
Buildroot system development

BeagleBone Black variant

Practical Labs

https://bootlin.com

January 16, 2026

https://bootlin.com

Buildroot system development

About this document
Updates to this document can be found on https://bootlin.com/training/buildroot.

This document was generated from LaTeX sources found on https://github.com/bootlin/training-materials.

More details about our training sessions can be found on https://bootlin.com/training.

Copying this document
© 2004-2026, Bootlin, https://bootlin.com.

This document is released under the terms of the Creative Commons CC BY-SA 3.0 license
. This means that you are free to download, distribute and even modify it, under certain
conditions.

Corrections, suggestions, contributions and translations are welcome!

2 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com/training/buildroot
https://github.com/bootlin/training-materials
https://bootlin.com/training
https://bootlin.com
https://creativecommons.org/licenses/by-sa/3.0/
https://bootlin.com

Buildroot system development

Training setup
Download files and directories used in practical labs

Install lab data
For the different labs in this course, your instructor has prepared a set of data (kernel images, kernel config-
urations, root filesystems and more). Download and extract its tarball from a terminal:

$ cd
$ wget https://bootlin.com/doc/training/buildroot/buildroot-bbb-labs.tar.xz
$ tar xvf buildroot-bbb-labs.tar.xz

Lab data are now available in an buildroot-bbb-labs directory in your home directory. This directory
contains directories and files used in the various practical labs. It will also be used as working space, in
particular to keep generated files separate when needed.

Update your distribution
To avoid any issue installing packages during the practical labs, you should apply the latest updates to the
packages in your distro:

$ sudo apt update
$ sudo apt dist-upgrade

You are now ready to start the real practical labs!

Install extra packages
Feel free to install other packages you may need for your development environment. In particular, we
recommend to install your favorite text editor and configure it to your taste. The favorite text editors of
embedded Linux developers are of course Vim and Emacs, but there are also plenty of other possibilities,
such as Visual Studio Code1, GEdit, Qt Creator, CodeBlocks, Geany, etc.

It is worth mentioning that by default, Ubuntu comes with a very limited version of the vi editor. So if you
would like to use vi, we recommend to use the more featureful version by installing the vim package.

More guidelines
Can be useful throughout any of the labs

• Read instructions and tips carefully. Lots of people make mistakes or waste time because they missed
an explanation or a guideline.

• Always read error messages carefully, in particular the first one which is issued. Some people stumble
on very simple errors just because they specified a wrong file path and didn’t pay enough attention to
the corresponding error message.

• Never stay stuck with a strange problem more than 5 minutes. Show your problem to your colleagues
or to the instructor.

• You should only use the root user for operations that require super-user privileges, such as: mounting
a file system, loading a kernel module, changing file ownership, configuring the network. Most regular
tasks (such as downloading, extracting sources, compiling...) can be done as a regular user.

1This tool from Microsoft is Open Source! To try it on Ubuntu: sudo snap install code --classic

© 2004-2026 Bootlin, CC BY-SA license 3

https://bootlin.com

Buildroot system development

• If you ran commands from a root shell by mistake, your regular user may no longer be able to handle
the corresponding generated files. In this case, use the chown -R command to give the new files back
to your regular user.
Example: $ sudo chown -R myuser.myuser linux/

4 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Basic Buildroot usage
Objectives:

• Get Buildroot
• Configure a minimal system with Buildroot for the BeagleBone Black
• Do the build
• Prepare the BeagleBone Black for usage
• Flash and test the generated system

Setup
Go to the $HOME/buildroot-bbb-labs/ directory.

As specified in the Buildroot manual2, Buildroot requires a few packages to be installed on your machine.
Let’s install them using Ubuntu’s package manager:

sudo apt install sed make binutils gcc g++ bash patch \
gzip bzip2 perl tar cpio python3 unzip rsync wget libncurses-dev

Download Buildroot
Since we’re going to do Buildroot development, let’s clone the Buildroot source code from its Git repository:

git clone https://gitlab.com/buildroot.org/buildroot.git

Go into the newly created buildroot directory.

We’re going to start a branch from the 2025.02.6 Buildroot release, with which this training has been tested.

git checkout -b bootlin 2025.02.6

Configuring Buildroot
If you look under configs/, you will see that there is a file named beaglebone_defconfig, which is a ready-
to-use Buildroot configuration file to build a system for the BeagleBone Black Wireless platform. However,
since we want to learn about Buildroot, we’ll start our own configuration from scratch!

Start the Buildroot configuration utility:

make menuconfig

Of course, you’re free to try out the other configuration utilities nconfig, xconfig or gconfig.

Now, let’s do the configuration:

• Target Options menu

– It is quite well known that the BeagleBone Black Wireless is an ARM based platform, so select
ARM (little endian) as the target architecture.

2https://buildroot.org/downloads/manual/manual.html#requirement-mandatory

© 2004-2026 Bootlin, CC BY-SA license 5

https://buildroot.org/downloads/manual/manual.html#requirement-mandatory
https://bootlin.com

Buildroot system development

– According to the BeagleBone Black Wireless website at https://beagleboard.org/BLACK, it uses
a Texas Instruments AM335x, which is based on the ARM Cortex-A8 core. So select cortex-A8
as the Target Architecture Variant.

– On ARM two Application Binary Interfaces are available: EABI and EABIhf. Unless you have
backward compatibility concerns with pre-built binaries, EABIhf is more efficient, so make this
choice as the Target ABI (which should already be the default anyway).

– The other parameters can be left to their default value: ELF is the only available Target Binary
Format, VFPv3-D16 is a sane default for the Floating Point Unit, and using the ARM instruction set
is also a good default (we could use the Thumb-2 instruction set for slightly more compact code).

• We don’t have anything special to change in the Build options menu, but take nonetheless this op-
portunity to visit this menu, and look at the available options. Each option has a help text that tells
you more about the option.

• Toolchain menu

– By default, Buildroot builds its own toolchain. This takes quite a bit of time, and for ARMv7
platforms, there is a pre-built toolchain provided by ARM. We’ll use it through the external
toolchain mechanism of Buildroot. Select External toolchain as the Toolchain type. Do not
hesitate however to look at the available options when you select Buildroot toolchain as the
Toolchain type.

– Select Bootlin toolchains as the Toolchain. It will automatically select the armv7-eabihf glibc
bleeding-edge 2024.05-1 variant, which is fine for our needs. Buildroot can either use pre-defined
toolchains such as the ones provided by ARM or Bootlin, or custom toolchains (either downloaded
from a given location, or pre-installed on your machine).

• System configuration menu

– For our basic system, we don’t need a lot of custom system configuration for the moment. So take
some time to look at the available options, and put some custom values for the System hostname,
System banner and Root password.

• Kernel menu

– We obviously need a Linux kernel to run on our platform, so enable the Linux kernel option.

– By default, the most recent Linux kernel version available at the time of the Buildroot release is
used. In our case, we want to use a specific version, to make sure our build is reproducible. So
select Custom version as the Kernel version, and enter 6.12.47 in the Kernel version text field
that appears.

– Now, we need to define which kernel configuration to use. We’ll start by using a default con-
figuration provided within the kernel sources themselves, called a defconfig. To identify which
defconfig to use, you can look in the kernel sources directly, at https://git.kernel.org/cgit/
linux/kernel/git/torvalds/linux.git/tree/arch/arm/configs/?id=v6.12. In practice, for this
platform, it is not trivial to find which one to use: the AM335x processor is supported in the Linux
kernel as part of the support for many other Texas Instruments processors: OMAP2, OMAP3,
OMAP4, etc. So the appropriate defconfig is named omap2plus_defconfig. You can open up this
file in the Linux kernel Git repository viewer, and see it contains the line CONFIG_SOC_AM33XX=y,
which is a good indication that it has the support for the processor used in the BeagleBone Black.
Now that we have identified the defconfig name, enter omap2plus in the Defconfig name option.

– The Kernel binary format is the next option. Since we are going to use a recent U-Boot boot-
loader, we’ll keep the default of the zImage format.

– On ARM, all modern platforms now use the Device Tree to describe the hardware. The Beagle-
Bone Black Wireless is in this situation, so you’ll have to enable the Build a Device Tree Blob
option. At https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/

6 © 2004-2026 Bootlin, CC BY-SA license

https://beagleboard.org/BLACK
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/configs/?id=v6.12
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/configs/?id=v6.12
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_SOC_AM33XX
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/boot/dts/?id=v6.12
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/arch/arm/boot/dts/?id=v6.12

Buildroot system development

arm/boot/dts/?id=v6.12, you can see the list of all Device Tree files available in the 6.12 Linux
kernel (note: the Device Tree files for boards use the .dts extension). The one for the Bea-
gleBone Black Wireless is am335x-boneblack-wireless.dts located in ti/omap/. Even if talk-
ing about Device Tree is beyond the scope of this training, feel free to have a look at this file
to see what it contains. Back in Buildroot, enable Build a Device Tree Blob (DTB) and type
ti/omap/am335x-boneblack-wireless as the In-tree Device Tree Source file names.

– The kernel configuration for this platform requires having OpenSSL available on the host machine.
To avoid depending on the OpenSSL development files installed by your host machine Linux
distribution, Buildroot can build its own version: just enable the Needs host OpenSSL option.

• Target packages menu. This is probably the most important menu, as this is the one where you can
select amongst the 3000+ available Buildroot packages which ones should be built and installed in your
system. For our basic system, enabling BusyBox is sufficient and is already enabled by default, but feel
free to explore the available packages. We’ll have the opportunity to enable some more packages in the
next labs.

• Filesystem images menu. For now, keep only the tar the root filesystem option enabled. We’ll
take care separately of flashing the root filesystem on the SD card.

• Bootloaders menu.

– We’ll use the most popular ARM bootloader, U-Boot, so enable it in the configuration.

– Select Kconfig as the Build system. U-Boot is transitioning from a situation where all the hard-
ware platforms were described in C header files to a system where U-Boot re-uses the Linux kernel
configuration logic. Since we are going to use a recent enough U-Boot version, we are going to use
the latter, called Kconfig.

– Use the custom version of U-Boot 2024.04.

– Look at https://gitlab.denx.de/u-boot/u-boot/-/tree/v2024.04/configs to identify the avail-
able U-Boot configurations. For many AM335x platforms, U-Boot has a single configuration called
am335x_evm_defconfig, which can then be given the exact hardware platform to support using
a Device Tree. So we need to use am335x_evm as Board defconfig and DEVICE_TREE=am335x-
boneblack-wireless as Custom make options

– U-Boot on AM335x is split in two parts: the first stage bootloader called MLO and the second
stage bootloader called u-boot.img. So, select u-boot.img as the U-Boot binary format, enable
Install U-Boot SPL binary image and use MLO as the U-Boot SPL binary image name.

You’re now done with the configuration!

Building
You could simply run make, but since we would like to keep a log of the build, we’ll redirect both the standard
and error outputs to a file, as well as the terminal by using the tee command:

make 2>&1 | tee build.log

While the build is on-going, please go through the following sections to prepare what will be needed to test
the build results.

Prepare the BeagleBone Black Wireless
The BeagleBone Black is powered via the USB-A to mini-USB cable, connected to the mini-USB connector
labeled P4 on the back of the board.

The Beaglebone serial connector is exported on the 6 male pins close to one of the 48 pins headers. Using
your special USB to Serial adapter provided by your instructor, connect the ground wire (blue) to the pin

© 2004-2026 Bootlin, CC BY-SA license 7

https://gitlab.denx.de/u-boot/u-boot/-/tree/v2024.04/configs
https://bootlin.com

Buildroot system development

closest to the power supply connector (let’s call it pin 1), and the TX (red) and RX (green) wires to the pins
4 (board RX) and 5 (board TX)3.

You always should make sure that you connect the TX pin of the cable to the RX pin of the board, and
vice-versa, whatever the board and cables that you use.

Once the USB to Serial connector is plugged in, a new serial port should appear: /dev/ttyUSB0. You can
also see this device appear by looking at the output of dmesg.

To communicate with the board through the serial port, install a serial communication program, such as
picocom:

sudo apt install picocom

If you run ls -l /dev/ttyUSB0, you can also see that only root and users belonging to the dialout group
have read and write access to this file. Therefore, you need to add your user to the dialout group:

sudo adduser $USER dialout

Important: for the group change to be effective, in Ubuntu 18.04, you have to completely reboot the system
4. A workaround is to run newgrp dialout, but it is not global. You have to run it in each terminal.

Now, you can run picocom -b 115200 /dev/ttyUSB0, to start serial communication on /dev/ttyUSB0, with
a baudrate of 115200. If you wish to exit picocom, press [Ctrl][a] followed by [Ctrl][x].

There should be nothing on the serial line so far, as the board is not powered up yet.

Prepare the SD card
Our SD card needs to be split in two partitions:

• A first partition for the bootloader. It needs to comply with the requirements of the AM335x SoC so that
it can find the bootloader in this partition. It should be a FAT32 partition. We will store the bootloader
(MLO and u-boot.img), the kernel image (zImage)and the Device Tree (am335x-boneblack.dtb).

• A second partition for the root filesystem. It can use whichever filesystem type you want, but for our
system, we’ll use ext4.

First, let’s identify under what name your SD card is identified in your system: look at the output of
cat /proc/partitions and find your SD card. In general, if you use the internal SD card reader of a laptop,
it will be mmcblk0, while if you use an external USB SD card reader, it will be sdX (i.e. sdb, sdc, etc.). Be
careful: /dev/sda is generally the hard drive of your machine!

3See https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F for details about the USB to Serial adapter
that we are using.

4As explained on https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/.

8 © 2004-2026 Bootlin, CC BY-SA license

https://www.olimex.com/Products/USB-Modules/Interfaces/USB-SERIAL-F
https://askubuntu.com/questions/1045993/after-adding-a-group-logoutlogin-is-not-enough-in-18-04/
https://bootlin.com

Buildroot system development

If your SD card is /dev/mmcblk0, then the partitions inside the SD card are named /dev/mmcblk0p1, /dev/
mmcblk0p2, etc.

To format your SD card, do the following steps:

1. Unmount all partitions of your SD card (they are generally automatically mounted by Ubuntu)

2. Erase the beginning of the SD card to ensure that the existing partitions are not going to be mistakenly
detected:
sudo dd if=/dev/zero of=/dev/mmcblk0 bs=1M count=16.

3. Create the two partitions.

• Start the cfdisk tool for that:
sudo cfdisk /dev/mmcblk0

• Choose the dos partition table type

• Create a first small partition (128 MB), primary, with type e (W95 FAT16) and mark it bootable

• Create a second partition, also primary, with the rest of the available space, with type 83 (Linux).

• Exit cfdisk

4. Format the first partition as a FAT32 filesystem:
sudo mkfs.vfat -a -F 32 -n boot /dev/mmcblk0p1.

5. Format the second partition as an ext4 filesystem:
sudo mkfs.ext4 -L rootfs -E nodiscard /dev/mmcblk0p2.

• -L assigns a volume name to the partition

• -E nodiscard disables bad block discarding. While this should be a useful option for cards with
bad blocks, skipping this step saves long minutes in SD cards.

Remove the SD card and insert it again, the two partitions should be mounted automatically, in /media/
$USER/boot and /media/$USER/rootfs.

Now everything should be ready. Hopefully by that time the Buildroot build should have completed. If not,
wait a little bit more.

Flash the system
Once Buildroot has finished building the system, it’s time to put it on the SD card:

• Copy the MLO, u-boot.img, zImage and am335x-boneblack-wireless.dtb files from output/images/ to
the boot partition of the SD card.

• Extract the rootfs.tar file to the rootfs partition of the SD card, using:
sudo tar -C /media/$USER/rootfs/ -xf output/images/rootfs.tar .

• Create a file named extlinux/extlinux.conf in the boot partition. This file should contain the fol-
lowing lines:

label buildroot
kernel /zImage
devicetree /am335x-boneblack-wireless.dtb
append console=ttyO0,115200 root=/dev/mmcblk0p2 rootwait

These lines teach the U-Boot bootloader how to load the Linux kernel image and the Device Tree,
before booting the kernel. It uses a standard U-Boot mechanism called distro boot command, see
https://source.denx.de/u-boot/u-boot/-/raw/master/doc/README.distro for more details.

Cleanly unmount the two SD card partitions, and eject the SD card.

© 2004-2026 Bootlin, CC BY-SA license 9

https://source.denx.de/u-boot/u-boot/-/raw/master/doc/README.distro
https://bootlin.com

Buildroot system development

Boot the system
Insert the SD card in the BeagleBone Black. Push the S2 button (located near the USB host connector) and
plug the USB power cable while holding S2. Pushing S2 forces the BeagleBone Black to boot from the SD
card instead of from the internal eMMC.

You should see your system booting. Make sure that the U-Boot SPL and U-Boot version and build dates
match with the current date. Do the same check for the Linux kernel.

Login as root on the BeagleBone Black, and explore the system. Run ps to see which processes are running,
and look at what Buildroot has generated in /bin, /lib, /usr and /etc.

Note: if your system doesn’t boot as expected, make sure to reset the U-Boot environment by running the
following U-Boot commands:

env default -f -a
saveenv

and reset. This is needed because the U-Boot loaded from the SD card still loads the U-Boot environment
from the eMMC. Ask your instructor for additional clarifications if needed.

Explore the build log
Back to your build machine, since we redirected the build output to a file called build.log, we can now have
a look at it to see what happened. Since the Buildroot build is quite verbose, Buildroot prints before each
important step a message prefixed by the >>> sign. So to get an overall idea of what the build did, you can
run:

grep ">>>" build.log

You see the different packages between downloaded, extracted, patched, configured, built and installed.

Feel free to explore the output/ directory as well.

10 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Root filesystem construction
Objectives:

• Explore the build output
• Customize the root filesystem using a rootfs overlay
• Customize the Linux kernel configuration
• Use a post-build script
• Customize the kernel with patches and
• Add more packages
• Use defconfig files and out of tree build

Explore the build output
Now that we have discussed during the lectures the organization of the Buildroot output tree, take some time
to look inside output/ for the different build artefacts. And especially:

• Identify where the cross-compiler has been installed.

• Identify where the source code for the different components has been extracted, and which packages
have been built.

• Identify where the target root filesystem has been created, and read the THIS_IS_NOT_YOUR_ROOT_
FILESYSTEM file.

• See where the staging symbolic link is pointing to.

Use a rootfs overlay to setup the network
The BeagleBone Black Wireless does not have any Ethernet interface, so we will use Ethernet over USB to
provide network connectivity between our embedded system and the development PC. To achieve this we
will need to:

1. Add an init script to setup network over USB

2. Add a configuration file that configures the network interface with the appropriate IP address

Init script for USB network setup
There are different mechanisms to configure USB gadget with Linux: we will use the gadget configfs interface,
which allows from user-space to create USB devices providing an arbitrary set of functionalities5.

Since the setup of such a USB gadget is not trivial, we provide a ready-to-use shell script that we will add
to the init scripts of the Buildroot system. The script is called S30usbgadget and is available from this lab
data directory at $HOME/buildroot-bbb-labs/buildroot-rootfs/.

5See https://elinux.org/images/e/ef/USB_Gadget_Configfs_API_0.pdf for more details

© 2004-2026 Bootlin, CC BY-SA license 11

https://elinux.org/images/e/ef/USB_Gadget_Configfs_API_0.pdf
https://bootlin.com

Buildroot system development

We could copy this script directly to our SD card, but this would mean that the next time we reflash the SD
card with the root filesystem produced by Buildroot, we would lose those changes.

In order to automate the addition of this script to the root filesystem as part of the Buildroot build, we will
use the rootfs overlay mechanism. Since this overlay is specific to our project, we will create a custom
directory for our project within the Buildroot sources: board/bootlin/beagleboneblack/.

Within this directory, create a rootfs-overlay directory, and in menuconfig, specify board/bootlin/beagleboneblack/
rootfs-overlay as the rootfs overlay (option BR2_ROOTFS_OVERLAY).

Copy the S30usbgadget script to your overlay so that it is located in board/bootlin/beagleboneblack/
rootfs-overlay/etc/init.d/S30usbgadget. At boot time, the default init system used by Buildroot will
execute all scripts named SXX* in /etc/init.d.

IP address configuration
By default, Buildroot uses the ifup program from BusyBox, which reads the /etc/network/interfaces file
to configure network interfaces. So, in board/bootlin/beagleboneblack/rootfs-overlay, create a file named
etc/network/interfaces with the following contents:

auto lo
iface lo inet loopback

auto usb0
iface usb0 inet static

address 192.168.42.2
netmask 255.255.255.0

Then, rebuild your system by running make. Here as well, we don’t need to do a full rebuild, since the
rootfs overlays are applied at the end of each build. You can check in output/target/etc/init.d/ and
output/target/etc/network/ if both the init script and network configuration files were properly copied.

Reflash the root filesystem on the SD card, and boot your BeagleBone Black. It should now have an IP
address configured for usb0 by default.

Configure the network on your host
In the next sections of this lab, we will want to interact with the BeagleBone Black over the network, through
USB. So in this section, we’ll configure your host machine to assign an appropriate IP address for the USB
network interface.

On Ubuntu, the network interfaces corresponding to Ethernet-over-USB connections are named enx<macaddr>.
The host MAC address is hardcoded in the S30usbgadget script to f8:dc:7a:00:00:01, so the interface will
be named enxf8dc7a000001.

To configure an IP address for this interface on your host machine, we’ll use NetworkManager and its
command line interface:

nmcli con add type ethernet ifname enxf8dc7a000001 ip4 192.168.42.1/24

Note: using ip in the command line is not recommended, because Network Manager will unconfigure and
reconfigure the network interface each time the board is rebooted.

Once this is done, make sure you can communicate with your target using ping.

Add dropbear as an SSH server
As a first additional package to add to our system, let’s add the dropbear SSH client/server. The server will
be running on the BeagleBone Black, which will allow us to connect over the network to the BeagleBone
Black.

12 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Run make menuconfig, and enable the dropbear package. You can use the search capability of menuconfig
by typing /, enter DROPBEAR. It will give you a list of results, and each result is associated with a number
between parenthesis, like (1). Then simply press 1, and menuconfig will jump to the right option.

After leaving menuconfig, restart the build by running make.

In this case, we do not need to do a full rebuild, because a simple make will notice that the dropbear package
has not been built, and will therefore trigger the build process.

Re-extract the root filesystem tarball in the rootfs partition of the SD card. Don’t forget to replace the
entire root filesystem:

rm -rf /media/$USER/rootfs/*
sudo tar -C /media/$USER/rootfs/ -xf output/images/rootfs.tar

Now, boot the new system on the BeagleBone Black. You should see a message:

Starting dropbear sshd: OK

Now, from your PC, if you try to SSH to the board by doing:

ssh root@192.168.42.2

Use a post-build script
Write a shell script that creates a file named /etc/build-id in the root filesystem, containing the Git commit
id of the Buildroot sources, as well as the current date. Since this script will be executed as a post-build
script, remember that the first argument passed to the script is $(TARGET_DIR).

Register this script as a post-build script in your Buildroot configuration, run a build, and verify that
/etc/build-id is created as expected.

Patch the Linux kernel
Now, we would like to connect an additional peripheral to our system: the Wii Nunchuk. Using this custom
peripheral requires adding a new driver to the Linux kernel, making changes to the Device Tree describing
the hardware, and changing the kernel configuration. This is the purpose of this section.

We will first create a new directory to store our kernel patches. It will sit next to our rootfs overlay in our
project-specific directory:

mkdir board/bootlin/beagleboneblack/patches/linux/

Copy in this directory the two patches that we provided with the data of this lab, in $HOME/buildroot-bbb-
labs/buildroot-rootfs/linux/:

cp $HOME/buildroot-bbb-labs/buildroot-rootfs/linux/*.patch \
board/bootlin/beagleboneblack/patches/linux/

The first patch adds the driver, the second patch adjusts the Device Tree. Feel free to look at them. If you’re
interested, you can look at our training course Embedded Linux kernel driver development, which precisely
covers the development of this driver.

Now, we need to tell Buildroot to apply these patches before building the kernel. To do so, run menuconfig,
go the to the Build options menu, and adjust the Global patch directories option to board/bootlin/
beagleboneblack/patches/.

Let’s now clean up completely the linux package so that its sources will be re-extracted and our patches
applied the next time we do a build:

© 2004-2026 Bootlin, CC BY-SA license 13

https://bootlin.com

Buildroot system development

make linux-dirclean

If you check in output/build/, the linux-<version> directory will have disappeared.

Now, we need to adjust our kernel configuration to enable the Wii Nunchuk driver. To start the Linux kernel
configuration tool, run:

make linux-menuconfig

This will:

• Extract the Linux kernel sources

• Apply our two patches

• Load the defined kernel configuration, from omap2plus_defconfig

• Start the kernel menuconfig tool

Once in the kernel menuconfig, enable the option CONFIG_JOYSTICK_WIICHUCK, and make sure it is enabled
statically. Also, make sure the CONFIG_INPUT_EVDEV option is enabled statically (by default it is enabled as
a module). Once those options are set, leave the kernel menuconfig.

Your kernel configuration has now been customized, but those changes are only saved in output/build/
linux-<version>/.config, which will be deleted at the next make clean. So we need to save such changes
persistently. To do so:

1. Run Buildroot menuconfig

2. In the Kernel menu, instead of Using a defconfig, chose Using a custom config file. This will
allow us to use our own custom kernel configuration file, instead of a pre-defined defconfig that comes
with the kernel sources.

3. In the Configuration file path, enter board/bootlin/beagleboneblack/linux.config.

4. Exit menuconfig

5. Run make linux-update-defconfig . This will generate the configuration file in board/bootlin/

beagleboneblack/linux.config. It will be a minimal configuration file (i.e. a defconfig). In this
file, verify that the option CONFIG_JOYSTICK_WIICHUCK is properly set to y.

You can now restart the build of the kernel:

make

It should hopefully end successfully, and if you look closely at the build log, you should see the file wiichuck.c
being compiled.

Connect the Wii Nunchuk
Take the nunchuk device provided by your instructor.

We will connect it to the second I2C port of the CPU (i2c1), with pins available on the P9 connector.

Identify the 4 pins of the nunchuk connector:

14 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_JOYSTICK_WIICHUCK
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT_EVDEV
https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_JOYSTICK_WIICHUCK
https://bootlin.com

Buildroot system development

PWR

GND SDA

SCL

Nunchuk i2c pinout
(UEXT connector from Olimex, front view)

Connect the nunchuk pins:

• The GND pin to P9 pins 1 or 2 (GND)

• The PWR pin to P9 pins 3 or 4 (DC_3.3V)

• The CLK pin to P9 pin 17 (I2C1_SCL)

• The DATA pin to P9 pin 18 (I2C1_SDA)

GND

SDA
SCL

PWR

Serial

Wii Nunchuk

Test the nunchuk
Reflash your system, both the Device Tree, Linux kernel image and root filesystem, and boot it.

In the kernel boot log, you should see a message like:

input: Wiichuck expansion connector as /devices/platform/ocp/4802a000.i2c/i2c-1/1-0052/input/input0

You can also explore sysfs, and see that your Nunchuk device is handled by the system:

cat /sys/bus/i2c/devices/1-0052/name

Now, to get the raw events coming from the Nunchuk, you can do:

© 2004-2026 Bootlin, CC BY-SA license 15

https://bootlin.com

Buildroot system development

cat /dev/input/event0

or, if you prefer to see hexadecimal values instead of raw binary:

cat /dev/input/event0 | hexdump -C

You should see events when moving the Nunchuk (it has an accelerometer), when moving the joystick and
pushing the buttons.

Add and use evtest
Since the raw events from the Nunchuk are not very convenient to read, let’s install an application that will
decode the raw input events and display them in a more human readable format: evtest.

Enable this package in Buildroot, restart the build, reflash the root filesystem and reboot the system. Now
you can use evtest:

evtest /dev/input/event0

Generate a defconfig
Now that our system is already in a good shape, let’s make sure its configuration is properly saved and
cannot be lost. Go in menuconfig, and in the Build options menu. There is an option called Location
to save buildroot config which indicates where Buildroot will save the defconfig file generated by make
savedefconfig. Adjust this value to $(TOPDIR)/configs/bootlin_defconfig.

Then, exit menuconfig, and run:

make savedefconfig

Read the file configs/bootlin_defconfig generated in the Buildroot sources. You will see the values for all
the options for which we selected a value different from the default. So it’s a very good summary of what
our system is.

Identify the options related to the following aspects of the system:

• The architecture specification

• The toolchain definition

• The system configuration

• The Linux kernel related configuration

• The selection of packages

• The U-Boot related configuration

Testing a full rebuild
To make sure that we are able to rebuild our system completely, we’ll start a build from scratch. And to
learn something new, we’ll use out of tree build.

To do so, create a build directory anywhere you want, and move inside this directory:

mkdir ~/bootlin/buildroot-build/
cd ~/bootlin/buildroot-build/

Now, we will load the bootlin_defconfig:

make -C ~/bootlin/buildroot/ O=$(pwd) bootlin_defconfig

16 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Let’s explain a little bit what happens here. By using -C ~/bootlin/buildroot/, we in fact tell make that
the Makefile to analyze is not in the current directory, but in the directory passed as the -C argument.
By passing O=, we tell Buildroot where all the output should go: by default it goes in output/ inside the
Buildroot sources, but here we override that with the current directory ($(pwd)).

This command will have two main effects:

1. It will load the bootlin_defconfig as the current configuration. After running the command, read the
file named .config. It’s much longer than the defconfig, because it contains the values for all options.

2. It will create a minimal Makefile in this output directory, which will allow us to avoid doing the
make -C ... O=... dance each time.

Now that this is done, start the build. You can again save the build log:

make 2>&1 | tee build.log

© 2004-2026 Bootlin, CC BY-SA license 17

https://bootlin.com

Buildroot system development

New packages in Buildroot
Objectives:

• Create a new package for nInvaders

• Understand how to add dependencies

• Add patches to nInvaders for Nunchuk support

Preparation
After doing a Google search, find the nInvaders website and download its source code. Analyze its build
system, and conclude which Buildroot package infrastructure is the most appropriate to create a package for
nInvaders.

Minimal package
Create a directory for the package in the Buildroot sources, package/ninvaders. Create a Config.in file
with one option to enable this package, and a minimal ninvaders.mk file that specifies what is needed just
to download the package.

For reference, the download URL of the nInvaders tarball is https://sourceforge.net/projects/ninvaders/
files/ninvaders/0.1.1/.

Note: to achieve this, only two variables need to be defined in .mk file, plus the call to the appropriate
package infrastructure macro.

Now, go to menuconfig, enable nInvaders, and run make. You should see the nInvaders tarball being down-
loaded and extracted. Look in output/build/ to see if it was properly extracted as expected.

Make it build!
As you have seen in the previous steps, nInvaders uses a simple Makefile for its build process. So you’ll have
to define the build commands variable to trigger the build of nInvaders. To do this, you will have to use four
variables provided by Buildroot:

• TARGET_MAKE_ENV, which should be passed in the environment when calling make.

• MAKE, which contains the proper name of the make tool with potentially some additional parameters to
parallelize the build.

• TARGET_CONFIGURE_OPTS, which contains the definition of many variables often used by Makefiles: CC,
CFLAGS, LDFLAGS, etc.

• @D, which contains the path to the directory where the nInvaders source code was extracted.

When doing Buildroot packages, it is often a good idea to look at how other packages are doing things. Look
for example at the jhead package, which is going to be fairly similar to our ninvaders package.

Once you have written the nInvaders build step, it’s time to test it. However, if you just run make to start
the Buildroot build, the ninvaders package will not be rebuilt, because it has already been built.

So, let’s force Buildroot to rebuild the package by removing its source directory completely:

18 © 2004-2026 Bootlin, CC BY-SA license

https://sourceforge.net/projects/ninvaders/files/ninvaders/0.1.1/
https://sourceforge.net/projects/ninvaders/files/ninvaders/0.1.1/
https://bootlin.com

Buildroot system development

make ninvaders-dirclean

And then starting the build:

make

This time, you should see the ninvaders 0.1.1 Building step actually doing something, but quickly failing
with a message saying that the ncurses.h file could not be found.

Move on to the next section to see how to solve this problem!

Handling dependencies
The ncurses.h header file is missing, because nInvaders depends on the ncurses library for drawing its
interface on a text-based terminal. So we need to add ncurses in the dependencies of nInvaders. To do this,
you need to do two things:

• Express the dependency in the package Config.in file. Use a select statement to make sure the ncurses
package option is automatically selected when ninvaders is enabled. Check that the ncurses package
does not have itself some dependencies that need to be propagated up to the ninvaders package.

• Express the dependency in the package .mk file.

Restart again the build of the package by using make ninvaders-dirclean all (which is the same as doing
make ninvaders-dirclean followed by make).

Now the package build fails at link time with messages such as multiple definition of `skill_level';
aliens.o:(.bss+0x674): first defined here.

Customizing CFLAGS
The multiple definition issue is due to the code base of nInvaders being quite old, and having multiple
compilation units redefine the same symbols. While this was accepted by older gcc versions, since gcc 10 this
is no longer accepted by default.

While we could fix the nInvaders code base, we will take a different route: ask gcc to behave as it did before
gcc 10 and accept such redefinitions. This can be done by passing the -fcommon gcc flag.

To achieve this, make sure that CFLAGS is set to $(TARGET_CFLAGS) -fcommon in NINVADERS_BUILD_CMDS.

Restart the build with make ninvaders-dirclean all.

Now the package should build properly! If you look in output/build/ninvaders-0.1.1/, you should see a
nInvaders binary file. Run the file program with nInvaders as argument to verify that it is indeed built
for ARM.

However, while nInvaders has been successfully compiled, it is not installed in our target root filesystem!

Installing and testing the program
If you study the nInvaders Makefile, you can see that there is no provision for installing the program: there
is no install: rule.

So, in ninvaders.mk, you will have to create the target installation commands, and simply manually install
the nInvaders binary. Use the $(INSTALL) variable for that. Again, take example on the jhead package to
know how to achieve that.

Rebuild once again the ninvaders package. This time, you should see the nInvaders binary in output/
target/usr/bin/!

Reflash your root filesystem on the SD card and reboot the system. nInvaders will not work very well over
the serial port, so log to your system through ssh, and play nInvaders with the keyboard!

© 2004-2026 Bootlin, CC BY-SA license 19

https://bootlin.com

Buildroot system development

Note: if you get the error Error opening terminal: xterm-256color. when running nInvaders, issue first
the command export TERM=xterm.

Support the Nunchuk
Playing with the keyboard is nice, but playing with our Nunchuk would be even nicer! We have written a
patch for nInvaders that makes this possible.

This patch is available in the lab data directory, under the name 0001-joystick-support.patch. Copy this
patch to the right location so that it gets applied after nInvaders is extracted by Buildroot, and before it is
built. Rebuild once again the ninvaders package. Verify that the patch gets applied at the ninvaders 0.1.
1 Patching step.

However, this patch relies on the Linux kernel joystick interface, that we need to enable. Go to the Linux
kernel configuration using make linux-menuconfig, and enable CONFIG_INPUT_JOYDEV. Exit, and make sure
to save your kernel configuration safely using make linux-update-defconfig. Restart the overall build by
running make.

Then reflash your kernel image and root filesystem on the SD card, reboot, and start nInvaders in a SSH
session. You should now be able to control it using the Nunchuk joystick, and fire with the C button.

Adding a hash file
To finalize the package, add the missing hash file, so that people building this package can be sure they are
building the same source code. To know the hash, SourceForge provides this information: go to the nInvaders
download page, and next to the file name, there is a small information icon that will provide the MD5 and
SHA1 hashes. Add both hashes to the hash file.

Once the hash file is added, rebuild the package completely by doing make ninvaders-dirclean all.

Look at the build output, and before the ninvaders 0.1.1 Extracting step, you should see a message like
this:

ninvaders-0.1.1.tar.gz: OK (sha1:)
ninvaders-0.1.1.tar.gz: OK (md5:)

Testing package removal
Now, to experiment with Buildroot, do the following test: disable the ninvaders package in menuconfig and
restart the build doing make. Once the build is done (which should be very quick), looked in output/target/.
Is nInvaders still installed? If so, why?

20 © 2004-2026 Bootlin, CC BY-SA license

https://elixir.bootlin.com/linux/latest/K/ident/CONFIG_INPUT_JOYDEV
https://bootlin.com

Buildroot system development

Sanity checking your package
If you want to verify if your package matches the coding style rules of Buildroot, you can run:

make check-package

While a successful result doesn’t mean your package is perfect, it at least verifies a number of basic require-
ments.

© 2004-2026 Bootlin, CC BY-SA license 21

https://bootlin.com

Buildroot system development

Advanced packaging
Objectives:

• Package an application with a mandatory dependency and an optional
dependency

• Package a library, hosted on GitHub

• Use hooks to tweak packages

• Add a patch to a package

Start packaging application bar
For the purpose of this training, we have created a completely stupid and useless application called bar. Its
home page is https://bootlin.com/~thomas/bar/, from where you can download an archive of the applica-
tion’s source code.

Create an initial package for bar in package/bar, with the necessary code in package/bar/bar.mk and
package/bar/Config.in. Don’t forget package/bar/bar.hash. At this point, your bar.mk should only define
the <pkg>_VERSION, <pkg>_SOURCE and <pkg>_SITE variables, and a call to a package infrastructure.

Enable the bar package in your Buildroot configuration, and start the build. It should download bar, extract
it, and start the configure script. And then it should fail with an error related to libfoo. And indeed, as the
README file available in bar’s source code says, it has a mandatory dependency on libfoo. So let’s move on
to the next section, and we’ll start packaging libfoo.

Packaging libfoo: initial packaging
According to bar’s README file, libfoo is only available on GitHub at https://github.com/tpetazzoni/
libfoo.

Create an initial package for libfoo in package/libfoo, with the relevant minimal variables to get libfoo
downloaded properly. Since it’s hosted on GitHub, remember to use the github make function provided by
Buildroot to define <pkg>_SITE. To learn more about this function, grep for it in the Buildroot tree, or read
the Buildroot reference manual.

Also, notice that there is a version tagged v0.1 in the GitHub repository, you should probably use it.

Enable the libfoo package and start the build. You should get an error due to the configure script being
missing. What can you do about it? Hint: there is one Buildroot variable for autotools packages to solve this
problem.

libfoo should now build fine. Look in output/target/usr/lib, the dynamic version of the library should
be installed. However, if you look in output/staging/, you will see no sign of libfoo, neither the library
in output/staging/usr/lib or the header file in output/staging/usr/include. This is an issue because the
compiler will only look in output/staging for libraries and headers, so we must change our package so that it
also installs to the staging directory. Adjust your libfoo.mk file to achieve this, restart the build of libfoo,
and make sure that you see foo.h in output/staging/usr/include and libfoo.* in output/staging/usr/lib.

Now everything looks good, but there are some more improvements we can do.

22 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com/~thomas/bar/
https://github.com/tpetazzoni/libfoo
https://github.com/tpetazzoni/libfoo
https://bootlin.com

Buildroot system development

Improvements to libfoo packaging
If you look in output/target/usr/bin, you can see a program called libfoo-example1. This is just an example
program for libfoo, it is typically not very useful in a real target system. So we would like this example
program to not be installed. To achieve this, add a post-install target hook that removes libfoo-example1.
Rebuild the libfoo package and verify that libfoo-example1 has been properly removed.

Now, if you go in output/build/libfoo-v0.1, and run ./configure --help to see the available options, you
should see an option named --enable-debug-output, which enables a debugging feature of libfoo. Add a
sub-option in package/libfoo/Config.in to enable the debugging feature, and the corresponding code in
libfoo.mk to pass --enable-debug-output or --disable-debug-output when appropriate.

Enable this new option in menuconfig, and restart the build of the package. Verify in the build output that
--enable-debug-output was properly passed as argument to the configure script.

Now, the packaging of libfoo seems to be alright, so let’s get back to our bar application.

Finalize the packaging of bar
So, bar was failing to configure because libfoo was missing. Now that libfoo is available, modify bar to
add libfoo as a dependency. Remember that this needs to be done in two places: Config.in file and bar.mk
file.

Restart the build, and it should succeed! Now you can run the bar application on your target, and discover
how absolutely useless it is, except for allowing you to learn about Buildroot packaging!

bar packaging: libconfig dependency
But there’s some more things we can do to improve bar’s packaging. If you go to output/build/bar-1.0
and run ./configure --help, you will see that it supports a --with-libconfig option. And indeed, bar’s
README file also mentions libconfig as an optional dependency.

So, change bar.mk to add libconfig as an optional dependency. No need to add a new Config.in option
for that: just make sure that when libconfig is enabled in the Buildroot configuration, --with-libconfig is
passed to bar’s configure script, and that libconfig is built before bar. Also, pass --without-libconfig when
libconfig is not enabled.

Enable libconfig in your Buildroot configuration, and restart the build of bar. What happens?

It fails to build with messages like error: unknown type name ‘config_t’. Seems like the author of bar
messed up and forgot to include the appropriate header file. Let’s try to fix this: go to bar’s source code in
output/build/bar-1.0 and edit src/main.c. Right after the #if defined(USE_LIBCONFIG), add a #include
<libconfig.h>. Save, and restart the build of bar. Now it builds fine!

However, try to rebuild bar from scratch by doing make bar-dirclean all. The build problem happens
again. This is because doing a change directly in output/build/ might be good for doing a quick test, but
not for a permanent solution: everything in output/ is deleted when doing a make clean. So instead of
manually changing the package source code, we need to generate a proper patch for it.

There are multiple ways to create patches, but we’ll simply use Git to do so. As the bar project home page
indicates, a Git repository is available on GitHub at https://github.com/tpetazzoni/bar.

Start by cloning the Git repository:

git clone https://github.com/tpetazzoni/bar.git

Once the cloning is done, go inside the bar directory, and create a new branch named buildroot, which
starts the v1.0 tag (which matches the bar-1.0.tar.xz tarball we’re using):

git branch buildroot v1.0

© 2004-2026 Bootlin, CC BY-SA license 23

https://bootlin.com

Buildroot system development

Move to this newly created branch6:

git checkout buildroot

Do the #include <libconfig.h> change to src/main.c, and commit the result:

git commit -a -m "Fix missing <libconfig.h> include"

Generate the patch for the last commit (i.e. the one you just created):

git format-patch HEAD^

and copy the generated 0001-*.patch file to package/bar/ in the Buildroot sources.

Now, restart the build with make bar-dirclean all, it should built fully successfully!

You can even check that bar is linked against libconfig.so by doing:

./output/host/usr/bin/arm-linux-readelf -d output/target/usr/bin/bar

On the target, test bar. Then, create a file called bar.cfg in the current directory, with the following contents:

verbose = "yes"

And run bar again, and see what difference it makes.

Congratulations, you’ve finished packaging the most useless application in the world!

Preparing for the next lab
In preparation for the next lab, we need to do a clean full rebuild, so simply issue:

make clean all 2>&1 | tee build.log

6Yes, we can use git checkout -b to create the branch and move to it in one command

24 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Advanced aspects
Objectives:

• Use build time, dependency and filesystem size graphing capabilities

• Use licensing report generation, and add licensing information to your
own packages

• Use BR2_EXTERNAL

Build time graphing
When your embedded Linux system grows, its build time will also grow, so it is often interesting to understand
where the build time is spent.

Since we just did a fresh clean rebuild at the end of the previous lab, we can analyze the build time. The
raw data has been generated by Buildroot in output/build/build-time.log, which contains for each step of
each package the start time and end time (in seconds since Epoch).

Now, let’s get a better visualization of this raw data:

make graph-build

Note: you may need to install python-matplotlib and graphviz on your machine.

The graphs are generated in output/graphs:

• build.hist-build.pdf, build time of each package, by build order

• build.hist-duration.pdf, build time of each package, by build duration

• build.hist-name.pdf, build time of each package, by package name

• build.pie-packages.pdf, build time of each package, in proportion of the total build time

• build.pie-steps.pdf, build time of each step

Explore those graphs, see which packages and steps are taking the biggest amount of time.

Note that when you don’t do a clean rebuild, the build-time.log file gets appended and appended with
all the successful builds, making the resulting graphs unexploitable. So remember to always do a clean full
rebuild before looking at the build time graphs.

Dependency graphing
Another useful tool to analyze the build is graphing dependencies between packages. The dependency graph
is generated for your current configuration: depending on the Buildroot configuration, a given package may
have different dependencies.

To generate the full dependency graph, do:

make graph-depends

© 2004-2026 Bootlin, CC BY-SA license 25

https://bootlin.com

Buildroot system development

The graph is also generated in output/graphs, under the name graph-depends.pdf. On the graph, identify
the bar and ninvaders packages you have created, and look at their dependencies to see if they match your
expectations.

Now, let’s draw a graph for a much bigger system. To do this, create a completely separate Buildroot output
directory:

mkdir $HOME/buildroot-bbb-labs/buildroot-output-test-graph/
cd $HOME/buildroot-bbb-labs/buildroot-output-test-graph/

We’re going to create a Buildroot configuration, so create a file named .config and put the following contents:

BR2_TOOLCHAIN_BUILDROOT_GLIBC=y
BR2_TOOLCHAIN_BUILDROOT_CXX=y
BR2_PACKAGE_MESA3D=y
BR2_PACKAGE_MESA3D_GALLIUM_DRIVER_SWRAST=y
BR2_PACKAGE_MESA3D_OPENGL_EGL=y
BR2_PACKAGE_MESA3D_OPENGL_ES=y
BR2_PACKAGE_XORG7=y
BR2_PACKAGE_XSERVER_XORG_SERVER=y
BR2_PACKAGE_LIBGTK3=y
BR2_PACKAGE_WEBKITGTK=y

It represents a configuration that builds an internal toolchain, with a X.org graphic server, the Mesa3D
OpenGL implementation, the Gtk3 library, and the Webkit Web rendering engine. We’re not going to build
this configuration, as it would take quite a bit of time, but we will generate the dependency graph for it.

First, let’s run make menuconfig to expand this minimal configuration into a full configuration:

make -C $HOME/buildroot-bbb-labs/buildroot/ O=$(pwd) menuconfig

Feel free to explore the configuration at this stage. Now, let’s generate the dependency graph:

make graph-depends

Look at graphs/graph-depends.pdf and how complex it is. Now, let’s look at the dependencies of one specific
package, let’s say libgtk3:

make libgtk3-graph-depends

Now, open the graph generated at graphs/libgtk3-graph-depends.pdf. As you can see, it is a lot more
readable.

Such dependencies graphs are very useful to understand why a package is being built, and help identifying
what you could do to reduce the number of packages that are part of the build.

Filesystem size graphing
Run make graph-size and watch the PDF generated at output/graphs/graph-size.pdf. You can also look
at the CSV files generated in output/graphs/.

Licensing report
Go back to our original build directory, in $HOME/buildroot-bbb-labs/buildroot/.

As explained during the lectures, Buildroot has a built-in mechanism to generate a licensing report, describing
all the components part of the generated embedded Linux system, and their corresponding licenses.

Let’s generate this report for our system:

26 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

make legal-info

In the output, you can see some interesting messages:

WARNING: bar: cannot save license (BAR_LICENSE_FILES not defined)
WARNING: libfoo: cannot save license (LIBFOO_LICENSE_FILES not defined)
WARNING: ninvaders: cannot save license (NINVADERS_LICENSE_FILES not defined)

So, now update your ninvaders, libfoo and bar packages to include license information. Run again make
legal-info.

Now, explore output/legal-info, look at the .csv files, the .txt files, and the various directories. Buildroot
has gathered for you most of what is needed to help with licensing compliance.

Use BR2_EXTERNAL
We should have used BR2_EXTERNAL since the beginning of the training, but we were busy learning about so
many other things! So it’s finally time to use BR2_EXTERNAL.

The whole point of BR2_EXTERNAL is to allow storing your project-specific packages, configuration files, root
filesystem overlay or patches outside of the Buildroot tree itself. It makes it easier to separate the open-source
packages from the proprietary ones, and it makes updating Buildroot itself a lot simpler.

So, as recommended in the slides, the goal now is to use BR2_EXTERNAL to move away from the main Buildroot
tree the following elements:

• The bar and libfoo packages. We will keep the ninvaders package in the Buildroot tree, since it’s a
publicly available open-source package, so it should be submitted to the official Buildroot rather than
kept in a BR2_EXTERNAL tree.

• The Linux kernel patch and Linux kernel configuration file.

• The rootfs overlay

• The post-build script

• The defconfig

Your BR2_EXTERNAL tree should look like this:

+-- board/
| +-- bootlin/
| +-- beagleboneblack/
| +-- linux.config
| +-- post-build.sh
| +-- patches/
| +-- linux/
| +-- 0001-Add-nunchuk-driver.patch
| +-- 0002-Add-i2c1-and-nunchuk-nodes-in-dts.patch
| +-- rootfs-overlay/
| +-- etc
| +-- network
| +-- interfaces
| +-- init.d
| +-- S30usbgadget
+-- package/
| +-- bar
| +-- 0001-Fix-missing-libconfig.h-include.patch
| +-- bar.mk
| +-- Config.in
| +-- libfoo

© 2004-2026 Bootlin, CC BY-SA license 27

https://bootlin.com

Buildroot system development

| +-- libfoo.mk
| +-- Config.in
+-- configs
| +-- bootlin_defconfig
+-- Config.in
+-- external.desc
+-- external.mk

Now, do a full rebuild using your BR2_EXTERNAL tree, and check that your system builds and runs fine!

Going further
If you have some time left, let’s improve our setup to use genimage. This way, we will be able to generate
a complete SD card image, which we can flash on a SD card, without having to manually create partitions.
Follow those steps:

• Change the Buildroot configuration to generate an ext4 filesystem image

• Take example on board/stmicroelectronics/common/stm32mp157/genimage.cfg.template to create
your own board/bootlin/stm32mp1/genimage.cfg. Keep only the single Device Tree we need for our
project.

• Adjust the Buildroot configuration to use the support/scripts/genimage.sh script as a post-image
script, and pass -c board/bootlin/stm32mp1/genimage.cfg as post-image script arguments. Make
sure to enable BR2_PACKAGE_HOST_GENIMAGE.

28 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Application development with Build-
root
Objectives:

• Build and run your own application
• Remote debug your application
• Create a package for your application

Build and run your own application
Let’s create your own little application that we will use for demonstration in this lab. Create a folder
$HOME/buildroot-bbb-labs/myapp, and inside this folder a single C file called myapp.c with the following
contents:

#include <stdio.h>

int main(void) {
printf("Hello World\n");
return 0;

}

To build this application, we’ll use the cross-compiler generated by Buildroot. To make this easy, let’s add
the Buildroot host directory into our PATH:

export PATH=$HOME/buildroot-bbb-labs/buildroot/output/host/bin:$PATH

Now you can build your application easily:

arm-linux-gcc -o myapp myapp.c

Copy the myapp binary to your target using scp (we use the legacy SCP protocol, as we haven’t installed a
SFTP server, hence the -O option):

scp -O myapp root@192.168.42.2:

And run the myapp application on your target.

Now, let’s extend the application a little bit more to use a library, the libconfig library we’ve already used
in a previous lab. Change the source code of the application to the one provided in this lab data directory,
myapp.c.

If you try to build this application with just:

arm-linux-gcc -o myapp myapp.c

It fails to build because it does not link with libconfig. So you can manually do:

arm-linux-gcc -o myapp myapp.c -lconfig

© 2004-2026 Bootlin, CC BY-SA license 29

https://bootlin.com

Buildroot system development

Since libconfig.so is in output/staging/usr/lib and the compiler is configured to automatically look in
output/staging as its sysroot, it works fine.

However, there’s a better solution: using pkg-config. Buildroot has installed a special version of pkg-config
in output/host/bin, which you can query for libraries available for the target. Run:

pkg-config --list-all

And check you have libconfig mentionned. You can query the compiler and linker flags for libconfig:

pkg-config --cflags --libs libconfig

And use that to build your application:

arm-linux-gcc -o myapp myapp.c $(pkg-config --cflags --libs libconfig)

In the case of libconfig, it doesn’t simplify a lot because the compiler and linker flags are simple, but for
some other libraries, they are more complicated.

Copy the new version of myapp to your target, and run it. Create a myapp.cfg config file, and run your
application again.

Remote debug your application
Our application is simple and works, but what if you need to debug it? So let’s set up remote debugging.

The ARM toolchain is provided with a pre-compiled gdbserver, so we’ll simply use it. Enable the option
BR2_TOOLCHAIN_EXTERNAL_GDB_SERVER_COPY, and then force the re-installation of the toolchain using:

make toolchain-external-bootlin-reinstall

Reflash your system, or alternatively, just copy output/target/usr/bin/gdbserver to the target /usr/bin/
directory using scp.

To do some appropriate debugging, we need to have debugging symbols available. So we need to do two
things:

1. Rebuild our application with the -g flag.

2. Rebuild the Buildroot system with debugging symbols, so that shared libraries have debugging symbols.
However, since we don’t want to rebuild the entire Buildroot system now, we’ll use a trick and rebuild
only the library we need to have the debugging symbols for: libconfig. To achieve this, first go to
Buildroot menuconfig, and in Build options, enable build packages with debugging symbols. Then,
do make libconfig-dirclean all to force the rebuild of just libconfig.

Now, on your target, start gdbserver in multi-process mode, listening on TCP port 2345:

gdbserver --multi localhost:2345

Back on the host, run the cross-gdb with the myapp application as argument:

arm-linux-gdb myapp

We need to tell gdb where the libraries can be found:

(gdb) set sysroot output/staging

And then connect to the target:

(gdb) target extended-remote 192.168.42.2:2345

30 © 2004-2026 Bootlin, CC BY-SA license

https://bootlin.com

Buildroot system development

Define which program we want to run on the target:

(gdb) set remote exec-file myapp

Let’s put a breakpoint on the main function, and start the program:

(gdb) break main
(gdb) run

It stops on the first line of the main function, which is the call to config_init, implemented by the libconfig
library. If you do the gdb instruction step, gdb will step into the function, so you can follow what happens.
After having done step once, you can do backtrace to see that you are in the function config_init called
by main:

(gdb) backtrace
#0 config_init (config=0xbefffc3c) at libconfig.c:725
#1 0x000106f0 in main () at myapp.c:11

Note that if you want gdbserver to stop on the target, you need to run the gdb command monitor exit.

Create a package for your application
Building manually your own application is not desirable, we obviously want to create a Buildroot package
for it. A useful mechanism to package your own applications is to use the local site method, which tells
Buildroot that the source code of your application is available locally.

Create a new package called myapp in your BR2_EXTERNAL tree, and by using the local site method, make
it use directly the myapp source code from $HOME/buildroot-bbb-labs/myapp. Remember that you can use
$(TOPDIR) to reference the top-level directory of the Buildroot sources.

For now, directly call gcc in the build commands. Of course, if your application becomes more complicated,
you should start using a proper build system (Makefile, autotools, CMake, etc.).

When the package builds, you should see as the first step being done that the myapp source code gets rsynced
from $(HOME)/bootlin/myapp:

>>> myapp custom Syncing from source dir /home/thomas/bootlin/myapp

The build should now proceed to the end. Now, make a stupid but visible change to the source code in
myapp.c.

Restart the build of myapp using make myapp-rebuild, you will see that Buildroot automatically rsyncs again
the source code. Then scp the file output/target/usr/bin/myapp to 192.168.42.2:/usr/bin and run myapp
again on the target.

As you can see you can now develop your applications and libraries, using your normal version control system
and relying on Buildroot to do all the configure, build and install steps for you.

© 2004-2026 Bootlin, CC BY-SA license 31

https://bootlin.com

	About this document
	Copying this document
	Training setup
	Install lab data
	Update your distribution
	Install extra packages
	More guidelines

	Basic Buildroot usage
	Setup
	Download Buildroot
	Configuring Buildroot
	Building
	Prepare the BeagleBone Black Wireless
	Prepare the SD card
	Flash the system
	Boot the system
	Explore the build log

	Root filesystem construction
	Explore the build output
	Use a rootfs overlay to setup the network
	Init script for USB network setup
	IP address configuration

	Configure the network on your host
	Add dropbear as an SSH server
	Use a post-build script
	Patch the Linux kernel
	Connect the Wii Nunchuk
	Test the nunchuk
	Add and use evtest
	Generate a defconfig
	Testing a full rebuild

	New packages in Buildroot
	Preparation
	Minimal package
	Make it build!
	Handling dependencies
	Customizing CFLAGS
	Installing and testing the program
	Support the Nunchuk
	Adding a hash file
	Testing package removal
	Sanity checking your package

	Advanced packaging
	Start packaging application bar
	Packaging libfoo: initial packaging
	Improvements to libfoo packaging
	Finalize the packaging of bar
	bar packaging: libconfig dependency
	Preparing for the next lab

	Advanced aspects
	Build time graphing
	Dependency graphing
	Filesystem size graphing
	Licensing report
	Use BR2_EXTERNAL
	Going further

	Application development with Buildroot
	Build and run your own application
	Remote debug your application
	Create a package for your application

