor]
Ako ƒ preslikava X u Y, tada ƒ–1 preslikava Y nazad u X.

Neka ƒ bude funkcija čiji je domen u skupu X, te čija je oblast skup Y. Tada, ako postoji, 'inverzna funkcija od ƒ je funkcija ƒ–1 sa domenom Y i oblasti X, definisana slijedećim pravilom:

Osobine

[uredi | uredi izvor]

Jedinstvenost

[uredi | uredi izvor]

Ako inverzna funkcija postoji za datu funkciju ƒ, ona je jedinstvena za tu datu funkciju, tj. postoji samo jedna inverzna funkcija zadate funkcije ƒ: mora postojati inverzna relacija.

Simetrija

[uredi | uredi izvor]

Postoji simetričnost između funkcije i njene inverzije. Specifično, ako je ƒ–1 inverzna funkcija od funkcije ƒ, tada je inverzna funkcija od ƒ–1 originalna funkcija ƒ. U simbolima:

Ovo slijedi jer je inverzija relacija involucija: ako se ponavlja, vraćate se gdje ste počeli.

Ovaj iskaz je očita posljedica gore objašnjene dedukcije da funkcija, za slučaj da ƒ bude inverzabilna, mora biti injetivna (prva definicija inverzne funkcije) ili bijektivna (druga definicija). Osobina simetrije može se sažeto izraziti slijedećom formulom:

Inverzija kompozicije funkcija

[uredi | uredi izvor]
Inverzna funkcija od g o ƒ je funkcija ƒ–1 o g–1.

Inverzna funkcija kompozicije funkcija je data formulom

Primijetimo da je redoslijed ƒ i g zamijenjen; da bi riješili g, koju prati ƒ, prvo moramo riješiti ƒ, pa onda g.

Na primjer, neka je ƒ(x) = x + 5, i neka je g(x) = 3x. Tada je kompozicija ƒ o g funkcija koja argument prvo množi sa tri, a zatim dodaje pet:

Kako bi obrnuli proces, najprije moramo prebaciti pet na lijevu stranu, a zatim sve podijeliti sa tri:

Ovo je kompozicija g–1 o ƒ–1) (y).

Samoinverzija

[uredi | uredi izvor]

Ako je X skup, tada je funkcija identiteta na skupu X svoja vlastita inverzna funkcija:

Općenitije, funkcija ƒ: XX je jednaka vlastitoj inverznoj funkciji ako i samo ako je kompozicija ƒ o ƒ jednaka idx. Takva funkcija se naziva involucija.

Inverzi u kalkulusu

[uredi | uredi izvor]

Kalkulus jedne varijable primarno se koncentriše na funkcije koje preslikavaju realne brojeve u realne brojeve. Takve funkcije su često definisane preko formula, kao što su:

Funkcija ƒ iz realnih brojeva u realne brojeve posjeduje inverznu funkciju sve dok grafik funkcije prolazi test horizontalne linije.

Ova tabela prikazuje nekoliko standardnih funkcija i njihovi inverza:

Funkcija ƒ(x) Inverzna ƒ–1(y) Napomena
x + a ya
ax ay
mx y / m m ≠ 0
1 / x 1 / y x, y ≠ 0
x2 samo x, y ≥ 0
x3 bez restrikcija na x and y
xp y1/p (npr. ) x, y ≥ 0 općenito, p ≠ 0
ex ln y y > 0
ax loga y y > 0 i a > 0
trigonometrijske funkcije inverzne trigonometrijske funkcije razne restrikcije (pogledajte tabelu ispod)

Formula za inverznu funkciju

[uredi | uredi izvor]

Jedan od pristupa za pronalaženje formule za ƒ–1, ako ona postoji, je da se riješi jednačina y = ƒ(x) za x. Naprimjer, ako je ƒ funkcija

tada moramo riješiti jednačinu y = (2x + 8)3}} za x:

Tako je inverzna funkcija ƒ–1 data formulom

Ponekad se inverzna funkcija ne može izraziti preko formule. Naprimjer, ako je ƒ funkcija

tada je ƒ injetivna, i zbog toga posjeduje inverznu funkciju ƒ–1. Ne postoji jednostavna formula za ovu inverznu funkcju, pošto se jednačina y = x + sin x ne može riješiti algebarski za x.

Također pogledajte

[uredi | uredi izvor]

Reference

[uredi | uredi izvor]
  • Spivak, Michael (1994), Calculus (3rd izd.), Publish or Perish, ISBN 0914098896
  • Stewart, James (2002), Calculus (5th izd.), Brooks Cole, ISBN 978-0534393397