Embedded Linux
development with
Buildroot training

Course duration
@ 3 days — 24 hours

Language

Materials English

Oral Lecture English

French

Trainer

One of the following engineers

= Thomas Petazzoni

Contact

@ training@bootlin.com
) +33 484 258 097

bootlin

boot1lin.com

Companies already using or interested in using Buildroot to build their
embedded Linux systems.

Training objectives

= Be able to understand the role and principle of an embedded Linux build system,
and compare Buildroot to other tools offering similar functionality.

= Be able to create a simple embedded Linux system with Buildroot: create a config-
uration, run the build, install the result on an embedded platform.

= Be able to adjust the Buildroot configuration to build an embedded Linux system
tailored to specific needs: choice of the cross-compilation toolchain, management
of the Linux kernel configuration, customization of the root filesystem contents, etc.

= Be able to create new packages in Buildroot to integrate additional applications
and libraries into the embedded Linux system.

= Be able to use the tools offered by Buildroot to manage and analyze the build:
security vulnerability tracking, license compliance, etc.

= Be able to develop and debug Linux user-space applications in the context of Buil-
droot.

= Be able to interact with the Buildroot open-source community, and to understand
the internals of Buildroot.

» Knowledge and practice of UNIX or GNU/Linux commands: participants must
be familiar with the Linux command line. Participants lacking experience on this
topic should get trained by themselves, for example with our freely available on-line
slides.

= Minimal experience in embedded Linux development: participants should have
a minimal understanding of the architecture of embedded Linux systems: role of
the Linux kernel vs. user-space, development of Linux user-space applications in C.
Following Bootlin's Embedded Linux course allows to fulfill this pre-requisite.

= Minimal English language level: B1, according to the Common European Frame-
work of References for Languages, for our sessions in English. See the CEFR grid
for self-evaluation.

Pedagogics

= Lectures delivered by the trainer: 40% of the duration

» Practical labs done by participants: 60% of the duration

= Electronic copies of presentations, lab instructions and data files. They are freely
available here.

Certificate

Only the participants who have attended all training sessions, and who have scored over
50% of correct answers at the final evaluation will receive a training certificate from
Bootlin.

Participants with disabilities who have special needs are invited to contact us at train-
ing@bootlin.com to discuss adaptations to the training course.

https://bootlin.com/blog/command-line/
https://bootlin.com/blog/command-line/
https://bootlin.com/training/embedded-linux/
https://bootlin.com/pub/training/cefr-grid.pdf
https://bootlin.com/doc/training/buildroot
mailto:training@bootlin.com
mailto:training@bootlin.com
https://bootlin.com/company/staff/thomas-petazzoni/
mailto:training@bootlin.com
https://bootlin.com

Required equipement

For on-site session delivered at our customer location, our customer must provide:

= Video projector

= One PC computer on each desk (for one or two persons) with at least 16 GB of RAM, and Ubuntu Linux 24.04 installed in
a free partition of at least 30 GB

= Distributions other than Ubuntu Linux 24.04 are not supported, and using Linux in a virtual machine is not supported.

= Unfiltered and fast connection to Internet: at least 50 Mbit/s of download bandwidth, and no filtering of web sites or
protocols.

= PC computers with valuable data must be backed up before being used in our sessions.

For on-site sessions organized at Bootlin premises, Bootlin provides all the necessary equipment.

Hardware platform for practical labs

STM32MP1 Discovery Kit

One of these Discovery Kits from STMi-
croelectronics: STM32MP157A-DK1,
STM32MP157D-DK1, STM32MP157C-
DK2 or STM32MP157F-DK2

= STM32MP157, dual Cortex-A7 processor

from STMicroelectronics

= USB powered

= 512 MB DDR3L RAM

= Gigabit Ethernet port

= 4 USB 2.0 host ports

= 1 USB-C OTG port

= 1 Micro SD slot

= On-board ST-LINK/V2-1 debugger

= Arduino compatible headers

» Audio codec, buttons, LEDs

= LCD touchscreen (DK2 kits only)

BeagleBone Black

BeagleBone Black or BeagleBone Black
Wireless board
= An ARM AM335x (single Cortex-A8) pro-
cessor from Texas Instruments
= USB powered
= 512 MB of RAM
= 2 or 4 GB of on-board eMMC storage
= USB host and device
= HDMI output
= 2 x 46 pins headers, to access UARTs, SPI
buses, 12C buses and more.
= Ethernet or WiFi

Training Schedule

Day 1 - Morning

Lecture

Embedded Linux and build system
introduction

The general architecture of an embedded Linux system
Build systems vs. binary distributions

Role of a build system

Comparison of existing build systems

Lecture

Introduction to Buildroot

Key facts about the project
Getting Buildroot

Basic configuration of Buildroot
Doing a first build

Lab

Basic Buildroot usage

Getting and setting up Buildroot

Configuring and building a basic system with Buildroot for an embed-
ded platform

Flash and test the generated system on the embedded platform

Lecture

Managing the build and configura-
tion

Out of tree build

Using and creating defconfigs
Defconfig fragments

Other building tips

Day 1 - Afternoon

Lecture

Buildroot source and build trees

Details about the Buildroot source code organization
Details about the Buildroot build tree

Lecture

Toolchains in Buildroot

The different choices for using toolchains in Buildroot

Overview of the toolchain options

Using existing binary toolchains, such as Bootlin toolchains, under-
standing multilib capabilities and integration of toolchains in Build-
root

Generating custom toolchains with Crosstool-NG, and re-use them as
external toolchains

Lecture

Managing the Linux kernel config-
uration

Loading, changing and saving the kernel configuration

Lecture

Root filesystem construction in
Buildroot

Understand how Buildroot builds the root filesystem: skeleton, instal-
lation of packages, overlays, post-build and post-image scripts.
Customization of the root filesystem contents

System configuration: console selection, various /dev management
methods, the different 1nit implementations, etc.

Understand how Buildroot generates filesystem images

Lab

Root filesystem customization

Explore the build output

Customize the root filesystem using a rootfs overlay

Customize the kernel with patches and additional configuration op-
tions

Add more packages

Use defcontig files and out of tree build

Day 2 - Morning

Lecture

Download infrastructure in Build-
root

Downloading logic

Primary site and backup site, doing offline builds
VCS download, integrity checking
Download-related make targets

Lecture GNU Make 101 Basics of make rules
Defining and referencing variables
Conditions, functions
Writing recipes

Lecture Integrating new packages in Buil- How to integrate new packages in the Buildroot configuration system

droot Understand the different package infrastructures: for generic, auto-

tools, CMake, Python packages and more.
Writing a package Config.in file: how to express dependencies on
other packages, on toolchain options, etc.
Details on writing a package recipe: describing the package source
code location, download method, configuration, build and installation
steps, handling dependencies, etc.

Lab New packages in Buildroot Create a new package for ninvaders
Understand how to add dependencies
Add patches to nlnvaders for Nunchuk support

Day 2 - Afternoon

Lecture Advanced package aspects Licensing report
Patching support: patch ordering and format, global patch directory,
etc.
User, permission, device tables
Init scripts and systemd unit files
Config scripts
Understanding hooks
Overriding commands
Legacy handling
Virtual packages

Lab Advanced packages Package an application with a mandatory dependency and an optional
dependency
Package a library, hosted on GitHub
Use hooks to tweak packages
Add a patch to a package

Day 3 - Morning

Lecture Analyzing the build: licensing, de- Usage of the legal information infrastructure

pendencies, build time Graphing dependencies of packages

Collecting and graphing build time information

Lecture Advanced topics BR2_EXTERNAL to store customizations outside of the Buildroot
sources
Package-specific targets
Understanding rebuilds
Tips for building faster

Lab Advanced aspects Use build time graphing capabilities

Use dependency graphing capabilities

Use licensing report generation, and add licensing information to your
own packages

Use BR2_EXTERNAL

Day 3 - Afternoon

Lecture

Application development with
Buildroot

Using Buildroot during application development

Usage of the Buildroot environment to build applications outside of
Buildroot

Generate an SDK for other developers

Remote debugging with Buildroot

Lab

Application development with
Buildroot

Build and run your own application
Remote debug your application
Use <pkg>_OVERRIDE_SRCDIR

Lecture

Understanding Buildroot internals

Detailed description of the Buildroot build process: toolchain, pack-
ages, root filesystem construction, stamp files, etc.
Understanding virtual packages.

Lecture

Getting support and contributing

Getting support: Bugzilla, mailing list, IRC
Contributing: understanding the development process, how to submit
patches

