
CakePHP Book
Versión 4.x

Cake Software Foundation

02 de noviembre de 2025

Índice general

1. CakePHP de un vistazo 1
Convenciones sobre configuración . 1
La capa Modelo . 1
La capa Vista . 2
La capa Controlador . 3
Ciclo de una petición CakePHP . 3
Esto es solo el comienzo . 5
Lecturas complementarias . 5

2. Guía de inicio rápido 13
Tutorial Bookmarker (Favoritos) . 13
Tutorial Bookmarker (Favoritos) - Parte 2 . 21

3. 4.0 Migration Guide 31

4. Tutoriales y Ejemplos 33
Tutorial Gestor de Contenidos . 33
Tutorial CMS - Creando la Base de Datos . 35
Tutorial Bookmarker (Favoritos) . 39
Tutorial Bookmarker (Favoritos) - Parte 2 . 47
Tutorial Blog . 55
Tutorial Blog - Parte 2 . 59
Tutorial Blog - Parte 3 . 69
Tutorial Blog - Autenticación y Autorización . 75

5. Contribuir 83
Documentación . 83
Tickets . 91
Código . 92
Estándares de codificación . 95
Guía de compatibilidad hacia atrás . 106

6. Instalación 109
Requisitos . 109

i

Licencia . 110
Instalando CakePHP . 110
Permisos . 111
Configuración . 112
Desarrollo . 112
Producción . 113
A rodar! . 113
URL Rewriting . 114

7. Configuration 119

8. Routing 121
Connecting Routes . 121

9. Request & Response Objects 123
Request . 123

10. Controladores 125
El App Controller . 126
Flujo de solicitud . 126
Acciones del controlador . 127
Interactuando con vistas . 128
Negociación del tipo de contenido . 130
Negociación de tipo de contenido alternativos . 131
Redirigiendo a otras páginas . 131
Cargando modelos adicionales . 132
Paginación de un modelo . 133
Configuración de componentes para cargar . 133
Callbacks del ciclo de vida de la petición . 133
Métodos de callback del controlador . 134
Middleware del controlador . 134
Más sobre controladores . 135

11. Vistas 153
Plantillas de vistas . 153
Layouts . 153
Elementos . 153
Más acerca de Vistas . 153

12. Acceso a la base de datos & ORM 163
Ejemplo rápido . 163
Más información . 165

13. Consola bake 183

14. Caching 185

15. Shells, Tasks & Console Tools 187
More Topics . 187

16. Depuración 191
Depuración Básica . 191
Usando La Clase Debugger . 192
Imprimiendo Valores . 192
Registros Con Trazas De Pila . 193
Generando seguimientos de pila . 194

ii

Obtener Un Extracto De Un Archivo . 194
Usando El Registro Para Depurar . 196
Kit De Depuración . 197

17. ES - Deployment 199

18. Email 201

19. Error & Exception Handling 203

20. Events System 205

21. Internationalization & Localization 207

22. Logging 209

23. Modelless Forms 211

24. Plugins 213

25. REST 215
La Configuración Simple . 215
Aceptando Entradas en otros formatos . 222
Enrutamiento RESTful . 222

26. Security 223
Security . 223
Cross Site Request Forgery . 224

27. Sessions 225

28. Testing 227
Running Tests . 227

29. Validation 229

30. La clase App 231
Búsqueda de clases . 231
Búsqueda de rutas al espacio de nombres . 233
Búsqueda de plugins . 234
Localización de temas (nota:”themes”) . 234
Cargar archivos externos (nota: “vendor”) . 234

31. Collections 237

32. Folder & File 239

33. Hash 241

34. Http Client 243

35. Inflector 245

36. Number 247

37. Registry Objects 249

38. Text 251

iii

39. Time 253

40. Xml 255

41. Constants & Functions 257

42. Debug Kit 259

43. Migrations 261

44. Apéndices 263
Guía de Migración a 4.x . 263
Información General . 263

PHP Namespace Index 271

Índice 273

iv

CAPÍTULO 1

CakePHP de un vistazo

CakePHP está diseñado para hacer tareas habituales de desarrollo web simples y fáciles. Proporciona una caja de herra-
mientas todo-en-uno y para que puedas empezar rápidamente, las diferentes partes de CakePHP trabajan correctamente
de manera conjunta o separada.

El objetivo de este artículo es introducirte en los conceptos generales de CakePHP y darte un rápido vistazo sobre
como esos conceptos están implementados en CakePHP. Si estás deseando comenzar un proyecto puedes empezar con
el tutorial, o profundizar en la documentación.

Convenciones sobre configuración

CakePHP proporciona una estructura organizativa básica que cubre los nombres de las clases, archivos, tablas de base
de datos y otras convenciones más. Aunque lleva algo de tiempo aprender las convenciones, siguiéndolas CakePHP
evitará que tengas que hacer configuraciones innecesarias y hará que la estructura de la aplicación sea uniforme y que
el trabajo con varios proyectos sea sencillo. El capítulo de convenciones muestra las que son utilizadas en CakePHP.

La capa Modelo

La capa Modelo representa la parte de tu aplicación que implementa la lógica de negocio. Es la responsable de obtener
datos y convertirlos en los conceptos que utiliza tu aplicación. Esto incluye procesar, validar, asociar u otras tareas
relacionadas con el manejo de datos.

En el caso de una red social la capa modelo se encargaría de tareas como guardar los datos del usuario, las asociacio-
nes de amigos, almacenar y obtener fotos, buscar sugerencias de amistad, etc. Los objetos modelo serían «Amigo»,
«Usuario», «Comentario» o «Foto». Si quisieramos obtener más datos de nuestra tabla usuarios podríamos hacer lo
siguiente:

1

CakePHP Book, Versión 4.x

use Cake\ORM\TableRegistry;

// Prior to 3.6 use TableRegistry::get('Usuarios')
$usuarios = TableRegistry::getTableLocator()->get('Usuarios');
$query = $usuarios->find();
foreach ($query as $row) {

echo $row->nombreusuario;
}

Como te habrás dado cuenta no hemos necesitado escribir ningún código previo para empezar a trabajar con nuestros
datos. Al utilizar las convenciones CakePHP usará clases estándar para tablas y clases de entidad que no hayan sido
definidas.

Si queremos crear un nuevo usuario y guardarlo (con validaciones) podríamos hacer algo como:

use Cake\ORM\TableRegistry;

// Prior to 3.6 use TableRegistry::get('Usuarios')
$usuarios = TableRegistry::getTableLocator()->get('Usuarios');
$usuario = $usuarios->newEntity(['email' => 'mark@example.com']);
$usuarios->save($usuario);

La capa Vista

La capa Vista renderiza una presentación de datos modelados. Separada de los objetos Modelo, es la responsable de
usar la información disponible para producir cualquier interfaz de presentación que pueda necesitar tu aplicación.

Por ejemplo, la vista podría usar datos del modelo para renderizar una plantilla HTML que los contenga o un resultado
en formato XML:

// En un archivo de plantilla de vista renderizaremos un 'element' para cada usuario.
<?php foreach ($usuarios as $usuario): ?>

<li class="usuario">
<?= $this->element('usuario', ['usuario' => $usuario]) ?>

<?php endforeach; ?>

La capa Vista proporciona varias extensiones como Plantillas de vistas, Elementos y View Cells que te permiten reuti-
lizar tu lógica de presentación.

Esta capa no se limita a representaciones HTML o texto de los datos. Puede utilizarse para otros formatos habituales
como JSON, XML y a través de una arquitectura modular, cualquier otro formato que puedas necesitar como CSV.

2 Capítulo 1. CakePHP de un vistazo

CakePHP Book, Versión 4.x

La capa Controlador

La capa Controlador maneja peticiones de usuarios. Es la responsable de elaborar una respuesta con la ayuda de las
capas Modelo y Vista.

Un controlador puede verse como un gestor que asegura que todos los recursos necesarios para completar una tarea
son delegados a los trabajadores oportunos. Espera por las peticiones de los clientes, comprueba la validez de acuerdo
con las reglas de autenticación y autorización, delega la búsqueda o procesado de datos al modelo, selecciona el tipo
de presentación que el cliente acepta y finalmente delega el proceso de renderizado a la capa Vista. Un ejemplo de
controlador para el registro de un usuario sería:

public function add()
{

$usuario = $this->Usuarios->newEntity();
if ($this->request->is('post')) {

$usuario = $this->Usuarios->patchEntity($usuario, $this->request->getData());
if ($this->Usuarios->save($usuario, ['validate' => 'registration'])) {

$this->Flash->success(__('Ahora estás registrado.'));
} else {

$this->Flash->error(__('Hubo algunos problemas.'));
}

}
$this->set('usuario', $usuario);

}

Puedes fijarte en que nunca renderizamos una vista explícitamente. Las convenciones de CakePHP se harán cargo de
seleccionar la vista correcta y de renderizarla con los datos que preparemos con set().

Ciclo de una petición CakePHP

Ahora que te has familiarizado con las diferentes capas en CakePHP, revisemos como funciona el ciclo de una petición:

El ciclo de petición típico de CakePHP comienza con un usuario solicitando una página o recurso en tu aplicación. A
un alto nivel cada petición sigue los siguientes pasos:

1. Las reglas de rescritura del servidor web envían la petición a webroot/index.php.

2. Tu aplicación es cargada y ligada a un HttpServer.

3. Se inicializa el midleware de tu aplicación.

4. Una petición y respuesta son precesadas a través del Middleware PSR-7 que tu aplicación utiliza. Normalmente
esto incluye la captura de errores y enrutamiento.

5. Si no recibe ninguna respuesta del middleware y la petición contiene información de enrutamiento, se selecciona
un controlador y una acción.

6. La acción del controlador es ejecutada y el controlador interactúa con los Modelos y Componentes necesarios.

7. El controlador delega la creación de la respuesta a la Vista para generar la salida a partir de los datos del modelo.

8. La vista utiliza Helpers y Cells para generar el cuerpo y las cabeceras de la respuesta.

9. La respuesta es devuelta a través del /controllers/middleware.

10. El HttpServer envía la respuesta al servidor web.

La capa Controlador 3

CakePHP Book, Versión 4.x

4 Capítulo 1. CakePHP de un vistazo

CakePHP Book, Versión 4.x

Esto es solo el comienzo

Ojalá este repaso rápido haya despertado tu curiosidad. Otras funcionalidades geniales de CakePHP son:

Un framework para caché que se integra con Memcached, Redis y otros métodos de caché.

Poderosas herramientas de generación de código para que puedas comenzar inmediatamente.

Framework para la ejecución de pruebas integrado para que puedas asegurarte de que tu código funciona per-
fectamente.

Los siguientes pasos obvios son descargar CakePHP y leer el tutorial y crear algo asombroso.

Lecturas complementarias

Donde obtener ayuda

La página oficial de CakePHP

https://cakephp.org

La página oficial de CakePHP es siempre un gran lugar para visitar. Proporciona enlaces a las herramientas más utili-
zadas por desarrolladores, screencasts, oportunidades para hacer una donación y descargas.

El Cookbook

https://book.cakephp.org

Este manual probablemente debería ser el primer lugar al que debas acudir para obtener respuestas. Como muchos otros
proyectos de código libre, nuevos colaborades se unen regularmente. Intenta encontrar por ti mismo las respuestas a
tus preguntas primero, puede que así tardes más en encontrar las respuestas pero permanecerán durante más tiempo -
y además aliviarás nuestra carga de soporte. Tanto el manual como la API tienen una versión online.

La Bakery

https://bakery.cakephp.org

La «panadería» (bakery) de CakePHP es un lugar de intercambio para todo lo relacionado con CakePHP. Consúltala
para tutoriales, casos de estudio y ejemplos de código. Cuando estés familiarizado con CakePHP, accede y comparte
tus conocimientos con la comunidad y gana fortuna y fama de forma instantánea.

La API

https://api.cakephp.org/

Directo al punto y directo para desarrolladores del núcleo de CakePHP, la API (Application Programming
Interface) es la documentación más completa para todos los detalles esenciales del funcionamiento interno del
framework. Es referencia directa al código, asi que trae tu sombrero de hélice.

Esto es solo el comienzo 5

https://cakephp.org
https://book.cakephp.org
https://bakery.cakephp.org
https://api.cakephp.org/

CakePHP Book, Versión 4.x

Los casos de prueba

Si crees que la información proporcionada en la API no es suficiente, comprueba el código de los casos de prueba
proporcionados con CakePHP. Pueden servirte como ejemplos prácticos de funciones y datos de una clase.

tests/TestCase/

El canal IRC

Canales IRC en irc.freenode.net:

#cakephp – Discusión general

#cakephp-docs – Documentación

#cakephp-bakery – Bakery

#cakephp-fr – Canal francés.

Si estás atascado, péganos un grito en el canal IRC de CakePHP. Alguién del equipo de desarrollo4 está normalmen-
te, especialmente durante las horas de día para usuarios de América del Norte y del Sur. Estaremos encantados de
escucharte, tanto si necesitas ayuda como si quieres encontrar usuarios en tu zona o si quieres donar tu nuevo coche
deportivo de marca.

Foro oficial de CakePHP

Foro oficial de CakePHP5

Nuestro foro oficial donde puedes pedir ayuda, sugerir ideas y conversar sobre CakePHP. Es un lugar perfecto para
encontrar rápidamente respuestas y ayudar a otros. Únete a la familia CakePHP registrándote.

Stackoverflow

https://stackoverflow.com/6

Etiqueta tus preguntas con cakephp y la versión específica que utilizas para permitir encontrar a los usuarios de stac-
koverflow tus preguntas.

Donde encontrar ayuda en tu idioma

Portugúes de Brasil

Comunidad brasileña de CakePHP7

4 https://cakephp.org/team
5 https://discourse.cakephp.org
6 https://stackoverflow.com/questions/tagged/cakephp/
7 https://cakephp-br.org

6 Capítulo 1. CakePHP de un vistazo

irc://irc.freenode.net/cakephp
irc://irc.freenode.net/cakephp-docs
irc://irc.freenode.net/cakephp-bakery
irc://irc.freenode.net/cakephp-fr
https://cakephp.org/team
https://discourse.cakephp.org
https://stackoverflow.com/questions/tagged/cakephp/
https://cakephp-br.org

CakePHP Book, Versión 4.x

Danés

Canal danés de CakePHP en Slack8

Francés

Comunidad francesa de CakePHP9

Alemán

Canal alemán de CakePHP en Slack10

Grupo alemán de CakePHP en Facebook11

Iraní

Comunidad iraní de CakePHP12

Holandés

Canal holandés de CakePHP en Slack13

Japonés

Canal japonés de CakePHP en Slack14

Grupo japonés de CakePHP en Facebook15

Portugués

Grupo portugés de CakePHP en Google16

8 https://cakesf.slack.com/messages/denmark/
9 https://cakephp-fr.org

10 https://cakesf.slack.com/messages/german/
11 https://www.facebook.com/groups/146324018754907/
12 https://cakephp.ir
13 https://cakesf.slack.com/messages/netherlands/
14 https://cakesf.slack.com/messages/japanese/
15 https://www.facebook.com/groups/304490963004377/
16 https://groups.google.com/group/cakephp-pt

Lecturas complementarias 7

https://cakesf.slack.com/messages/denmark/
https://cakephp-fr.org
https://cakesf.slack.com/messages/german/
https://www.facebook.com/groups/146324018754907/
https://cakephp.ir
https://cakesf.slack.com/messages/netherlands/
https://cakesf.slack.com/messages/japanese/
https://www.facebook.com/groups/304490963004377/
https://groups.google.com/group/cakephp-pt

CakePHP Book, Versión 4.x

Español

Canal español de CakePHP en Slack17

Canal IRC de CakePHP en español

Grupo español de CakePHP en Google18

Convenciones CakePHP

Somos muy fans de la convención por encima de la configuración. A pesar de que toma algo de tiempo aprender las
convenciones de CakePHP, ahorrarás tiempo a la larga. Siguiendo las convenciones obtendrás funcionalidades gratuitas
y te liberarás de la pesadilla de mantener archivos de configuración. Las convenciones también hacen que el desarrollo
sea uniforme, permitiendo a otros desarrolladores intervenir y ayudar facilmente.

Convenciones de Controlador

Los nombres de las clases Controlador son en plurar, en formato CamelCase, y finalizan con Controller. Ejemplos
de nombres son: UsuariosController y CategoriasArticulosController.

Los métodos publicos de los Controladores a menudo se exponen como “acciones” accesibles a través de un navegador
web. Por ejemplo, /users/view mapea al método view() de UsersController sin tener que hacer nada en el
enrutamiento de la aplicación. Los métodos protegidos o privados no son accesibles con el enrutamiento.

Consideraciones URL para los nombres de Controladores

Como acabas de ver, los controladores de una sola palabra mapean a una dirección URL en minúscula. Por ejem-
plo: a UsuariosController (que debería estar definido en UsuariosController.php) se puede acceder desde http:
//example.com/usuarios.

Aunque puedes enrutar controladores de múltiples palabaras de la forma que desees, la convención es que tus
URLs separen las palabras con guiones utilizando la clase DashedRoute, de este modo /categorias-articulos/
ver-todas es la forma correcta para acceder a la acción CategoriasArticulosController::verTodas().

Cuando creas enlaces utilizando this->Html->link() puedes utilizar las siguientes convenciones para el array url:

$this->Html->link('titulo-enlace', [
'prefix' => 'MiPrefijo' // CamelCase
'plugin' => 'MiPlugin', // CamelCase
'controller' => 'NombreControlador', // CamelCase
'action' => 'nombreAccion' // camelBack

]

Para más información sobre URLs de CakePHP y el manejo de sus parámetros puedes consultar Connecting Routes.
17 https://cakesf.slack.com/messages/spanish/
18 https://groups.google.com/group/cakephp-esp

8 Capítulo 1. CakePHP de un vistazo

https://cakesf.slack.com/messages/spanish/
irc://irc.freenode.net/cakephp-es
https://groups.google.com/group/cakephp-esp
http://example.com/usuarios
http://example.com/usuarios

CakePHP Book, Versión 4.x

Convenciones de nombre de clase y archivo

En general los nombres de los archivos coinciden con los nombres de las clases y siguen los estándares PSR-0 o PSR-4
para cargarse automáticamente. Los siguientes son ejemplos de nombres de clases y de sus archivos:

La clase Controlador LatestArticlesController debería estar en un archivo llamado LatestArticlesCon-
troller.php

La clase Componente MyHandyComponent debería estar en un archivo llamado MyHandyComponent.php

La clase Tabla OptionValuesTable debería estar en un archivo llamado OptionValuesTable.php.

La clase Entidad OptionValue debería estar en un archivo llamado OptionValue.php.

La clase Behavior EspeciallyFunkableBehavior debería estar en un archivo llamado EspeciallyFunkable-
Behavior.php

La clase Vista SuperSimpleView debería estar en un archivo llamado SuperSimpleView.php

La clase Helper BestEverHelper debería estar en un archivo llamado BestEverHelper.php

Cada archivo deberá estar ubicado en la carpeta/namespace correcta dentro de tu carpeta de tu aplicación.

Convenciones de Modelo y Base de datos

Los nombres de las clases table son en plural, CamelCase y terminan en Table. Algunos ejemplos de convención
de nombres son: UsersTable, ArticleCategoriesTable y UserFavoritePagesTable.

Los nombres de las tablas correspondientes a los modelos de CakePHP son en plural y con “_”. Los nombres de las
tablas para los modelos arriba mencionados serían users, article_categories y user_favorite_pages respec-
tivamente.

La convención es utilizar palabras en inglés para los nombres de las tablas y de las columnas. Si utilizas otro idioma
CakePHP puede que no sea capaz de procesar correctamente las conversiones (de singular a plural y viceversa). Si
necesitas añadir reglas para tu idioma para algunas palabras, puedes utilizar la clase Cake\Utility\Inflector.
Además de definir tus reglas de conversión personalizadas, esta clase te permite comprobar que CakePHP comprenda tu
sintaxis personalizada para palabras en plural y singular. Mira la documentación sobre Inflector para más información.

Los nombres de campos con dos o más palabras se escriben con “_”, por ejemplo: first_name.

Las claves foráneas en relaciones 1-n (hasMany) y 1-1 (belongsTo/hasOne) son reconocidas por defecto median-
te el nombre (en singular) de la tabla relacionada seguido de _id. De este modo si Users tiene varios Articles
(relación hasMany), la tabla articles se relacionará con la tabla users a través de la clave foránea user_id.
Para una tabla como article_categories cuyo nombre está formado por varias palabras, la clave foránea sería
article_category_id.

Las tablas de unión, usadas en las relaciones n-n (BelongsToMany) entre modelos, deberían ser nombradas después
de las tablas que unirán y en orden alfabético (articles_tags en lugar de tags_articles).

Además de utilizar claves auto-incrementales como claves primarias, también puedes utilizar columnas UUID. Ca-
kePHP creará un único UUID de 36 caracteres (Cake\Utility\Text::uuid()) cada vez que guardes un nuevo
registro usando el método Table::save() .

Lecturas complementarias 9

CakePHP Book, Versión 4.x

Convenciones de Vistas

Los archivos de las plantillas de vistas son nombrados según las funciones de controlador que las muestran empleando
“_”. La función viewAll() de la clase ArticlesController mostrará la vista templates/Articles/view_all.php.

El patrón base es templates/Controller/nombre_funcion.php.

Nombrando los elementos de tu aplicación empleando las convenciones de CakePHP ganarás funcionalidad sin los
fastidios y ataduras de mantenimiento de la configuración.

Un último ejemplo que enlaza todas las convenciones:

Tabla de base de datos: «articles»

Clase Tabla: ArticlesTable, ubicada en src/Model/Table/ArticlesTable.php

Clase Entidad: Article, ubicada en src/Model/Entity/Article.php

Clase Controlador: ArticlesController, ubicada en src/Controller/ArticlesController.php

Plantilla vista, ubicada en templates/Articles/index.php

Usando estas convenciones CakePHP redirige una petición a http://example.com/articles/ a una llamada a la función
index() de la clase ArticlesController, donde el modelo Article está disponible automáticamente (y enlazada, au-
tomáticamente también, a la tabla articles en la base de datos) y renderiza un archivo. Ninguna de estas relaciones
han sido configuradas de ningún modo salvo creando clases y archivos que has tenido que crear de todas formas.

Ahora que te has introducido en los fundamentos de CakePHP. puedes tratar de realizar el tutorial Tutorial Bookmarker
(Favoritos) para ver como las cosas encajan juntas.

CakePHP Folder Structure

Después de haber descargado y extraido la aplicación CakePHP, estos son los archivos y directorios que podrás ver:

bin

config

logs

plugins

src

tests

tmp

vendor

webroot

.htaccess

composer.json

index.php

README.md

Notarás unos cuantos directorios de primer nivel:

La carpeta bin contiene los ejecutables por consola de Cake.

La carpeta config contiene los documentos de Configuration que utiliza CakePHP. Detalles de la conexión a la
Base de Datos, bootstrapping, arhivos de configuración del core y otros, serán almacenados aquí.

10 Capítulo 1. CakePHP de un vistazo

http://example.com/articles/

CakePHP Book, Versión 4.x

La carpeta plugins es donde se almacenan los Plugins que utiliza tu aplicación.

La carpeta de logs contiene normalmente tus archivos de log, dependiendo de tu configuración de log.

La carpeta src será donde tu crearás tu mágia: es donde se almacenarán los archivos de tu aplicación.

La carpeta tests será donde pondrás los test para tu aplicación.

La carpeta tmp es donde CakePHP almacenará temporalmente la información. La información actual que alma-
cenará dependerá de cómo se configure CakePHP, pero esta carpeta es normalmente utilizada para almacenar
descripciones de modelos y a veces información de sesión.

La carpeta vendor es donde CakePHP y otras dependencias de la aplicación serán instaladas. Comprométete a
no editar los archivos de esta carpeta. No podremos ayudarte si modificas el core.

El directorio webroot es la raíz de los documentos públicos de tu aplicación. Contiene todos los archivos que
quieres que sean accesibles públicamente.

Asegúrate de que las carpetas tmp y logs existen y permiten escritura, en caso contrario el rendimiento de tu aplicación
se verá gravemente perjudicado. En modo debug, CakePHP te avisará si este no es el caso.

La carpeta src

La carpeta src de CakePHP es donde tú harás la mayor parte del desarrollo de tu aplicación. Observemos más deteni-
damente dentro de la carpeta src.

Console
Contiene los comandos de consola y las tareas de consola de tu aplicación. Para más información mirar Shells,
Tasks & Console Tools.

Controller
Contiene los controladores de tu aplicación y sus componentes.

Locale
Almacena los ficheros de string para la internacionalización.

Model
Contiene las tablas, entidades y funcionamiento de tu aplicación.

View
Las clases de presentación se ubican aquí: cells, helpers y templates.

Template
Los archivos de presentación se almacenan aquí: elementos, páginas de error, layouts, y templates.

Lecturas complementarias 11

CakePHP Book, Versión 4.x

12 Capítulo 1. CakePHP de un vistazo

CAPÍTULO 2

Guía de inicio rápido

La mejor forma de experimentar y aprender CakePHP es sentarse y construir algo.

Para empezar crearemos una sencilla aplicación para guardar favoritos.

Tutorial Bookmarker (Favoritos)

Este tutorial te guiará en la creación de una aplicación sencilla para el guardado de favoritos (Bookmaker).

Para comenzar instalaremos CakePHP creando nuestra base de datos y utilizaremos las herramientas que CakePHP
provee para realizar nuestra aplicación rápidamente.

Esto es lo que necesitarás:

1. Un servidor de base de datos. Nosotros utilizaremos MySQL en este tutorial. Necesitarás tener los conocimientos
suficientes de SQL para crear una base de datos; CakePHP tomará las riendas desde ahí. Al utilizar MySQL
asegúrate de que tienes habilitado pdo_mysql en PHP.

2. Conocimientos básicos de PHP.

Antes de empezar deberías de asegurarte de que tienes actualizada la versión de PHP:

php -v

Deberías tener instalado PHP 7.4 (CLI) o superior. La versión PHP de tu servidor web deberá ser 7.4 o superior y lo
ideal es que coincida con la versión de la interfaz de línea de comandos (CLI) de PHP. Si quieres ver la aplicación ya
finalizada puedes consultar cakephp/bookmarker19.

Empecemos!
19 https://github.com/cakephp/bookmarker-tutorial

13

https://github.com/cakephp/bookmarker-tutorial

CakePHP Book, Versión 4.x

Instalar CakePHP

La forma más sencilla de instalar CakePHP es utilizando Composer, una manera sencilla de instalar CakePHP desde
tu terminal o prompt de línea de comandos.

Primero necesitarás descargar e instalar Composer si aún no lo tienes. Si ya tienes instalado cURL es tan sencillo como
ejecutar:

curl -s https://getcomposer.org/installer | php

O puedes descargar composer.phar desde la Página web de Composer20.

Después sencillamente escribe la siguiente línea en tu terminal desde tu directorio de instalación para instalar el esque-
leto de la aplicación CakePHP en el directorio bookmarker:

php composer.phar create-project --prefer-dist cakephp/app:4.* bookmarker

Si descargaste y ejecutaste el Instalador Windows de Composer21, entonces escribe la siguiente línea en tu terminal
desde tu directorio de instalación (ie. C:\wamp\www\dev\cakephp3):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* bookmarker

La ventaja de utilizar Composer es que automáticamente realizará algunas tareas importantes como configurar correc-
tamente el archivo de permisos y crear tu archivo config/app.php.

Hay otras formas de instalar CakePHP. Si no puedes o no quieres utilizar Composer comprueba la sección Instalación.

Sin importar como hayas descargado e instalado CakePHP, una vez hayas finalizado, tu directorio de instalación debería
ser algo como:

/bookmarker
/bin
/config
/logs
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer.json
index.php
phpunit.xml.dist
README.md

Ahora podría ser un buen momento para que aprendas un poco sobre como funciona la estructura de directorios de
CakePHP: CakePHP Folder Structure.

20 https://getcomposer.org/download/
21 https://getcomposer.org/Composer-Setup.exe

14 Capítulo 2. Guía de inicio rápido

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe

CakePHP Book, Versión 4.x

Comprobar la instalación

Podemos comprobar rápidamente que nuestra instalación ha sido correcta accediendo a la página principal que se crea
por defecto.

Pero antes necesitarás inicializar el servidor de desarrollo:

bin/cake server

Nota: Para Windows introduce el comando bin\cake server (fíjate en la \).

Esto arrancará el servidor integrado en el puerto 8765. Accede a http://localhost:8765 a través de tu navegador para ver
la página de bienvenida. Todos los items deberán estar marcados como correctos para que CakePHP pueda conectarse
a tu base de datos. Si no, puede que necesites instalar extensiones adicionales de PHP, o dar permisos de directorio.

Crear la base de datos

Continuamos, creemos ahora la base de datos para nuestra aplicación de favoritos.

Si aún no lo has hecho, crea una base de datos vacía para usar en este tutorial con el nombre que tu quieras, e.g.
cake_bookmarks.

Puedes ejecutar la siguiente sentencia SQL para crear las tablas necesarias:

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE bookmarks (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(50),
description TEXT,
url TEXT,
created DATETIME,
modified DATETIME,
FOREIGN KEY user_key (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(255),
created DATETIME,
modified DATETIME,
UNIQUE KEY (title)

);

CREATE TABLE bookmarks_tags (
bookmark_id INT NOT NULL,

(continué en la próxima página)

Tutorial Bookmarker (Favoritos) 15

CakePHP Book, Versión 4.x

(proviene de la página anterior)

tag_id INT NOT NULL,
PRIMARY KEY (bookmark_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY bookmark_key(bookmark_id) REFERENCES bookmarks(id)

);

Puedes ver que la tabla bookmarks_tags utiliza una clave primaria compuesta. CakePHP soporta claves primarias
compuestas en casi cualquier lado, haciendo más fácil construir aplicaciones multi-anidadas.

Los nombres de las tablas y columnas que hemos utilizado no son aleatorios. Utilizando las convenciones de nombres
podemos hacer mejor uso de CakePHP y evitar tener que configurar el framework.

CakePHP es lo suficientemente flexible para acomodarse incluso a esquemas inconsistentes de bases de datos hereda-
dos, pero siguiendo las convenciones ahorrarás tiempo.

Configuración de la base de datos

Siguiente, indiquémosle a CakePHP donde está nuestra base de datos y como conectarse a ella. Para la mayoría de las
veces esta será la primera y última vez que necesitarás configurar algo.

La configuración debería ser bastante sencilla: sólo cambia los valores del array Datasources.default en el archivo
config/app.php por aquellos que apliquen a tu instalación. Un ejemplo de array de configuración completado puede
lucir así:

return [
// More configuration above.
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_bookmarks',
'encoding' => 'utf8',
'timezone' => 'UTC',
'cacheMetadata' => true,

],
],
// More configuration below.

];

Una vez hayas guardado tu archivo config/app.php deberías ver que la sección “CakePHP is able to connect to the
database” tiene un chechmark de correcto.

Nota: Puedes encontrar una copia de la configuración por defecto de CakePHP en config/app.default.php.

16 Capítulo 2. Guía de inicio rápido

CakePHP Book, Versión 4.x

Crear el esqueleto del código

Gracias a que nuestra base de datos sigue las convenciones de CakePHP podemos utilizar la consola de bake de la
aplicación para crear rápidamente una aplicación básica.

En tu línea de comandos ejecuta las siguientes instrucciones:

// En Windows necesitarás utilizar bin\cake.
bin/cake bake all users
bin/cake bake all bookmarks
bin/cake bake all tags

Esto creará los controladores, modelos, vistas, sus correspondientes casos de prueba y accesorios para nuestros recursos
de users, bookmarks y tags.

Si detuviste tu servidor reinícialo.

Vete a http://localhost:8765/bookmarks, deberías poder ver una básica pero funcional aplicación provista de acceso
a las tablas de tu base de datos.

Una vez estés en la lista de bookmarks añade unos cuantos usuarios (users), favoritos (bookmarks) y etiquetas (tags)

Nota: Si ves una página de error Not Found (404) comprueba que el módulo de Apache mod_rewrite está cargado.

Añadir encriptación (hashing) a la contraseña

Cuando creaste tus usuarios (visitando http://localhost:8765/users) probablemente te darías cuenta de que las con-
traseñas (password) se almacenaron en texto plano. Algo muy malo desde un punto de vista de seguridad, así que
arreglémoslo.

Éste es también un buen momento para hablar de la capa de modelo en CakePHP.

En CakePHP separamos los métodos que operan con una colección de objetos y los que lo hacen con un único objeto
en diferentes clases.

Los métodos que operan con una coleccion de entidades van en la clase Table, mientras que los que lo hacen con una
sola van en la clase Entity.

Por ejemplo: el encriptado de una contraseña se hace en un registro individual, por lo que implementaremos este
comportamiento en el objeto Entity.

Ya que lo que queremos es encriptar la contraseña cada vez que la introduzcamos en la base de datos utilizaremos un
método mutador/setter.

CakePHP utilizará la convención para métodos setter cada vez que una propiedad se introducida en una de tus entidades.

Añadamos un setter para la contraseña añadiendo el siguiente código en src/Model/Entity/User.php:

namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher; //include this line
use Cake\ORM\Entity;

class User extends Entity
{

// Code from bake.
(continué en la próxima página)

Tutorial Bookmarker (Favoritos) 17

CakePHP Book, Versión 4.x

(proviene de la página anterior)

protected function _setPassword($value)
{

$hasher = new DefaultPasswordHasher();

return $hasher->hash($value);
}

}

Ahora actualiza uno de los usuarios que creaste antes, si cambias su contraseña deberías ver una contraseña encriptada
en vez del valor original en la lista de usuarios o en su página de View.

CakePHP encripta contraseñas con bcrypt22 por defecto. Puedes usar también sha1 o md5 si estás trabajando con bases
de datos ya existentes.

Nota: Si la contraseña no se ha encriptado asegúrate de que has usado el mismo estilo de escritura que el del atributo
password de la clase cuando nombraste la función setter.

Obtener bookmarks con un tag específico

Ahora que estamos almacenando contraseñas con seguridad podemos añadir alguna funcionalidad interesante a nuestra
aplicación.

Cuando acumulas una colección de favoritos es útil poder buscarlos a través de etiquetas.

Implementemos una ruta, una acción de controlador y un método finder para buscar bookmarks mediante etiquetas.

Idealmente tendríamos una URL como http://localhost:8765/bookmarks/tagged/funny/cat/gifs que nos permitiría
encontrar todos los bookmarks que tienen las etiquetas “funny”, “cat” o “gifs”.

Antes de que podamos implementarlo añadiremos una nueva ruta.

Modifica tu config/routes.php para que se vea como ésto:

<?php
use Cake\Routing\Route\DashedRoute;
use Cake\Routing\Router;

Router::defaultRouteClass(DashedRoute::class);

// Nueva ruta que añadimos para nuestra acción tagged
// The trailing `*` tells CakePHP that this action has
// passed parameters.
Router::scope(

'/bookmarks',
['controller' => 'Bookmarks'],
function ($routes) {

$routes->connect('/tagged/*', ['action' => 'tags']);
}

);

(continué en la próxima página)

22 https://codahale.com/how-to-safely-store-a-password/

18 Capítulo 2. Guía de inicio rápido

https://codahale.com/how-to-safely-store-a-password/

CakePHP Book, Versión 4.x

(proviene de la página anterior)

Router::scope('/', function ($routes) {
// Connect the default home and /pages/* routes.
$routes->connect('/', [

'controller' => 'Pages',
'action' => 'display', 'home'

]);
$routes->connect('/pages/*', [

'controller' => 'Pages',
'action' => 'display'

]);

// Connect the conventions based default routes.
$routes->fallbacks();

});

Lo cual define una nueva “ruta” que conecta el path /bookmarks/tagged/ a BookmarksController::tags().

Con la definición de rutas puedes separar como se ven tus URLs de como se implementan. Si visitamos
http://localhost:8765/bookmarks/tagged, podremos ver una página de error bastante útil de CakePHP informando
que no existe la acción del controlador.

Implementemos ahora ese método.

En src/Controller/BookmarksController.php añade:

public function tags()
{

// The 'pass' key is provided by CakePHP and contains all
// the passed URL path segments in the request.
$tags = $this->request->getParam('pass');

// Use the BookmarksTable to find tagged bookmarks.
$bookmarks = $this->Bookmarks->find('tagged', [

'tags' => $tags
]);

// Pass variables into the view template context.
$this->set([

'bookmarks' => $bookmarks,
'tags' => $tags

]);
}

Para acceder a otras partes del request consulta Request.

Tutorial Bookmarker (Favoritos) 19

CakePHP Book, Versión 4.x

Crear el método finder

En CakePHP nos gusta mantener las acciones de los controladores sencillas y poner la mayoría de la lógica de la
aplicación en los modelos. Si visitas ahora la URL /bookmarks/tagged verás un error de que el método findTagged()
no ha sido implementado todavía, asi que hagámoslo.

En src/Model/Table/BookmarksTable.php añade lo siguiente:

// El argumento $query es una instancia de query.
// El array $options contendrá las opciones de 'tags' que pasemos
// para encontrar'tagged') en nuestra acción del controlador.
public function findTagged(Query $query, array $options)
{

$bookmarks = $this->find()
->select(['id', 'url', 'title', 'description']);

if (empty($options['tags'])) {
$bookmarks

->leftJoinWith('Tags')
->where(['Tags.title IS' => null]);

} else {
$bookmarks

->innerJoinWith('Tags')
->where(['Tags.title IN ' => $options['tags']]);

}

return $bookmarks->group(['Bookmarks.id']);
}

Acabamos de implementar un método finder personalizado.

Esto es un concepto muy poderoso en CakePHP que te permite empaquetar queries re-utilizables.

Los métodos finder siempre reciben un objeto Query Builder y un array de opciones como parámetros. Estos métodos
pueden manipular la query y añadir cualquier condición o criterio requerido; cuando se completan devuelven un objeto
query modificado.

En nuestro método finder sacamos provecho de los métodos distinct() y matching() que nos permiten encontrar
distintos (“distincts”) bookmarks que tienen un tag coincidente (matching). El método matching() acepta una fun-
ción anónima23 que recibe un generador de consultas. Dentro del callback usaremos este generador para definir las
condiciones que filtrarán bookmarks que tienen las etiquetas (tags) especificadas.

Crear la vista

Ahora si visitas la URL /bookmarks/tagged, CakePHP mostrará un error advirtiéndote de que no has creado un archivo
de vista.

Siguiente paso, creemos un archivo de vista para nuestro método tags().

En templates/Bookmarks/tags.php añade el siguiente código:

<h1>
Bookmarks tagged with
<?= $this->Text->toList(h($tags)) ?>

(continué en la próxima página)

23 https://php.net/manual/es/functions.anonymous.php

20 Capítulo 2. Guía de inicio rápido

https://php.net/manual/es/functions.anonymous.php
https://php.net/manual/es/functions.anonymous.php

CakePHP Book, Versión 4.x

(proviene de la página anterior)

</h1>

<section>
<?php foreach ($bookmarks as $bookmark): ?>

<article>
<!-- Use the HtmlHelper to create a link -->
<h4><?= $this->Html->link($bookmark->title, $bookmark->url) ?></h4>
<small><?= h($bookmark->url) ?></small>

<!-- Use the TextHelper to format text -->
<?= $this->Text->autoParagraph(h($bookmark->description)) ?>

</article>
<?php endforeach; ?>
</section>

En el código de arriba utilizamos los helpers HtmlHelper y TextHelper para que asistan en la generación de nuestra
salida de la vista.

También utilizamos la función de atajo h() para salidas de código HTML. Deberías acordarte siempre de utilizar h()
cuando muestres datos del usuario para evitar problemas de inyección HTML.

El archivo tags.php que acabamos de crear sigue las convenciones de CakePHP para archivos de vistas. La convención
es que el nombre del archivo sea una versión en minúsculas y subrayados del nombre de la acción del controlador.

Puedes observar que hemos podido usar las variables $tags y $bookmarks en nuestra vista.

Cuando utilizamos el método set() en nuestro controlador especificamos variables para enviarlas a la vista. Ésta hará
disponibles todas las variables que se le pasen como variables locales.

Ahora deberías poder visitar la URL /bookmarks/tagged/funny y ver todos los favoritos etiquetados con “funny”.

Hasta aquí hemos creado una aplicación básica para manejar favoritos (bookmarks), etiquetas (tags) y usuarios (users).
Sin embargo todo el mundo puede ver las etiquetas de los demás. En el siguiente capítulo implementaremos autentica-
ción y restringiremos el uso de etiquetas únicamente a aquellas que pertenezcan al usuario actual.

Ahora ve a Tutorial Bookmarker (Favoritos) - Parte 2 para continuar construyendo tu apliación o sumérgete en la
documentación para aprender más sobre que puede hacer CakePHP por ti.

Tutorial Bookmarker (Favoritos) - Parte 2

Tras realizar la primera parte de este tutorial deberías tener una aplicación muy básica para guardar favoritos.

En este capítulo añadiremos la autenticación y restringiremos los favoritos (bookmarks) para que cada usuario pueda
consultar o modificar solamente los suyos.

Tutorial Bookmarker (Favoritos) - Parte 2 21

CakePHP Book, Versión 4.x

Añadir login

En CakePHP, la autenticación se maneja mediante Componentes.

Los componentes pueden verse como una forma de crear trozos reutilizables de código de controlador para una finalidad
o idea. Además pueden engancharse al evento de ciclo de vida de los controladores e interactuar con tu aplicación de
ese modo.

Para empezar añadiremos el componente AuthComponent a nuestra aplicación.

Como queremos que todos nuestros métodos requieran de autenticación añadimos AuthComponent en AppController
del siguiente modo:

// En src/Controller/AppController.php
namespace App\Controller;

use Cake\Controller\Controller;

class AppController extends Controller
{

public function initialize()
{

$this->loadComponent('Flash');
$this->loadComponent('Auth', [

'authenticate' => [
'Form' => [

'fields' => [
'username' => 'email',
'password' => 'password'

]
]

],
'loginAction' => [

'controller' => 'Users',
'action' => 'login'

],
'unauthorizedRedirect' => $this->referer() // Si no está autorizado,

//el usuario regresa a la página que estaba
]);

// Permite ejecutar la acción display para que nuestros controladores de páginas
// sigan funcionando.
$this->Auth->allow(['display']);

}
}

Acabamos de decirle a CakePHP que queremos cargar los compomentes Flash y Auth. Además hemos personalizado
la configuración de AuthComponent indicando que utilice como username el campo email de la tabla Users de la base
de datos.

Ahora si vas a cualquier URL serás enviado a /users/login, que mostrará una página de error ya que no hemos escrito
el código de la función login todavía, así que hagámoslo ahora:

// En src/Controller/UsersController.php
public function login()
{

(continué en la próxima página)

22 Capítulo 2. Guía de inicio rápido

CakePHP Book, Versión 4.x

(proviene de la página anterior)

if ($this->request->is('post')) {
$user = $this->Auth->identify();
if ($user) {

$this->Auth->setUser($user);

return $this->redirect($this->Auth->redirectUrl());
}
$this->Flash->error('Tu usuario o contraseña es incorrecta.');

}
}

Y en templates/Users/login.php añade lo siguiente:

<h1>Login</h1>
<?= $this->Form->create() ?>
<?= $this->Form->input('email') ?>
<?= $this->Form->input('password') ?>
<?= $this->Form->button('Login') ?>
<?= $this->Form->end() ?>

Ahora que tenemos un formulario de login sencillo deberíamos poder loguearnos con algún usuario que tenga contra-
seña encriptada.

Nota:

Si ninguno de tus usuarios tiene contraseña encriptada comenta la línea
loadComponent('Auth'), a continuación edita un usuario y modifica la contraseña.

Ahora deberías poder loguearte, si no es así asegúrate de que estás utilizando un usuario con contraseña encriptada.

Añadir logout

Ahora que la gente puede loguearse probablemente quieras añadir una forma de desloguearse también.

Otra vez en UsersController, añade el siguiente código:

public function initialize()
{

parent::initialize();
$this->Auth->allow(['logout']);

}

public function logout()
{

$this->Flash->success('Ahora estás deslogueado.');

return $this->redirect($this->Auth->logout());
}

Este código añade la acción logout como una acción pública e implementa la función.

Ahora puedes visitar /users/logout para desloguearte, deberías ser enviado a la página de inicio.

Tutorial Bookmarker (Favoritos) - Parte 2 23

CakePHP Book, Versión 4.x

Habilitar registros

Si no estás logueado e intentas acceder a /users/add eres reenviado a la página de login. Deberíamos arreglar esto si
queremos permitir que la gente se pueda registrar en nuestra aplicación.

En el controlador UsersController añade lo siguiente:

public function initialize()
{

parent::initialize();
// Añade logout a la lista de actiones permitidas.
$this->Auth->allow(['logout', 'add']);

}

El código anterior le dice a AuthComponent que la acción add() no necesita autenticación ni autorización.

Tal vez quieras tomarte un tiempo para limpiar Users/add.php y eliminar los enlaces erróneos o continuar con el
siguiente apartado. No vamos a crear la edición de usuarios, consulta o listado en este tutorial así que no funcionará el
control de AuthComponent para el acceso a esas acciones del controlador.

Restringiendo el acceso a favoritos

Ahora que los usuarios pueden loguearse queremos restringir los favoritos que uno puede ver a los que creó. Esto lo
haremos usando un adaptador de “authorization”.

Ya que nuestro requisito es muy sencillo podremos escribir un código también muy sencillo en nuestro
BookmarksController.

Pero antes necesitamos decirle al componente AuthComponent cómo va a autorizar acciones nuestra aplicación. Para
ello añade en AppController:

public function isAuthorized($user)
{

return false;
}

Además añade la siguiente línea a la configuración de Auth en tu AppController:

'authorize' => 'Controller',

Tú método initialize() debería verse así:

public function initialize()
{

$this->loadComponent('Flash');
$this->loadComponent('Auth', [

'authorize'=> 'Controller',// línea añadida
'authenticate' => [

'Form' => [
'fields' => [

'username' => 'email',
'password' => 'password'

]
]

],
(continué en la próxima página)

24 Capítulo 2. Guía de inicio rápido

CakePHP Book, Versión 4.x

(proviene de la página anterior)

'loginAction' => [
'controller' => 'Users',
'action' => 'login'

],
'unauthorizedRedirect' => $this->referer()

]);

// Permite ejecutar la acción display para que nuestros controladores
// de páginas sigan funcionando.
$this->Auth->allow(['display']);

}

Por defecto denegaremos el acceso siempre y concederemos los accesos donde tenga sentido.

Primero añadiremos la lógica de autorización para favoritos.

En tu BookmarksController añade lo siguiente:

public function isAuthorized($user)
{

$action = $this->request->getParam('action');

// Las acciones add e index están siempre permitidas.
if (in_array($action, ['index', 'add', 'tags'])) {

return true;
}
// El resto de acciones requieren un id.
if (!$this->request->getParam('pass.0')) {

return false;
}

// Comprueba que el favorito pertenezca al usuario actual.
$id = $this->request->getParam('pass.0');
$bookmark = $this->Bookmarks->get($id);
if ($bookmark->user_id == $user['id']) {

return true;
}

return parent::isAuthorized($user);
}

Ahora si intentas consultar, editar o borrar un favorito que no te pertenece deberías ser redirigido a la página desde la
que accediste.

Si no se muestra ningún mensaje de error añade lo siguiente a tu layout:

// En templates/layout/default.php
<?= $this->Flash->render() ?>

Deberías poder ver ahora los mensajes de error de autorización.

Tutorial Bookmarker (Favoritos) - Parte 2 25

CakePHP Book, Versión 4.x

Arreglar lista de consulta y formularios

Mientras que view y delete están funcionando, edit, add e index presentan un par de problemas:

1. Cuando añades un favorito puedes elegir el usuario.

2. Cuando editas un favorito puedes elegir un usuario.

3. La página con el listado muestra favoritos de otros usuarios.

Abordemos el formulario de añadir favorito primero.

Para empezar elimina input('user_id') de templates/Bookmarks/add.php.

Con esa parte eliminada actualizaremos la acción add() de src/Controller/BookmarksController.php para que luzca
así:

public function add()
{

$bookmark = $this->Bookmarks->newEntity();
if ($this->request->is('post')) {

$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');
if ($this->Bookmarks->save($bookmark)) {

$this->Flash->success('El favorito se ha guardado.');

return $this->redirect(['action' => 'index']);
}
$this->Flash->error('El favorito podría no haberse guardado. Por favor,␣

→˓inténtalo de nuevo.');
}
$tags = $this->Bookmarks->Tags->find('list');
$this->set(compact('bookmark', 'tags'));
$this->set('_serialize', ['bookmark']);

}

Completando la propiedad de la entidad con datos de la sesión eliminaremos cualquier posibilidad de que el usuario
modifique el usuario al que pertenece el favorito. Haremos lo mismo para el formulario de edición.

Tu acción edit() de src/Controller/BookmarksController.php debería ser así:

public function edit($id = null)
{

$bookmark = $this->Bookmarks->get($id, [
'contain' => ['Tags']

]);
if ($this->request->is(['patch', 'post', 'put'])) {

$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');
if ($this->Bookmarks->save($bookmark)) {

$this->Flash->success('El favorito se ha guardado.');

return $this->redirect(['action' => 'index']);
}
$this->Flash->error('El favorito podría no haberse guardado. Por favor,␣

→˓inténtalo de nuevo.');
}

(continué en la próxima página)

26 Capítulo 2. Guía de inicio rápido

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$tags = $this->Bookmarks->Tags->find('list');
$this->set(compact('bookmark', 'tags'));
$this->set('_serialize', ['bookmark']);

}

Listado consulta

Ahora solo necesitamos mostrar los favoritos del usuario actualmente logueado.

Podemos hacer eso actualizando la llamada a paginate(). Haz que tu método index() de
src/Controller/BookmarksController.php se vea así:

public function index()
{

$this->paginate = [
'conditions' => [

'Bookmarks.user_id' => $this->Auth->user('id'),
]

];
$this->set('bookmarks', $this->paginate($this->Bookmarks));
$this->set('_serialize', ['bookmarks']);

}

Deberíamos actualizar también el método tags() y el método finder relacionado, pero lo dejaremos como un ejercicio
para que lo hagas por tu cuenta.

Mejorar la experiencia de etiquetado

Ahora mismo añadir nuevos tags es un proceso complicado desde que TagsController desautorizó todos los accesos.

En vez de permitirlos podemos mejorar la UI para la selección de tags utilizando un campo de texto separado por
comas. Esto proporcionará una mejor experiencia para nuestros usuarios y usa algunas de las mejores características
de ORM.

Añadir un campo calculado

Para acceder de forma sencilla a las etiquetas formateadas podemos añadir un campo virtual/calculado a la entidad.

En src/Model/Entity/Bookmark.php añade lo siguiente:

use Cake\Collection\Collection;

protected function _getTagString()
{

if (isset($this->_fields['tag_string'])) {
return $this->_fields['tag_string'];

}
if (empty($this->tags)) {

return '';
}
$tags = new Collection($this->tags);

(continué en la próxima página)

Tutorial Bookmarker (Favoritos) - Parte 2 27

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$str = $tags->reduce(function ($string, $tag) {
return $string . $tag->title . ', ';

}, '');

return trim($str, ', ');
}

Esto nos dará acceso a la propiedad calculada $bookmark->tag_string que utilizaremos más adelante.

Recuerda añadir la propiedad tag_string a la lista _accessible en tu entidad para poder “guardarla” más adelante.

En src/Model/Entity/Bookmark.php añade tag_string a $_accessible de este modo:

protected $_accessible = [
'user_id' => true,
'title' => true,
'description' => true,
'url' => true,
'user' => true,
'tags' => true,
'tag_string' => true,

];

Actualizar las vistas

Con la entidad actualizada podemos añadir un nuevo campo de entrada para nuestros tags. En templa-
tes/Bookmarks/add.php y templates/Bookmarks/edit.php, cambia el campo tags._ids por el siguiente:

echo $this->Form->input('tag_string', ['type' => 'text']);

Guardar el string de tags

Ahora que podemos ver los tags existentes como un string querremos guardar también esa información.

Al haber marcado tag_string como accesible el ORM copiará esa información del request a nuestra entidad. Po-
demos usar un método de gancho beforeSave() para parsear el string de etiquetas y encontrar/crear las entidades
relacionadas.

Añade el siguiente código a src/Model/Table/BookmarksTable.php:

public function beforeSave($event, $entity, $options)
{

if ($entity->tag_string) {
$entity->tags = $this->_buildTags($entity->tag_string);

}
}

protected function _buildTags($tagString)
{

// Hace trim a las etiquetas
$newTags = array_map('trim', explode(',', $tagString));
// Elimina las etiquetas vacías

(continué en la próxima página)

28 Capítulo 2. Guía de inicio rápido

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$newTags = array_filter($newTags);
// Elimina las etiquetas duplicadas
$newTags = array_unique($newTags);

$out = [];
$query = $this->Tags->find()

->where(['Tags.title IN' => $newTags]);

// Elimina las etiquetas existentes de la lista de nuevas etiquetas.
foreach ($query->extract('title') as $existing) {

$index = array_search($existing, $newTags);
if ($index !== false) {

unset($newTags[$index]);
}

}
// Añade las etiquetas existentes.
foreach ($query as $tag) {

$out[] = $tag;
}
// Añade las etiquetas nuevas.
foreach ($newTags as $tag) {

$out[] = $this->Tags->newEntity(['title' => $tag]);
}

return $out;
}

Aunque este código sea algo más complicado de lo que hemos hecho hasta ahora, nos ayudará a ver lo potente que es
el ORM en CakePHP.

Puedes manipular los resultados de la consulta usando los métodos Collections y manejar escenearios en los que estás
creando entidades on the fly con facilidad.

Para finalizar

Hemos mejorado nuestra aplicación de favoritos para manejar escenarios de autenticación y de autorización/control de
acceso básicos.

Además hemos añadido algunas mejoras interesantes de experiencia de usuario sacándole provecho a FormHelper y
al potencial de ORM.

Gracias por tomarte tu tiempo para explorar CakePHP. Ahora puedes realizar el tutorial Tutorial Blog, aprender más
sobre Acceso a la base de datos & ORM, o puedes leer detenidamente los /topics.

Tutorial Bookmarker (Favoritos) - Parte 2 29

CakePHP Book, Versión 4.x

30 Capítulo 2. Guía de inicio rápido

CAPÍTULO 3

4.0 Migration Guide

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github24 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

24 https://github.com/cakephp/docs

31

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

32 Capítulo 3. 4.0 Migration Guide

CAPÍTULO 4

Tutoriales y Ejemplos

En esta sección puedes encontrar varias aplicaciones completas construidas en CakePHP que te ayudarán a comprender
el framework y ver cómo se relacionan todas las piezas.

También puedes ver otros ejemplos en: CakePackages25 y en Bakery26 encontrarás también componentes listos para
usar.

Tutorial Gestor de Contenidos

Este tutorial lo guiará a través de la creación de un CMS (Sistema de Gestión de Contenidos) simple. Para empezar,
instalaremos CakePHP, creando nuestra base de datos y construyendo una gestión simple de artículos.

Esto es lo que se necesitará:

1. Un servidor de base de datos. Vamos a utilizar el servidor MySQL en este tutorial. Necesitará saber lo suficiente
sobre SQL para crear una base de datos y ejecutar fragmentos SQL del tutorial. CakePHP se encargará de cons-
truir todas las consultas que su aplicación necesita. Como estamos usando MySQL, también asegúrese de tener
pdo_mysql habilitado en PHP.

2. Conocimientos básicos de PHP.

Antes de comenzar, debe asegurarse de tener una versión de PHP actualizada:

php -v

Al menos debería haber instalado PHP 7.4 (CLI) o superior. La versión PHP de su servidor web también debe ser de
7.4 o superior, y debería ser la misma versión que su interfaz de línea de comando (CLI) de PHP.

25 https://plugins.cakephp.org/
26 https://bakery.cakephp.org/

33

https://plugins.cakephp.org/
https://bakery.cakephp.org/

CakePHP Book, Versión 4.x

Obteniendo CakePHP

La forma más fácil de instalar CakePHP es usar Composer. Composer es una manera simple de instalar CakePHP desde
su terminal o línea de comandos. Primero, necesita descargar e instalar Composer si aún no lo ha hecho. Si tiene cURL
instalado, es tan fácil como ejecutar lo siguiente:

curl -s https://getcomposer.org/installer | php

O, puede descargar composer.phar desde el sitio web de Composer27.

Luego simplemente escriba la siguiente línea en su terminal desde el directorio de instalación para instalar el esqueleto
de la aplicación CakePHP en la carpeta cms del directorio de trabajo actual:

php composer.phar create-project --prefer-dist cakephp/app:4.* cms

Si ha descargado y ejecutado el Instalador de Composer de Windows28, entonces, escriba la siguiente línea en el terminal
desde el directorio de instalación (ej. C:\wamp\www\dev):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* cms

La ventaja de usar Composer es que completará automáticamente algunas tareas de configuración importantes, como
establecer los permisos de archivo correctos y crear el archivo config/app.php por usted.

Hay otras formas de instalar CakePHP. Si no puede o no quiere usar Composer, consulte la sección Instalación.

Independientemente de cómo haya descargado e instalado CakePHP, una vez que la configuración es completada, la
disposición de su directorio debería ser similar a la siguiente:

/cms
/bin
/config
/logs
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
.composer.json
index.php
phpunit.xml.dist
README.md

Ahora podría ser un buen momento para aprender un poco sobre cómo funciona la estructura de directorios de Ca-
kePHP: consulte la sección CakePHP Folder Structure.

Si se pierde durante este tutorial, puede ver el resultado final en GitHub29.
27 https://getcomposer.org/download/
28 https://getcomposer.org/Composer-Setup.exe
29 https://github.com/cakephp/cms-tutorial

34 Capítulo 4. Tutoriales y Ejemplos

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://github.com/cakephp/cms-tutorial

CakePHP Book, Versión 4.x

Comprobando nuestra instalación

PPodemos verificar rápidamente que nuestra instalación es correcta, verificando la página de inicio predeterminada.
Antes de que pueda hacer eso, deberá iniciar el servidor de desarrollo:

cd /path/to/our/app
bin/cake server

Nota: Para Windows, el comando debe ser bin\cake server (tenga en cuenta la barra invertida).

Esto iniciará el servidor web incorporado de PHP en el puerto 8765. Abra http://localhost:8765 en su navegador web
para ver la página de bienvenida. Todos las viñetas deben ser sombreros de chef verdes indicando que CakePHP puede
conectarse a De lo contrario, es posible que deba instalar extensiones adicionales de PHP o establecer permisos de
directorio.

A continuación, crearemos nuestra Base de datos y crearemos nuestro primer modelo.

Tutorial CMS - Creando la Base de Datos

Ahora que tenemos CakePHP instalado, configuremos la base de datos para nuestro CMS. Si aún no lo ha hecho, cree
una base de datos vacía para usar en este tutorial, con un nombre de su elección, p. ej. cake_cms. Si está utilizando
MySQL/MariaDB, puede ejecutar el siguiente SQL para crear las tablas necesarias:

USE cake_cms;

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE articles (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created DATETIME,
modified DATETIME,
UNIQUE KEY (slug),
FOREIGN KEY user_key (user_id) REFERENCES users(id)

) CHARSET=utf8mb4;

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(191),
created DATETIME,
modified DATETIME,

(continué en la próxima página)

Tutorial CMS - Creando la Base de Datos 35

CakePHP Book, Versión 4.x

(proviene de la página anterior)

UNIQUE KEY (title)
) CHARSET=utf8mb4;

CREATE TABLE articles_tags (
article_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY article_key(article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOW());

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', 1, NOW(), NOW());

Si está utilizando PostgreSQL, conéctese a la base de datos cake_cms y ejecute el siguiente SQL en su lugar:

CREATE TABLE users (
id SERIAL PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created TIMESTAMP,
modified TIMESTAMP

);

CREATE TABLE articles (
id SERIAL PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(255) NOT NULL,
slug VARCHAR(191) NOT NULL,
body TEXT,
published BOOLEAN DEFAULT FALSE,
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (slug),
FOREIGN KEY (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id SERIAL PRIMARY KEY,
title VARCHAR(191),
created TIMESTAMP,
modified TIMESTAMP,
UNIQUE (title)

);

CREATE TABLE articles_tags (
article_id INT NOT NULL,

(continué en la próxima página)

36 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

tag_id INT NOT NULL,
PRIMARY KEY (article_id, tag_id),
FOREIGN KEY (tag_id) REFERENCES tags(id),
FOREIGN KEY (article_id) REFERENCES articles(id)

);

INSERT INTO users (email, password, created, modified)
VALUES
('cakephp@example.com', 'secret', NOW(), NOW());

INSERT INTO articles (user_id, title, slug, body, published, created, modified)
VALUES
(1, 'First Post', 'first-post', 'This is the first post.', TRUE, NOW(), NOW());

Es posible que haya notado que la tabla articles_tags utiliza una clave primaria compuesta. CakePHP admite claves
primarias compuestas en casi todas partes, lo que le permite tener esquemas más simples que no requieren columnas
id adicionales.

Los nombres de tabla y columna que usamos no fueron arbitrarios. Al usar las convenciones de nomenclatura de
CakePHP, podemos aprovechar CakePHP más eficazmente y evitar la necesidad de configurar el framework. Si bien
CakePHP es lo suficientemente flexible para adaptarse a casi cualquier esquema de base de datos, adherirse a las
convenciones le ahorrará tiempo, ya que puede aprovechar los valores predeterminados basados en convenciones que
ofrece CakePHP.

Configuración de la base de datos

A continuación, digamos a CakePHP dónde está nuestra base de datos y cómo conectarse a ella. Reemplace los valores
en el arreglo Datasources.default en su archivo config/app.php con los que aplican a su configuración. Una arreglo
de configuración completo de muestra podría tener el siguiente aspecto:

<?php
return [

// Más configuración arriba.
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
// Replace Mysql with Postgres if you are using PostgreSQL
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_cms',
// Comment out the line below if you are using PostgreSQL
'encoding' => 'utf8mb4',
'timezone' => 'UTC',
'cacheMetadata' => true,

],
],
// Más configuración abajo.

];

Tutorial CMS - Creando la Base de Datos 37

CakePHP Book, Versión 4.x

Una vez que haya guardado su archivo config/app.php, debería ver que la sección “CakePHP is able to connect to the
database” tiene un gorro de cocinero verde.

Nota: Si tiene config/app_local.php en la carpeta de su aplicación, este anula la configuración de app.php.

Creando nuestro primer modelo

Los modelos son el corazón de las aplicaciones CakePHP. Nos permiten leer y modificar nuestros datos. Nos permiten
construir relaciones entre nuestros datos, validarlos y aplicar reglas de aplicación. Los modelos construyen las bases
necesarias para construir nuestras acciones y plantillas del controlador.

Los modelos de CakePHP se componen de objetos Table y Entity. Los objetos Table brindan acceso a la colección
de entidades almacenadas en una tabla específica. Se almacenan en src/Model/Table. El archivo que crearemos se
guardará en src/Model/Table/ArticlesTable.php. El archivo completo debería verse así:

<?php
// src/Model/Table/ArticlesTable.php
namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table
{

public function initialize(array $config): void
{

$this->addBehavior('Timestamp');
}

}

Hemos agregado el comportamiento Timestamp Behavior que automáticamente llenará las columnas created y
modified de nuestra tabla. Al nombrar nuestro objeto Table ArticlesTable, CakePHP puede usar convenciones de
nomenclatura para saber que nuestro modelo usa la tabla articles` de la base de datos. CakePHP también usa conven-
ciones para saber que la columna id es la clave primaria de nuestra tabla.

Nota: CakePHP creará dinámicamente un objeto modelo para usted si no puede encontrar un archivo correspondiente
en src/Model/Table. Esto también significa que si accidentalmente asigna un nombre incorrecto a su archivo (es decir,
articlestable.php o ArticleTable.php), CakePHP no reconocerá ninguna de sus configuraciones y utilizará el modelo
generado en su lugar.

También crearemos una clase Entity para nuestros artículos. Las Entity representan un solo registro en la ba-
se de datos y proporcionan un comportamiento a nivel de fila para nuestros datos. Nuestra Entity se guardará en
src/Model/Entity/Article.php. El archivo completo debería verse así:

<?php
// src/Model/Entity/Article.php
namespace App\Model\Entity;

use Cake\ORM\Entity;

class Article extends Entity
{

(continué en la próxima página)

38 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

protected $_accessible = [
'*' => true,
'id' => false,
'slug' => false,

];
}

Nuestra entidad es bastante delgada en este momento, y solo hemos configurado la propiedad _accessible que con-
trola cómo las propiedades pueden ser modificadas por entities-mass-assignment.

No podemos hacer mucho con nuestros modelos en este momento, así que a continuación crearemos nuestro primer
Controller y Template </tutorials-and-examples/cms/articles-controller> para permitirnos interactuar con nuestro mo-
delo.

Tutorial Bookmarker (Favoritos)

Este tutorial te guiará en la creación de una aplicación sencilla para el guardado de favoritos (Bookmaker).

Para comenzar instalaremos CakePHP creando nuestra base de datos y utilizaremos las herramientas que CakePHP
provee para realizar nuestra aplicación rápidamente.

Esto es lo que necesitarás:

1. Un servidor de base de datos. Nosotros utilizaremos MySQL en este tutorial. Necesitarás tener los conocimientos
suficientes de SQL para crear una base de datos; CakePHP tomará las riendas desde ahí. Al utilizar MySQL
asegúrate de que tienes habilitado pdo_mysql en PHP.

2. Conocimientos básicos de PHP.

Antes de empezar deberías de asegurarte de que tienes actualizada la versión de PHP:

php -v

Deberías tener instalado PHP 7.4 (CLI) o superior. La versión PHP de tu servidor web deberá ser 7.4 o superior y lo
ideal es que coincida con la versión de la interfaz de línea de comandos (CLI) de PHP. Si quieres ver la aplicación ya
finalizada puedes consultar cakephp/bookmarker30.

Empecemos!

Instalar CakePHP

La forma más sencilla de instalar CakePHP es utilizando Composer, una manera sencilla de instalar CakePHP desde
tu terminal o prompt de línea de comandos.

Primero necesitarás descargar e instalar Composer si aún no lo tienes. Si ya tienes instalado cURL es tan sencillo como
ejecutar:

curl -s https://getcomposer.org/installer | php

O puedes descargar composer.phar desde la Página web de Composer31.

Después sencillamente escribe la siguiente línea en tu terminal desde tu directorio de instalación para instalar el esque-
leto de la aplicación CakePHP en el directorio bookmarker:

30 https://github.com/cakephp/bookmarker-tutorial
31 https://getcomposer.org/download/

Tutorial Bookmarker (Favoritos) 39

https://github.com/cakephp/bookmarker-tutorial
https://getcomposer.org/download/

CakePHP Book, Versión 4.x

php composer.phar create-project --prefer-dist cakephp/app:4.* bookmarker

Si descargaste y ejecutaste el Instalador Windows de Composer32, entonces escribe la siguiente línea en tu terminal
desde tu directorio de instalación (ie. C:\wamp\www\dev\cakephp3):

composer self-update && composer create-project --prefer-dist cakephp/app:4.* bookmarker

La ventaja de utilizar Composer es que automáticamente realizará algunas tareas importantes como configurar correc-
tamente el archivo de permisos y crear tu archivo config/app.php.

Hay otras formas de instalar CakePHP. Si no puedes o no quieres utilizar Composer comprueba la sección Instalación.

Sin importar como hayas descargado e instalado CakePHP, una vez hayas finalizado, tu directorio de instalación debería
ser algo como:

/bookmarker
/bin
/config
/logs
/plugins
/src
/tests
/tmp
/vendor
/webroot
.editorconfig
.gitignore
.htaccess
.travis.yml
composer.json
index.php
phpunit.xml.dist
README.md

Ahora podría ser un buen momento para que aprendas un poco sobre como funciona la estructura de directorios de
CakePHP: CakePHP Folder Structure.

Comprobar la instalación

Podemos comprobar rápidamente que nuestra instalación ha sido correcta accediendo a la página principal que se crea
por defecto.

Pero antes necesitarás inicializar el servidor de desarrollo:

bin/cake server

Nota: Para Windows introduce el comando bin\cake server (fíjate en la \).

Esto arrancará el servidor integrado en el puerto 8765. Accede a http://localhost:8765 a través de tu navegador para ver
la página de bienvenida. Todos los items deberán estar marcados como correctos para que CakePHP pueda conectarse
a tu base de datos. Si no, puede que necesites instalar extensiones adicionales de PHP, o dar permisos de directorio.

32 https://getcomposer.org/Composer-Setup.exe

40 Capítulo 4. Tutoriales y Ejemplos

https://getcomposer.org/Composer-Setup.exe

CakePHP Book, Versión 4.x

Crear la base de datos

Continuamos, creemos ahora la base de datos para nuestra aplicación de favoritos.

Si aún no lo has hecho, crea una base de datos vacía para usar en este tutorial con el nombre que tu quieras, e.g.
cake_bookmarks.

Puedes ejecutar la siguiente sentencia SQL para crear las tablas necesarias:

CREATE TABLE users (
id INT AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255) NOT NULL,
password VARCHAR(255) NOT NULL,
created DATETIME,
modified DATETIME

);

CREATE TABLE bookmarks (
id INT AUTO_INCREMENT PRIMARY KEY,
user_id INT NOT NULL,
title VARCHAR(50),
description TEXT,
url TEXT,
created DATETIME,
modified DATETIME,
FOREIGN KEY user_key (user_id) REFERENCES users(id)

);

CREATE TABLE tags (
id INT AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(255),
created DATETIME,
modified DATETIME,
UNIQUE KEY (title)

);

CREATE TABLE bookmarks_tags (
bookmark_id INT NOT NULL,
tag_id INT NOT NULL,
PRIMARY KEY (bookmark_id, tag_id),
FOREIGN KEY tag_key(tag_id) REFERENCES tags(id),
FOREIGN KEY bookmark_key(bookmark_id) REFERENCES bookmarks(id)

);

Puedes ver que la tabla bookmarks_tags utiliza una clave primaria compuesta. CakePHP soporta claves primarias
compuestas en casi cualquier lado, haciendo más fácil construir aplicaciones multi-anidadas.

Los nombres de las tablas y columnas que hemos utilizado no son aleatorios. Utilizando las convenciones de nombres
podemos hacer mejor uso de CakePHP y evitar tener que configurar el framework.

CakePHP es lo suficientemente flexible para acomodarse incluso a esquemas inconsistentes de bases de datos hereda-
dos, pero siguiendo las convenciones ahorrarás tiempo.

Tutorial Bookmarker (Favoritos) 41

CakePHP Book, Versión 4.x

Configuración de la base de datos

Siguiente, indiquémosle a CakePHP donde está nuestra base de datos y como conectarse a ella. Para la mayoría de las
veces esta será la primera y última vez que necesitarás configurar algo.

La configuración debería ser bastante sencilla: sólo cambia los valores del array Datasources.default en el archivo
config/app.php por aquellos que apliquen a tu instalación. Un ejemplo de array de configuración completado puede
lucir así:

return [
// More configuration above.
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cakephp',
'password' => 'AngelF00dC4k3~',
'database' => 'cake_bookmarks',
'encoding' => 'utf8',
'timezone' => 'UTC',
'cacheMetadata' => true,

],
],
// More configuration below.

];

Una vez hayas guardado tu archivo config/app.php deberías ver que la sección “CakePHP is able to connect to the
database” tiene un chechmark de correcto.

Nota: Puedes encontrar una copia de la configuración por defecto de CakePHP en config/app.default.php.

Crear el esqueleto del código

Gracias a que nuestra base de datos sigue las convenciones de CakePHP podemos utilizar la consola de bake de la
aplicación para crear rápidamente una aplicación básica.

En tu línea de comandos ejecuta las siguientes instrucciones:

// En Windows necesitarás utilizar bin\cake.
bin/cake bake all users
bin/cake bake all bookmarks
bin/cake bake all tags

Esto creará los controladores, modelos, vistas, sus correspondientes casos de prueba y accesorios para nuestros recursos
de users, bookmarks y tags.

Si detuviste tu servidor reinícialo.

Vete a http://localhost:8765/bookmarks, deberías poder ver una básica pero funcional aplicación provista de acceso
a las tablas de tu base de datos.

Una vez estés en la lista de bookmarks añade unos cuantos usuarios (users), favoritos (bookmarks) y etiquetas (tags)

42 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Nota: Si ves una página de error Not Found (404) comprueba que el módulo de Apache mod_rewrite está cargado.

Añadir encriptación (hashing) a la contraseña

Cuando creaste tus usuarios (visitando http://localhost:8765/users) probablemente te darías cuenta de que las con-
traseñas (password) se almacenaron en texto plano. Algo muy malo desde un punto de vista de seguridad, así que
arreglémoslo.

Éste es también un buen momento para hablar de la capa de modelo en CakePHP.

En CakePHP separamos los métodos que operan con una colección de objetos y los que lo hacen con un único objeto
en diferentes clases.

Los métodos que operan con una coleccion de entidades van en la clase Table, mientras que los que lo hacen con una
sola van en la clase Entity.

Por ejemplo: el encriptado de una contraseña se hace en un registro individual, por lo que implementaremos este
comportamiento en el objeto Entity.

Ya que lo que queremos es encriptar la contraseña cada vez que la introduzcamos en la base de datos utilizaremos un
método mutador/setter.

CakePHP utilizará la convención para métodos setter cada vez que una propiedad se introducida en una de tus entidades.

Añadamos un setter para la contraseña añadiendo el siguiente código en src/Model/Entity/User.php:

namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher; //include this line
use Cake\ORM\Entity;

class User extends Entity
{

// Code from bake.

protected function _setPassword($value)
{

$hasher = new DefaultPasswordHasher();

return $hasher->hash($value);
}

}

Ahora actualiza uno de los usuarios que creaste antes, si cambias su contraseña deberías ver una contraseña encriptada
en vez del valor original en la lista de usuarios o en su página de View.

CakePHP encripta contraseñas con bcrypt33 por defecto. Puedes usar también sha1 o md5 si estás trabajando con bases
de datos ya existentes.

Nota: Si la contraseña no se ha encriptado asegúrate de que has usado el mismo estilo de escritura que el del atributo
password de la clase cuando nombraste la función setter.

33 https://codahale.com/how-to-safely-store-a-password/

Tutorial Bookmarker (Favoritos) 43

https://codahale.com/how-to-safely-store-a-password/

CakePHP Book, Versión 4.x

Obtener bookmarks con un tag específico

Ahora que estamos almacenando contraseñas con seguridad podemos añadir alguna funcionalidad interesante a nuestra
aplicación.

Cuando acumulas una colección de favoritos es útil poder buscarlos a través de etiquetas.

Implementemos una ruta, una acción de controlador y un método finder para buscar bookmarks mediante etiquetas.

Idealmente tendríamos una URL como http://localhost:8765/bookmarks/tagged/funny/cat/gifs que nos permitiría
encontrar todos los bookmarks que tienen las etiquetas “funny”, “cat” o “gifs”.

Antes de que podamos implementarlo añadiremos una nueva ruta.

Modifica tu config/routes.php para que se vea como ésto:

<?php
use Cake\Routing\Route\DashedRoute;
use Cake\Routing\Router;

Router::defaultRouteClass(DashedRoute::class);

// Nueva ruta que añadimos para nuestra acción tagged
// The trailing `*` tells CakePHP that this action has
// passed parameters.
Router::scope(

'/bookmarks',
['controller' => 'Bookmarks'],
function ($routes) {

$routes->connect('/tagged/*', ['action' => 'tags']);
}

);

Router::scope('/', function ($routes) {
// Connect the default home and /pages/* routes.
$routes->connect('/', [

'controller' => 'Pages',
'action' => 'display', 'home'

]);
$routes->connect('/pages/*', [

'controller' => 'Pages',
'action' => 'display'

]);

// Connect the conventions based default routes.
$routes->fallbacks();

});

Lo cual define una nueva “ruta” que conecta el path /bookmarks/tagged/ a BookmarksController::tags().

Con la definición de rutas puedes separar como se ven tus URLs de como se implementan. Si visitamos
http://localhost:8765/bookmarks/tagged, podremos ver una página de error bastante útil de CakePHP informando
que no existe la acción del controlador.

Implementemos ahora ese método.

En src/Controller/BookmarksController.php añade:

44 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

public function tags()
{

// The 'pass' key is provided by CakePHP and contains all
// the passed URL path segments in the request.
$tags = $this->request->getParam('pass');

// Use the BookmarksTable to find tagged bookmarks.
$bookmarks = $this->Bookmarks->find('tagged', [

'tags' => $tags
]);

// Pass variables into the view template context.
$this->set([

'bookmarks' => $bookmarks,
'tags' => $tags

]);
}

Para acceder a otras partes del request consulta Request.

Crear el método finder

En CakePHP nos gusta mantener las acciones de los controladores sencillas y poner la mayoría de la lógica de la
aplicación en los modelos. Si visitas ahora la URL /bookmarks/tagged verás un error de que el método findTagged()
no ha sido implementado todavía, asi que hagámoslo.

En src/Model/Table/BookmarksTable.php añade lo siguiente:

// El argumento $query es una instancia de query.
// El array $options contendrá las opciones de 'tags' que pasemos
// para encontrar'tagged') en nuestra acción del controlador.
public function findTagged(Query $query, array $options)
{

$bookmarks = $this->find()
->select(['id', 'url', 'title', 'description']);

if (empty($options['tags'])) {
$bookmarks

->leftJoinWith('Tags')
->where(['Tags.title IS' => null]);

} else {
$bookmarks

->innerJoinWith('Tags')
->where(['Tags.title IN ' => $options['tags']]);

}

return $bookmarks->group(['Bookmarks.id']);
}

Acabamos de implementar un método finder personalizado.

Esto es un concepto muy poderoso en CakePHP que te permite empaquetar queries re-utilizables.

Los métodos finder siempre reciben un objeto Query Builder y un array de opciones como parámetros. Estos métodos

Tutorial Bookmarker (Favoritos) 45

CakePHP Book, Versión 4.x

pueden manipular la query y añadir cualquier condición o criterio requerido; cuando se completan devuelven un objeto
query modificado.

En nuestro método finder sacamos provecho de los métodos distinct() y matching() que nos permiten encontrar
distintos (“distincts”) bookmarks que tienen un tag coincidente (matching). El método matching() acepta una fun-
ción anónima34 que recibe un generador de consultas. Dentro del callback usaremos este generador para definir las
condiciones que filtrarán bookmarks que tienen las etiquetas (tags) especificadas.

Crear la vista

Ahora si visitas la URL /bookmarks/tagged, CakePHP mostrará un error advirtiéndote de que no has creado un archivo
de vista.

Siguiente paso, creemos un archivo de vista para nuestro método tags().

En templates/Bookmarks/tags.php añade el siguiente código:

<h1>
Bookmarks tagged with
<?= $this->Text->toList(h($tags)) ?>

</h1>

<section>
<?php foreach ($bookmarks as $bookmark): ?>

<article>
<!-- Use the HtmlHelper to create a link -->
<h4><?= $this->Html->link($bookmark->title, $bookmark->url) ?></h4>
<small><?= h($bookmark->url) ?></small>

<!-- Use the TextHelper to format text -->
<?= $this->Text->autoParagraph(h($bookmark->description)) ?>

</article>
<?php endforeach; ?>
</section>

En el código de arriba utilizamos los helpers HtmlHelper y TextHelper para que asistan en la generación de nuestra
salida de la vista.

También utilizamos la función de atajo h() para salidas de código HTML. Deberías acordarte siempre de utilizar h()
cuando muestres datos del usuario para evitar problemas de inyección HTML.

El archivo tags.php que acabamos de crear sigue las convenciones de CakePHP para archivos de vistas. La convención
es que el nombre del archivo sea una versión en minúsculas y subrayados del nombre de la acción del controlador.

Puedes observar que hemos podido usar las variables $tags y $bookmarks en nuestra vista.

Cuando utilizamos el método set() en nuestro controlador especificamos variables para enviarlas a la vista. Ésta hará
disponibles todas las variables que se le pasen como variables locales.

Ahora deberías poder visitar la URL /bookmarks/tagged/funny y ver todos los favoritos etiquetados con “funny”.

Hasta aquí hemos creado una aplicación básica para manejar favoritos (bookmarks), etiquetas (tags) y usuarios (users).
Sin embargo todo el mundo puede ver las etiquetas de los demás. En el siguiente capítulo implementaremos autentica-
ción y restringiremos el uso de etiquetas únicamente a aquellas que pertenezcan al usuario actual.

Ahora ve a Tutorial Bookmarker (Favoritos) - Parte 2 para continuar construyendo tu apliación o sumérgete en la
documentación para aprender más sobre que puede hacer CakePHP por ti.

34 https://php.net/manual/es/functions.anonymous.php

46 Capítulo 4. Tutoriales y Ejemplos

https://php.net/manual/es/functions.anonymous.php
https://php.net/manual/es/functions.anonymous.php

CakePHP Book, Versión 4.x

Tutorial Bookmarker (Favoritos) - Parte 2

Tras realizar la primera parte de este tutorial deberías tener una aplicación muy básica para guardar favoritos.

En este capítulo añadiremos la autenticación y restringiremos los favoritos (bookmarks) para que cada usuario pueda
consultar o modificar solamente los suyos.

Añadir login

En CakePHP, la autenticación se maneja mediante Componentes.

Los componentes pueden verse como una forma de crear trozos reutilizables de código de controlador para una finalidad
o idea. Además pueden engancharse al evento de ciclo de vida de los controladores e interactuar con tu aplicación de
ese modo.

Para empezar añadiremos el componente AuthComponent a nuestra aplicación.

Como queremos que todos nuestros métodos requieran de autenticación añadimos AuthComponent en AppController
del siguiente modo:

// En src/Controller/AppController.php
namespace App\Controller;

use Cake\Controller\Controller;

class AppController extends Controller
{

public function initialize()
{

$this->loadComponent('Flash');
$this->loadComponent('Auth', [

'authenticate' => [
'Form' => [

'fields' => [
'username' => 'email',
'password' => 'password'

]
]

],
'loginAction' => [

'controller' => 'Users',
'action' => 'login'

],
'unauthorizedRedirect' => $this->referer() // Si no está autorizado,

//el usuario regresa a la página que estaba
]);

// Permite ejecutar la acción display para que nuestros controladores de páginas
// sigan funcionando.
$this->Auth->allow(['display']);

}
}

Acabamos de decirle a CakePHP que queremos cargar los compomentes Flash y Auth. Además hemos personalizado
la configuración de AuthComponent indicando que utilice como username el campo email de la tabla Users de la base

Tutorial Bookmarker (Favoritos) - Parte 2 47

CakePHP Book, Versión 4.x

de datos.

Ahora si vas a cualquier URL serás enviado a /users/login, que mostrará una página de error ya que no hemos escrito
el código de la función login todavía, así que hagámoslo ahora:

// En src/Controller/UsersController.php
public function login()
{

if ($this->request->is('post')) {
$user = $this->Auth->identify();
if ($user) {

$this->Auth->setUser($user);

return $this->redirect($this->Auth->redirectUrl());
}
$this->Flash->error('Tu usuario o contraseña es incorrecta.');

}
}

Y en templates/Users/login.php añade lo siguiente:

<h1>Login</h1>
<?= $this->Form->create() ?>
<?= $this->Form->input('email') ?>
<?= $this->Form->input('password') ?>
<?= $this->Form->button('Login') ?>
<?= $this->Form->end() ?>

Ahora que tenemos un formulario de login sencillo deberíamos poder loguearnos con algún usuario que tenga contra-
seña encriptada.

Nota:

Si ninguno de tus usuarios tiene contraseña encriptada comenta la línea
loadComponent('Auth'), a continuación edita un usuario y modifica la contraseña.

Ahora deberías poder loguearte, si no es así asegúrate de que estás utilizando un usuario con contraseña encriptada.

Añadir logout

Ahora que la gente puede loguearse probablemente quieras añadir una forma de desloguearse también.

Otra vez en UsersController, añade el siguiente código:

public function initialize()
{

parent::initialize();
$this->Auth->allow(['logout']);

}

public function logout()
{

$this->Flash->success('Ahora estás deslogueado.');
(continué en la próxima página)

48 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

return $this->redirect($this->Auth->logout());
}

Este código añade la acción logout como una acción pública e implementa la función.

Ahora puedes visitar /users/logout para desloguearte, deberías ser enviado a la página de inicio.

Habilitar registros

Si no estás logueado e intentas acceder a /users/add eres reenviado a la página de login. Deberíamos arreglar esto si
queremos permitir que la gente se pueda registrar en nuestra aplicación.

En el controlador UsersController añade lo siguiente:

public function initialize()
{

parent::initialize();
// Añade logout a la lista de actiones permitidas.
$this->Auth->allow(['logout', 'add']);

}

El código anterior le dice a AuthComponent que la acción add() no necesita autenticación ni autorización.

Tal vez quieras tomarte un tiempo para limpiar Users/add.php y eliminar los enlaces erróneos o continuar con el
siguiente apartado. No vamos a crear la edición de usuarios, consulta o listado en este tutorial así que no funcionará el
control de AuthComponent para el acceso a esas acciones del controlador.

Restringiendo el acceso a favoritos

Ahora que los usuarios pueden loguearse queremos restringir los favoritos que uno puede ver a los que creó. Esto lo
haremos usando un adaptador de “authorization”.

Ya que nuestro requisito es muy sencillo podremos escribir un código también muy sencillo en nuestro
BookmarksController.

Pero antes necesitamos decirle al componente AuthComponent cómo va a autorizar acciones nuestra aplicación. Para
ello añade en AppController:

public function isAuthorized($user)
{

return false;
}

Además añade la siguiente línea a la configuración de Auth en tu AppController:

'authorize' => 'Controller',

Tú método initialize() debería verse así:

public function initialize()
{

$this->loadComponent('Flash');
(continué en la próxima página)

Tutorial Bookmarker (Favoritos) - Parte 2 49

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$this->loadComponent('Auth', [
'authorize'=> 'Controller',// línea añadida
'authenticate' => [

'Form' => [
'fields' => [

'username' => 'email',
'password' => 'password'

]
]

],
'loginAction' => [

'controller' => 'Users',
'action' => 'login'

],
'unauthorizedRedirect' => $this->referer()

]);

// Permite ejecutar la acción display para que nuestros controladores
// de páginas sigan funcionando.
$this->Auth->allow(['display']);

}

Por defecto denegaremos el acceso siempre y concederemos los accesos donde tenga sentido.

Primero añadiremos la lógica de autorización para favoritos.

En tu BookmarksController añade lo siguiente:

public function isAuthorized($user)
{

$action = $this->request->getParam('action');

// Las acciones add e index están siempre permitidas.
if (in_array($action, ['index', 'add', 'tags'])) {

return true;
}
// El resto de acciones requieren un id.
if (!$this->request->getParam('pass.0')) {

return false;
}

// Comprueba que el favorito pertenezca al usuario actual.
$id = $this->request->getParam('pass.0');
$bookmark = $this->Bookmarks->get($id);
if ($bookmark->user_id == $user['id']) {

return true;
}

return parent::isAuthorized($user);
}

Ahora si intentas consultar, editar o borrar un favorito que no te pertenece deberías ser redirigido a la página desde la
que accediste.

50 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Si no se muestra ningún mensaje de error añade lo siguiente a tu layout:

// En templates/layout/default.php
<?= $this->Flash->render() ?>

Deberías poder ver ahora los mensajes de error de autorización.

Arreglar lista de consulta y formularios

Mientras que view y delete están funcionando, edit, add e index presentan un par de problemas:

1. Cuando añades un favorito puedes elegir el usuario.

2. Cuando editas un favorito puedes elegir un usuario.

3. La página con el listado muestra favoritos de otros usuarios.

Abordemos el formulario de añadir favorito primero.

Para empezar elimina input('user_id') de templates/Bookmarks/add.php.

Con esa parte eliminada actualizaremos la acción add() de src/Controller/BookmarksController.php para que luzca
así:

public function add()
{

$bookmark = $this->Bookmarks->newEntity();
if ($this->request->is('post')) {

$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');
if ($this->Bookmarks->save($bookmark)) {

$this->Flash->success('El favorito se ha guardado.');

return $this->redirect(['action' => 'index']);
}
$this->Flash->error('El favorito podría no haberse guardado. Por favor,␣

→˓inténtalo de nuevo.');
}
$tags = $this->Bookmarks->Tags->find('list');
$this->set(compact('bookmark', 'tags'));
$this->set('_serialize', ['bookmark']);

}

Completando la propiedad de la entidad con datos de la sesión eliminaremos cualquier posibilidad de que el usuario
modifique el usuario al que pertenece el favorito. Haremos lo mismo para el formulario de edición.

Tu acción edit() de src/Controller/BookmarksController.php debería ser así:

public function edit($id = null)
{

$bookmark = $this->Bookmarks->get($id, [
'contain' => ['Tags']

]);
if ($this->request->is(['patch', 'post', 'put'])) {

$bookmark = $this->Bookmarks->patchEntity($bookmark, $this->request->getData());
$bookmark->user_id = $this->Auth->user('id');

(continué en la próxima página)

Tutorial Bookmarker (Favoritos) - Parte 2 51

CakePHP Book, Versión 4.x

(proviene de la página anterior)

if ($this->Bookmarks->save($bookmark)) {
$this->Flash->success('El favorito se ha guardado.');

return $this->redirect(['action' => 'index']);
}
$this->Flash->error('El favorito podría no haberse guardado. Por favor,␣

→˓inténtalo de nuevo.');
}
$tags = $this->Bookmarks->Tags->find('list');
$this->set(compact('bookmark', 'tags'));
$this->set('_serialize', ['bookmark']);

}

Listado consulta

Ahora solo necesitamos mostrar los favoritos del usuario actualmente logueado.

Podemos hacer eso actualizando la llamada a paginate(). Haz que tu método index() de
src/Controller/BookmarksController.php se vea así:

public function index()
{

$this->paginate = [
'conditions' => [

'Bookmarks.user_id' => $this->Auth->user('id'),
]

];
$this->set('bookmarks', $this->paginate($this->Bookmarks));
$this->set('_serialize', ['bookmarks']);

}

Deberíamos actualizar también el método tags() y el método finder relacionado, pero lo dejaremos como un ejercicio
para que lo hagas por tu cuenta.

Mejorar la experiencia de etiquetado

Ahora mismo añadir nuevos tags es un proceso complicado desde que TagsController desautorizó todos los accesos.

En vez de permitirlos podemos mejorar la UI para la selección de tags utilizando un campo de texto separado por
comas. Esto proporcionará una mejor experiencia para nuestros usuarios y usa algunas de las mejores características
de ORM.

52 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Añadir un campo calculado

Para acceder de forma sencilla a las etiquetas formateadas podemos añadir un campo virtual/calculado a la entidad.

En src/Model/Entity/Bookmark.php añade lo siguiente:

use Cake\Collection\Collection;

protected function _getTagString()
{

if (isset($this->_fields['tag_string'])) {
return $this->_fields['tag_string'];

}
if (empty($this->tags)) {

return '';
}
$tags = new Collection($this->tags);
$str = $tags->reduce(function ($string, $tag) {

return $string . $tag->title . ', ';
}, '');

return trim($str, ', ');
}

Esto nos dará acceso a la propiedad calculada $bookmark->tag_string que utilizaremos más adelante.

Recuerda añadir la propiedad tag_string a la lista _accessible en tu entidad para poder “guardarla” más adelante.

En src/Model/Entity/Bookmark.php añade tag_string a $_accessible de este modo:

protected $_accessible = [
'user_id' => true,
'title' => true,
'description' => true,
'url' => true,
'user' => true,
'tags' => true,
'tag_string' => true,

];

Actualizar las vistas

Con la entidad actualizada podemos añadir un nuevo campo de entrada para nuestros tags. En templa-
tes/Bookmarks/add.php y templates/Bookmarks/edit.php, cambia el campo tags._ids por el siguiente:

Tutorial Bookmarker (Favoritos) - Parte 2 53

CakePHP Book, Versión 4.x

echo $this->Form->input('tag_string', ['type' => 'text']);

Guardar el string de tags

Ahora que podemos ver los tags existentes como un string querremos guardar también esa información.

Al haber marcado tag_string como accesible el ORM copiará esa información del request a nuestra entidad. Po-
demos usar un método de gancho beforeSave() para parsear el string de etiquetas y encontrar/crear las entidades
relacionadas.

Añade el siguiente código a src/Model/Table/BookmarksTable.php:

public function beforeSave($event, $entity, $options)
{

if ($entity->tag_string) {
$entity->tags = $this->_buildTags($entity->tag_string);

}
}

protected function _buildTags($tagString)
{

// Hace trim a las etiquetas
$newTags = array_map('trim', explode(',', $tagString));
// Elimina las etiquetas vacías
$newTags = array_filter($newTags);
// Elimina las etiquetas duplicadas
$newTags = array_unique($newTags);

$out = [];
$query = $this->Tags->find()

->where(['Tags.title IN' => $newTags]);

// Elimina las etiquetas existentes de la lista de nuevas etiquetas.
foreach ($query->extract('title') as $existing) {

$index = array_search($existing, $newTags);
if ($index !== false) {

unset($newTags[$index]);
}

}
// Añade las etiquetas existentes.
foreach ($query as $tag) {

$out[] = $tag;
}
// Añade las etiquetas nuevas.
foreach ($newTags as $tag) {

$out[] = $this->Tags->newEntity(['title' => $tag]);
}

return $out;
}

Aunque este código sea algo más complicado de lo que hemos hecho hasta ahora, nos ayudará a ver lo potente que es
el ORM en CakePHP.

54 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Puedes manipular los resultados de la consulta usando los métodos Collections y manejar escenearios en los que estás
creando entidades on the fly con facilidad.

Para finalizar

Hemos mejorado nuestra aplicación de favoritos para manejar escenarios de autenticación y de autorización/control de
acceso básicos.

Además hemos añadido algunas mejoras interesantes de experiencia de usuario sacándole provecho a FormHelper y
al potencial de ORM.

Gracias por tomarte tu tiempo para explorar CakePHP. Ahora puedes realizar el tutorial Tutorial Blog, aprender más
sobre Acceso a la base de datos & ORM, o puedes leer detenidamente los /topics.

Tutorial Blog

Bienvenido a CakePHP. Probablemente estás consultando este tutorial porque quieres aprender más sobre cómo fun-
ciona CakePHP. Nuestro objetivo es potenciar tu productividad y hacer más divertido el desarrollo de aplicaciones.
Esperamos que puedas comprobarlo a medida que vas profundizando en el código.

Este tutorial te guiará en la creación de una aplicación sencilla de blog. Obtendremos e instalaremos CakePHP, crea-
remos y configuraremos la base de datos y añadiremos suficiente lógica como para listar, añadir, editar y eliminar
artículos del blog.

Esto es lo que necesitarás:

1. Servidor web funcionando. Asumiremos que estás usando Apache, aunque las instrucciones para otros servidores
son similares. Igual tendremos que ajustar un poco la configuración inicial, pero la mayoría pueden poner en
marcha CakePHP sin configuración alguna. Asegúrate de tener PHP 7.4 o superior así como tener las extensiones
mbstring, intl y mcrypt activadas en PHP.

2. Servidor de base de datos. Usaremos MySQL en este tutorial. Necesitarás saber cómo crear una base de datos
nueva. CakePHP se encargará del resto. Dado que utilizamos MySQL, asegúrate también de tener pdo_mysql
habilitado en PHP.

3. Conocimientos básicos de PHP.

¡Vamos allá!

Obtener CakePHP

La manera más sencilla de ponerse en marcha es utilizando Composer. Composer te permite instalar fácilmente Ca-
kePHP desde tu terminal o consola. Primero, debes descargar e instalar Composer si todavía no lo has hecho. Si tienes
cURL instalado, es tan fácil como ejecutar lo siguiente:

curl -s https://getcomposer.org/installer | php

O puedes descargar composer.phar desde la página web de Composer35.

Instalando Composer de manera global evitarás tener que repetir este paso para cada proyecto.

Luego, simplemente escribe la siguiente línea en tu terminal desde tu directorio de instalación para instalar el esqueleto
de la aplicación de CakePHP en el directorio [nombre_app].

35 https://getcomposer.org/download/

Tutorial Blog 55

https://getcomposer.org/installer
https://getcomposer.org/download/

CakePHP Book, Versión 4.x

php composer.phar create-project --prefer-dist cakephp/app:4.* [nombre_app]

O si tienes Composer instalado globalmente:

composer create-project --prefer-dist cakephp/app:4.* [nombre_app]

La ventaja de utilizar Composer es que automáticamente completará algunas tareas de inicialización, como aplicar
permisos a ficheros y crear tu fichero config/app.php por ti.

Existen otros modos de instalar CakePHP si no te sientes cómodo con Composer. Para más información revisa la sección
Instalación.

Dejando de lado cómo has descargado e instalado CakePHP, una vez ha terminado la configuración, tu directorio de
instalación debería tener la siguiente estructura:

/directorio_raiz
/config
/logs
/src
/plugins
/tests
/tmp
/vendor
/webroot
.gitignore
.htaccess
.travis.yml
README.md
composer.json
phpunit.xml.dist

Quizás sea buen momento para aprender algo sobre cómo funciona esta estructura de directorios: echa un vistazo a la
sección CakePHP Folder Structure.

Permisos de directorio en tmp

También necesitarás aplicar los permisos adecuados en el directorio /tmp para que el servidor web pueda escribir en
él. El mejor modo de hacer esto es encontrar con qué usuario corre tu servidor web (<?= `whoami`; ?>) y cambiar
la propiedad del directorio tmp hacia dicho usuario. El comando final que ejecutarás (en *nix) se parecerá al siguiente:

$ chown -R www-data tmp

Si por alguna razón CakePHP no puede escribir en ese directorio, serás informado mediante una alerta mientras no
estés en modo producción.

A pesar de que no se recomienda, si no eres capaz de aplicar la propiedad del directorio al mismo usuario que el servidor
web, puedes simplemente aplicar permisos de escritura al directorio ejecutando un comando tipo:

$ chmod -R 777 tmp

56 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Creando la base de datos del Blog

Vamos a crear una nueva base de datos para el blog. Puedes crear una base de datos en blanco con el nombre que quieras.
De momento vamos a definir sólo una tabla para nuestros artículos («posts»). Además crearemos algunos artículos de
test para usarlos luego. Una vez creada la tabla, ejecuta el siguiente código SQL en ella:

Primero, creamos la tabla artículos
CREATE TABLE articles (

id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
title VARCHAR(50),
body TEXT,
created DATETIME DEFAULT NULL,
modified DATETIME DEFAULT NULL

);

Luego insertamos algunos artículos para probar
INSERT INTO articles (title,body,created)

VALUES ('El título', 'Esto es el cuerpo del artículo.', NOW());
INSERT INTO articles (title,body,created)

VALUES ('Un título de nuevo', 'Y el cuerpo sigue.', NOW());
INSERT INTO articles (title,body,created)

VALUES ('El título ataca de nuevo', '¡Esto es realmente emocionante! No.', NOW());

La elección de los nombres para el nombre de la tabla y de algunas columnas no se ha hecho al azar. Si sigues las
convenciones para nombres en la Base de Datos, y las demás convenciones en tus clases (ver más sobre convenciones
aquí: Convenciones CakePHP), aprovecharás la potencia del framework y ahorrarás mucho trabajo de configuración.
CakePHP es suficientemente flexible como para acomodarse hasta en el peor esquema de base de datos, pero utilizando
las convenciones ahorrarás tiempo.

Echa un vistazo a las convencionnes para más información, pero basta decir que nombrando nuestra tabla “articles”
automáticamente lo vincula a nuestro modelo Articles y que campos llamados modified y created serán gestionados
automáticamente por CakePHP.

Configurando la Base de Datos

Rápido y sencillo, vamos a decirle a CakePHP dónde está la Base de Datos y cómo conectarnos a ella. Seguramente
esta sea la primera y última vez que configuras nada.

Una copia del fichero de configuración de CakePHP puede ser hallado en config/app.default.php. Copia este fichero
en su mismo directorio, pero nómbralo app.php.

El fichero de configuración debería de ser bastante sencillo: simplemente reemplaza los valores en la matriz `` Data-
sources.default`` con los que encajen con tu configuración. Una configuración completa de ejemplo podría parecerse a
esto:

return [
// Más configuración arriba
'Datasources' => [

'default' => [
'className' => 'Cake\Database\Connection',
'driver' => 'Cake\Database\Driver\Mysql',
'persistent' => false,
'host' => 'localhost',
'username' => 'cake_blog',

(continué en la próxima página)

Tutorial Blog 57

CakePHP Book, Versión 4.x

(proviene de la página anterior)

'password' => 'AngelF00dC4k3~',
'database' => 'cake_blog',
'encoding' => 'utf8',
'timezone' => 'UTC'

],
],
// Más configuración abajo

];

En cuanto guardes tu nuevo fichero app.php deberías de ser capaz de acceder mediante tu navegador web y ver la
página de bienvenida de CakePHP. También debería decirte que se ha encontrado el fichero de configuración así como
que ha podido conectarse a la base de datos.

Nota: Recuerda que debes tener PDO y pdo_mysql habilitados en tu php.ini.

Configuración Opcional

Aún hay unas pocas cosas que puedes configurar. La mayoría de desarrolladores acaban estos ítems de la lista de la
compra, pero no se necesitan para este tutorial. Uno de ellos es definir un string de seguridad (security salt) para realizar
los “hash” de seguridad.

El string de seguridad se utiliza para generar “hashes”. Cambia el valor por defecto editando el fichero config/app.php.
No importa mucho el valor que contenga, cuanto más largo más difícil de averiguar:

'Security' => [
'salt' => 'Algo largo y conteniendo un montón de distintos valores.',

],

Sobre mod_rewrite

Si eres nuevo usuario de apache, puedes encontrar alguna dificultad con mod_rewrite, así que lo trataremos aquí.

Si al cargar la página de bienvenida de CakePHP ves cosas raras (no se cargan las imágenes ni los estilos y se ve todo en
blanco y negro), esto significa que probablemente mod_rewrite no está funcionando en tu sistema. Por favor, consulta la
sección para tu servidor entre las siguientes acerca de re-escritura de URLs para poder poner en marcha la aplicación:

1. Comprueba que existen los ficheros .htaccess en el directorio en el que está instalada tu aplicación web. A veces
al descomprimir el archivo o al copiarlo desde otra ubicación, estos ficheros no se copian correctamente. Si no
están ahí, obtén otra copia de CakePHP desde el servidor oficial de descargas.

2. Asegúrate de tener activado el módulo mod_rewrite en la configuración de apache. Deberías tener algo así:

LoadModule rewrite_module libexec/httpd/mod_rewrite.so

(para apache 1.3)::

AddModule mod_rewrite.c

en tu fichero httpd.conf

Si no puedes (o no quieres) configurar mod_rewrite o algún otro módulo compatible, necesitarás activar las url amiga-
bles en CakePHP. En el fichero config/app.php, quita el comentario a la línea:

58 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

'App' => [
// ...
// 'baseUrl' => env('SCRIPT_NAME'),

]

Borra también los ficheros .htaccess que ya no serán necesarios:

/.htaccess
/webroot/.htaccess

Esto hará que tus url sean así: www.example.com/index.php/nombredelcontrolador/nombredelaaccion/parametro en
vez de www.example.com/nombredelcontrolador/nombredelaaccion/parametro.

Si estás instalando CakePHP en otro servidor diferente a Apache, encontrarás instrucciones para que funcione la rees-
critura de URLs en la sección url-rewriting

Ahora continúa hacia Tutorial Blog - Parte 2 para empezar a construir tu primera aplicación en CakePHP.

Tutorial Blog - Parte 2

Nota: The documentation is currently partially supported in es language for this page.

Por favor, siéntase libre de enviarnos un pull request en Github36 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Crear un modelo Artículo (Article)

Los modelos son una parte fundamental en CakePHP. Cuando creamos un modelo, podemos interactuar con la base de
datos para crear, editar, ver y borrar con facilidad cada ítem de ese modelo.

Los modelos están separados entre los objetos Tabla (Table) y Entidad (Entity). Los objetos Tabla proporcionan
acceso a la coleción de entidades almacenada en una tabla específica y va en src/Model/Table. El fichero que crearemos
se guardará en src/Model/Table/ArticlesTable.php. El fichero completo debería tener este aspecto:

namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table
{

public function initialize(array $config)
{

$this->addBehavior('Timestamp');
}

}

36 https://github.com/cakephp/docs

Tutorial Blog - Parte 2 59

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Los convenios usados para los nombres son importantes. Llamando a nuestro objeto Tabla ArticlesTable, CakePHP
deducirá automáticamente que esta Tabla será utilizada en el controlador ArticlesController, y que se vinculará a una
tabla en nuestra base de datos llamada articles.

Nota: CakePHP creará dinámicamente un objeto para el modelo si no encuentra el fichero correspondiente en
src/Model/Table. Esto significa que si te equivocas al nombrar el fichero (por ejemplo lo llamas articlestable.php
—en minúscula— o ArticleTable.php —en singular) CakePHP no va a reconocer la configuración que escribas en ese
fichero y utilizará valores por defecto.

Para más información sobre modelos, como callbacks y validaciones echa un vistazo al capítulo del Manual Acceso a
la base de datos & ORM.

Crear el Controlador de Artículos (Articles Controller)

Vamos a crear ahora un controlador para nuestros artículos. En el controlador es donde escribiremos el código pa-
ra interactuar con nuestros artículos. Es donde se utilizan los modelos para llevar a cabo el trabajo que queramos
hacer con nuestros artículos. Vamos a crear un nuevo fichero llamado ArticlesController.php dentro del directorio
src/Controller. A continuación puedes ver el aspecto básico que debería tener este controlador:

namespace App\Controller;

class ArticlesController extends AppController
{
}

Vamos a añadir una acción a nuestro nuevo controlador. Las acciones representan una función concreta o interfaz
en nuestra aplicación. Por ejemplo, cuando los usuarios recuperan la url www.example.com/articles/index (que es lo
mismo que www.example.com/articles/) esperan ver un listado de artículos. El código para tal acción sería este:

namespace App\Controller;

class ArticlesController extends AppController
{

public function index()
{

$articles = $this->Articles->find('all');
$this->set(compact('articles'));

}
}

Por el hecho de haber definido el método index() en nuestro ArticlesController, los usuarios ahora pueden acceder a
su lógica solicitando www.example.com/articles/index. Del mismo modo, si definimos un método llamado foobar()
los usuarios tendrán acceso a él desde www.example.com/articles/foobar.

Advertencia: Puede que tengas la tentación de llamar tus controladores y acciones de cierto modo para obtener
una URL en concreto. Resiste la tentación. Sigue las convenciones de CakePHP (mayúsculas, nombre en plural,
etc.) y crea acciones comprensibles, que se dejen leer. Luego podrás asignar URLs a tu código utilizando «rutas»,
que veremos más adelante.

La única instrucción en la acción utiliza set() para pasar datos desde el controlador hacia la vista (que crearemos a

60 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

continuación). La línea en cuestión asigna una variable en la vista llamada “articles” igual al valor retornado por el
método find('all') del objeto de tabla Artículos (ArticlesTable).

Para aprender más sobre los controladores, puedes visitar el capítulo Controladores.

Crear Vistas de Artículos (Article Views)

Ahora que tenemos nuestros datos fluyendo por el modelo, y que la lógica de nuestra aplicación está definida en nuestro
controlador, vamos a crear una vista para la acción índex creada en el paso anterior.

Las vistas en CakePHP únicamente son fragmentos de presentación que encajan dentro de la plantilla (layout) de
nuestra aplicación. Para la mayoría de aplicaciones son HTML mezclados con PHP, pero bien podrían acabar siendo
XML, CSV o incluso datos binarios.

Una plantilla es una presentación de código que envuelve una vista. Se pueden definir múltiples plantillas y puedes
cambiar entre ellas pero, por ahora, utilizaremos la plantilla por defecto (default).

¿Recuerdas cómo en la sección anterior hemos asignado la variable “articles” a la vista utilizando el método set()?
Esto asignaría el objeto de consulta (query object) a la vista para ser invocado por una iteración foreach.

Las vistas en CakePHP se almacenan en la ruta /src/Template y en un directorio con el mismo nombre que el
controlador al que pertenecen (tendremos que crear una carpeta llamada “Articles” en este caso). Para dar formato a
los datos de este artículo en una bonita tabla, el código de nuestra vista debería ser algo así:

<!-- File: /templates/Articles/index.php -->

<h1>Artículos</h1>
<table>

<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>

</tr>

<!-- Aquí es donde iteramos nuestro objeto de consulta $articles, mostrando en␣
→˓pantalla la información del artículo -->

<?php foreach ($articles as $article): ?>
<tr>

<td><?= $article->id ?></td>
<td>

<?= $this->Html->link($article->title,
['controller' => 'Articles', 'action' => 'view', $article->id]) ?>

</td>
<td><?= $article->created->format(DATE_RFC850) ?></td>

</tr>
<?php endforeach; ?>

</table>

Esto debería ser sencillo de comprender.

Como habrás notado, hay una llamada a un objeto $this->Html. Este objeto es una instancia de la clase Cake\View\
Helper\HtmlHelper de CakePHP. CakePHP proporciona un conjunto de ayudantes de vistas (helpers) para ayudarte
a completar acciones habituales, como por ejemplo crear un enlace o un formulario. Puedes aprender más sobre esto
en Helpers, pero lo que es importante destacar aquí es que el método link() generará un enlace HTML con el título
como primer parámetro y la URL como segundo parámetro.

Tutorial Blog - Parte 2 61

CakePHP Book, Versión 4.x

Cuando crees URLs en CakePHP te recomendamos emplear el formato de array. Se explica con detenimiento en la
sección de Rutas (Routes). Si utilizas las rutas en formato array podrás aprovecharte de las potentes funcionalidades
de generación de rutas inversa de CakePHP en el futuro. Además puedes especificar rutas relativas a la base de tu
aplicación de la forma /controlador/accion/param1/param2 o incluso utilizar Using Named Routes.

Llegados a este punto, deberías ser capaz de acceder con tu navegador a http://www.example.com/articles/index. De-
berías ver tu vista, correctamente formatada con el título y la tabla listando los artículos.

Si te ha dado por hacer clic en uno de los enlaces que hemos creado en esta vista (que enlazan el título de un artículo
hacia la URL /articles/view/un_id), seguramente habrás sido informado por CakePHP de que la acción no ha
sido definida todavía. Si no has sido infromado, o bien algo ha ido mal o bien ya la habías definido, en cuyo caso eres
muy astuto. En caso contrario, la crearemos ahora en nuestro controlador de artículos:

namespace App\Controller;

class ArticlesController extends AppController
{

public function index()
{

$this->set('articles', $this->Articles->find('all'));
}

public function view($id = null)
{

$article = $this->Articles->get($id);
$this->set(compact('article'));

}
}

Si observas la función view(), ahora el método set() debería serte familiar. Verás que estamos usando get() en vez de
find('all') ya que sólo queremos un artículo concreto.

Verás que nuestra función view toma un parámetro: el ID del artículo que queremos ver. Este parámetro se gestiona
automáticamente al llamar a la URL /articles/view/3, el valor “3” se pasa a la función view como primer parámetro
$id.

También hacemos un poco de verificación de errores para asegurarnos de que el usuario realmente accede a dicho
registro. Si el usuario solicita /articles/view lanzaremos una excepción NotFoundException y dejaremos al
ErrorHandler tomar el control. Utilizando el método get() en la tabla Articles también hacemos una verificación
similar para asegurarnos de que el usuario ha accedido a un registro que existe. En caso de que el artículo solicitado
no esté presente en la base de datos, el método get() lanzará una excepción NotFoundException.

Ahora vamos a definir la vista para esta nueva función “view” ubicándola en templates/Articles/view.php.

<!-- File: /templates/Articles/view.php -->
<h1><?= h($article->title) ?></h1>
<p><?= h($article->body) ?></p>
<p><small>Created: <?= $article->created->format(DATE_RFC850) ?></small></p>

Verifica que esto funciona probando los enlaces en /articles/index o puedes solicitándolo manualmente accediendo
a /articles/view/1.

62 Capítulo 4. Tutoriales y Ejemplos

http://www.example.com/articles/index

CakePHP Book, Versión 4.x

Añadiendo Artículos

Leer de la base de datos y mostrar nuestros artículos es un gran comienzo, pero permitamos también añadir nuevos
artículos.

Lo primero, añadir una nueva acción add() en nuestro controlador ArticlesController:

namespace App\Controller;

class ArticlesController extends AppController
{

public $components = ['Flash'];

public function index()
{

$this->set('articles', $this->Articles->find('all'));
}

public function view($id)
{

$article = $this->Articles->get($id);
$this->set(compact('article'));

}

public function add()
{

$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {

$article = $this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {

$this->Flash->success(__('Your article has been saved.'));

return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));

}
$this->set('article', $article);

}
}

Nota: Necesitas incluir el FlashComponent en cualquier controlador donde vayas a usarlo. Si lo ves necesario, inclúyelo
en tu AppController.

Lo que la función add() hace es: si el formulario enviado no está vacío, intenta salvar un nuevo artículo utilizando el
modelo Articles. Si no se guarda bien, muestra la vista correspondiente, así podremos mostrar los errores de validación
u otras alertas.

Cada petición de CakePHP incluye un objeto ServerRequest que es accesible utilizando $this->request. El objeto
de petición contiene información útil acerca de la petición que se recibe y puede ser utilizado para controlar el flujo de
nuestra aplicación. En este caso, utilizamos el método Cake\Network\ServerRequest::is() para verificar que la
petición es una petición HTTP POST.

Cuando un usuario utiliza un formulario y efectúa un POST a la aplicación, esta información está disponible en
$this->request->getData(). Puedes usar la función pr() o debug() para mostrar el contenido de esa variable y

Tutorial Blog - Parte 2 63

CakePHP Book, Versión 4.x

ver la pinta que tiene.

Utilizamos el método mágico __call del FlashComponent para guardar un mensaje en una variable de sesión
que será mostrado en la página después de la redirección. En la plantilla tenemos <?= $this->Flash->render()
?> que muestra el mensaje y elimina la correspondiente variable de sesión. El método Cake\Controller\
Controller::redirect del controlador redirige hacia otra URL. El parámetro ['action' => 'index'] se traduce
a la URL /articles (p.e. la acción index del controlador de artículos). Puedes echar un ojo al método Cake\Routing\
Router::url() en la API37 para ver los formatos en que puedes especificar una URL para varias funciones de Ca-
kePHP.

Al llamar al método save(), comprobará si hay errores de validación primero y si encuentra alguno, no continuará
con el proceso de guardado. Veremos a continuación cómo trabajar con estos errores de validación.

Validando los Datos

CakePHP te ayuda a evitar la monotonía al construir tus formularios y su validación. Todos odiamos teclear largos
formularios y gastar más tiempo en reglas de validación de cada campo. CakePHP lo hace más rápido y sencillo.

Para aprovechar estas funciones es conveniente que utilices el FormHelper en tus vistas. La clase Cake\View\Helper\
FormHelper está disponible en tus vistas por defecto a través de $this->Form.

He aquí nuestra vista add:

<!-- File: templates/Articles/add.php -->

<h1>Añadir Artículo</h1>
<?php

echo $this->Form->create($article);
echo $this->Form->input('title');
echo $this->Form->input('body', ['rows' => '3']);
echo $this->Form->button(__('Guardar artículo'));
echo $this->Form->end();

?>

Hemos usado FormHelper para generar la etiqueta “form”. La ejecución de $this->Form->create() genera el si-
guiente código:

<form method="post" action="/articles/add">

Si create() no tiene parámetros al ser llamado, asume que estás creando un formulario que envía vía POST a la acción
add() (o edit() cuando id es incluido en los datos de formulario) del controlador actual.

El método $this->Form->input() se utiliza para crear elementos de formulario del mismo nombre. El primer pa-
rámetro le indica a CakePHP a qué campo corresponde y el segundo parámetro te permite especificar un abanico
muy ámplio de opciones - en este caso, el número de filas del textarea que se generará. Hay un poco de introspección y
«automagia» aquí: input() generará distintos elementos de formulario en función del campo del modelo especificado.

La llamada a $this->Form->end() cierra el formulario. También generará campos ocultos si la CSRF/prevención de
manipulación de formularios ha sido habilitada.

Volvamos atrás un minuto y actualicemos nuestra vista templates/Articles/index.php para añadir un enlace de «Añadir
Artículo». Justo antes del tag <table> añade la siguiente línea:

<?= $this->Html->link(
'Añadir artículo',

(continué en la próxima página)

37 https://api.cakephp.org

64 Capítulo 4. Tutoriales y Ejemplos

https://api.cakephp.org

CakePHP Book, Versión 4.x

(proviene de la página anterior)

['controller' => 'Articles', 'action' => 'add']
) ?>

Te estarás preguntando: ¿Cómo le digo a CakePHP la forma en la que debe validar estos datos? Muy sencillo, las reglas
de validación se escriben en el modelo. Volvamos al modelo Articles y hagamos algunos ajustes:

namespace App\Model\Table;

use Cake\ORM\Table;
use Cake\Validation\Validator;

class ArticlesTable extends Table
{

public function initialize(array $config)
{

$this->addBehavior('Timestamp');
}

public function validationDefault(Validator $validator)
{

$validator
->notEmpty('title')
->notEmpty('body');

return $validator;
}

}

El método validationDefault() le dice a CakePHP cómo validar tus datos cuando se invoca el método save().
Aquí hemos especificado que ambos campos, el cuerpo y el título, no pueden quedar vacíos. El motor de validaciones
de CakePHP es potente y con numerosas reglas ya predefinidas (tarjetas de crédito, direcciones de e-mail, etc.) así como
flexibilidad para añadir tus propias reglas de validación. Para más información en tal configuración, echa un vistazo a
la documentación Validation.

Ahora que ya tienes las reglas de validación definidas, usa tu aplicación para crear un nuevo artículo con un título vacío
y verás cómo funcionan. Como hemos usado el método Cake\View\Helper\FormHelper::input(), los mensajes
de error se construyen automáticamente en la vista sin código adicional.

Editando Artículos

Editando artículos: allá vamos. Ya eres un profesional de CakePHP, así que habrás cogido la pauta. Crear una acción,
luego la vista. He aquí cómo debería ser la acción edit() del controlador ArticlesController:

public function edit($id = null)
{

$article = $this->Articles->get($id);
if ($this->request->is(['post', 'put'])) {

$this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {

$this->Flash->success(__('Tu artículo ha sido actualizado.'));

return $this->redirect(['action' => 'index']);
(continué en la próxima página)

Tutorial Blog - Parte 2 65

CakePHP Book, Versión 4.x

(proviene de la página anterior)

}
$this->Flash->error(__('Tu artículo no se ha podido actualizar.'));

}

$this->set('article', $article);
}

Lo primero que hace este método es asegurarse de que el usuario ha intentado acceder a un registro existente. Si
no han pasado el parámetro $id o el artículo no existe lanzaremos una excepción NotFoundException para que el
ErrorHandler se ocupe de ello.

Luego verifica si la petición es POST o PUT. Si lo es, entonces utilizamos los datos recibidos para actualizar nuestra
entidad artículo (article) utilizando el método “patchEntity”. Finalmente utilizamos el objeto tabla para guardar la
entidad de nuevo o mostrar errores de validación al usuario en caso de haberlos.

La vista sería algo así:

<!-- File: templates/Articles/edit.php -->

<h1>Edit Article</h1>
<?php

echo $this->Form->create($article);
echo $this->Form->input('title');
echo $this->Form->input('body', ['rows' => '3']);
echo $this->Form->button(__('Guardar artículo'));
echo $this->Form->end();

?>

Mostramos el formulario de edición (con los valores actuales de ese artículo), junto a los errores de validación que
hubiese.

CakePHP utilizará el resultado de $article->isNew() para determinar si un save() debería insertar un nuevo re-
gistro o actualizar uno existente.

Puedes actualizar tu vista índice (index) con enlaces para editar artículos específicos:

<!-- File: templates/Articles/index.php (edit links added) -->

<h1>Artículos</h1>
<p><?= $this->Html->link("Añadir artículo", ['action' => 'add']) ?></p>
<table>

<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>
<th>Action</th>

</tr>

<!-- Aquí es donde iteramos nuestro objeto de consulta $articles, mostrando en pantalla␣
→˓la información del artículo -->

<?php foreach ($articles as $article): ?>
<tr>

<td><?= $article->id ?></td>
(continué en la próxima página)

66 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

<td>
<?= $this->Html->link($article->title, ['action' => 'view', $article->id]) ?>

</td>
<td>

<?= $article->created->format(DATE_RFC850) ?>
</td>
<td>

<?= $this->Html->link('Editar', ['action' => 'edit', $article->id]) ?>
</td>

</tr>
<?php endforeach; ?>

</table>

Borrando Artículos

Vamos a permitir a los usuarios que borren artículos. Empieza con una acción delete() en el controlador
ArticlesController:

public function delete($id)
{

$this->request->allowMethod(['post', 'delete']);

$article = $this->Articles->get($id);
if ($this->Articles->delete($article)) {

$this->Flash->success(__('El artículo con id: {0} ha sido eliminado.', h($id)));

return $this->redirect(['action' => 'index']);
}

}

La lógica elimina el artículo especificado por $id y utiliza $this->Flash->success() para mostrar al usuario un
mensaje de confirmación tras haber sido redirigidos a /articles. Si el usuario intenta eliminar utilizando una pe-
tición GET, el “allowMethod” devolvería una Excepción. Las excepciones que no se traten serán capturadas por el
manejador de excepciones de CakePHP (exception handler) y una bonita página de error es mostrada. Hay muchas
Excepciones que pueden ser utilizadas para indicar los varios errores HTTP que tu aplicación pueda generar.

Como estamos ejecutando algunos métodos y luego redirigiendo a otra acción de nuestro controlador, no es necesaria
ninguna vista (nunca se usa). Lo que si querrás es actualizar la vista index.php para incluír el ya habitual enlace:

<!-- File: templates/Articles/index.php -->

<h1>Artículos</h1>
<p><?= $this->Html->link("Añadir artículo", ['action' => 'add']) ?></p>
<table>

<tr>
<th>Id</th>
<th>Title</th>
<th>Created</th>
<th>Action</th>

</tr>

(continué en la próxima página)

Tutorial Blog - Parte 2 67

CakePHP Book, Versión 4.x

(proviene de la página anterior)

<!-- Aquí es donde iteramos nuestro objeto de consulta $articles, mostrando en pantalla␣
→˓la información del artículo -->

<?php foreach ($articles as $article): ?>
<tr>

<td><?= $article->id ?></td>
<td>

<?= $this->Html->link($article->title, ['action' => 'view', $article->id]) ?>
</td>
<td>

<?= $article->created->format(DATE_RFC850) ?>
</td>
<td>

<?= $this->Form->postLink(
'Eliminar',
['action' => 'delete', $article->id],
['confirm' => '¿Estás seguro?'])

?>
<?= $this->Html->link('Editar', ['action' => 'edit', $article->id]) ?>

</td>
</tr>

<?php endforeach; ?>

</table>

Utilizando postLink() crearemos un enlace que utilizará JavaScript para hacer una petición POST que eliminará nues-
tro artículo. Permitiendo que contenido sea eliminado vía peticiones GET es peligroso, ya que arañas web (crawlers)
podrían eliminar accidentalmente tu contenido.

Nota: Esta vista utiliza el FormHelper para pedir confirmación vía diálogo de confirmación de JavaScript al usuario
antes de borrar un artículo.

Rutas (Routes)

En muchas ocasiones, las rutas por defecto de CakePHP funcionan bien tal y como están. Los desarroladores que
quieren rutas diferentes para mejorar la usabilidad apreciarán la forma en la que CakePHP relaciona las URLs con las
acciones de los controladores. Vamos a hacer cambios ligeros para este tutorial.

Para más información sobre las rutas así como técnicas avanzadas revisa Connecting Routes.

Por defecto CakePHP responde a las llamadas a la raíz de tu sitio (por ejemplo http://www.example.com) usando el
controlador PagesController, mostrando una vista llamada «home». En lugar de eso, lo reemplazaremos con nuestro
controlador ArticlesController creando una nueva ruta.

Las reglas de enrutamiento están en config/routes.php. Querrás eliminar o comentar la línea que define la raíz por
defecto. Dicha ruta se parece a esto:

Router::connect('/', ['controller' => 'Pages', 'action' => 'display', 'home']);

Esta línea conecta la url “/” con la página por defecto de inicio de CakePHP. Queremos conectarla a nuestro propio
controlador, así que reemplaza dicha línea por esta otra:

68 Capítulo 4. Tutoriales y Ejemplos

http://www.example.com

CakePHP Book, Versión 4.x

Router::connect('/', ['controller' => 'Articles', 'action' => 'index']);

Esto debería, cuando un usuario solicita “/”, devolver la acción index() del controlador ArticlesController.

Nota: CakePHP también calcula las rutas a la inversa. Si en tu código pasas el array ['controller' =>
'Articles', 'action' => 'index'] a una función que espera una url, el resultado será “/”. Es buena idea usar
siempre arrays para configurar las URL, lo que asegura que los links irán siempre al mismo lugar.

Conclusión

Creando aplicaciones de este modo te traerá paz, honor, amor, dinero a carretas e incluso tus fantasías más salvajes.
Simple, no te parece? Ten en cuenta que este tutorial es muy básico, CakePHP tiene muchas otras cosas que ofrecer
y es flexible aunque no hemos cubierto aquí estos puntos para que te sea más simple al principio. Usa el resto de este
manual como una guía para construir mejores aplicaciones.

Ahora que ya has creado una aplicación CakePHP básica, estás listo para la vida real. Empieza tu nuevo proyecto y lee
el resto del Cookbook así como la API38.

Si necesitas ayuda, hay muchos modos de encontrar la ayuda que buscas - por favor, míralo en la página Donde obtener
ayuda. ¡Bienvenido a CakePHP!

Lectura sugerida para continuar desde aquí

Hay varias tareas comunes que la gente que está aprendiendo CakePHP quiere aprender después:

1. Layouts: Personaliza la plantilla layout de tu aplicación

2. Elementos Incluír vistas y reutilizar trozos de código

3. /bake/usage: Generación básica de CRUDs

4. Tutorial Blog - Autenticación y Autorización: Tutorial de autenticación y permisos

Tutorial Blog - Parte 3

Crear categorias en Arbol

Vamos a continuar con nuestro blog e imaginar que queremos categorizar nuestros articulos. Queremos que las cate-
gorias estén ordenadas, y para esto, vamos a usar Tree behavior para ayudarnos a organizar las categorías.

Pero primero necesitamos modificar nuestras tablas.
38 https://api.cakephp.org

Tutorial Blog - Parte 3 69

https://api.cakephp.org

CakePHP Book, Versión 4.x

Plugin de migración

Vamos a usar el migrations plugin39 para crear una tabla en nuestra base de datos. Si tienes una tabla de articulos en tu
base de datos, borrala.

Abre tu archivo composer.json. Generalmente el plugin de migración ya esta incluido en require. Si no es el caso,
agrégalo:

"require": {
"cakephp/migrations": "~1.0"

}

Luego corre el comando composer update. El plugin de migración se alojara en tu carpeta de plugins. Agrega
también Plugin::load('Migrations'); en el archivo bootstrap.php de tú aplicación.

Una vez que el plugin sea cargado, corre el siguiente comando para crear el archivo de migración:

bin/cake migrations create Initial

Un archivo de migración será creado en la carpeta /config/Migrations. Puedes abrir tu archivo y agregar las si-
guientes lineas:

<?php

use Phinx\Migration\AbstractMigration;

class Initial extends AbstractMigration
{

public function change()
{

$articles = $this->table('articles');
$articles->addColumn('title', 'string', ['limit' => 50])

->addColumn('body', 'text', ['null' => true, 'default' => null])
->addColumn('category_id', 'integer', ['null' => true, 'default' => null])
->addColumn('created', 'datetime')
->addColumn('modified', 'datetime', ['null' => true, 'default' => null])
->save();

$categories = $this->table('categories');
$categories->addColumn('parent_id', 'integer', ['null' => true, 'default' =>␣

→˓null])
->addColumn('lft', 'integer', ['null' => true, 'default' => null])
->addColumn('rght', 'integer', ['null' => true, 'default' => null])
->addColumn('name', 'string', ['limit' => 255])
->addColumn('description', 'string', ['limit' => 255, 'null' => true,

→˓'default' => null])
->addColumn('created', 'datetime')
->addColumn('modified', 'datetime', ['null' => true, 'default' => null])
->save();

}
}

Ahora corre el siguiente comando para crear tús tablas:
39 https://github.com/cakephp/migrations

70 Capítulo 4. Tutoriales y Ejemplos

https://github.com/cakephp/migrations

CakePHP Book, Versión 4.x

bin/cake migrations migrate

Modificando las tablas

Con nuestras tablas creadas, ahora podemos enfocarnos en categorizar los artículos.

Suponemos que ya tienes los archivos (Tables, Controllers y Templates de Articles) de la parte 2 de esta serie de
tutoriales, por lo que solamente vamos a agregar referencia a las categorías.

Necesitamos asociar las tablas de Articles y Categories. Abre el archivo src/Model/Table/ArticlesTable.php y agrega
las siguientes lineas:

// src/Model/Table/ArticlesTable.php

namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table
{

public function initialize(array $config)
{

$this->addBehavior('Timestamp');
// Just add the belongsTo relation with CategoriesTable
$this->belongsTo('Categories', [

'foreignKey' => 'category_id',
]);

}
}

Generando el código base para las Categorías

Crea todos los archivos corriendo los siguientes comandos:

bin/cake bake model Categories
bin/cake bake controller Categories
bin/cake bake template Categories

La herramienta bake ha creado todos los archivos en un instante. Puedes darles una rápida leida si necesitas re-
familiarizarte con la forma en la que CakePHP funciona.

Nota: Si estás en Windows recordá usar en lugar de / .

Tutorial Blog - Parte 3 71

CakePHP Book, Versión 4.x

Agregar el TreeBehavior a CategoriesTable

TreeBehavior ayuda a manejar estructuras de árbol jerarquica en una tabla. Utiliza MPTT logic40 para manejar los
datos. Las estructuras en árbol MPTT están optimizadas para lecturas, lo cual las hace ideal para aplicaciones con gran
carga de lectura como los blogs.

Si abres el archivo src/Model/Table/CategoriesTable.php veras que el TreeBehavior fue agregado a CategoriesTable
en el método initialize(). Bake agrega este behavior a cualquier tabla que contenga las columnas lft y rght:

$this->addBehavior('Tree');

Con el TreeBehavior agregado ahora podras acceder a algunas funcionalidades como reordenar las categorias. Veremos
eso en un momento.

Pero por ahora tendrás que removar los siguientes inputs en tus archivos add y edit de Categories:

echo $this->Form->input('lft');
echo $this->Form->input('rght');

Esos campos son manejados automáticamento por el TreeBehavior cuando una categoría es guardada.

Con tú navegador, agrega alguna nueva categoría usando la acción /yoursite/categories/add.

Reordenando categorías con TreeBehavior

En el index de categorias, puedes listar y re-ordenar categorias.

Vamos a modificar el método index en tu CategoriesController.php, agregando move_up() y move_down() para
poder reordenar las categorías en ese árbol:

class CategoriesController extends AppController
{

public function index()
{

$categories = $this->Categories->find('threaded')
->order(['lft' => 'ASC']);

$this->set(compact('categories'));
}

public function move_up($id = null)
{

$this->request->allowMethod(['post', 'put']);
$category = $this->Categories->get($id);
if ($this->Categories->moveUp($category)) {

$this->Flash->success('The category has been moved Up.');
} else {

$this->Flash->error('The category could not be moved up. Please, try again.
→˓');

}

return $this->redirect($this->referer(['action' => 'index']));
}

(continué en la próxima página)

40 https://www.sitepoint.com/hierarchical-data-database-2/

72 Capítulo 4. Tutoriales y Ejemplos

https://www.sitepoint.com/hierarchical-data-database-2/

CakePHP Book, Versión 4.x

(proviene de la página anterior)

public function move_down($id = null)
{

$this->request->allowMethod(['post', 'put']);
$category = $this->Categories->get($id);
if ($this->Categories->moveDown($category)) {

$this->Flash->success('The category has been moved down.');
} else {

$this->Flash->error('The category could not be moved down. Please, try again.
→˓');

}

return $this->redirect($this->referer(['action' => 'index']));
}

}

En templates/Categories/index.php reemplazá el contenido existente por el siguiente:

<div class="actions columns large-2 medium-3">
<h3><?= __('Actions') ?></h3>
<ul class="side-nav">

<?= $this->Html->link(__('New Category'), ['action' => 'add']) ?>

</div>
<div class="categories index large-10 medium-9 columns">

<table cellpadding="0" cellspacing="0">
<thead>

<tr>
<th>id</th>
<th>Parent Id</th>
<th>Title</th>
<th>Lft</th>
<th>Rght</th>
<th>Name</th>
<th>Description</th>
<th>Created</th>
<th class="actions"><?= __('Actions') ?></th>

</tr>
</thead>
<tbody>
<?php foreach ($categories as $category): ?>

<tr>
<td><?= $this->Number->format($category->id) ?></td>
<td><?= $this->Number->format($category->parent_id) ?></td>
<td><?= $this->Number->format($category->lft) ?></td>
<td><?= $this->Number->format($category->rght) ?></td>
<td><?= h($category->name) ?></td>
<td><?= h($category->description) ?></td>
<td><?= h($category->created) ?></td>
<td class="actions">

<?= $this->Html->link(__('View'), ['action' => 'view', $category->id]) ?>
<?= $this->Html->link(__('Edit'), ['action' => 'edit', $category->id]) ?>
<?= $this->Form->postLink(__('Delete'), ['action' => 'delete', $category-

(continué en la próxima página)

Tutorial Blog - Parte 3 73

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓>id], ['confirm' => __('Are you sure you want to delete # {0}?', $category->id)]) ?>
<?= $this->Form->postLink(__('Move down'), ['action' => 'move_down',

→˓$category->id], ['confirm' => __('Are you sure you want to move down # {0}?',
→˓$category->id)]) ?>

<?= $this->Form->postLink(__('Move up'), ['action' => 'move_up',
→˓$category->id], ['confirm' => __('Are you sure you want to move up # {0}?', $category->
→˓id)]) ?>

</td>
</tr>

<?php endforeach; ?>
</tbody>
</table>

</div>

Modificando el ArticlesController

En tú ArticlesController, vamos a obtener el listado de categorías. Esto nos permitirá elegir una categoría para un
Article al momento de crearlo o editarlo:

// src/Controller/ArticlesController.php

namespace App\Controller;

// Prior to 3.6 use Cake\Network\Exception\NotFoundException
use Cake\Http\Exception\NotFoundException;

class ArticlesController extends AppController
{

// ...

public function add()
{

$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {

$article = $this->Articles->patchEntity($article, $this->request->getData());
if ($this->Articles->save($article)) {

$this->Flash->success(__('Your article has been saved.'));

return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));

}
$this->set('article', $article);

// Just added the categories list to be able to choose
// one category for an article
$categories = $this->Articles->Categories->find('treeList');
$this->set(compact('categories'));

}
}

74 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

Modificando el template de Articles

El template add de Article debería verse similar a esto:

.. code-block:: php

<!– File: templates/Articles/add.php –>

<h1>Add Article</h1> <?php echo $this->Form->create($article); // just added the categories input echo
$this->Form->input(“categories”); echo $this->Form->input(“title”); echo $this->Form->input(“body”,
[“rows” => “3”]); echo $this->Form->button(__(“Save Article”)); echo $this->Form->end();

Ingresando a /yoursite/categories/add deberías ver una lista de categorías para elegir.

Tutorial Blog - Autenticación y Autorización

Siguiendo con nuestro ejemplo de aplicacion Tutorial Blog, imaginá que necesitamos proteger ciertas URLs, depen-
diendo del usuario logeado. También tenemos otro requisito, permitir que nuestro blog tenga varios autores, cada uno
habilitado para crear sus posts, editar y borrarlos a voluntad, evitando que otros autores puedan cambiarlos.

Creando el codigo para usuarios

Primero, vamos a crear una tabla en nuestra base de datos para guardar los datos de usuarios:

CREATE TABLE users (
id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
email VARCHAR(255),
password VARCHAR(255),
role VARCHAR(20),
created DATETIME DEFAULT NULL,
modified DATETIME DEFAULT NULL

);

Siguimos las convenciones de CakePHP para nombrar tablas pero también estamos aprovechando otra convencion: al
usar los campos email y password en nuestra tabla CakePHP configurará automáticamente la mayoria de las cosas al
momento de implementar el login.

El siguiente paso es crear Users table, responsable de buscar, guardar y validar los datos de usuario:

// src/Model/Table/UsersTable.php
namespace App\Model\Table;

use Cake\ORM\Table;
use Cake\Validation\Validator;

class UsersTable extends Table
{

public function validationDefault(Validator $validator)
{

return $validator
->notEmpty('email', 'A email is required')
->email('email')

(continué en la próxima página)

Tutorial Blog - Autenticación y Autorización 75

CakePHP Book, Versión 4.x

(proviene de la página anterior)

->notEmpty('password', 'A password is required')
->notEmpty('role', 'A role is required')
->add('role', 'inList', [

'rule' => ['inList', ['admin', 'author']],
'message' => 'Please enter a valid role'

]);
}

}

También vamos a crear UsersController; el siguiente contenido fue generado usando baked UsersController con el
generador de código incluído con CakePHP:

// src/Controller/UsersController.php

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\Event;
// Prior to 3.6 use Cake\Network\Exception\NotFoundException
use Cake\Http\Exception\NotFoundException;

class UsersController extends AppController
{

public function beforeFilter(Event $event)
{

parent::beforeFilter($event);
$this->Auth->allow('add');

}

public function index()
{

$this->set('users', $this->Users->find('all'));
}

public function view($id)
{

if (!$id) {
throw new NotFoundException(__('Invalid user'));

}

$user = $this->Users->get($id);
$this->set(compact('user'));

}

public function add()
{

$user = $this->Users->newEntity();
if ($this->request->is('post')) {

$user = $this->Users->patchEntity($user, $this->request->getData());
if ($this->Users->save($user)) {

(continué en la próxima página)

76 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$this->Flash->success(__('The user has been saved.'));

return $this->redirect(['action' => 'add']);
}
$this->Flash->error(__('Unable to add the user.'));

}
$this->set('user', $user);

}

}

De la misma forma que creamos las vistas para los posts del blog o usando la herramienta de generación de código,
creamos las vistas. Para los objetivos de este tutorial, mostraremos solamente add.php:

<!-- templates/Users/add.php -->

<div class="users form">
<?= $this->Form->create($user) ?>

<fieldset>
<legend><?= __('Add User') ?></legend>
<?= $this->Form->input('email') ?>
<?= $this->Form->input('password') ?>
<?= $this->Form->input('role', [

'options' => ['admin' => 'Admin', 'author' => 'Author']
]) ?>

</fieldset>
<?= $this->Form->button(__('Submit')); ?>
<?= $this->Form->end() ?>
</div>

Autenticación (login y logout)

Ya estamos listos para agregar nuestra autenticación. En CakePHP esto es manejado por Cake\Controller\
Component\AuthComponent, responsable de requerir login para ciertas acciones, de manejar el sign-in y el sign-out
y también de autorizar usuarios logeados a ciertas acciones que estan autorizados a utilizar.

Para agregar este componente a tú aplicación abre el archivo src/Controller/AppController.php y agrega las siguientes
lineas:

// src/Controller/AppController.php

namespace App\Controller;

use Cake\Controller\Controller;
use Cake\Event\Event;

class AppController extends Controller
{

//...

public function initialize()
{

(continué en la próxima página)

Tutorial Blog - Autenticación y Autorización 77

CakePHP Book, Versión 4.x

(proviene de la página anterior)

$this->loadComponent('Flash');
$this->loadComponent('Auth', [

'loginRedirect' => [
'controller' => 'Articles',
'action' => 'index'

],
'logoutRedirect' => [

'controller' => 'Pages',
'action' => 'display',
'home'

]
]);

}

public function beforeFilter(Event $event)
{

$this->Auth->allow(['index', 'view', 'display']);
}
//...

}

No hay mucho que configurar, al haber utilizado convenciones para la tabla de usuarios. Simplemente asignamos las
URLs que serán cargadas despues del login y del logout, en nuestro caso /articles/ y / respectivamente.

Lo que hicimos en beforeFilter() fue decirle al AuthComponent que no requiera login para las acciones index y
view en cada controlador. Queremos que nuestros visitantes puedan leer y listar las entradas sin registrarse.

Ahora necesitamos poder registrar nuevos usuarios, guardar el nombre de usuario y contraseña, y hashear su contraseña
para que no sea guardada como texto plano. Vamos a decirle al AuthComponent que deje usuarios sin autenticar acceder
a la funcion add del controlador users e implementemos las acciones de login y logout:

// src/Controller/UsersController.php

public function beforeFilter(Event $event)
{

parent::beforeFilter($event);
// Allow users to register and logout.
// You should not add the "login" action to allow list. Doing so would
// cause problems with normal functioning of AuthComponent.
$this->Auth->allow(['add', 'logout']);

}

public function login()
{

if ($this->request->is('post')) {
$user = $this->Auth->identify();
if ($user) {

$this->Auth->setUser($user);

return $this->redirect($this->Auth->redirectUrl());
}
$this->Flash->error(__('Invalid email or password, try again'));

}
(continué en la próxima página)

78 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

(proviene de la página anterior)

}

public function logout()
{

return $this->redirect($this->Auth->logout());
}

El hasheo del password aún no está hecho, necesitamos una clase Entity para nuestra clase User para así manejar esta
lógica específica. Crea el archivo src/Model/Entity/User.php y agrega las siguientes lineas:

// src/Model/Entity/User.php
namespace App\Model\Entity;

use Cake\Auth\DefaultPasswordHasher;
use Cake\ORM\Entity;

class User extends Entity
{

// Make all fields mass assignable for now.
protected $_accessible = ['*' => true];

// ...

protected function _setPassword($password)
{

if (strlen($password) > 0) {
return (new DefaultPasswordHasher)->hash($password);

}
}

// ...
}

Ahora cada vez que la propiedad password sea asignada a un usuario, será hasheada usando la clase
DefaultPasswordHasher. Solamente nos falta un archivo para la vista de la acción login. Abre tu archivo tem-
plates/Users/login.php y agrega las siguientes lineas:

<!-- File: templates/Users/login.php -->

<div class="users form">
<?= $this->Flash->render('auth') ?>
<?= $this->Form->create() ?>

<fieldset>
<legend><?= __('Please enter your email and password') ?></legend>
<?= $this->Form->input('email') ?>
<?= $this->Form->input('password') ?>

</fieldset>
<?= $this->Form->button(__('Login')); ?>
<?= $this->Form->end() ?>
</div>

Ya podés registrar un nuevo usuario accediendo a /users/add e iniciar sesión con las nuevas credenciales ingresando

Tutorial Blog - Autenticación y Autorización 79

CakePHP Book, Versión 4.x

a /users/login. También al intentar acceder a alguna otra URL que no fue explicitamente autorizada, por ejemplo
/articles/add, la aplicación te redireccionará automaticamente al la pagina de login.

Y eso es todo! Se ve demasiado simple para ser verdad. Volvamos un poco para explicar que pasa. La función
beforeFilter() le dice al AuthComponent que no requiera login para la acción add() asi como para index()
y view(), autorizadas en el beforeFilter() del AppController.

La función login() llama a $this->Auth->identify() del AuthComponent, y funciona sin ninguna otra confi-
guración ya que seguimos la convención. Es decir, tener un modelo llamado User con los campos email y password,
y usar un formulario que hace post a un controlador con los datos del usuario. Esta función devuelve si el login fue
exitoso o no, y en caso de que tenga exito redirige a la URL puesta en AppController, dentro de la configuracion del
AuthComponent.

El logout funciona simplemente al acceder a /users/logout y redirecciona al usuario a la URL configurada.

Autorización (quién está autorizado a acceder qué)

Como mencionamos antes, estamos convirtiendo este blog en una herramienta de autoría multiusuario, y para hacer
esto necesitamos modificar la tabla de posts para agregar referencia al modelo User:

ALTER TABLE articles ADD COLUMN user_id INT(11);

También, un pequeño cambio en ArticlesController es necesario para guardar el usuario logeado como referencia en
los artículos creados:

// src/Controller/ArticlesController.php

public function add()
{

$article = $this->Articles->newEmptyEntity();
if ($this->request->is('post')) {

$article = $this->Articles->patchEntity($article, $this->request->getData());
// Added this line
$article->user_id = $this->Auth->user('id');
// You could also do the following
//$newData = ['user_id' => $this->Auth->user('id')];
//$article = $this->Articles->patchEntity($article, $newData);
if ($this->Articles->save($article)) {

$this->Flash->success(__('Your article has been saved.'));

return $this->redirect(['action' => 'index']);
}
$this->Flash->error(__('Unable to add your article.'));

}
$this->set('article', $article);

}

La función user() del AuthComponent devuelve datos del usuario actualmente logeado. Usamos este método para
agregar datos a la información que será guardada.

Vamos a prevenir que autores puedan editar o eliminar los artículos de otros autores. La regla básica para nuestra
aplicación es que los usuarios admin pueden acceder todas las URL, mientras que los usuarios normales (autores)
solamente pueden acceder las acciones permitidas. Abre nuevamente AppController y agregá las siguientes opciones
en la configuración del Auth:

80 Capítulo 4. Tutoriales y Ejemplos

CakePHP Book, Versión 4.x

// src/Controller/AppController.php

public function initialize()
{

$this->loadComponent('Flash');
$this->loadComponent('Auth', [

'authorize' => ['Controller'], // Added this line
'loginRedirect' => [

'controller' => 'Articles',
'action' => 'index'

],
'logoutRedirect' => [

'controller' => 'Pages',
'action' => 'display',
'home'

]
]);

}

public function isAuthorized($user)
{

// Admin can access every action
if (isset($user['role']) && $user['role'] === 'admin') {

return true;
}

// Default deny
return false;

}

Hemos creado un mecanismo de autorización muy simple. En este caso, los usuarios con el rol admin podrán acceder
a cualquier URL del sitio cuando esten logeados, pero el resto de los usuarios no podrán hacer más que los usuarios no
logeados.

Esto no es exactamente lo que queriamos, por lo que tendremos que agregar mas reglas a nuestro método
isAuthorized(). Pero en lugar de hacerlo en AppController, vamos a delegar a cada controlador. Las reglas que
vamos a agregar a ArticlesController deberian permitirle a los autores crear artículos, pero prevenir que editen artícu-
los que no le pertenezcan. Abre el archivo ArticlesController.php y agregá las siguientes lineas:

// src/Controller/ArticlesController.php

public function isAuthorized($user)
{

// All registered users can add articles
if ($this->request->getParam('action') === 'add') {

return true;
}

// The owner of an article can edit and delete it
if (in_array($this->request->getParam('action'), ['edit', 'delete'])) {

$articleId = (int)$this->request->getParam('pass.0');
if ($this->Articles->isOwnedBy($articleId, $user['id'])) {

return true;
(continué en la próxima página)

Tutorial Blog - Autenticación y Autorización 81

CakePHP Book, Versión 4.x

(proviene de la página anterior)

}
}

return parent::isAuthorized($user);
}

Estamos sobreescribiendo el método isAuthorized() de AppController y comprobando si la clase padre autoriza al
usuario. Si no lo hace entonces solamente autorizarlo a acceder a la acción add y condicionalmente acceder a edit y
delete. Una última cosa por implementar, decidir si el usuario está autorizador a editar el post o no, estamos llamando la
función isOwnedBy() del modelo Articles. Es en general una buena practica mover la mayor parte de la logica posible
hacia los modelos:

// src/Model/Table/ArticlesTable.php

public function isOwnedBy($articleId, $userId)
{

return $this->exists(['id' => $articleId, 'user_id' => $userId]);
}

Esto concluye nuestro simple tutorial de autenticación y autorización. Para proteger el UsersController se puede se-
guir la misma técnica utilizada para ArticlesController. También es posible implementar una solución mas general en
AppController, de acuerdo a tus reglas.

En caso de necesitar más control, sugerimos leer la guia completa sobre Auth en Authentication, donde encontrarás
mas información para configurar el componente y crear clases de autorizacion a tú medida.

Lectura sugerida

1. /bake/usage Generar código CRUD básico

2. Authentication: Registro y login de usuarios

82 Capítulo 4. Tutoriales y Ejemplos

CAPÍTULO 5

Contribuir

Existen diversas maneras con las que puedes contribuir a CakePHP:

Documentación

Contribuir con la documentación es fácil. Los archivos están hospedados en https://github.com/cakephp/docs. Siéntete
libre de hacer un fork del repositorio, añadir tus cambios, mejoras, traducciones y comenzar a ayudar a través de un
nuevo pull request. También puedes editar los archivos de manera online con GitHub sin la necesidad de descargarlos
– el botón Improve this Doc que aparece en todas las páginas te llevará al editor online de GitHub de esa página.

La documentación de CakePHP dispone de integración continua41 y se despliega automáticamente tras realizar el merge
del pull request.

Traducciones

Envía un email al equipo de documentación (docs arroba cakephp punto org) o utiliza IRC (#cakephp en freenode)
para hablar de cualquier trabajo de traducción en el que quieras participar.

41 https://es.wikipedia.org/wiki/Integraci%C3%B3n_continua

83

https://github.com/cakephp/docs
https://es.wikipedia.org/wiki/Integraci%C3%B3n_continua

CakePHP Book, Versión 4.x

Nueva traducción

Nos gustaría poder disponer de traducciones que estén todo lo completas posible. Sin embargo hay ocasiones donde un
archivo de traducción no está al día, por lo que debes considerar siempre la versión en inglés como la versión acreditada.

Si tu idioma no está entre los disponibles, por favor, contacta con nosotros a través de Github y estudiaremos la posi-
bilidad de crear la estructura de archivos para ello.

Las siguientes secciones son las primeras que deberías considerar traducir ya que estos archivos no cambian a menudo:

index.rst

intro.rst

quickstart.rst

installation.rst

/intro (carpeta)

/tutorials-and-examples (carpeta)

Recordatorio para administradores de documentación

La estructura de archivos de todos los idiomas deben seguir la estructura de la versión en inglés. Si la estructura cambia
en esta versión debemos realizar dichos cambios en los demás idiomas.

Por ejemplo, si se crea un nuevo archivo en inglés en en/file.rst tendremos que:

Añadir el archivo en todos los idiomas: fr/file.rst, zh/file.rst,. . .

Borrar el contenido pero manteniendo el title, meta información y toc-tree que pueda haber. Se añadirá la
siguiente nota mientras nadie traduzca el archivo:

File Title
##########

.. note::
The documentation is not currently supported in XX language for this
page.

Please feel free to send us a pull request on
`Github <https://github.com/cakephp/docs>`_ or use the **Improve This Doc**
button to directly propose your changes.

You can refer to the English version in the select top menu to have
information about this page's topic.

// If toc-tree elements are in the English version
.. toctree::

:maxdepth: 1

one-toc-file
other-toc-file

.. meta::
:title lang=xx: File Title
:keywords lang=xx: title, description,...

84 Capítulo 5. Contribuir

CakePHP Book, Versión 4.x

Consejos para traductores

Navega y edita en el idioma al que quieras traducir el contenido - de otra manera no verás lo que ya está traducido.

Siéntete libre de bucear en la traducción si ya existe en tu idioma.

Usa la Forma informal42.

Traduce el título y el contenido a la vez.

Compara con la versión en inglés antes de subir una corrección (si corriges algo pero no indicas una referencia
tu subida no será aceptada).

Si necesitas escribir un término en inglés envuélvelo en etiquetas . E.g. «asdf asdf Controller asdf» o «asdf
asdf Kontroller (Controller) asfd» como proceda.

No subas traducciones parciales.

No edites una sección con cambios pendientes.

No uses entidades HTML43 para caracteres acentudados, la documentación utiliza UTF-8.

No cambies significatibamente el etiquetado (HTML) o añadas nuevo contenido.

Si falta información en el contenido original sube primero una corrección de ello.

Guía de formato para la documentación

La nueva documentación de CakePHP está escrito con texto en formato ReST44.

ReST (Re Structured Text) es una sintaxis de marcado de texto plano similar a Markdown o Textile.

Para mantener la consistencia cuando añadas algo a la documentación de CakePHP recomendamos que sigas las si-
guientes líneas guía sobre como dar formato y estructurar tu texto.

Tamaño de línea

Las líneas de texto deberían medir como máximo 40 caracteres. Las únicas excepciones son URLs largas y fragmentos
de código.

Cabeceras y secciones

Las cabeceras de las secciones se crean subrayando el título con caracteres de puntuación. El subrayado deberá ser por
lo menos tan largo como el texto.

Se utiliza para indicar los títulos de páginas.

= Se utiliza para los títulos de las secciones de una página.

- Se utiliza para los títulos de subsecciones.

~ Se utiliza para los títulos de sub-subsecciones.

^ Se utiliza para los títulos de sub-sub-subsecciones.

Los encabezados no deben anidarse con más de 5 niveles de profundidad y deben estar precedidos y seguidos por una
línea en blanco.

42 https://es.wikipedia.org/wiki/Registro_ling%C3%BC%C3%ADstico
43 https://es.wikipedia.org/wiki/Anexo:Entidades_de_caracteres_XML_y_HTML
44 https://es.wikipedia.org/wiki/ReStructuredText

Documentación 85

https://es.wikipedia.org/wiki/Registro_ling%C3%BC%C3%ADstico
https://es.wikipedia.org/wiki/Anexo:Entidades_de_caracteres_XML_y_HTML
https://es.wikipedia.org/wiki/ReStructuredText

CakePHP Book, Versión 4.x

Párrafos

Párrafos son simplemente bloques de texto con todas las líneas al mismo nivel de indexación. Los párrafos deben
separarse por al menos una línea vacía.

Marcado en línea

Un asterisco: texto en cursiva. Lo usaremos para enfatizar/destacar de forma general.

• *texto*.

Dos astericos: texto en negrita. Lo usaremos para indicar directorios de trabajo, títulos de listas y nombres de
tablas (excluyendo la palabra table).

• **/config/Migrations**, **articulos**, etc.

Dos acentos graves (``): texto para ejemplos de código. Lo usaramos para nombres de opciones de métodos,
columnas de tablas, objetos (excluyendo la palabra «objeto») y para nombres de métodos y funciones (incluídos
los paréntesis)

• ``cascadeCallbacks``, ``true``, ``id``, ``PagesController``, ``config()``, etc.

Si aparecen asteriscos o acentos graves en el texto y pueden ser confundidos con los delimitadores de marcado habrá
que escaparlos con \.

Los marcadores en línea tienen algunas restricciones:

No pueden estar anidados.

El contenido no puede empezar o acabar con espacios en blanco: * texto* está mal.

El contenido debe separarse del resto del texto por caracteres que no sean palabras. Utiliza \ para escapar un
espacio y solucionarlo: onelong\ *bolded*\ word.

Listas

El etiquetado de listas es muy parecido a Markdown. Las listas no ordenadas se indican empezando una línea con un
asterisco y un espacio.

Las listas enumeradas pueden crearse con enumeraciones o # para auto enumeración:

Esto es una viñeta

• Esto también, pero esta línea tiene dos líneas.

1. Primera línea

2. Segunda línea

2. La enumeración automática

3. Te ahorrará algo de tiempo.

También se pueden crear listas anidadas tabulando secciones y separándolas con una línea en blanco:

* Primera línea
* Segunda línea

* Bajando un nivel
* Yeah!

(continué en la próxima página)

86 Capítulo 5. Contribuir

CakePHP Book, Versión 4.x

(proviene de la página anterior)

* Volviendo al primer nivel

Pueden crearse listas de definiciones haciendo lo siguiente:

Término
Definición

CakePHP
Un framework MVC para PHP

Los términos no pueden ocupar más de una línea pero las definiciones pueden ocupar más líneas mientras se aniden
consistentemente.

Enlaces

Hay diferentes tipos de enlaces, cada uno con sus características.

Enlaces externos

Los enlaces a documentos externos pueden hacerse de la siguiente manera:

`Enlace externo a php.net <https://php.net>`_

El resultado debería verse así: Enlace externo a php.net45

Enlaces a otras páginas

:doc:

Puedes crear enlaces a otras páginas de la documentación usando la función ::doc:. Puedes enlazar a un ar-
chivo específico empleando rutas relativas o absolutas omitiendo la extensión .rst. Por ejemplo: si apareciese
:doc:`form` en el documento core-helpers/html, el enlace haría referencia a core-helpers/form. Si
la referencia fuese :doc:`/core-helpers` el enlace sería siempre a /core-helpers sin importar donde se
utilice.

Enlaces a referencias cruzadas

:ref:

Puedes hacer referncia cruzada a cualquier título de cualquier documento usando la función :ref:. Los enlaces
a etiquetas de destino deben ser únicos a lo largo de toda la documentación. Cuando se crean etiquetas para
métodos de clase lo mejor es usar clase-método como formato para tu etiqueta de destino.

El uso más habitual de etiquetas es encima de un título. Ejemplo:

.. _nombre-etiqueta:

Título sección

(continué en la próxima página)

45 https://php.net

Documentación 87

https://php.net

CakePHP Book, Versión 4.x

(proviene de la página anterior)

Resto del contenido.

En otro sitio podrías enlazar a la sección de arriba usando :ref:`nombre-etiqueta`. El texto del en-
lace será el título al que precede el enlace pero puedes personalizarlo usando :ref:`Texto del enlace
<nombre-etiqueta>`.

Evitar alertas de Sphinx

Sphinx mostrará avisos si un archivo no es referenciado en un toc-tree. Es una buena manera de asegurarse de que
todos los archivos tienen un enlace dirigido a ellos. Pero a veces no necesitas introducir un enlace a un archivo, p.ej.
para nuestros archivos epub-contents y pdf-contents. En esos casos puedes añadir :orphan: al inicio del archivo para
eliminar las alertas de que el archivo no está en el toc-tree

Describir clases y sus contenidos

La documentación de CakePHP usa el phpdomain46 para proveer directivas personalizadas para describir objetos PHP y
constructores. El uso de estas directivas y funciones es necesario para una correcta indexación y uso de las herramientas
de referenciación cruzada.

Describir clases y constructores

Cada directiva introduce el contenido del índice y/o índice del namespace.

.. php:global:: nombre

Esta directiva declara una nueva variable PHP global.

.. php:function:: nombre(firma)

Define una nueva función global fuera de una clase.

.. php:const:: nombre

Esta directiva declara una nueva constante PHP, puedes usarla también anidada dentro de una directiva de clase
para crear constantes de clase.

.. php:exception:: nombre

Esta directiva declara una nueva excepción en el namespace actual. La firma puede incluir argumentos de cons-
tructor.

.. php:class:: nombre

Describe una clase. Métodos, atributos y atributos que pertenezcan a la clase deberán ir dentro del cuerpo de la
directiva:

.. php:class:: MyClass

Descripción de la clase

.. php:method:: method($argument)

Descripción del método

46 https://pypi.org/project/sphinxcontrib-phpdomain/

88 Capítulo 5. Contribuir

https://pypi.org/project/sphinxcontrib-phpdomain/

CakePHP Book, Versión 4.x

Atributos, métodos y constantes no necesitan estar anidados, pueden seguir la siguiente declaración de clase:

.. php:class:: MyClass

Texto sobre la clase

.. php:method:: methodName()

Texto sobre el método

.. php:method:: nombre(firma)

Describe un método de clase, sus argumentos, salida y excepciones:

.. php:method:: instanceMethod($one, $two)

:param string $one: El primer parámetro.
:param string $two: El segundo parámetro.
:returns: Un array de cosas
:throws: InvalidArgumentException

Esto es una instancia de método.

.. php:staticmethod:: ClassName::nombreMetodo(firma)

Describe un método estático, sus argumentos, salida y excepciones, ver php:method para opciones.

.. php:attr:: nombre

Describe una propiedad/atributo en una clase.

Evitar avisos de Sphinx

Sphinx mostrará avisos si una función es referenciada en múltiples archivos. Es una buena manera de asegurarse de
que no añades una función dos veces, pero algunas veces puedes querer escribir una función en dos o más archivos,
p.ej. “debug object” es referenciado en `/development/debugging` y `/core-libraries/global-constants-and-functions`.
En este caso tu puedes añadir :noindex: debajo de la función debug para eliminar los avisos. Mantén únicamente una
referencia sin :no-index: para seguir teniendo la función referenciada:

.. php:function:: debug(mixed $var, boolean $showHtml = null, $showFrom = true)
:noindex:

Referencias cruzadas

Los siguientes roles hacen referencia a objetos PHP y los enlaces son generados si se encuentra una directiva que
coincida:

:php:func:

Referencia a una función PHP.

:php:global:

Referencia a una variable global cuyo nombre tiene prefijo $.

:php:const:

Referencia tanto a una constante global como a una de clase. Las constantes de clase deberán ir precedidas por
la clase que las contenga:

Documentación 89

CakePHP Book, Versión 4.x

DateTime tiene una constante :php:const:`DateTime::ATOM`.

:php:class:

Referencia una clase por el nombre:

:php:class:`ClassName`

:php:meth:

Referencia un método de una clase. Este role soporta ambos tipos de métodos:

:php:meth:`DateTime::setDate`
:php:meth:`Classname::staticMethod`

:php:attr:

Referencia una propiedad de un objeto:

:php:attr:`ClassName::$propertyName`

:php:exc:

Referencia una excepción.

Código fuente

Los bloques de citas de código fuente se crean finalizando un párrafo con ::. El bloque debe ir anidado y, como todos
los párrafos, separados por líneas en blanco:

Esto es un párrafo::

while ($i--) {
doStuff()

}

Esto es otra vez texto normal.

Los textos citados no son modificados ni formateados salvo el primer nivel de anidamiento, que es eliminado.

Notas y avisos

Hay muchas ocasiones en las que quieres avisar al lector de un consejo importante, una nota especial o un peligro
potencial. Las admonestaciones en Sphinx se utilizan justo para eso. Hay cinco tipos de admonestaciones:

.. tip:: Los consejos (tips) se utilizan para documentar o reiterar información interesante o importante. El
contenido de la directiva debe escribirse en sentencias completas e incluir todas las puntuaciones apropiadas.

.. note:: Las notas (notes) se utilizan para documentar una pieza de información importante. El contenido de
la directiva debe escribirse en sentencias completas e incluir todas las puntuaciones apropiadas.

.. warning:: Avisos (warnings) se utilizan para documentar posibles obstáculos o información relativa a se-
guridad. El contenido de la directiva debe escribirse en sentencias completas e incluir todas las puntuaciones
apropiadas.

.. versionadded:: X.Y.Z las admonestaciones «Version added» se utilizan para mostrar notas específicas a
nuevas funcionalidades añadidas en una versión específica, siendo X.Y.Z la versión en la que se añadieron.

90 Capítulo 5. Contribuir

CakePHP Book, Versión 4.x

.. deprecated:: X.Y.Z es lo opuesto a versionadded, se utiliza para avisar de una funcionalidad obsoleta,
siendo X.Y.Z la versión en la que pasó a ser obsoleta.

Todas las admonestaciones se escriben igual:

.. note::

Anidado y precedido por una línea en blanco.
Igual que un párafo.

Este texto no es parte de la nota.

Ejemplos

Truco: Esto es un consejo útil que probablemente hayas olvidado.

Nota: Deberías prestar atención aquí.

Advertencia: Podría ser peligroso.

Nuevo en la versión 4.0.0: Esta funcionalidad tan genial fue añadida en la versión 4.0.0

Obsoleto desde la versión 4.0.1: Esta antigua funcionalidad pasó a ser obsoleta en la versión 4.0.1

Tickets

Aportar feedback y ayudar a la comunidad en la forma de tickets es una parte extremadamente importante en el proceso
de desarrollo de CakePHP. Todos los tickets de CakePHP están alojados en GitHub47.

Reportar errores

Los reportes de errores bien escritos son de mucha ayuda. Para ello hay una serie de pasos que ayudan a crear el mejor
reporte de error posible:

Correcto: Por favor, busca tickets48 similares que ya existan y asegúrate de que nadie haya reportado ya tu
problema o que no haya sido arreglado en el repositorio.

Correcto: Por favor, incluye instrucciones detalladas de cómo reproducir el error. Esto podría estar escrito en
el formato de caso de prueba o con un snippet de código que demuestre el problema. No tener una forma de
reproducir el error significa menos probabilidades de poder arreglarlo.

Correcto: Por favor, danos todos los detalles posibles de tu entorno: sistema operativo, versión de PHP, versión
de CakePHP. . .

47 https://github.com/cakephp/cakephp/issues
48 https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdform&type=Issues

Tickets 91

https://github.com/cakephp/cakephp/issues
https://github.com/cakephp/cakephp/search?q=it+is+broken&ref=cmdform&type=Issues

CakePHP Book, Versión 4.x

Incorrecto: Por favor, no utilices el sistema de tickets para hacer preguntas de soporte. El canal #cakephp IRC
en Freenode49 tiene muchos desarrolladores disponibles para ayudar a responder tus preguntas. También échale
un vistazo a Stack Overflow50.

Reportar problemas de seguridad

Si has encontrado problemas de seguridad en CakePHP, por favor, utiliza el siguiente procedimiento en vez del sistema
de reporte de errores. En vez de utilizar el tracker de errores, lista de correos o IRC, por favor, envía un email a
security [at] cakephp.org. Los emails enviados a esta dirección van al equipo principal de CakePHP en una lista de
correo privada.

Por cada reporte primero tratamos de confirmar la vulnerabilidad, una vez confirmada el equipo de CakePHP tomará
las siguientes acciones:

Dar a conocer al reportador que hemos recibido el problema y que estamos trabajando en una solución. Pediremos
al reportador que mantenga en secreto el problema hasta que nosotros lo anunciemos.

Preparar una solución/parche.

Preparar un post describiendo la vulnerabilidad y las posibles consecuencias.

Publicar nuevas versiones para todas las que estén afectadas.

Mostrar de manera acentuada el problema en el anuncio de la publicación.

Código

Parches y pull requests son una manera genial de contribuir con código a CakePHP. Los Pull requests pueden ser
creados en Github, preferiblemente a los archivos de parches en los comentarios de tickets.

Configuración inicial

Antes de trabajar en parches para CakePHP es una buena idea configurar tu entorno de trabajo.

Necesitarás los siguientes programas:

Git

PHP 7.4 o mayor

PHPUnit 5.7.0 o mayor

Configura tu información de usuario con tu nombre/alias y correo electrónico de trabajo:

git config --global user.name 'Bob Barker'
git config --global user.email 'bob.barker@example.com'

Nota: Si eres nuevo en Git, te recomendamos encarecidamente que leas el maravilloso y gratuito libro ProGit51

Clona el código fuente de CakePHP desde GitHub:
49 https://webchat.freenode.net
50 https://stackoverflow.com/questions/tagged/cakephp
51 https://git-scm.com/book/

92 Capítulo 5. Contribuir

https://webchat.freenode.net
https://stackoverflow.com/questions/tagged/cakephp
https://git-scm.com/book/

CakePHP Book, Versión 4.x

Si no tienes una cuenta de GitHub52 créate una.

Haz un fork del repositorio CakePHP53 haciendo click en el botón Fork.

Después de haber hecho el fork, clónalo en tu equipo local:

git clone git@github.com:TUNOMBRE/cakephp.git

Añade el repositorio original de CakePHP como respositorio remoto, lo usarás más adelante para buscar cambios en
el repositorio de CakePHP. Esto te mantendrá actualizado con CakePHP:

cd cakephp
git remote add upstream git://github.com/cakephp/cakephp.git

Ahora que tienes configurado CakePHP deberías poder definir un $test de conexión de base de datos y ejecutar todos
los tests.

Trabajar en un parche

Cada vez que quieras trabajar en un bug, una funcionalidad o en una mejora, crea una rama específica.

Tu rama debería ser creada a partir de la versión que quieras arreglar/mejorar. Por ejemplo, si estás arreglando un error
en la versión 3.x deberías utilizar la rama master como rama origen. Si tu cambio es para un error de la serie 2.x
deberías usar la rama 2.x. Esto hará más adelante tus merges más sencillos al no permitirte Github editar la rama
destino:

arreglando un error en 3.x
git fetch upstream
git checkout -b ticket-1234 upstream/master

arreglando un error en 2.x
git fetch upstream
git checkout -b ticket-1234 upstream/2.x

Truco: Usa un nombre descriptivo para tu rama, referenciar el ticket o nombre de la característica es una buena
convención. P.ej. ticket-1234, nueva-funcionalidad

Lo anterior creará una rama local basada en la rama upstream 2.x (CakePHP)

Trabaja en tu correción y haz tantos commits como necesites, pero ten siempre en mente lo siguiente:

Sigue las Estándares de codificación.

Añade un caso de prueba para mostrar el error arreglado o que la nueva funcionalidad funciona.

Mantén lógicos tus commits y escribe comentarios de commit bien claros y concisos.
52 https://github.com
53 https://github.com/cakephp/cakephp

Código 93

https://github.com
https://github.com/cakephp/cakephp

CakePHP Book, Versión 4.x

Enviar un Pull Request

Una vez estén hechos tus cambios y estés preparado para hacer el merge con CakePHP tendrás que actualizar tu rama:

Hacer rebase de la corrección en el top de master
git checkout master
git fetch upstream
git merge upstream/master
git checkout <nombre_rama>
git rebase master

Esto buscará y hará merge de cualquier cambio que haya sucedido en CakePHP desde que empezaste. Entonces ejecutará
rebase o replicará tus cambios en el top del actual código.

Puede que encuentres algún conflicto durante el rebase. Si este finaliza precipitadamente puedes ver qué archivos son
conflictivos/un-merged con git status. Resuelve cada conflicto y continúa con el rebase:

git add <nombre_archivo> # haz esto con cada archivo conflictivo.
git rebase --continue

Comprueba que todas tus pruebas continúan pasando. Entonces sube tu rama a tu fork:

git push origin <nombre-rama>

Si has vuelto a hacer rebase después de hacer el push de tu rama necesitarás forzar el push:

git push --force origin <nombre-rama>

Una vez tu rama esté en GitHub puedes enviar un pull request en GitHub.

Seleccionar donde harán el merge tus cambios

Cuando hagas pull requests deberás asegurarte de seleccionar la rama correcta como base ya que no podrás editarla
una vez creada.

Si tus cambios son un bugfix (corrección de error) y no introduce ninguna funcionalidad nueva entonces selec-
ciona master como destino del merge.

Si tu cambio es una new feature (nueva funcionalidad) o un añadido al framework entonces deberías seleccionar
la rama con el número de la siguiente versión. Por ejemplo si la versión estable actualmente es la 3.2.10, la
rama que estará aceptando nuevas funcionalidades será la 3.next.

Si tu cambio cesa una funcionalidad existente o de la API entonces tendrás que escojer la versión mayor siguiente.
Por ejemplo, si la actual versión estable es la 3.2.2 entonces la siguiente versión en la que se puede cesar es la
4.x por lo que deberás seleccionar esa rama.

Nota: Recuerda que todo código que contribuyas a CakePHP será licenciado bajo la Licencia MIT, y la Cake Software
Foundation54 será la propietaria de cualquier código contribuido. Los contribuidores deberán seguir las Guías de la
comunidad CakePHP55.

Todos los merge de corrección de errores que se hagan a una rama de mantenimiento se harán también periódicamente
sobre futuros lanzamientos por el equipo central.

54 https://cakefoundation.org/old
55 https://cakephp.org/get-involved

94 Capítulo 5. Contribuir

https://cakefoundation.org/old
https://cakefoundation.org/old
https://cakephp.org/get-involved
https://cakephp.org/get-involved

CakePHP Book, Versión 4.x

Estándares de codificación

Los desarrolladores de CakePHP deberán utilizar la Guia de estilo de codificación PSR-1256 además de las siguientes
normas como estándares de codificación.

Es recomendable que otos CakeIngredients que se desarrollen sigan los mismos estándares.

Puedes utilizar el CakePHP Code Sniffer57 para comprobar que tu código siga los estándares requeridos.

Añadir nuevas funcionalidades

Las nuevas funcionalidades no se deberán añadir sin sus propias pruebas, las cuales deberán ser superadas antes de
hacer el commit en el repositorio.

Configuración del IDE

Asegúrate de que tu IDE haga trim por la derecha para que no haya espacios al final de las líneas.

La mayoría de los IDEs modernos soportan archivos .editorconfig. El esqueleto de aplicación de CakePHP viene
con él por defecto y contiene las mejores prácticas de forma predeterminada.

Tabulación

Se utilizará cuatro espacios para la tabulación.

Por lo que debería everse asi:

// nivel base
// nivel 1

// nivel 2
// nivel 1

// nivel base

O también:

$booleanVariable = true;
$stringVariable = 'moose';
if ($booleanVariable) {

echo 'Boolean value is true';
if ($stringVariable === 'moose') {

echo 'We have encountered a moose';
}

}

En los casos donde utilices llamadas de funciones que ocupen más de un línea usa las siguientes guías:

El paréntesis de abertura de la llamada de la función deberá ser lo último que contenga la línea.

Sólo se permite un argumento por línea.

Los paréntesis de cierre deben estar solos y en una línea por separado.

Por ejemplo, en vez de utilizar el siguiente formato:
56 https://www.php-fig.org/psr/psr-12/
57 https://github.com/cakephp/cakephp-codesniffer

Estándares de codificación 95

https://www.php-fig.org/psr/psr-12/
https://github.com/cakephp/cakephp-codesniffer

CakePHP Book, Versión 4.x

$matches = array_intersect_key($this->_listeners,
array_flip(preg_grep($matchPattern,

array_keys($this->_listeners), 0)));

Utiliza éste en su lugar:

$matches = array_intersect_key(
$this->_listeners,
array_flip(

preg_grep($matchPattern, array_keys($this->_listeners), 0)
)

);

Tamaño de línea

Es recomendable mantener un tamaño de 100 caracteres por línea para una mejor lectura del código y tratar de no
pasarse de los 120.

En resumen:

100 caracteres es el límite recomendado.

120 caracteres es el límite máximo.

Estructuras de control

Las estructuras de control son por ejemplo «if», «for», «foreach», «while», «switch» etc. A continuación un
ejemplo con «if»:

if ((expr_1) || (expr_2)) {
// accion_1;

} elseif (!(expr_3) && (expr_4)) {
// accion_2;

} else {
// accion_por_defecto;

}

En las estructuras de control deberá haber un espacio antes del primer paréntesis y otro entre el último y la llave
de apertura.

Utiliza siempre las llaves en las estructuras de control incluso si no son necesarias. Aumentan la legibilidad del
código y te proporcionan menos errores lógicos.

Las llaves de apertura deberán estar en la misma línea que la estructura de control, las de cierre en líneas nuevas
y el código dentro de las dos llaves en un nuevo nivel de tabulación.

No deberán usarse las asignaciones inline en las estructras de control.

// Incorrecto: sin llaves y declaración mal posicionada
if (expr) statement;

// Incorrecto: sin llaves
if (expr)

statement;
(continué en la próxima página)

96 Capítulo 5. Contribuir

CakePHP Book, Versión 4.x

(proviene de la página anterior)

// Correcto
if (expr) {

statement;
}

// Incorrecto = asignación inline
if ($variable = Class::function()) {

statement;
}

// Correcto
$variable = Class::function();
if ($variable) {

statement;
}

Operador ternario

Los operadores ternarios están permitidos cuando toda su declaración cabe en una sola línea. Operadores más lar-
gos deberán ir dentro dentro de una declaración if else. Los operadores ternarios no deberían ir nunca anidados y
opcionalmente pueden utilizarse paréntesis entorno a las condiciones para dar claridad:

// Correcto, sencillo y legible
$variable = isset($options['variable']) ? $options['variable'] : true;

// Incorrecto, operadores anidados
$variable = isset($options['variable']) ? isset($options['othervar']) ? true : false :␣
→˓false;

Archivos de plantilla

En los archivos de plantilla (archivos .php) los desarrolladores deben utilizar estructuras de control keyword al ser más
fáciles de leer en archivos complejos. Las estructuras de control pueden estar dentro de bloques de PHP o en etiquetas
PHP separadas:

<?php
if ($esAdmin):

echo '<p>Eres el usuario admin.</p>';
endif;
?>
<p>Lo siguiente es aceptado también:</p>
<?php if ($esAdmin): ?>

<p>Eres el usuario admin.</p>
<?php endif; ?>

Estándares de codificación 97

CakePHP Book, Versión 4.x

Comparación

Intenta ser siempre lo más estricto posible. Si una comparación no es estricta de forma deliberada, puede ser inteligente
añadir un comentario para evitar confundirla con un error.

Para comprobar si una variables es null se recomienda utilizar comprobación estricta:

if ($value === null) {
// ...

}

El valor contra el que se va a realizar la comparación deberá ir en el lado derecho de esta:

// no recomendado
if (null === $this->foo()) {

// ...
}

// recomendado
if ($this->foo() === null) {

// ...
}

Llamadas de funciones

Las llamadas a funciones deben realizarse sin espacios entre el nombre de la función y el parentesis de apertura y entre
cada parámetro de la llamada deberá haber un espacio:

$var = foo($bar, $bar2, $bar3);

Como puedes ver arriba también deberá haber un espacio a ambos lados de los signos de igual.

Definición de métodos

Ejemplo de definición de un método:

public function someFunction($arg1, $arg2 = '')
{

if (expr) {
statement;

}

return $var;
}

Parámetros con un valor por defecto deberán ir al final de las definiciones. Trata que tus funciones devuelvan siempre
un resultado, al menos true o false, para que se pueda determinar cuando la llamada a la función ha sido correcta:

public function connection($dns, $persistent = false)
{

if (is_array($dns)) {
$dnsInfo = $dns;

(continué en la próxima página)

98 Capítulo 5. Contribuir

CakePHP Book, Versión 4.x

(proviene de la página anterior)

} else {
$dnsInfo = BD::parseDNS($dns);

}

if (!($dnsInfo) || !($dnsInfo['phpType'])) {
return $this->addError();

}

return true;
}

Como puedes ver hay un espacio a ambos lados del signo de igual.

Declaración de tipo

Los argumentos que esperan objetos, arrays o callbacks pueden ser tipificados. Solo tipificamos métodos públicos,
aunque la tipificación no está libre de costes:

/**
* Alguna descripción del método
*
* @param \Cake\ORM\Table $table La clase table a utilizar.
* @param array $array Algún valor array.
* @param callable $callback Algún callback.
* @param bool $boolean Algún valor boolean.
*/
public function foo(Table $table, array $array, callable $callback, $boolean)
{
}

Aquí $table debe ser una instancia de \Cake\ORM\Table, $array debe ser un array y $callback debe ser de tipo
callable (un callback válido).

Fíjate en que si quieres permitir que $array sea también una instancia de \ArrayObject no deberías tipificarlo ya
que array acepta únicamente el tipo primitivo:

/**
* Alguna descripción del método.
*
* @param array|\ArrayObject $array Algún valor array.
*/
public function foo($array)
{
}

Estándares de codificación 99

CakePHP Book, Versión 4.x

Funciones anónimas (Closures)

Para definir funciones anónimas sigue la guía de estilo de código PSR-1258 , donde se declaran con un espacio después
de la palabra function y antes y después de la palabra use:

$closure = function ($arg1, $arg2) use ($var1, $var2) {
// código

};

Encadenación de métodos

Las encadenaciones de métodos deberán distribuir estos en líneas separadas y tabulados con cuatro espacios:

$email->from('foo@example.com')
->to('bar@example.com')
->subject('A great message')
->send();

Comentar el código

Todos los comentarios deberán ir escritos en inglés y describir de un modo claro el bloque de código comentado.

Los comentarios pueden incluir las siguientes etiquetas de phpDocumentor59:

@deprecated60 Usando el formato @version <vector> <description>, donde version y description
son obligatorios.

@example61

@ignore62

@internal63

@link64

@see65

@since66

@version67

Las etiquetas PhpDoc son muy similares a las etiquetas JavaDoc en Java. Las etiquetas solo son procesadas si son el
primer elemento en una línea DocBlock, por ejemplo:

/**
* Ejemplo de etiqueta.
*

(continué en la próxima página)

58 https://www.php-fig.org/psr/psr-12/
59 https://phpdoc.org
60 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
61 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/example.html
62 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore.html
63 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal.html
64 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link.html
65 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html
66 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
67 https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

100 Capítulo 5. Contribuir

https://www.php-fig.org/psr/psr-12/
https://phpdoc.org
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/deprecated.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/example.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/ignore.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/internal.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/link.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/see.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/since.html
https://docs.phpdoc.org/latest/guide/references/phpdoc/tags/version.html

CakePHP Book, Versión 4.x

(proviene de la página anterior)

* @author esta etiqueta es parseada, pero esta @version es ignorada
* @version 1.0 esta etiqueta es parseada también
*/

/**
* Ejemplo de etiquetas phpDoc inline.
*
* Esta función trabaja duramente con foo() para manejar el mundo.
*
* @return void
*/
function bar()
{
}

/**
* Función foo.
*
* @return void
*/
function foo()
{
}

Los bloques de comentarios, con la excepción del primer bloque en un archivo, deberán ir siempre precedidos por un
salto de línea.

Tipos de variables

Tipos de variables para utilizar en DocBlocks:

Tipo
Descripción

mixed
Una variable de tipo indefinido o múltiples tipos.

int
Variable de tipo integer (números enteros).

float
Tipo float (número de coma flotante).

bool
Tipo booleano (true o false).

string
Tipo string (cualquier valor entre « « o “ “).

null
Tipo null. Normalmente usado conjuntamente con otro tipo.

array
Tipo array.

Estándares de codificación 101

CakePHP Book, Versión 4.x

object
Tipo object. Debe usarse un nombre de clase específico si es posible.

resource
Tipo resource (devuelto por ejemplo por mysql_connect()). Recuerda que cuando especificas el tipo como mixed
deberás indicar si es desconocido o cuales son los tipos posibles.

callable
Función Callable.

Puedes combinar tipos usando el caracter |:

int|bool

Para más de dos tipos normalmente lo mejor es utilizar mixed.

Cuando se devuelva el propio objeto, p.ej. para encadenar, deberás utilizar $this en su lugar:

/**
* Función foo.
*
* @return $this
*/
public function foo()
{

return $this;
}

Incluir archivos

include, require, include_once y require_once no tienen paréntesis:

// mal = paréntesis
require_once('ClassFileName.php');
require_once ($class);

// bien = sin paréntesis
require_once 'ClassFileName.php';
require_once $class;

Cuando se incluyan archivos con clases o librerías usa siempre y únicamente la función require_once68.

Etiquetas PHP

Utiliza siempre las etiquetas <?php y ?> en lugar de <? y ?>.

La sintaxis abreviada de echo deberá usarse en los archivos de plantilla (.php) donde proceda.
68 https://php.net/require_once

102 Capítulo 5. Contribuir

https://php.net/require_once

CakePHP Book, Versión 4.x

Sintaxis abreviada de echo

La sintaxis abreviada de echo (<?=) deberá usarse en los archivos de plantillas en lugar de <?php echo. Deberá ir
seguido inmediatamente por un espacio, la variable o valor de la función a imprimir, un espacio y la etiqueta php de
cierre:

// mal = con punto y coma y sin espacios
<td><?=$name;?></td>

// bien = con espacios y sin punto y coma
<td><?= $name ?></td>

A partir de la versión 5.4 de PHP la etiqueta (<?=) no es considerada un short tag y está siempre disponible sin
importar la directiva ini de short_open_tag.

Convenciones de nomenclatura

Funciones

Escribe todas las funciones en camelBack:

function nombreFuncionLargo()
{
}

Clases

Los nombres de las clases deberán escribirse en CamelCase, por ejemplo:

class ClaseEjemplo
{
}

Variables

Los nombres de variables deberán ser todo lo descriptibles que puedan pero también lo más corto posible. Se escribirán
en minúscula salvo que estén compuestos por múltiples palabras, en cuyo caso irán en camelBack. Los nombres de las
variables que referencien objetos deberán ir asociados de algún modo a la clase de la cual es objeto. Ejemplo:

$usuario = 'John';
$usuarios = ['John', 'Hans', 'Arne'];

$dispatcher = new Dispatcher();

Estándares de codificación 103

CakePHP Book, Versión 4.x

Visibilidad de miembros

Usa las palabras clave public, protected y private de PHP para métodos y variables.

Direcciones de ejemplos

Para los ejemplos de URL y correos electrónicos usa «example.com», «example.org» y «example.net», por ejemplo:

Email: someone@example.com

WWW: http://www.example.com

FTP: ftp://ftp.example.com

El nombre de dominio «example.com» está reservado para ello (ver RFC 260669) y está recomendado para usar en
documentaciones o como ejemplos.

Archivos

Los nombres de archivos que no contengan clases deberán ir en minúsculas y con guiones bajos, por ejemplo:

nombre_de_archivo_largo.php

Hacer casts

Para hacer casts usamos:

Tipo
Descripción

(bool)
Cast a boolean.

(int)
Cast a integer.

(float)
Cast a float.

(string)
Cast a string.

(array)
Cast a array.

(object)
Cast a object.

Por favor utiliza (int)$var en lugar de intval($var) y (float)$var en lugar de floatval($var) cuando apli-
que.

69 https://datatracker.ietf.org/doc/html/rfc2606.html

104 Capítulo 5. Contribuir

mailto:someone@example.com
http://www.example.com
ftp://ftp.example.com
https://datatracker.ietf.org/doc/html/rfc2606.html

CakePHP Book, Versión 4.x

Constantes

Los nombres de constantes deberán ir en mayúsculas:

define('CONSTANTE', 1);

Si el nombre de una constante se compone de varias palabras deberán ir separadas por guiones bajos, por ejemplo:

define('NOMBRE_DE_CONSTANTE_LARGO', 2);

Cuidado al usar empty()/isset()

Aunque empty() es una función sencilla de utilizar, puede enmascarar errores y causar efectos accidentales cuando
se usa con '0' y 0. Cuando las variables o propiedades están ya definidas el uso de empty() no es recomendable. Al
trabajar con variables es mejor utilizar la conversión a tipo booleano en lugar de empty():

function manipulate($var)
{

// No recomendado, $var está definido en el ámbito
if (empty($var)) {

// ...
}

// Utiliza la conversión a booleano
if (!$var) {

// ...
}
if ($var) {

// ...
}

}

Cuando trates con propiedades definidas deberías favorecer las comprobaciones sobre null en lugar de
empty()/isset():

class Thing
{

private $property; // Definido

public function readProperty()
{

// No recomendado al estar definida la propiedad en la clase
if (!isset($this->property)) {

// ...
}
// Recomendado
if ($this->property === null) {

}
}

}

Cuando se trabaja con arrays, es mejor hacer merge de valores por defecto en vez de hacer comprobaciones con
empty(). Haciendo merge de valores por defecto puedes asegurarte de que las claves necesarias están definidas:

Estándares de codificación 105

CakePHP Book, Versión 4.x

function doWork(array $array)
{

// Hacer merge de valor por defecto para eliminar la necesidad
// de comprobaciones empty
$array += [

'key' => null,
];

// No recomendado, la clave ya está seteada
if (isset($array['key'])) {

// ...
}

// Recomendado
if ($array['key'] !== null) {

// ...
}

}

Guía de compatibilidad hacia atrás

Asegurar que puedas actualizar tus aplicaciones fácilmente es importante para nosotros. Por ello sólo rompemos la
compatibilidad en las liberaciones de versiones major. Puedes familiarizarte con el versionado semántico70, el cual
utilizamos en todos los proyectos de CakePHP. Pero resumiendo, el versionado semántico significa que sólo las libe-
raciones de versiones major (tales como 2.0, 3.0, 4.0) pueden romper la compatibilidad hacia atrás. Las liberaciones
minor (tales como 2.1, 3.1, 3.2) pueden introducir nuevas funcionalidades pero no pueden romper la compatibilidad.
Los lanzamientos de correcciones de errores (tales como 3.0.1) no añaden nuevas funcionaliades, sólo correcciones de
errores o mejoras de rendimiento.

Nota: CakePHP empezó a seguir el versionado semántico a partir de la 2.0.0. Estas reglas no se aplican en las versiones
1.x.

Para aclarar que cambios puedes esperar de cada nivel de lanzamiento tenemos más información detallada para desa-
rrolladores que utilizan CakePHP y que trabajan en él que ayudan a aclarar que puede hacerse en liberaciones minor.
Las liberaciones major pueden tener tantas rupturas de compatibilidad como sean necesarias.

Guías de migración

Para cada liberación major y minor el equipo de CakePHP facilitará una guía de migración. Estas guías explican las
nuevas funcionaliades y cualquier ruptura de compatibilidad que haya en cada lanzamiento. Pueden encontrarse en la
sección Apéndices del cookbook.

70 https://semver.org/lang/es/

106 Capítulo 5. Contribuir

https://semver.org/lang/es/

CakePHP Book, Versión 4.x

Usar CakePHP

Si estás desarrollando tu aplicación con CakePHP las siguientes pautas explican la estabilidad que puedes esperar.

Interfaces

Con excepción de las liberaciones major, las interfaces que provee CakePHP no tendrán ningún cambio en los métodos
existentes. Podrán añadirse nuevos métodos pero no habrá cambios en los ya existentes.

Clases

Las clases que proporciona CakePHP pueden estar construidas y tener sus métodos y propiedades públicos usados por
el código de la aplicación y, a excepción de las liberaciones major, la compatibilidad hacia atrás está garantizada.

Nota: Algunas clases en CakePHP están marcadas con la etiqueta API doc @internal. Estas clases no son estables
y no garantizan la compatibilidad hacia atrás.

En liberaciones minor pueden añadirse nuevos métodos a las clases y a los ya existentes nuevos argumentos. Cualquier
argumento nuevo tendrá un valor por defecto, pero si sobreescribes métodos con una firma diferente puedes encontrar
fatal errors. Los métodos con nuevos argumentos estarán documentados en las guías de migración..

La siguiente tabla esboza varios casos de uso y que compatibilidad puedes esperar de CakePHP:

Si tu. . . ¿Compatible hacia atrás?
Tipificas contra la clase Si
Creas una nueva instancia Si
Extiendes la clase Si
Accedes a una propiedad pública Si
Llamas un método público Si
Extiendes una clase y. . .
Sobrescribes una propiedad pública Si
Accedes a una propiedad protegida No1

Sobreescribes una propiedad protegida No1

Sobreescribes un método protegido No1

Llamas a un método protegido No1

Añades una propiedad pública No
Añades un método público No
Añades un argumento a un método sobreescrito No1

Añades un valor por defecto a un argumento de método existente Si

1 Tu código puede romperse en lanzamientos minor. Comprueba la guía de migración para más detalles.

Guía de compatibilidad hacia atrás 107

CakePHP Book, Versión 4.x

Trabajando en CakePHP

Si estás ayudando a que CakePHP sea aún mejor, por favor, ten en mente las siguientes pautas cuando añadas/cambies
funcionalidades:

En una liberación minor puedes:

En una liberación minor puedes. . .
Clases
Eliminar una clase No
Eliminar una interfaz No
Eliminar un trait No
Hacer final No
Hacer abstract No
Cambiar el nombre Si2
Propiedades
Añadir una propiedad pública Si
Eliminar una propiedad pública No
Añadir una propiedad protegida Si
Eliminar una propiedad protegida Si3
Métodos
Añadir un método público Si
Eliminar un método público No
Añadir un método protegido Si
Mover a la clase padre Si
Eliminar un método protegido Si3
Reducir visibilidad No
Cambiar nombre del método Si2
Añadir un argumento nuevo con valor por defecto Si
Añadir un nuevo argumento obligatorio a un método existente No
Eliminar un valor por defecto de un argumento existente No

2 Puedes cambiar el nombre de una clase/método siempre y cuando el antiguo nombre se mantenga disponible. Esto es evitado generalmente a
menos que el cambio de nombre sea significativamente beneficioso.

3 Evitarlo cuando sea posible. Cualquier borrado tendrá que ser documentado en la guía de migración.

108 Capítulo 5. Contribuir

CAPÍTULO 6

Instalación

CakePHP se instala rápida y fácilmente. Los requisitos mínimos son un servidor web y una copia de CakePHP, y ya!
Aunque este manual se enfoca principalmente en configurar Apache (ya que es el más utilizado), puedes configurar
CakePHP para que corra con una variedad de servidores web como nginx, LightHTHPD o Microsoft IIS.

Requisitos

Servidor HTTP. Por ejemplo: Apache. mod_rewrite es recomendado, pero no requerido.

PHP 7.4 o mayor.

extensión mbstring.

extensión intl.

Técnicamente una base de datos no es necesaria, pero imaginamos que la mayoría de aplicaciones utiliza alguna.
CakePHP soporta una gran variedad de sistemas de bases de datos:

MySQL (5.1.10 o mayor).

PostgreSQL.

Microsoft SQL Server (2008 o mayor).

SQLite 3.

Nota: Todos los drivers nativos necesitan PDO. Debes asegurarte de tener las extensiones de PDO correctas.

109

CakePHP Book, Versión 4.x

Licencia

CakePHP está licenciado bajo la Licencia MIT71. Esto significa que eres libre para modificar, distribuir y republicar
el código fuente con la condición de que las notas de copyright queden intactas. También eres libre para incorporar
CakePHP en cualquier aplicación comercial o de código cerrado.

Instalando CakePHP

CakePHP utiliza Composer72, una herramienta de manejo de dependencias para PHP 5.3+, como el método de insta-
lación oficialmente soportado.

Primero, necesitas descargar e instalar Composer, si no lo has hecho ya. Si tienes instalado cURL, es tan fácil como
correr esto en un terminal:

curl -s https://getcomposer.org/installer | php

O, puedes descargar composer.phar desde el sitio web de Composer73.

Para sistemas Windows, puedes descargar el Instalador de Composer para Windows aquí74. Para más instrucciones
acerca de esto, puedes leer el README del instalador de Windows aquí75.

Ya que has descargado e instalado Composer puedes generar una aplicación CakePHP ejecutando:

php composer.phar create-project --prefer-dist cakephp/app:4.* [app_name]

O si tienes Composer definido globalmente:

composer create-project --prefer-dist cakephp/app:4.* [app_name]

Una vez que Composer termine de descargar el esqueleto y la librería core de CakePHP, deberías tener una aplica-
ción funcional de CakePHP instalada vía Composer. Asegúrate de que los ficheros composer.json y composer.lock se
mantengan junto con el resto de tu código fuente.

Ahora puedes visitar el destino donde instalaste la aplicación y ver los diferentes avisos tipo semáforo de los ajustes.

Mantente al día con los últimos cambios de CakePHP

Si quieres mantenerte al corriente de los últimos cambios en CakePHP puedes añadir las siguientes líneas al composer.
json de tu aplicación:

"require": {
"cakephp/cakephp": "dev-master"

}

Donde <branch> es el nombre del branch que quieres seguir. Cada vez que ejecutes php composer.phar update
recibirás las últimas actualizaciones del branch seleccionado.

71 https://www.opensource.org/licenses/mit-license.php
72 https://getcomposer.org
73 https://getcomposer.org/download/
74 https://github.com/composer/windows-setup/releases/
75 https://github.com/composer/windows-setup

110 Capítulo 6. Instalación

https://www.opensource.org/licenses/mit-license.php
https://getcomposer.org
https://getcomposer.org/download/
https://github.com/composer/windows-setup/releases/
https://github.com/composer/windows-setup

CakePHP Book, Versión 4.x

Instalación usando DDEV

Otra manera rápida de instalar CakePHP es via DDEV76. DDEV es una herramienta de código abierto para lanzar
ambientes de desarrollo web en local.

Si quieres configurar un nuevo proyecto, sólo necesitas ejecutar:

mkdir my-cakephp-app
cd my-cakephp-app
ddev config --project-type=cakephp --docroot=webroot
ddev composer create --prefer-dist cakephp/app:~4.0
ddev launch

Si tienes un proyecto existente:

git clone <your-cakephp-repo>
cd <your-cakephp-project>
ddev config --project-type=cakephp --docroot=webroot
ddev composer install
ddev launch

Por favor revisa la Documentación de DDEV77 para más detalles de cómo instalar / actualizar DDEV.

Nota: IMPORTANTE: Ésto no es un script de despliegue. Su objetivo es ayudar desarrolladores a configurar ambientes
de desarrollo rápidamente. En ningún caso su intención es que sea utilizado en ambientes de producción.

Permisos

CakePHP utiliza el directorio tmp para varias operaciones. Descripciones de Modelos, el caché de las vistas y la
información de la sesión son algunos ejemplos de lo anterior. El directorio logs es utilizado para para escribir ficheros
de log por el motor de FileLog por defecto.

Asegúrate de que los directorios logs, tmp y todos sus subdirectorios tengan permisos de escritura por el usuario
del Servidor Web. La instalación de CakePHP a través de Composer se encarga de este proceso haciendo que dichos
directorios tengan los permisos abiertos globalmente con el fin de que puedas tener ajustado todo de manera más rápida.
Obviamente es recomendable que revises, y modifiques si es necesario, los permisos tras la instalación vía Composer
para mayor seguridad.

Un problema común es que logs, tmp y sus subdirectorios deben poder ser modificados tanto por el usuario del Servidor
Web como por el usuario de la línea de comandos. En un sistema UNIX, si los usuarios mencionados difieren, puedes
ejecutar los siguientes comandos desde el directorio de tu aplicación para asegurarte de que todo esté configurado
correctamente:

HTTPDUSER=`ps aux | grep -E '[a]pache|[h]ttpd|[_]www|[w]ww-data|[n]ginx' | grep -v root␣
→˓| head -1 | cut -d\ -f1`
setfacl -R -m u:${HTTPDUSER}:rwx tmp
setfacl -R -d -m u:${HTTPDUSER}:rwx tmp
setfacl -R -m u:${HTTPDUSER}:rwx logs
setfacl -R -d -m u:${HTTPDUSER}:rwx logs

76 https://ddev.com/
77 https://ddev.readthedocs.io/

Permisos 111

https://ddev.com/
https://ddev.readthedocs.io/

CakePHP Book, Versión 4.x

Configuración

Configurar una aplicación de CakePHP puede ser tan simple como colocarla en el directorio raíz de tu Servidor Web,
o tan complejo y flexible como lo desees. Esta sección cubrirá los dos tipos principales de instalación de CakePHP:
Desarrollo y Producción.

Desarrollo: fácil de arrancar, las URLs de la aplicación incluyen el nombre del directorio de la aplicación de
CakePHP y es menos segura.

Producción: Requiere tener la habilidad de configurar el directorio raíz del Servidor Web, cuenta con URLs
limpias y es bastante segura.

Desarrollo

Este es el método más rápido para configurar CakePHP. En este ejemplo utilizaremos la consola de CakePHP para
ejecutar el servidor web nativo de PHP para hacer que tu aplicación esté disponible en http://host:port. Para ello
ejecuta desde el directorio de la aplicación:

bin/cake server

Por defecto, sin ningún argumento, esto colocará tu aplicación en http://localhost:8765/.

Si tienes algún conflicto con localhost o el puerto 8765, puedes indicarle a la consola de CakePHP que corra el servidor
de manera más específica utilizando los siguientes argumentos:

bin/cake server -H 192.168.13.37 -p 5673

Esto colocará tu aplicación en http://192.168.13.37:5673/.

¡Eso es todo! Tu aplicación de CakePHP está corriendo perfectamente sin tener que haber configurado el servidor web
manualmente.

Nota: Prueba bin/cake server -H 0.0.0.0 si el servidor no es accesible desde otra máquina.

Advertencia: El servidor de desarrollo nunca debe ser utilizado en un ambiente de producción. Se supone que
esto es un servidor básico de desarrollo y nada más.

Si prefieres usar un servidor web «real», Debes poder mover todos tus archivos de la instalación de CakePHP (inclu-
yendo los archivos ocultos) dentro la carpeta raíz de tu servidor web. Debes entonces ser capaz de apuntar tu navegador
al directorio donde moviste los archivos y ver tu aplicación en acción.

112 Capítulo 6. Instalación

CakePHP Book, Versión 4.x

Producción

Una instalación de producción es una manera más flexible de montar una aplicación de CakePHP. Utilizando este
método, podrás tener un dominio entero actuando como una sola aplicación de CakePHP. Este ejemplo te ayudará a
instalar CakePHP donde quieras en tu sistema de ficheros y tenerlo disponible en http://www.example.com. Toma
en cuenta que esta instalación requiere que tengas los derechos de cambiar el directorio raíz (DocumentRoot) del
servidor web Apache.

Después de instalar tu aplicación utilizando cualquiera de los métodos mencionados en el directorio elegido - asumi-
remos que has escogido /cake_install - tu estructura de ficheros debe ser la siguiente:

/cake_install/
bin/
config/
logs/
plugins/
src/
tests/
tmp/
vendor/
webroot/ (este directorio es ajutado como el DocumentRoot)
.gitignore
.htaccess
.travis.yml
composer.json
index.php
phpunit.xml.dist
README.md

Si utilizas Apache debes configurar la directiva DocumentRoot del dominio a:

DocumentRoot /cake_install/webroot

Si tu configuración del Servidor Web es correcta debes tener tu aplicación disponible ahora en http://www.example.
com.

A rodar!

Muy bien, ahora veamos a CakePHP en acción. Dependiendo de los ajustes que hayas utilizado, deberías dirigirte en tu
navegador a http://example.com/ o http://localhost:8765/. En este punto, encontrarás la página principal de CakePHP
y un mensaje que te dice el estado actual de tu conexión a la base de datos.

¡Felicidades! Estás listo para Crear tu primera aplicación de CakePHP.

Producción 113

http://www.example.com
http://www.example.com
http://example.com/
http://localhost:8765/

CakePHP Book, Versión 4.x

URL Rewriting

Apache

Mientras que CakePHP está diseñado para trabajar con mod_rewrite recién sacado del horno, usualmente hemos notado
que algunos usuarios tienen dificultades para lograr que todo funcione bien en sus sistemas.

Aquí hay algunas cosas que puedes tratar de conseguir para que funcione correctamente. La primera mirada debe ir
a httpd.conf. (Asegura de que estás editando el httpd.conf del sistema en lugar del httpd.conf de un usuario o sitio
específico)

Hay archivos que pueden variar entre diferentes distribuciones y versiones de Apache. Debes también mirar en https:
//cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout para obtener información.

1. Asegura de que un archivo .htaccess de sobreescritura esté permitido y que AllowOverride esté ajustado en All
para el correcto DocumentRoot. Debes ver algo similar a:

Cada directorio al que Apache puede acceder puede ser configurado
con sus respectivos permitidos/denegados servicios y características
en ese directorios (y subdirectorios).
#
Primero, configuramos el por defecto para ser muy restrictivo con sus
ajustes de características.
<Directory />

Options FollowSymLinks
AllowOverride All

Order deny,allow
Deny from all
</Directory>

2. Asegura que tu estás cargando mod_rewrite correctamente. Debes ver algo similar a esto:

LoadModule rewrite_module libexec/apache2/mod_rewrite.so

En muchos sistemas esto estará comentado por defecto, así que solo debes remover el símbolo # al comienzo de
la línea.

Después de hacer los cambios, reinicia Apache para asegurarte que los ajustes estén activados.

Verifica que tus archivos .htaccess está actualmente en directorio correcto. Algunos sistemas operativo tratan los
archivos que empiezan con “.” como oculto y por lo tanto no podrás copiarlos.

3. Asegúrate que tu copia de CakePHP provenga desde la sección descargas del sitio o de nuestro repositorio de
Git, y han sido desempacados correctamente, revisando los archivos .htaccess.

El directorio app de CakePHP (Será copiado en la raíz de tu aplicación por bake):

<IfModule mod_rewrite.c>
RewriteEngine on
RewriteRule ^$ webroot/ [L]
RewriteRule (.*) webroot/$1 [L]

</IfModule>

El directorio webroot de CakePHP (Será copiado a la raíz de tu aplicación web por bake):

114 Capítulo 6. Instalación

https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout
https://cwiki.apache.org/confluence/display/httpd/DistrosDefaultLayout

CakePHP Book, Versión 4.x

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^ index.php [L]

</IfModule>

Si tu sitio aún tiene problemas con mod_rewrite, querrás probar modificar los ajustes para el Servidor Virtual.
En Ubuntu, edita el archivo /etc/apache2/sites-available/default (la ubicación depende de la distribución). En
este archivo, debe estar AllowOverride None cambiado a``AllowOverride All``, así tendrás:

<Directory />
Options FollowSymLinks
AllowOverride All

</Directory>
<Directory /var/www>

Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order Allow,Deny
Allow from all

</Directory>

En macOS, otra solución es usar la herramienta virtualhostx78 para crear servidores virtuales y apuntarlos a tu
carpeta.

Para muchos servicios de alojamiento (GoDaddy, 1and1), tu servidor web estará actualmente sirviendo desde
un directorio de usuario que actualmente usa mod_rewrite. Si tu estás instalando CakePHP en la carpeta de
usuario (http://example.com/~username/cakephp/), o alguna otra estructura de URL que ya utilice mod_rewrite,
necesitarás agregar una declaración a los archivos .htaccess que CakePHP usa (.htaccess, webroot/.htaccess).

Esto puede ser agregado a la misma sección con la directiva RewriteEngine, entonces por ejemplo, tu .htaccess
en el webroot debería verse algo así:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^ index.php [L]

</IfModule>

Los detalles de estos cambios dependerán de tu configuración, y puede incluir algunas líneas adicionales que no
están relacionadas con CakePHP. Por favor dirígete a la documentación en línea de Apache para más información.

4. (Opcional) Para mejorar la configuración de producción, debes prevenir archivos adicionales inválidos que sean
tomados por CakePHP. Modificando tu .htaccess del webroot a algo cómo esto:

<IfModule mod_rewrite.c>
RewriteEngine On
RewriteBase /path/to/app/
RewriteCond %{REQUEST_FILENAME} !-f
RewriteCond %{REQUEST_URI} !^/(webroot/)?(img|css|js)/(.*)$
RewriteRule ^ index.php [L]

</IfModule>

78 https://clickontyler.com/virtualhostx/

URL Rewriting 115

https://clickontyler.com/virtualhostx/
http://example.com/~username/cakephp/

CakePHP Book, Versión 4.x

Lo anterior simplemente previene que archivos adicionales incorrectos sean enviados a index.php en su lugar
muestre la página 404 de tu servidor web.

Adicionalmente puedes crear una página 404 que concuerde, o usar la página 404 incluida en CakePHP agregando
una directiva ErrorDocument:

ErrorDocument 404 /404-not-found

nginx

nginx no hace uso de un archivo .htaccess como Apache, por esto es necesario crear la reescritura de URL
en la configuraciones de site-available. Esto usualmente se encuentra en /etc/nginx/sites-available/
your_virtual_host_conf_file. Dependiendo de la configuración, tu necesitarás modificar esto, pero por lo menos,
necesitas PHP corriendo como una instancia FastCGI:

server {
listen 80;
server_name www.example.com;
rewrite ^(.*) http://example.com$1 permanent;

}

server {
listen 80;
server_name example.com;

root directive should be global
root /var/www/example.com/public/webroot/;
index index.php;

access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;

location / {
try_files $uri $uri/ /index.php?$args;

}

location ~ \.php$ {
try_files $uri =404;
include /etc/nginx/fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

}
}

En algunos servidores (Como Ubuntu 14.04) la configuración anterior no funcionará recién instalado, y de todas formas
la documentación de nginx recomienda una forma diferente de abordar esto (https://nginx.org/en/docs/http/converting_
rewrite_rules.html). Puedes intentar lo siguiente (Notarás que esto es un bloque de servidor {}, en vez de dos, pese a
que si quieres que example.com resuelva a tu aplicación CakePHP en adición a www.example.com consulta el enlace
de nginx anterior):

server {
listen 80;

(continué en la próxima página)

116 Capítulo 6. Instalación

https://nginx.org/en/docs/http/converting_rewrite_rules.html
https://nginx.org/en/docs/http/converting_rewrite_rules.html

CakePHP Book, Versión 4.x

(proviene de la página anterior)

server_name www.example.com;
rewrite 301 http://www.example.com$request_uri permanent;

root directive should be global
root /var/www/example.com/public/webroot/;
index index.php;

access_log /var/www/example.com/log/access.log;
error_log /var/www/example.com/log/error.log;

location / {
try_files $uri /index.php?$args;

}

location ~ \.php$ {
try_files $uri =404;
include /etc/nginx/fastcgi_params;
fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;

}
}

IIS7 (Windows)

IIS7 no soporta de manera nativa los archivos .htaccess. Mientras hayan add-ons que puedan agregar soporte a estos
archivos, puedes también importar las reglas htaccess en IIS para usar las redirecciones nativas de CakePHP. Para hacer
esto, sigue los siguientes pasos:

1. Usa el Intalador de plataforma Web de Microsoft79 para instalar el Modulo de Redirreción 2.080 de URLs o
descarga directamente (32-bit81 / 64-bit82).

2. Crear un nuevo archivo llamado web.config en tu directorio de raíz de CakePHP.

3. Usando Notepad o cualquier editor de XML, copia el siguiente código en tu nuevo archivo web.config:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>

<system.webServer>
<rewrite>

<rules>
<rule name="Exclude direct access to webroot/*"
stopProcessing="true">
<match url="^webroot/(.*)$" ignoreCase="false" />
<action type="None" />

</rule>
<rule name="Rewrite routed access to assets(img, css, files, js, favicon)

→˓"
(continué en la próxima página)

79 https://www.microsoft.com/web/downloads/platform.aspx
80 https://www.iis.net/downloads/microsoft/url-rewrite
81 https://download.microsoft.com/download/D/8/1/D81E5DD6-1ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
82 https://download.microsoft.com/download/1/2/8/128E2E22-C1B9-44A4-BE2A-5859ED1D4592/rewrite_amd64_en-US.msi

URL Rewriting 117

https://www.microsoft.com/web/downloads/platform.aspx
https://www.iis.net/downloads/microsoft/url-rewrite
https://download.microsoft.com/download/D/8/1/D81E5DD6-1ABB-46B0-9B4B-21894E18B77F/rewrite_x86_en-US.msi
https://download.microsoft.com/download/1/2/8/128E2E22-C1B9-44A4-BE2A-5859ED1D4592/rewrite_amd64_en-US.msi

CakePHP Book, Versión 4.x

(proviene de la página anterior)

stopProcessing="true">
<match url="^(img|css|files|js|favicon.ico)(.*)$" />
<action type="Rewrite" url="webroot/{R:1}{R:2}"
appendQueryString="false" />

</rule>
<rule name="Rewrite requested file/folder to index.php"
stopProcessing="true">
<match url="^(.*)$" ignoreCase="false" />
<action type="Rewrite" url="index.php"
appendQueryString="true" />

</rule>
</rules>

</rewrite>
</system.webServer>

</configuration>

Una vez el archivo web.config es creado con las reglas de redirección amigables de IIS, los enlaces, CSS, JavaScript y
redirecciones de CakePHP deberían funcionar correctamente.

No puedo usar Redireccionamientos de URL

Si no quieres o no puedes obtener mod_rewirte (o algun otro modulo compatible) en el servidor a correr, necesitarás
usar el decorador de URL incorporado en CakePHP. En config/app.php, descomentar la línea para que se vea así:

'App' => [
// ...
// 'baseUrl' => env('SCRIPT_NAME'),

]

También remover estos archivos .htaccess:

/.htaccess
webroot/.htaccess

Esto hará tus URL verse así www.example.com/index.php/controllername/actionname/param antes que
www.example.com/controllername/actionname/param.

118 Capítulo 6. Instalación

CAPÍTULO 7

Configuration

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github83 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

83 https://github.com/cakephp/docs

119

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

120 Capítulo 7. Configuration

CAPÍTULO 8

Routing

class Cake\Routing\Router

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github84 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Connecting Routes

Using Named Routes

Dispatcher Filters

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github85 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

84 https://github.com/cakephp/docs
85 https://github.com/cakephp/docs

121

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

122 Capítulo 8. Routing

CAPÍTULO 9

Request & Response Objects

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github86 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Request

86 https://github.com/cakephp/docs

123

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

124 Capítulo 9. Request & Response Objects

CAPÍTULO 10

Controladores

class Cake\Controller\Controller

Los controladores son la “C” en MVC. Después de aplicar el enrutamiento y que el controlador ha sido encontrado,
la acción de tu controlador es llamado. Tu controlador debe manejar la interpretación de los datos de la solicitud,
asegurándose de que se llamen a los modelos correctos y se muestre la respuesta o vista correcta. Los controladores se
pueden considerar como una capa intermedia entre el Modelo y la Vista. Quieres mantener tus controladores delgados,
y tus modelos gruesos. Esto te ayudará a reutilizar tu código y lo hará mas fácil de probar.

Comúnmente, un controlador se usa para administrar la lógica en torno a un solo modelo. Por ejemplo, si estuvieras
construyendo un sitio online para una panadería, podrías tener un RecipesController que gestiona tus recetas y un
IngredientsController que gestiona tus ingredientes. Sin embargo, es posible hacer que los controladores trabajen con
más de un modelo. En CakePHP, un controlador es nombrado a raíz del modelo que maneja.

Los controladores de tu aplicación extienden de la clase AppController, que a su vez extiende de la clase principal
Controller. La clase AppController puede ser definida en src/Controller/AppController.php y debería contener
los métodos que se comparten entre todos los controladores de tu aplicación.

Los controladores proveen una serie de métodos que manejan las peticiones. Estos son llamadas acciones. Por defecto,
cada método público en un controlador es una acción, y es accesible mediante una URL. Una acción es responsable de
interpretar la petición y crear la respuesta. Por lo general, las respuestas son de la forma de una vista renderizada, pero
también, hay otras maneras de crear respuestas.

125

CakePHP Book, Versión 4.x

El App Controller

Como se indicó en la introducción, la clase AppController es clase padre de todos los controladores de tu
aplicación. AppController extiende de la clase Cake\Controller\Controller que está incluida en CakePHP.
AppController se define en src/Controller/AppController.php como se muestra a continuación:

namespace App\Controller;

use Cake\Controller\Controller;

class AppController extends Controller
{
}

Los atributos y métodos del controlador creados en tu AppController van a estar disponibles en todos los contro-
ladores que extiendan de este. Los componentes (que aprenderás más adelante) son mejor usados para código que se
encuentra en muchos (pero no necesariamente en todos) los componentes.

Puedes usar tu AppController para cargar componentes que van a ser utilizados en cada controlador de tu aplicación.
CakePHP proporciona un método initialize() que es llamado al final del constructor de un controlador para este
tipo de uso:

namespace App\Controller;

use Cake\Controller\Controller;

class AppController extends Controller
{

public function initialize(): void
{

// Siempre habilita el componente CSRF.
$this->loadComponent('Csrf');

}
}

Flujo de solicitud

Cuando se realiza una solicitud a una aplicación CakePHP, las clases CakePHP Cake\Routing\Router y Cake\
Routing\Dispatcher usan Connecting Routes para encontrar y crear la instancia correcta del controlador. Los datos
de la solicitud son encapsulados en un objeto de solicitud. CakePHP pone toda la información importante de la solicitud
en la propiedad $this->request. Consulta la sección sobre Request para obtener más información sobre el objeto de
solicitud de CakePHP.

126 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Acciones del controlador

Las acciones del controlador son las responsables de convertir los parámetros de la solicitud en una respuesta para el
navegador/usuario que realiza la petición. CakePHP usa convenciones para automatizar este proceso y eliminar algunos
códigos repetitivos que de otro modo se necesitaría escribir.

Por convención, CakePHP renderiza una vista con una versión en infinitivo del nombre de la acción. Volviendo a
nuestro ejemplo de la panadería online, nuestro RecipesController podría contener las acciones view(), share(), y
search(). El controlador sería encontrado en src/Controller/RecipesController.php y contiene:

// src/Controller/RecipesController.php

class RecipesController extends AppController
{

public function view($id)
{

// La lógica de la acción va aquí.
}

public function share($customerId, $recipeId)
{

// La lógica de la acción va aquí.
}

public function search($query)
{

// La lógica de la acción va aquí.
}

}

Las plantillas para estas acciones serían templates/Recipes/view.php, templates/Recipes/share.php, y templa-
tes/Recipes/search.php. El nombre convencional para un archivo de vista es con minúsculas y con el nombre de
la acción entre guiones bajos.

Las acciones de los controladores por lo general usan Controller::set() para crear un contexto que View usa
para renderizar la capa de vista. Debido a las convenciones que CakePHP usa, no necesitas crear y renderizar la vista
manualmente. En su lugar, una vez que se ha completado la acción del controlador, CakePHP se encargará de renderizar
y entregar la vista.

Si por algún motivo deseas omitir el comportamiento predeterminado, puedes retornar un objeto Cake\Http\
Response de la acción con la respuesta creada.

Para que puedas usar un controlador de manera efectiva en tu aplicación, cubriremos algunos de los atributos y métodos
principales proporcionados por los controladores de CakePHP.

Acciones del controlador 127

CakePHP Book, Versión 4.x

Interactuando con vistas

Los controladores interactúan con las vistas de muchas maneras. Primero, los controladores son capaces de pasar
información a las vistas, usando Controller::set(). También puedes decidir qué clase de vista usar, y qué archivo
de vista debería ser renderizado desde el controlador.

Configuración de variables de vista

Cake\Controller\Controller::set(string $var, mixed $value)

El método Controller::set() es la manera principal de mandar información desde el controlador a la vista. Una
vez que hayas utilizado Controller::set(), la variable puede ser accedida en tu vista:

// Primero pasas las información desde el controlador:

$this->set('color', 'rosa');

// Después, en la vista, puede utilizar la información:
?>

Has seleccionado cubierta <?= h($color) ?> para la tarta.

El método Controller::set() también toma un array asociativo como su primer parámetro. A menudo, esto puede
ser una forma rápida de asignar un conjunto de información a la vista:

$data = [
'color' => 'pink',
'type' => 'sugar',
'base_price' => 23.95

];

// Hace $color, $type, y $base_price
// disponible para la vista:

$this->set($data);

Ten en cuenta que las variables de la vista se comparten entre todas las partes renderizadas por tu vista. Estarán dispo-
nibles en todas las partes de la vista: la plantilla y todos los elementos dentro de estas dos.

Configuración de las opciones de la vista

Si deseas personalizar la clase vista, las rutas de diseño/plantillas, ayudantes o el tema que se usarán para renderizar
la vista, puede usar el método viewBuilder() para obtener un constructor. Este constructor se puede utilizar para
definir propiedades de la vista antes de crearlas:

$this->viewBuilder()
->addHelper('MyCustom')
->setTheme('Modern')
->setClassName('Modern.Admin');

Lo anterior muestra cómo puedes cargar ayudantes personalizados, configurar el tema y usar una clase vista persona-
lizada.

128 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Renderizando una vista

Cake\Controller\Controller::render(string $view, string $layout)

El método Controller::render() es llamado automáticamente al final de cada solicitud de la acción del con-
trolador. Este método realiza toda la lógica de la vista (usando la información que has enviado usando el método
Controller::set()), coloca la vista dentro de su View::$layout, y lo devuelve al usuario final.

El archivo de vista por defecto utilizado para el renderizado es definido por convención. Si la acción search() de
RecipesController es solicitada, el archivo vista en templates/Recipes/search.php será renderizado:

namespace App\Controller;

class RecipesController extends AppController
{
// ...

public function search()
{

// Renderiza la vista en templates/Recipes/search.php
return $this->render();

}
// ...
}

Aunque CakePHP va a llamarlo automáticamente después de cada acción de lógica (a menos que llames a
$this->disableAutoRender()), puedes usarlo para especificar un archivo de vista alternativo especificando el nom-
bre de este como primer argumento del método Controller::render().

Si $view empieza con “/”, se asume que es una vista o un archivo relacionado con la carpeta templates. Esto permite
el renderizado directo de elementos, muy útil en llamadas AJAX:

// Renderiza el elemento en templates/element/ajaxreturn.php
$this->render('/element/ajaxreturn');

El segundo parámetro $layout de Controller::render() te permita especificar la estructura con la que la vista es
renderizada.

Renderizando una plantilla específica

En tu controlador, puede que quieras renderizar una vista diferente a la que es convencional. Puedes hacer esto llamando
a Controller::render() directamente. Una vez que hayas llamado a Controller::render(), CakePHP no tratará
de re-renderizar la vista:

namespace App\Controller;

class PostsController extends AppController
{

public function my_action()
{

$this->render('custom_file');
}

}

Esto renderizará templates/Posts/custom_file.php en vez de templates/Posts/my_action.php.

Interactuando con vistas 129

CakePHP Book, Versión 4.x

También puedes renderizar vistas dentro de plugins usando la siguiente sintaxis: $this->render('PluginName.
PluginController/custom_file'). Por ejemplo:

namespace App\Controller;

class PostsController extends AppController
{

public function myAction()
{

$this->render('Users.UserDetails/custom_file');
}

}

Esto renderizará plugins/Users/templates/UserDetails/custom_file.php

Negociación del tipo de contenido

Cake\Controller\Controller::viewClasses()

Los controladores pueden definir una lista de clases de vistas que soportan. Después de que la acción del controlador este
completa, CakePHP usará la lista de vista para realizar negociación del tipo de contenido. Esto permite a tu aplicación
rehusar la misma acción del controlador para renderizar una vista HTML o renderizar una respuesta JSON o XML.
Para definir la lista de clases de vista que soporta un controlador se utiliza el método viewClasses():

namespace App\Controller;

use Cake\View\JsonView;
use Cake\View\XmlView;

class PostsController extends AppController
{

public function viewClasses(): array
{

return [JsonView::class, XmlView::class];
}

}

La clase View de la aplicación se usa automáticamente como respaldo cuando no se puede seleccionar otra vista en
función del encabezado de la petición Accept o de la extensión del enrutamiento. Si tu aplicación necesita realizar una
lógica diferente para diferente formatos de respuesta puedes usar $this->request->is() para construir la lógica
condicional requerida.

Nota: Las clases de vista deben implementar el método estático contentType() para participar en las negociaciones
del tipo de contenido.

130 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Negociación de tipo de contenido alternativos

Si ninguna vista puede coincidir con las preferencias del tipo de contenido de la petición, CakePHP usará la clase base
View. Si deseas solicitar una negociación del tipo de contenido, puedes usar NegotiationRequiredView que setea
un código de estatus 406:

public function viewClasses(): array
{

// Requiere aceptar la negociación del encabezado o devuelve una respuesta 406.
return [JsonView::class, NegotiationRequiredView::class];

}

Puede usar el valor del tipo de contenido TYPE_MATCH_ALL para crear tu lógica de vista alternativa:

namespace App\View;

use Cake\View\View;

class CustomFallbackView extends View
{

public static function contentType(): string
{

return static::TYPE_MATCH_ALL;
}

}

Es importante recordar que las vistas coincidentes se aplican sólo después de intentar la negociación del tipo de con-
tenido.

Nuevo en la versión 4.4.0: Anterior a 4.4 debes usar Request Handling en vez de viewClasses().

Redirigiendo a otras páginas

Cake\Controller\Controller::redirect(string|array $url, integer $status)

El método redirect() agrega un encabezado Location y establece un código de estado de una respuesta y la devuel-
ve. Deberías devolver la respuesta creada por redirect() para que CakePHP envíe la redirección en vez de completar
la acción del controlador y renderizar la vista.

Puedes redigir usando los valores de un array ordenado:

return $this->redirect([
'controller' => 'Orders',
'action' => 'confirm',
$order->id,
'?' => [

'product' => 'pizza',
'quantity' => 5

],
'#' => 'top'

]);

Negociación de tipo de contenido alternativos 131

CakePHP Book, Versión 4.x

O usando una URL relativa o absoluta:

return $this->redirect('/orders/confirm');

return $this->redirect('http://www.example.com');

O la referencia de la página:

return $this->redirect($this->referer());

Usando el segundo parámetro puede definir un código de estatus para tu redirección:

// Haz un 301 (movido permanentemente)
return $this->redirect('/order/confirm', 301);

// Haz un 303 (Ver otro)
return $this->redirect('/order/confirm', 303);

Reenviando a un acción en el mismo controlador

Cake\Controller\Controller::setAction($action, $args...)

Si necesitas reenviar la acción actual a una acción diferente en el mismo controlador, puedes usar
Controller::setAction() para actualizar el objeto de la solicitud, modifica la plantilla de vista que será
renderizada y reenvía la ejecución a la nombrada acción:

// Desde una acción de eliminación, puedes renderizar a lista de página
// actualizada.
$this->setAction('index');

Cargando modelos adicionales

Cake\Controller\Controller::fetchTable(string $alias, array $config = [])

La función fetchTable() es útil cuando se necesita usar una tabla que no es la predeterminada por el controlador:

// En un método del controlador.
$recentArticles = $this->fetchTable('Articles')->find('all', [

'limit' => 5,
'order' => 'Articles.created DESC'

])
->all();

Nuevo en la versión 4.3.0: Controller::fetchTable() fue añadido. Antes de 4.3 necesitas usar
Controller::loadModel().

132 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Paginación de un modelo

Cake\Controller\Controller::paginate()

Este método se utiliza para paginar los resultados obtenidos por tus modelos. Puedes especificar tamaño de páginas,
condiciones de búsqueda del modelo y más.

El atributo $paginate te da una manera de personalizar cómo paginate() se comporta:

class ArticlesController extends AppController
{

public $paginate = [
'Articles' => [

'conditions' => ['published' => 1]
]

];
}

Configuración de componentes para cargar

Cake\Controller\Controller::loadComponent($name, $config = [])

En el método initialize() de tu controlador, puedes definir cualquier componente que deseas cargar, y cualquier
dato de configuración para ellos:

public function initialize(): void
{

parent::initialize();
$this->loadComponent('Csrf');
$this->loadComponent('Comments', Configure::read('Comments'));

}

Callbacks del ciclo de vida de la petición

Los controladores de CakePHP activan varios eventos/callbacks que puedes usar para insertar lógica alrededor del ciclo
de vida de la solicitud.

Lista de eventos

Controller.initialize

Controller.startup

Controller.beforeRedirect

Controller.beforeRender

Controller.shutdown

Paginación de un modelo 133

CakePHP Book, Versión 4.x

Métodos de callback del controlador

Por defecto, los siguientes métodos de callback están conectados a eventos relacionados si los métodos son implemen-
tados por tus controladores.

Cake\Controller\Controller::beforeFilter(EventInterface $event)
Llamado durante el evento Controller.initialize que ocurre antes de cada acción en el controlador. Es un
lugar útil para comprobar si hay una sesión activa o inspeccionar los permisos del usuario.

Nota: El método beforeFilter() será llamado por acciones faltantes.

Devolver una respuesta del método beforeFilter no evitará que otros oyentes del mismo evento sean llamados.
Debes explícitamente parar el evento.

Cake\Controller\Controller::beforeRender(EventInterface $event)
Llamado durante el evento Controller.beforeRender que ocurre después de la lógica de acción del contro-
lador, pero antes de que la vista sea renderizada. Este callback no se usa con frecuencia, pero puede ser necesaria
si estas llamando render() de forma manual antes del final de una acción dada.

Cake\Controller\Controller::afterFilter(EventInterface $event)
Llamado durante el evento Controller.shutdown que se desencadena después de cada acción del controlador,
y después de que se complete el renderizado. Este es el último método del controlador para ejecutar.

Además de las devoluciones de llamada del ciclo de vida del controlador, Componentes también proporciona un con-
junto similar de devoluciones de llamada.

Recuerda llamar a los callbacks de AppController dentro de los callbacks del controlador hijo para mejores resulta-
dos:

//use Cake\Event\EventInterface;
public function beforeFilter(EventInterface $event)
{

parent::beforeFilter($event);
}

Middleware del controlador

Cake\Controller\Controller::middleware($middleware, array $options = [])

Middleware puede ser definido globalmente, en un ámbito de enrutamiento o dentro de un controlador. Para definir el
middleware para un controlador en específico usa el método middleware() de tu método initialize() del contro-
lador:

public function initialize(): void
{

parent::initialize();

$this->middleware(function ($request, $handler) {
// Haz la lógica del middleware.

// Verifica que devuelves una respuesta o llamas a handle()
return $handler->handle($request);

(continué en la próxima página)

134 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

(proviene de la página anterior)

});
}

El middleware definido por un controlador será llamado antes beforeFilter() y se llamarán a los métodos de acción.

Nuevo en la versión 4.3.0: Controller::middleware() fue agregado.

Más sobre controladores

El controlador de Páginas

El esqueleto oficial de CakePHP incluye un controlador por defecto PagesController.php. Este es un controlador
simple y opcional que se usa para servir contenido estático. La página home que ves después de la instalación es
generada usando este controlador y el archivo de vista templates/Pages/home.php. Si se crea el archivo de vista tem-
plates/Pages/about_us.php se podrá acceder a este usando la URL http://example.com/pages/about_us. Sientete
libre de modificar el controlador para que cumpla con tus necesidades.

Cuando se cocina una app usando Composer el controlador es creado en la carpeta src/Controller/.

Componentes

Los componentes son paquetes de lógica que se comparten entre los controladores. CakePHP viene un con fantástico
conjunto de componentes básicos que puedes usar para ayudar en varias tareas comunes. También puedes crear tus
propios componentes. Si te encuentras queriendo copiar y pegar cosas entre componentes, deberías considerar crear tu
propio componente que contenga la funcionalidad. Crear componentes mantiene el código del controlador limpio y te
permite rehusar código entre los diferentes controladores.

Para más información sobre componentes incluidos en CakePHP, consulte el capítulo de cada componente:

Authentication

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github87 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

87 https://github.com/cakephp/docs

Más sobre controladores 135

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

FlashComponent

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github88 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Seguridad

class SecurityComponent(ComponentCollection $collection, array $config = [])

El componente de seguridad crea una forma de integrar seguridad de forma más estricta en tu aplicación. Proporciona
métodos para diversas tareas como:

Restringir qué métodos HTTP acepta tu aplicación.

Protección contra manipulación de formularios.

Requerir que se utilice SSL.

Limitación de la comunicación entre controladores.

Como todos los componentes, se configura a través de varios parámetros configurables. Todas estas propiedades se
pueden establecer directamente o a través de métodos setter del mismo nombre en beforeFilter() de tu controlador.

Al usar el componente de seguridad, obtienes automáticamente protección contra la manipulación de formularios.
Los campos token ocultos se insertarán automáticamente en los formularios y serán verificados por el componente de
seguridad.

Si estas utilizando las funciones de protección de formularios del componente de seguridad y otros componentes que
procesan datos de formularios en tus devoluciones de llamada startup(), asegúrate de colocar el componente de
seguridad antes de esos componentes en tu método initialize().

Nota: Al usar el componente de seguridad, debes usar FormHelper para crear tus formularios. Además, no debes rees-
cribir ninguno de los «nombres» de los campos. El componente de seguridad busca ciertos indicadores que son creados
y manejados por FormHelper (especialmente esos creados en create() y end()). Es probable que la modificación
dinámica de los campos que se envían en una solicitud POST, como deshabilitar, borrar o crear nuevos campos a través
de JavaScript, haga que la solicitud se envíe a la devolución de llamada de blackhole.

Siempre debes verificar el método HTTP que se utiliza antes de ejecutarlo para evitar efectos secundarios. Debes
verificar el método HTTP o usar Cake\Http\ServerRequest::allowMethod() para asegurarte de que se utiliza el
método HTTP correcto.

88 https://github.com/cakephp/docs

136 Capítulo 10. Controladores

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Manejo de devoluciones de llamada blackhole

SecurityComponent::blackHole(Controller $controller, string $error = '', ?SecurityException $exception =
null)

Si una acción está restringida por el componente de seguridad, es “black-holed” como una solicitud no válida que dará
como resultado un error 400 por defecto. Puedes configurar este comportamiento seteando la opción de configuración
blackHoleCallback para una función de devolución de llamada en el controlador.

Al configurar un método de devolución de llamada, puedes personalizar como el proceso blackhole funciona:

public function beforeFilter(EventInterface $event)
{

parent::beforeFilter($event);

$this->Security->setConfig('blackHoleCallback', 'blackhole');
}

public function blackhole($type, SecurityException $exception)
{

if ($exception->getMessage() === 'Request is not SSL and the action is required to␣
→˓be secure') {

// Reformule el mensaje de excepción con un string traducible.
$exception->setMessage(__('Please access the requested page through HTTPS'));

}

// Vuelve a lanzar la excepción reformulada condicionalmente.
throw $exception;

// Alternativamente, maneja el error. Por ejemplo, configura un mensaje flash &
// redirige a la versión HTTPS de la página solicitada.

}

El parámetro $type puede tener los siguientes valores:

“auth” Indica un error de validación de formulario o un error de discrepancia entre controlador y acción.

“secure” Indica un error de restricción del método SSL.

Prevención de manipulación de formularios

Por defecto, SecurityComponent evita que los usuarios alteren los formularios de formas específicas. El
SecurityComponent evitará las siguientes cosas:

Los campos desconocidos no podrán ser agregados al formulario.

Los campos no pueden ser eliminados del formulario.

Los valores en las entradas ocultas no podrán ser modificadas.

La prevención de este tipo de manipulación se logra trabajando con FormHelper y rastreando qué campos hay en un
formulario. También se realiza un seguimiento de los valores de los campos ocultos. Todos estos datos se combinan y
se convierten en un hash. Cuando un formulario es enviado, SecurityComponent usará los datos POST para construir
la misma estructura y comparar el hash.

Más sobre controladores 137

CakePHP Book, Versión 4.x

Nota: SecurityComponent no evitará que se agreguen/cambien opciones seleccionadas. Tampoco impedirá que se
agreguen/cambien opciones de radio.

unlockedFields
Establecer en una lista de campos de formulario para excluir de la validación POST. Los campos se pueden
desbloquear en el componente o con FormHelper::unlockField(). Los campos que han sido desbloqueados
no están obligados a ser parte del POST y los campos desbloqueados ocultos no tienen su valores verificados.

validatePost
Establece en false para omitir por completo la validación de las solicitudes POST, esencialmente desactivando
las validaciones de los formularios.

Uso

La configuración del componente de seguridad generalmente se realiza en las devoluciones de llamada initialize o
beforeFilter() del controlador:

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetsController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('Security');

}

public function beforeFilter(EventInterface $event)
{

parent::beforeFilter($event);

if ($this->request->getParam('prefix') === 'Admin') {
$this->Security->setConfig('validatePost', false);

}
}

}

El ejemplo anterior deshabilitaría la prevención de manipulación de formularios para rutas con prefijo de administrador.

138 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Protección CSRF

CSRF o Cross Site Request Forgery es una vulnerabilidad común en las aplicaciones web. Permite a un atacante capturar
y reproducir una solicitud anterior, y a veces, enviar solicitudes de datos utilizando etiquetas de imagen o recursos en
otros dominios. Para habilitar las funciones de protección CSRF.

Deshabilitar la manipulación de formularios para acciones específicas

Hay muchos casos en los que querrías deshabilitar la prevención de manipulación de formularios pa-
ra una acción (por ejemplo, solicitudes AJAX). Puedes «desbloquear» estas acciones enumerándolas en
$this->Security->unlockedActions en tu beforeFilter():

namespace App\Controller;

use App\Controller\AppController;
use Cake\Event\EventInterface;

class WidgetController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('Security');

}

public function beforeFilter(EventInterface $event)
{

parent::beforeFilter($event);

$this->Security->setConfig('unlockedActions', ['edit']);
}

}

Este ejemplo deshabilitaría todas las comprobaciones de seguridad para las acciones de edición.

Paginación

class Cake\Controller\Component\PaginatorComponent

Uno de los mayores obstaculos para crear aplicaciones web flexibles y amigables para el usuario es diseñar una interfaz
de usuario intuitiva. Muchas aplicaciones tienen a crecer en tamaño y complejidad rapidamente, y los diseñadores y
programadores por igual no pueden hacer frente a la visualización de cientos o miles de registros. Refactorizar lleva
tiempo, y el rendimiento y la satisfación del usuario pueden verse afectados.

Mostrar un número razonable de registros por página siempre ha sido una parte crítica para cada aplicación y suele
causar muchos dolores de cabeza a los desarrolladores. CakePHP alivia la carga del desarrollador al proporcionar una
manera rapida y fácil de paginar datos.

La paginación en CakePHP es ofrecida por un componente de un controlador. Puedes utilizar PaginatorHelper en
la vista de tu plantilla para generar los controles de paginación.

Más sobre controladores 139

CakePHP Book, Versión 4.x

Uso Básico

Para paginar una consulta primero debemos cargar el PaginatorComponent:

class ArticlesController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('Paginator');

}
}

Una vez cargado podemos paginar una tabla de clase ORM o un objeto Query:

public function index()
{

// Paginate the ORM table.
$this->set('articles', $this->paginate($this->Articles));

// Paginate a partially completed query
$query = $this->Articles->find('published');
$this->set('articles', $this->paginate($query));

}

Uso Avanzado

El componente PaginatorComponent admite casos de uso más complejos mediante la configuración de la propiedad
del controlador $paginate o como el argumento $settings para paginate(). Estas condiciones sirven como base
para tus consultas de paginación. Son aumentados por los parametros sort, direction, limit, y page pasados dentro
de la URL:

class ArticlesController extends AppController
{

public $paginate = [
'limit' => 25,
'order' => [

'Articles.title' => 'asc'
]

];
}

Truco: Las opciones predeterminadas de order deben definirse como un array.

Si bien puedes incluir cualquiera de las opciones soportadas por find() como fields en tus ajustes de paginación. Es
más limpio y sencillo agrupar tus opciones de paginación dentro de Custom Finder Methods. Puedes usar tu buscador
en la paginación utilizando la opción finder

class ArticlesController extends AppController
{

public $paginate = [
(continué en la próxima página)

140 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

(proviene de la página anterior)

'finder' => 'published',
];

}

Si tu metodo de busqueda requiere opciones adicionales, puedes pasarlas como como valores para el buscador:

class ArticlesController extends AppController
{

// find articles by tag
public function tags()
{

$tags = $this->request->getParam('pass');

$customFinderOptions = [
'tags' => $tags

];
// Estamos utilizando el argumento $settings para paginate() aqui.
// Pero la misma estructura puede ser utilizada para $this->paginate
//
// Nuestro buscador personalizado se llama findTagged dentro ArticlesTable.php
// por eso estamos usando `tagged` como clave.
// Nuestro buscador deberia verse como:
// public function findTagged(Query $query, array $options) {
$settings = [

'finder' => [
'tagged' => $customFinderOptions

]
];
$articles = $this->paginate($this->Articles, $settings);
$this->set(compact('articles', 'tags'));

}
}

Además de definir valores generales de paginación, puedes definir mas de un conjunto de valores predeterminados para
la paginación en el controlador. El nombre de cada modelo puede ser usado como clave en la propiedad $paginate:

class ArticlesController extends AppController
{

public $paginate = [
'Articles' => [],
'Authors' => [],

];
}

Los valores de las claves de Articles y Authors podrían contener todas las propiedades que tendría una matriz básica
$paginate.

Una vez que hayas utilizado paginate() para crear resultados. La solicitud del controlador se actualizará con los pará-
metros de paginación. Puedes acceder a los metadatos de paginación en $this->request->getParam('paging').

Más sobre controladores 141

CakePHP Book, Versión 4.x

Paginación Simple

Por defecto, la paginación utiliza una consulta count() para calcular el tamaño del conjunto de resultados para que
puedan ser renderizados los enlaces de número de página. En conjuntos de datos muy grandes, esta consulta de conteo
puede ser muy costosa. En situaciones donde solo quieres mostrar los enlaces «Siguiente» y «Anterior» puedes utilizar
el paginador “simple” que realiza una consulta de conteo:

public function initialize(): void
{

parent::initialize();

// Load the paginator component with the simple paginator strategy.
$this->loadComponent('Paginator', [

'paginator' => new \Cake\Datasource\SimplePaginator(),
]);

}

Cuando se utilice el SimplePaginator no se podra generar los números de pagina, datos de contador, enlaces a la
ultima pagina, o controles de recuento total de registros.

Utilizando Directamente PaginatorComponent

Si necesitas paginar datos de otro componente, puedes utilizar el PaginatorComponent directamente. Cuenta con una
API similar al método controlador:

$articles = $this->Paginator->paginate($articleTable->find(), $config);

// Or
$articles = $this->Paginator->paginate($articleTable, $config);

El primer parámetro debe ser el objeto de consulta a encontrar en la tabla de objetos de la que se desea paginar los
resultados. Opcionalmente, puedes pasar el tabla de objetos y dejar la consulta se construirá para usted. El segundo
parametro deberia ser el array de los ajustes para usar en la paginación. Este array deberia tener la misma estructura
que la propiedad $paginate en el controlador. Al paginar un objeto Query, la opción finder sera ignorada. Se da
por asumido que se esta pasando la consulta que desas que sea paginada.

Paginando Multiples Consultas

Puedes paginar multiples modelos en una sola accion del controlador, usando la opción scope tanto en la propiedad
$paginate del controlador y en la llamada al metodo paginate():

// Propiedad paginado
public $paginate = [

'Articles' => ['scope' => 'article'],
'Tags' => ['scope' => 'tag']

];

// En una acción del controlador
$articles = $this->paginate($this->Articles, ['scope' => 'article']);
$tags = $this->paginate($this->Tags, ['scope' => 'tag']);
$this->set(compact('articles', 'tags'));

142 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

La opción scope dará como resultado el aspecto de PaginatorComponent en parámetros de cadena de consulta con
ámbito. Por ejemplo, el siguiente URL podría ser utilizado para paginar tags y articles al mismo tiempo:

/dashboard?article[page]=1&tag[page]=3

Consulte la sección paginator-helper-multiple para saber como generar elementos HTML con ambito y URLs para
paginación.

Paginar el Mismo Modelo Varias Veces

Para paginar el mismo modelo multiples veces dentro de una sola acción del controlador necesitas definir un alias para
el modelo. Consulte table-registry-usage para detalles adicionales sobre como utilizar la tabla de registros:

// En una acción del controlador
$this->paginate = [

'ArticlesTable' => [
'scope' => 'published_articles',
'limit' => 10,
'order' => [

'id' => 'desc',
],

],
'UnpublishedArticlesTable' => [

'scope' => 'unpublished_articles',
'limit' => 10,
'order' => [

'id' => 'desc',
],

],
];

// Registrar una tabla de objetos adicional para permitir la diferenciación en el␣
→˓componente de paginación
TableRegistry::getTableLocator()->setConfig('UnpublishedArticles', [

'className' => 'App\Model\Table\ArticlesTable',
'table' => 'articles',
'entityClass' => 'App\Model\Entity\Article',

]);

$publishedArticles = $this->paginate(
$this->Articles->find('all', [

'scope' => 'published_articles'
])->where(['published' => true])

);

$unpublishedArticles = $this->paginate(
TableRegistry::getTableLocator()->get('UnpublishedArticles')->find('all', [

'scope' => 'unpublished_articles'
])->where(['published' => false])

);

Más sobre controladores 143

CakePHP Book, Versión 4.x

Controlar que Campos se utilizan para Ordenar

Por defecto, el ordenamiento se puede realizar en cualquier columna no virtual que la tabla tenga. Esto es, a veces no
deseable ya que permite a los usuarios ordenar por columnas no indexadas que pueden provocar gran trabajo para ser
ordenadas. Puedes establecer una lista blanca de campos que se pueden ordenar utilando la opción sortWhitelist.
Esta opción es necesaria cuando quieres ordenar datos asociados o campos calculados que pueden formar parte de la
consulta de paginación:

public $paginate = [
'sortWhitelist' => [

'id', 'title', 'Users.username', 'created'
]

];

Cualquier solicitud que intente ordenar campos que no se encuentren en el lista blanca será ignorada.

Limitar el Número Máximo de Filas por Página

El número de resultados que se obtienen por página se expone al usuario como el parametro limit. Generalmente no
es deseable permitir que los usuarios obtengan todas las filas en un conjunto paginado. La opción maxLimit establece
que nadie puede configurar este límite demasiado alto desde afuera. Por defecto, CakePHP limita el número maximo
de filas que pueden ser obtenidas a 100. Si este limite por defecto no es apropiado para tu aplicación, puedes ajustarlo
en las opciones de paginación, por ejemplo, reduciendolo a 10:

public $paginate = [
// Other keys here.
'maxLimit' => 10

];

Si el parametro de la solictud es mayor a este valor, se reducirá al valor de maxLimit.

Uniendo Asociaciones Adicionales

Se pueden cargar asociaciones adicionales en la tabla paginada utilizando el parametro contain:

public function index()
{

$this->paginate = [
'contain' => ['Authors', 'Comments']

];

$this->set('articles', $this->paginate($this->Articles));
}

144 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

Solicitudes de Página Fuera de Rango

El PaginatorComponent lanzará un NotFoundException cuando trate de acceder a una página no existente, es decir,
cuando el número de página solicitado sea mayor al número de páginas.

Por lo tanto, puedes dejar que se muestre la página de error normal o utilizar un bloque try catch y tomar las medidas
apropiadas cuando se detecta un NotFoundException:

use Cake\Http\Exception\NotFoundException;

public function index()
{

try {
$this->paginate();

} catch (NotFoundException $e) {
// Has algo aquí como redirigir a la primera página o a la ultima página.
// $this->request->getAttribute('paging') te dara la información requerida.

}
}

Paginación en la Vista

Consulte la documentación PaginatorHelper para saber como crear enlaces para la navegación de paginación.

Request Handling

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github89 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

FormProtection

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github90 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

89 https://github.com/cakephp/docs
90 https://github.com/cakephp/docs

Más sobre controladores 145

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Checking HTTP Cache

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github91 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Configurando componentes

Muchos de los componentes principales requieren configuración. Algunos ejemplos de componentes que requieren
configuración son Seguridad y FormProtection. La configuración para estos componentes, y para los componentes en
general, es usualmente hecho a través loadComponent() en el método initialize() del controlador o a través del
array $components:

class PostsController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('FormProtection', [

'unlockedActions' => ['index'],
]);
$this->loadComponent('Csrf');

}

}

También puedes configurar los componentes en tiempo de ejecución usando el método setConfig(). A veces, esto
es hecho en el método beforeFilter() del controlador. Lo anterior podría ser también expresado como:

public function beforeFilter(EventInterface $event)
{

$this->FormProtection->setConfig('unlockedActions', ['index']);
}

Al igual que los helpers, componentes implementan los métodos getConfig() y setConfig() para leer y escribir
los datos de configuración:

// Lee los datos de configuración.
$this->FormProtection->getConfig('unlockedActions');

// Escribe los datos de configuración
$this->Csrf->setConfig('cookieName', 'token');

Al igual que con los helpers, los componentes fusionarán automáticamente su propiedad $_defaultConfig con la
configuración del controlador para crear la propiedad $_config que es accesible con getConfig() y setConfig().

91 https://github.com/cakephp/docs

146 Capítulo 10. Controladores

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Componentes de alias

Una configuración común para usar es la opción className, que te permite utilizar componentes de alias. Esta carac-
terística es útil cuando quieres reemplazar $this->Auth u otra referencia común de componente con una implemen-
tación personalizada:

// src/Controller/PostsController.php
class PostsController extends AppController
{

public function initialize(): void
{

$this->loadComponent('Auth', [
'className' => 'MyAuth'

]);
}

}

// src/Controller/Component/MyAuthComponent.php
use Cake\Controller\Component\AuthComponent;

class MyAuthComponent extends AuthComponent
{

// Agrega tu código para sobreescribir el AuthComponent principal
}

Lo de arriba haría alias MyAuthComponent a $this->Auth en tus controladores.

Nota: El alias de un componente reemplaza esa instancia en cualquier lugar donde se use ese componente, incluso
dentro de otros componentes.

Carga de componentes sobre la marcha

Es posible que no necesites todos tus componentes disponibles en cada acción del controlador. En situaciones como
estas, puedes cargar un componente en tiempo de ejecución usando el método loadComponent() en tu controlador:

// En una acción del controlador
$this->loadComponent('OneTimer');
$time = $this->OneTimer->getTime();

Nota: Ten en cuenta que los componentes cargados sobre la marcha no perderán devoluciones de llamadas. Si te basas
en que las devoluciones de llamada beforeFilter o startup serán llamadas, necesitarás llamarlas manualmente
dependiendo de cuándo cargas tu componente.

Más sobre controladores 147

CakePHP Book, Versión 4.x

Uso de componentes

Una vez que hayas incluido algunos componentes a tu controlador, usarlos es bastante simple. Cada componen-
te que uses se exponen como una propiedad en tu controlador. Si cargaste el Cake\Controller\Component\
FlashComponent en tu controlador, puedes acceder a él de esta forma:

class PostsController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('Flash');

}

public function delete()
{

if ($this->Post->delete($this->request->getData('Post.id')) {
$this->Flash->success('Post deleted.');

return $this->redirect(['action' => 'index']);
}

}
}

Nota: Dado que tanto los modelos como los componentes se agregan a los controladores como propiedades, comparten
el mismo “espacio de nombres”. Asegúrate de no dar a un componente y un modelo el mismo nombre.

Creando un componente

Supongamos que nuestra aplicación necesita realizar una operación matemática compleja en muchas partes diferentes
de la aplicación. Podríamos crear un componente para albergar esta lógica compartida para su uso en muchos contro-
ladores diferentes.

El primer paso es crear un nuevo archivo de componente y clase. Crea el archivo en
src/Controller/Component/MathComponent.php. La estructura básica para el componente debería verse algo
como esto:

namespace App\Controller\Component;

use Cake\Controller\Component;

class MathComponent extends Component
{

public function doComplexOperation($amount1, $amount2)
{

return $amount1 + $amount2;
}

}

Nota: Todos los componentes deben extender de Cake\Controller\Component. De lo contrario, se disparará una

148 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

excepción.

Incluyendo tu componente en tus controladores

Una vez que nuestro componente está terminado, podemos usarlo en los controladores de la aplicación cargándolo
durante el método initialize() del controlador. Una vez cargado, el controlador recibirá un nuevo atributo con el
nombre del componente, a través del cual podemos acceder a una instancia del mismo:

// En un controlador
// Haz que el nuevo componente esté disponible en $this->Math,
// así como el estándar $this->Csrf
public function initialize(): void
{

parent::initialize();
$this->loadComponent('Math');
$this->loadComponent('Csrf');

}

Al incluir componentes en un controlador, también puedes declarar un conjunto de parámetros que se pasarán al cons-
tructor del componente. Estos parámetros pueden ser manejados por el componente:

// En tu controlador.
public function initialize(): void
{

parent::initialize();
$this->loadComponent('Math', [

'precision' => 2,
'randomGenerator' => 'srand'

]);
$this->loadComponent('Csrf');

}

Lo anterior pasaría el array que contiene precision y randomGenerator a MathComponent::initialize() en el
parámetro $config.

Usando otros componentes en tu componente

A veces, uno de tus componentes necesita usar otro componente. Puedes cargar otros componentes agregándolos a la
propiedad $components:

// src/Controller/Component/CustomComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class CustomComponent extends Component
{

// El otro componente que tu componente usa
protected $components = ['Existing'];

// Ejecuta cualquier otra configuración adicional para tu componente.
(continué en la próxima página)

Más sobre controladores 149

CakePHP Book, Versión 4.x

(proviene de la página anterior)

public function initialize(array $config): void
{

$this->Existing->foo();
}

public function bar()
{

// ...
}

}

// src/Controller/Component/ExistingComponent.php
namespace App\Controller\Component;

use Cake\Controller\Component;

class ExistingComponent extends Component
{

public function foo()
{

// ...
}

}

Nota: A diferencia de un componente incluido en un controlador, no se activarán devoluciones de llamada en el
componente de un componente.

Accediendo al controlador de un componente

Desde dentro de un componente, puedes acceder al controlador actual a través del registro:

$controller = $this->getController();

Devoluciones de llamadas de componentes

Los componentes también ofrecen algunas devoluciones de llamadas de ciclo de vida de las solicitudes que les permiten
aumentar el ciclo de solicitud.

beforeFilter(EventInterface $event)
Es llamado antes que el método beforeFilter del controlador, pero después del método initialize() del controlador.

startup(EventInterface $event)
Es llamado después del método beforeFilter del controlador, pero antes de que el controlador ejecute la acción
actual del manejador.

beforeRender(EventInterface $event)
Es llamado después de que el controlador ejecute la lógica de la acción solicitada, pero antes de que el controlador
renderize las vistas y el diseño.

150 Capítulo 10. Controladores

CakePHP Book, Versión 4.x

shutdown(EventInterface $event)
Es llamado antes de enviar la salida al navegador.

beforeRedirect(EventInterface $event, $url, Response $response)
Es llamado cuando el método de redirección del controlador es llamado pero antes de cualquier otra acción. Si
este método devuelve false el controlador no continuará en redirigir la petición. Los parámetros $url y $response
permiten modificar e inspeccionar la ubicación o cualquier otro encabezado en la respuesta.

Usando redireccionamiento en eventos de componentes

Para redirigir desde dentro de un método de devolución de llamada de un componente, puedes usar lo siguiente:

public function beforeFilter(EventInterface $event)
{

$event->stopPropagation();

return $this->getController()->redirect('/');
}

Al detener el evento, le haces saber a CakePHP que no quieres ninguna otra devolución de llamada de componen-
te para ejecutar, y que el controlador no debe manejar la acción más lejos. A partir de 4.1.0 puedes generar una
RedirectException para señalar una redirección:

use Cake\Http\Exception\RedirectException;
use Cake\Routing\Router;

public function beforeFilter(EventInterface $event)
{

throw new RedirectException(Router::url('/'))
}

Generar una excepción detendrá todos los demás detectores de eventos y creará una nueva respuesta que no conserva
ni hereda ninguno de los encabezados de la respuesta actual. Al generar una RedirectException puedes incluir
encabezados adicionales:

throw new RedirectException(Router::url('/'), 302, [
'Header-Key' => 'value',

]);

Nuevo en la versión 4.1.0.

Más sobre controladores 151

CakePHP Book, Versión 4.x

152 Capítulo 10. Controladores

CAPÍTULO 11

Vistas

class Cake\View\View

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github92 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Plantillas de vistas

Layouts

Elementos

Más acerca de Vistas

View Cells

Nota: La documentación no es compatible actualmente con el idioma español en esta página.
92 https://github.com/cakephp/docs

153

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Por favor, siéntase libre de enviarnos un pull request en Github93 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Themes

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github94 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Vistas JSON y XML

JsonView y XmlView le permiten crear respuestas JSON y XML, e integrarse con el Cake\Controller\Component\
RequestHandlerComponent.

Al habilitar RequestHandlerComponent en su aplicación y habilitar la compatibilidad con las extensiones json y/o
xml, puede aprovechar automáticamente las nuevas clases de vista. JsonView y XmlView se denominarán vistas de
datos para el resto de esta página.

Hay dos formas de generar vistas de datos. La primera es mediante el uso de la opción serialize y la segunda es
mediante la creación de archivos de plantilla normales.

Habilitación de vistas de datos en su aplicación

Antes de poder usar las clases de vista de datos, primero deberá cargar el Cake\Controller\Component\
RequestHandlerComponent en su controlador:

public function initialize(): void
{

...
$this->loadComponent('RequestHandler');

}

Esto se puede hacer en su AppController y habilitará el cambio automático de clase de vista en los tipos de conte-
nido. También puede configurar el componente con la configuración viewClassMap, para asignar tipos a sus clases
personalizadas y/o asignar otros tipos de datos.

Opcionalmente, puede habilitar las extensiones json y/o xml con file-extensions. Esto le permitirá acceder a JSON, XML
o cualquier otra vista de formato especial utilizando una URL personalizada que termine con el nombre del tipo de
respuesta como una extensión de archivo como http://example.com/articles.json.

De forma predeterminada, cuando no se habilitan las file-extensions, se utiliza la solicitud, seleccionando el encabezado
Accept, seleccionando qué tipo de formato se debe presentar al usuario. Un ejemplo de formato Accept que se utiliza
para representar respuestas JSON es application/json.

93 https://github.com/cakephp/docs
94 https://github.com/cakephp/docs

154 Capítulo 11. Vistas

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Uso de vistas de datos con la clave Serialize

La opción serialize indica qué variable(s) de vista se deben serializar cuando se utiliza una vista de datos. Esto le
permite omitir la definición de archivos de plantilla para las acciones del controlador si no necesita realizar ningún
formateo personalizado antes de que los datos se conviertan en json/xml.

Si necesita realizar algún formateo o manipulación de las variables de vista antes de generar la respuesta, debe usar
archivos de plantilla. El valor de serialize puede ser un string o un array de variables de vista para serializar:

namespace App\Controller;

class ArticlesController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('RequestHandler');

}

public function index()
{

// Set the view vars that have to be serialized.
$this->set('articles', $this->paginate());
// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', 'articles');

}
}

También puede definir serialize como un array de variables de vista para combinar:

namespace App\Controller;

class ArticlesController extends AppController
{

public function initialize(): void
{

parent::initialize();
$this->loadComponent('RequestHandler');

}

public function index()
{

// Some code that created $articles and $comments

// Set the view vars that have to be serialized.
$this->set(compact('articles', 'comments'));

// Specify which view vars JsonView should serialize.
$this->viewBuilder()->setOption('serialize', ['articles', 'comments']);

}
}

La definición de serialize como un array ha añadido la ventaja de anexar automáticamente un elemento <response>
de nivel superior cuando se utiliza XmlView. Si utiliza un valor de string para serialize y XmlView, asegúrese de
que la variable de vista tiene un único elemento de nivel superior. Sin un solo elemento de nivel superior, el Xml no

Más acerca de Vistas 155

CakePHP Book, Versión 4.x

podrá generarse.

Uso de una vista de datos con archivos de plantilla

Debe usar archivos de plantilla si necesita realizar alguna manipulación del contenido de la vista antes de crear el resul-
tado final. Por ejemplo, si tuviéramos artículos que tuvieran un campo que contuviera HTML generado, probablemente
querríamos omitirlo de una respuesta JSON. Esta es una situación en la que un archivo de vista sería útil:

// Controller code
class ArticlesController extends AppController
{

public function index()
{

$articles = $this->paginate('Articles');
$this->set(compact('articles'));

}
}

// View code - templates/Articles/json/index.php
foreach ($articles as &$article) {

unset($article->generated_html);
}
echo json_encode(compact('articles'));

Puede hacer manipulaciones más complejas o usar ayudantes para formatear también. Las clases de vista de datos no
admiten diseños. Asumen que el archivo de vista generará el contenido serializado.

Creación de vistas XML

class XmlView

De forma predeterminada, cuando se utiliza serialize, XmlView ajustará las variables de vista serializadas con un
nodo <response>. Puede establecer un nombre personalizado para este nodo mediante la opción rootNode.

La clase XmlView admite la opción xmlOptions que le permite personalizar las opciones utilizadas para generar
XML, por ejemplo, tags frente attributes.

Un ejemplo de uso de XmlView sería generar un sitemap.xml95. Este tipo de documento requiere que cambie rootNode
y establezca atributos. Los atributos se definen mediante el prefijo @:

public function sitemap()
{

$pages = $this->Pages->find()->all();
$urls = [];
foreach ($pages as $page) {

$urls[] = [
'loc' => Router::url(['controller' => 'Pages', 'action' => 'view', $page->

→˓slug, '_full' => true]),
'lastmod' => $page->modified->format('Y-m-d'),
'changefreq' => 'daily',
'priority' => '0.5'

];
(continué en la próxima página)

95 https://www.sitemaps.org/protocol.html

156 Capítulo 11. Vistas

https://www.sitemaps.org/protocol.html

CakePHP Book, Versión 4.x

(proviene de la página anterior)

}

// Define a custom root node in the generated document.
$this->viewBuilder()

->setOption('rootNode', 'urlset')
->setOption('serialize', ['@xmlns', 'url']);

$this->set([
// Define an attribute on the root node.
'@xmlns' => 'http://www.sitemaps.org/schemas/sitemap/0.9',
'url' => $urls

]);
}

Creación de vistas JSON

class JsonView

La clase JsonView admite la opción jsonOptions que permite personalizar la máscara de bits utilizada para generar
JSON. Consulte la documentación de json_encode96 para conocer los valores válidos de esta opción.

Por ejemplo, para serializar la salida de errores de validación de las entidades CakePHP en una forma coherente de
JSON:

// In your controller's action when saving failed
$this->set('errors', $articles->errors());
$this->viewBuilder()

->setOption('serialize', ['errors'])
->setOption('jsonOptions', JSON_FORCE_OBJECT);

Respuestas JSONP

Al utilizar JsonView, puede utilizar la variable de vista especial _jsonp para habilitar la devolución de una respuesta
JSONP. Si se establece en true la clase de vista comprueba si se establece el parámetro de string de consulta deno-
minado «callback» y, de ser así, envuelve la respuesta json en el nombre de función proporcionado. Si desea utilizar
un nombre de parámetro de string de consulta personalizado en lugar de «callback», establezca _jsonp al nombre
requerido en lugar de true..

Ejemplo de uso

Si bien el RequestHandlerComponent puede establecer automáticamente la vista en función del tipo de contenido o la
extensión de la solicitud, también puede controlar las asignaciones de vistas en el controlador:

// src/Controller/VideosController.php
namespace App\Controller;

use App\Controller\AppController;
use Cake\Http\Exception\NotFoundException;

(continué en la próxima página)

96 https://php.net/json_encode

Más acerca de Vistas 157

https://php.net/json_encode

CakePHP Book, Versión 4.x

(proviene de la página anterior)

class VideosController extends AppController
{

public function export($format = '')
{

$format = strtolower($format);

// Format to view mapping
$formats = [
'xml' => 'Xml',
'json' => 'Json',

];

// Error on unknown type
if (!isset($formats[$format])) {

throw new NotFoundException(__('Unknown format.'));
}

// Set Out Format View
$this->viewBuilder()->setClassName($formats[$format]);

// Get data
$videos = $this->Videos->find('latest')->all();

// Set Data View
$this->set(compact('videos'));
$this->viewBuilder()->setOption('serialize', ['videos']);

// Set Force Download
return $this->response->withDownload('report-' . date('YmdHis') . '.' . $format);

}
}

Helpers

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github97 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

97 https://github.com/cakephp/docs

158 Capítulo 11. Vistas

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Breadcrumbs

class Cake\View\Helper\BreadcrumbsHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github98 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

FlashHelper

class Cake\View\Helper\FlashHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github99 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

FormHelper

class Cake\View\Helper\FormHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github100 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

HtmlHelper

class Cake\View\Helper\HtmlHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github101 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

98 https://github.com/cakephp/docs
99 https://github.com/cakephp/docs

100 https://github.com/cakephp/docs
101 https://github.com/cakephp/docs

Más acerca de Vistas 159

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

NumberHelper

class Cake\View\Helper\NumberHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github102 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

PaginatorHelper

class Cake\View\Helper\PaginatorHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github103 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

RSS

class Cake\View\Helper\RssHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github104 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

102 https://github.com/cakephp/docs
103 https://github.com/cakephp/docs
104 https://github.com/cakephp/docs

160 Capítulo 11. Vistas

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

SessionHelper

class Cake\View\Helper\SessionHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github105 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

TextHelper

class Cake\View\Helper\TextHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github106 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

TimeHelper

class Cake\View\Helper\TimeHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github107 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

UrlHelper

class Cake\View\Helper\UrlHelper(View $view, array $config = [])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github108 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

105 https://github.com/cakephp/docs
106 https://github.com/cakephp/docs
107 https://github.com/cakephp/docs
108 https://github.com/cakephp/docs

Más acerca de Vistas 161

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

162 Capítulo 11. Vistas

CAPÍTULO 12

Acceso a la base de datos & ORM

En CakePHP el acceso a la base de datos se hace por medio de dos objetos primarios. El primero son repositories
-repositorios- o table objects -objetos de tabla-. Estos objetos proveen acceso a colecciones de datos. Nos permiten
guardar nuevos registros, modificar y borrar existentes, definir relaciones y realizar operaciones en masa. El segundo ti-
po de objeto son entities -entidades-. Las Entidades representan registros individuales y permiten definir funcionalidad
y comportamiento a nivel de registro/fila.

Estas dos clases son responsables de manejar todo lo que sucede con datos, validez, interacción y evolución en tu área
de trabajo.

El ORM incluído en CakePHP se especializa en base de datos relacionales, pero puede ser extendido para soportar
alternativas.

El ORM de CakePHP toma ideas y conceptos de los modelos ActiveRecord y Datamapper. Aspira a crear una imple-
mentación híbrida que combine aspectos de los dos modelos para crear un ORM rápido y fácil de usar.

Antes de comentar explorando el ORM, asegurate de configurar tu conexion configure your database connections.

Ejemplo rápido

Para comenzar no es necesario escribir código. Si has seguido las convenciones de nombres para las tablas puedes
comenzar a utilizar el ORM. Por ejemplo si quisieramos leer datos de nuestra tabla articles:

use Cake\ORM\TableRegistry;

// Prior to 3.6 use TableRegistry::get('Articles')
$articles = TableRegistry::getTableLocator()->get('Articles');
$query = $articles->find();
foreach ($query as $row) {

echo $row->title;
}

163

CakePHP Book, Versión 4.x

Como se ve, no es necesario agregar código extra ni ninguna otra configuración, gracias al uso de las convenciones de
CakePHP. Si quisieramos modificar nuestra clase ArticlesTable para agregar asociaciones o definir métodos adicionales
deberiamos agregar las siguientes lineas en src/Model/Table/ArticlesTable.php

namespace App\Model\Table;

use Cake\ORM\Table;

class ArticlesTable extends Table
{

}

Las clases Table usan una version en CamelCase del nombre de la tabla, con el sufijo Table. Una vez que tú clase fue
creada, puedes obtener una referencia a esta usando TableRegistry como antes:

use Cake\ORM\TableRegistry;

// Now $articles is an instance of our ArticlesTable class.
// Prior to 3.6 use TableRegistry::get('Articles')
$articles = TableRegistry::getTableLocator()->get('Articles');

Ahora que tenemos una clase Table concreta, probablemente querramos usar una clase Entity concreta. Las clases
Entity permiten definir métodos de acceso y mutación, lógica para registros individuales y mucho mas. Comenzaremos
agregando las siguientes lineas en src/Model/Entity/Article.php:

namespace App\Model\Entity;

use Cake\ORM\Entity;

class Article extends Entity
{

}

Las Entity usan la version CamelCase en singular del nombre de la tabla como su nombre. Ahora que hemos creado
una clase Entity, cuando carguemos entidades de nuestra base de datos, vamos a obtener instancias de nuestra clase
Article:

use Cake\ORM\TableRegistry;

// Now an instance of ArticlesTable.
// Prior to 3.6 use TableRegistry::get('Articles')
$articles = TableRegistry::getTableLocator()->get('Articles');
$query = $articles->find();

foreach ($query as $row) {
// Each row is now an instance of our Article class.
echo $row->title;

}

CakePHP usa convenciones de nombres para asociar las clases Table y Entity. Si necesitas modificar qué entidad
utilizada una tabla, puedes usar el método entityClass() para especificar el nombre de una clase.

Vea Table Objects y Entities para mas información sobre como utilizar objetos Table y Entity en su aplicación.

164 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

Más información

Database Basics

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github109 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Query Builder

class Cake\ORM\Query

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github110 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Table Objects

class Cake\ORM\Table

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github111 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

109 https://github.com/cakephp/docs
110 https://github.com/cakephp/docs
111 https://github.com/cakephp/docs

Más información 165

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Entities

class Cake\ORM\Entity

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github112 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Retrieving Data & Results Sets

class Cake\ORM\Table

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github113 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Custom Finder Methods

Validating Data

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github114 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Saving Data

class Cake\ORM\Table

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por
fa-
vor,

112 https://github.com/cakephp/docs
113 https://github.com/cakephp/docs
114 https://github.com/cakephp/docs

166 Capítulo 12. Acceso a la base de datos & ORM

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

sién-
ta-
se
li-
bre
de
en-
viar-
nos
un
pull
re-
quest
en
Github115

o uti-
lizar el
botón
Im-
prove
this
Doc
para
pro-
poner
direc-
tamen-
te los
cam-
bios.

Usted
puede
hacer
refe-
rencia
a la

versión en Inglés en el menú de selección superior para obtener información sobre el tema de esta página.

Deleting Data

class
Cake\
ORM\
Table

115 https://github.com/cakephp/docs

Más información 167

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Cake\ORM\Table::delete(Entity
$en-
tity,
$op-
tions
=
[])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github116 o utilizar el botón Improve this Doc para
proponer directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Associations - Linking Tables Together

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github117 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Behaviors

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github118 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Core Behaviors

CounterCache Behavior

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github119 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

116 https://github.com/cakephp/docs
117 https://github.com/cakephp/docs
118 https://github.com/cakephp/docs
119 https://github.com/cakephp/docs

168 Capítulo 12. Acceso a la base de datos & ORM

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Timestamp Behavior

class
Cake\Model\
Behavior\
TimestampBehavior

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github120 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Translate

class
Cake\Model\
Behavior\
TranslateBehavior

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github121 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Tree

class
Cake\ORM\
Behavior\
TreeBehavior

Muchas veces nos encontramos frente a la necesidad de tener que almacenar datos jerarquizados en una base de datos.
Podría tomar la forma de categorías sin límite de subcategorías, datos relacionados con un sistema de menú multinivel
o una representación literal de la jerarquía como un departamento en una empresa.

Las bases de datos relacionales no son verdaderamente apropiadas para almacenar y recobrar este tipo de datos, pero
existen algunas técnicas para hacerlas eficientes y trabajar con una información multinivel.

120 https://github.com/cakephp/docs
121 https://github.com/cakephp/docs

Más información 169

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

El TreeBehavior le ayuda a mantener una estructura de datos jerárquica en la base de datos que puede ser solicitada
fácilmente y ayuda a reconstruir los datos bajo una forma de árbol que permite encontrar y visualizar los procesos.

Prerrequisitos

Ese behavior requiere que las siguientes columnas estén presentes en la tabla:

parent_id
(nullable)
La colum-
na que
contiene
el ID del
registro
padre

lft (in-
teger,
signed)
Utilizado
para man-
tener la
estructura
en forma
de árbol

rght
(integer,
signed)
Utilizado
para man-
tener la
estructura
en forma
de árbol

Usted puede configurar el nombre de esos campos. Encontrará más información sobre la significación de los campos
y sobre la manera de utilizarlos en este artículo que describe la MPTT logic122

Advertencia

Por el momento, TreeBehavior no soporta las llaves primarias composites.
122 https://www.sitepoint.com/hierarchical-data-database-2/

170 Capítulo 12. Acceso a la base de datos & ORM

https://www.sitepoint.com/hierarchical-data-database-2/

CakePHP Book, Versión 4.x

Rápido vistazo

Active el Tree behavior agregándolo a la Tabla donde usted desea almacenar los datos jerarquizados en:

class␣
→˓CategoriesTable␣
→˓extends␣
→˓Table
{

public␣
→˓function␣
→˓initialize(array␣
→˓$config)

{

→˓$this->
→˓addBehavior(
→˓'Tree');

}
}

Tras agregarlas, puede dejar que CakePHP construya la estructura interna si la tabla ya contiene algunos registros:

// Prior to␣
→˓3.6 use␣
→˓TableRegistry::get(
→˓'Categories
→˓')
$categories␣
→˓=␣
→˓TableRegistry::getTableLocator()-
→˓>get(
→˓'Categories
→˓');
$categories-
→˓>
→˓recover();

Usted puede comprobar que funciona recuperando cualquier registro de la tabla y preguntando cuantos descendientes
posee:

$node =
→˓$categories-
→˓>get(1);
echo
→˓$categories-
→˓>
→˓childCount(
→˓$node);

Obtener una lista plana de los descendientes de un nodo es igual de fácil:

→˓$descendants␣
(continué en la próxima página)

Más información 171

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓=
→˓$categories-
→˓>find(
→˓'children
→˓', ['for'␣
→˓=> 1]);

foreach (
→˓$descendants␣
→˓as
→˓$category)␣
→˓{
echo

→˓$category-
→˓>name . "\
→˓n";
}

En cambio, si necesita una lista enlazada donde los hijos de cada nodo están anidados en una jerarquía, usted puede
utilizar el finder ‘threaded’:

$children =
→˓$categories

->find(
→˓'children
→˓', ['for'␣
→˓=> 1])

->find(
→˓'threaded
→˓')

->
→˓toArray();

foreach (
→˓$children␣
→˓as
→˓$child) {
echo "{

→˓$child->
→˓name} has
→˓" . count(
→˓$child->
→˓children)␣
→˓. "␣
→˓direct␣
→˓children";
}

Recorrer los resultados encadenados requiere generalmente funciónes recursivas, pero si usted necesita solamente un
conjunto de resultados que contenga un campo único a partir de cada nivel para obtener una lista, en un <select> HTML
por ejemplo, le será preferible recurrir al finder ‘treeList’:

172 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

$list =
→˓$categories-
→˓>find(
→˓'treeList
→˓');

// En un␣
→˓fichero␣
→˓plantilla␣
→˓de Cake␣
→˓PHP:
echo $this->
→˓Form->
→˓input(
→˓'categories
→˓', [
→˓'options'␣
→˓=>
→˓$list]);

// O puede␣
→˓aficharlo␣
→˓bajo␣
→˓forma de␣
→˓texto,␣
→˓por␣
→˓ejemplo␣
→˓en un␣
→˓script de␣
→˓CLI
foreach (
→˓$list as
→˓$categoryName)␣
→˓{
echo

→˓$categoryName␣
→˓. "\n";
}

La salida se parecerá a esto:

My␣
→˓Categories
_Fun
__Sport
___Surfing
___Skating
_Trips
__National
__
→˓International

El finder treeList acepta una serie de opciones:

Más información 173

CakePHP Book, Versión 4.x

keyPath:
el camino
separado
por pun-
tos para
recuperar
el campo
que se
utilizará
en llave
de array,
o una
clausura
que de-
vuelve la
llave del
registro
suminis-
trado.

valuePath:
el camino
separado
por pun-
tos para
recuperar
el campo
que se
utilizará
en llave
de array,
o una
clausura
que de-
vuelve la
llave del
registro
suminis-
trado.

spacer:
una ca-
dena de
caracteres
utilizada
como pre-
fijo para
designar
la pro-
fundidad
del árbol
para cada
elemento.

174 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

Un ejemplo de uso de todas las opciones sería:

$query =
→˓$categories-
→˓>find(
→˓'treeList
→˓', [
'keyPath

→˓' => 'url
→˓',

→˓'valuePath
→˓' => 'id',
'spacer

→˓' => ' '
]);

Une tarea común consiste en encontrar el camino en el árbol a partir de un nodo específico hacia la raíz. Es útil, por
ejemplo, para añadir la lista de los hilos de Ariadna para una estructura de menú:

$nodeId = 5;
$crumbs =
→˓$categories-
→˓>find(
→˓'path', [
→˓'for' =>
→˓$nodeId]);

foreach (
→˓$crumbs␣
→˓as
→˓$crumb) {
echo

→˓$crumb->
→˓name . ' >
→˓ ';
}

Los árboles construidos con TreeBehavior no pueden ser clasificados con otras columnas que lft`, porque la represen-
tación interna del árbol depende de esa clasificación. Afortunadamente se pueden reestructurar los nodos dentro del
mismo nivel sin tener que cambiar el elemento padre:

$node =
→˓$categories-
→˓>get(5);

// Desplaza␣
→˓el nudo␣
→˓para que␣
→˓incremente␣
→˓de una␣
→˓posición␣
→˓cuando␣
→˓listamos␣

(continué en la próxima página)

Más información 175

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓los hijos
$categories-
→˓>moveUp(
→˓$node);

// ␣
→˓Desplaza␣
→˓el nudo␣
→˓hacia lo␣
→˓alto de␣
→˓la lista␣
→˓en el␣
→˓mismo␣
→˓nivel
$categories-
→˓>moveUp(
→˓$node,␣
→˓true);

// ␣
→˓Desplaza␣
→˓el nudo␣
→˓hacia␣
→˓abajo.
$categories-
→˓>moveDown(
→˓$node,␣
→˓true);

Configuración

Si los números de columna predeterminados empleados por ese behavior no corresponden a su esquema, usted puede
ponerles alias:

public␣
→˓function␣
→˓initialize(array␣
→˓$config)
{

$this->
→˓addBehavior(
→˓'Tree', [

→˓'parent'␣
→˓=>
→˓'ancestor_
→˓id', // ␣
→˓Utilice␣
→˓esto␣
→˓preferencialmente␣
→˓en vez de␣

(continué en la próxima página)

176 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓parent_id

→˓'left' =>
→˓'tree_left
→˓', // ␣
→˓Utilice␣
→˓esto en␣
→˓vez de Ift

→˓'right' =>
→˓ 'tree_
→˓right' //␣
→˓ Utilice␣
→˓esto en␣
→˓vez de␣
→˓rght

]);
}

Nivel de Nodos (profundidad)

Conocer la profundidad de una estructura en árbol puede ser útil cuando quiere recuperar los nodos solo hasta cierto
nivel, por ejemplo para generar un menú. Puede utilizar la opción level para especificar los campos que guardarán el
nivel de cada nodo:

$this->
→˓addBehavior(
→˓'Tree', [
'level'␣

→˓=> 'level
→˓', //␣
→˓null por␣
→˓defecto,␣
→˓i.e. no␣
→˓guarda el␣
→˓nivel
]);

Si usted no quiere copiar en caché el nivel utilizando un campo de la base de datos, puede utilizar el método
TreeBehavior::getLevel() para conocer el nivel de un nodo.

Más información 177

CakePHP Book, Versión 4.x

Alcance y árboles múltiples

Si usted desea tener más de una estructura de árbol en la misma tabla, puede hacerlo utilizando la configuración ‘scope’
(alcance). Por ejemplo, si en una tabla locations desea crear un árbol por país:

class␣
→˓LocationsTable␣
→˓extends␣
→˓Table
{

public␣
→˓function␣
→˓initialize(array␣
→˓$config)

{

→˓$this->
→˓addBehavior(
→˓'Tree', [

→˓'scope' =>
→˓ [
→˓'country_
→˓name' =>
→˓'Brazil']

]);
}

}

En el precedente ejemplo precedentela totalidad de las operaciones realizadas sobre el árbol solo se enfocarán en los
registros que tienen la columna country_name que vale ‘Brazil’. Usted puede cambiar el scope al vuelo utilizando la
función ‘config’:

$this->
→˓behaviors()-
→˓>Tree->
→˓config(
→˓'scope', [
→˓'country_
→˓name' =>
→˓'France
→˓']);

Opcionalmente, puede ejercer un control más riguroso pasando una clausura como scope

$this->
→˓behaviors()-
→˓>Tree->
→˓config(
→˓'scope',␣
→˓function (
→˓$query) {

→˓$country␣
(continué en la próxima página)

178 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓= $this->
→˓getConfigureContry();
→˓ // A␣
→˓made-up␣
→˓function

return
→˓$query->
→˓where([
→˓'country_
→˓name' =>
→˓$country]);
→˓

});

Recobro con campo de clasificación personalizada

Por defecto, recover() clasifica los elementos por llave primaria. Eso funciona muy bien si se trata de una columna
numérica (con incremento automático), pero puede ocasionar resultados raros si usted utiliza los UUIDs. Si necesita
una clasificación personalizada para la recuperación de datos, puede agregar una cláusula de orden en la configuración:

$this->
→˓addBehavior(
→˓'Tree', [

→˓'recoverOrder
→˓' => [
→˓'country_
→˓name' =>
→˓'DESC'],
]);

Guardar los datos jerarquizados

Generalmente cuando utiliza el Tree behavior, no tiene que preocuparse por la representación interna de la estructura
jerarquizada. Las posiciones donde los nodos están colocados en el árbol se deducen de la columna ‘parent_id’ en cada
una de sus entities:

$aCategory␣
→˓=
→˓$categoriesTable-
→˓>get(10);
$aCategory->
→˓parent_id␣
→˓= 5;

→˓$categoriesTable-
→˓>save(
→˓$aCategory);
→˓

Más información 179

CakePHP Book, Versión 4.x

Proveer ids de padres inexistentes al grabar o intentar crear un bucle en el árbol (hacer un nodo hijo del mismo) provocará
una excepción. Puede hacer un nodo a la raíz del árbol asignándolenull a la columna ‘parent_id’:

$aCategory␣
→˓=
→˓$categoriesTable-
→˓>get(10);
$aCategory->
→˓parent_id␣
→˓= null;

→˓$categoriesTable-
→˓>save(
→˓$aCategory);
→˓

Los hijos para el nuevo nodo serán preservados.

Suprimir Nodos

Es fácil Suprimir un nodo, así como todo su sub-árbol (todos los hijos que puede tener a todo nivel del árbol):

$aCategory␣
→˓=
→˓$categoriesTable-
→˓>get(10);

→˓$categoriesTable-
→˓>delete(
→˓$aCategory);
→˓

TreeBehavior se ocupará de todas las operaciones internas de supresión. También es posible suprimir solamente un
nodo y reasignar todos los hijos al nodo padre inmediatamente superior en el árbol:

$aCategory␣
→˓=
→˓$categoriesTable-
→˓>get(10);

→˓$categoriesTable-
→˓>
→˓removeFromTree(
→˓$aCategory);
→˓

→˓$categoriesTable-
→˓>delete(
→˓$aCategory);
→˓

Todos los nodos hijos serán conservados y un nuevo padre les será asignado. La supresión de un nodo se basa sobre
los valores lft y rght de la entity. Es importante observarlo cuando se ejecuta un bucle sobre los hijos de un nodo para
supresiones condicionales:

180 Capítulo 12. Acceso a la base de datos & ORM

CakePHP Book, Versión 4.x

→˓$descendants␣
→˓= $teams->
→˓find(
→˓'children
→˓', ['for'␣
→˓=> 1]);
foreach (
→˓$descendants␣
→˓as
→˓$descendant)␣
→˓{

$team =
→˓$teams->
→˓get(
→˓$descendant-
→˓>id); //␣
→˓busca el␣
→˓objeto␣
→˓entity al␣
→˓día
if (

→˓$team->
→˓expired) {

→˓$teams->
→˓delete(
→˓$team); //
→˓ la␣
→˓supresión␣
→˓reclasifica␣
→˓las␣
→˓entradas␣
→˓lft y␣
→˓rght de␣
→˓la base␣
→˓de datos

}
}

TreeBehavior reclasifica los valores lft y rght de los registros de la tabla cuando se suprime un nodo. Tal como están,
los valores lft y rght de las entities dentro de $descendants (guardadas antes de la operación de supresión) serán
erróneas. Las entities tendrán que estar cargadas, y modificadas al vuelo para evitar incoherencias en la tabla.

Más información 181

CakePHP Book, Versión 4.x

Schema System

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github123 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

ORM Cache Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github124 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

123 https://github.com/cakephp/docs
124 https://github.com/cakephp/docs

182 Capítulo 12. Acceso a la base de datos & ORM

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CAPÍTULO 13

Consola bake

Esta página se ha movido125.

125 https://book.cakephp.org/bake/1.x/es/

183

https://book.cakephp.org/bake/1.x/es/

CakePHP Book, Versión 4.x

184 Capítulo 13. Consola bake

CAPÍTULO 14

Caching

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github126 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

126 https://github.com/cakephp/docs

185

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

186 Capítulo 14. Caching

CAPÍTULO 15

Shells, Tasks & Console Tools

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github127 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

More Topics

Shell Helpers

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github128 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

127 https://github.com/cakephp/docs
128 https://github.com/cakephp/docs

187

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Interactive Console (REPL)

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github129 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Running Shells as Cron Jobs

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github130 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

I18N Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github131 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Completion Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github132 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

129 https://github.com/cakephp/docs
130 https://github.com/cakephp/docs
131 https://github.com/cakephp/docs
132 https://github.com/cakephp/docs

188 Capítulo 15. Shells, Tasks & Console Tools

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Plugin Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github133 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Routes Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github134 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Upgrade Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github135 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Server Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github136 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

133 https://github.com/cakephp/docs
134 https://github.com/cakephp/docs
135 https://github.com/cakephp/docs
136 https://github.com/cakephp/docs

More Topics 189

https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Cache Shell

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github137 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

137 https://github.com/cakephp/docs

190 Capítulo 15. Shells, Tasks & Console Tools

https://github.com/cakephp/docs

CAPÍTULO 16

Depuración

La depuración es una parte inevitable y necesaria de cualquier ciclo de desarrollo. Aunque CakePHP no ofrece ningu-
na herramienta que se conecte directamente con algun IDE o editor, CakePHP proporciona varias herramientas para
asistirte en la depuración y exponer lo que se está ejecutando bajo el capó de tu aplicación.

Depuración Básica

debug(mixed
$var,
boolean
$showHtml
= null,
$show-
From =
true)

La función debug() es una función que está disponible globalmente y funciona de manera similar a la función
print_r() de PHP. La función debug() te permite mostrar el contenido de una variable de varias maneras. Pri-
mero, si deseas que los datos se muestren de una forma amigable con HTML, debes establecer el segundo parámetro
en true. La función también imprime la línea y el archivo de origen por defecto.

El resultado de esta función solo se mostrará si la variable $debug en el archivo core es true.

Ver también dd(), pr() y pj().

stackTrace()

La función stackTrace() está disponible globalmente, esta permite mostrar el seguimiento de pila donde sea que se
llame.

191

CakePHP Book, Versión 4.x

breakpoint()

Si tienes Psysh <https://psysh.org/> _ instalado, puedes usar esta función en entornos CLI para abrir una consola
interactiva con el ámbito local actual:

// Algún␣
→˓código
eval(breakpoint());
→˓

Abrirá una consola interactiva que puede ser usada para revisar variables locales y ejecutar otro código. Puedes salir
del depurador interactivo y reanudar la ejecución original corriendo quit o q en la sesion interactiva.

Usando La Clase Debugger

class
Cake\Error\
Debugger

Para usar el depurador, primero asegúrate de que Configure::read('debug') sea true.

Imprimiendo Valores

static Cake\Error\Debugger::dump($var,
$depth
=
3)

Dump imprime el contenido de una variable. Imprimirá todas las propiedades y métodos (si existen) de la variable que
se le pase:

$foo = [1,2,
→˓3];

Debugger::dump(
→˓$foo);

// Salida
array(

1,
2,
3

)

// Objeto␣
→˓simple
$car = new␣
→˓Car();

Debugger::dump(
→˓$car);

(continué en la próxima página)

192 Capítulo 16. Depuración

CakePHP Book, Versión 4.x

(proviene de la página anterior)

// Salida
object(Car)
→˓{

color =>
→˓ 'red'

make =>
→˓'Toyota'

model =>
→˓ 'Camry'

mileage␣
→˓=>␣
→˓(int)15000
}

Enmascarando Datos

Al volcar datos con Debugger o mostrar páginas de error, es posible que desees ocultar claves sensibles como contra-
señas o claves API. En tu config/bootstrap.php puedes enmascarar claves específicas:

Debugger::setOutputMask([

→˓'password
→˓' =>
→˓'xxxxx',
'awsKey

→˓' =>
→˓'yyyyy',
]);

Registros Con Trazas De Pila

static Cake\Error\Debugger::log($var,
$le-
vel
=
7,
$depth
=
3)

Crea un registro de seguimiento de pila detallado al momento de la invocación. El método log() imprime datos similar
a como lo hace Debugger::dump(), pero al debug.log en vez de al buffer de salida. Ten en cuenta que tu directorio
tmp (y su contenido) debe ser reescribible por el servidor web para que log() funcione correctamente.

Registros Con Trazas De Pila 193

CakePHP Book, Versión 4.x

Generando seguimientos de pila

static Cake\Error\Debugger::trace($options)

Devuelve el seguimiento de pila actual. Cada línea de la pila incluye cual método llama, incluyendo el archivo y la
línea en la que se originó la llamada:

// En␣
→˓PostsController::index()
pr(Debugger::trace());
→˓

// Salida
PostsController::index()␣
→˓- APP/
→˓Controller/
→˓DownloadsController.
→˓php, line␣
→˓48
Dispatcher::_
→˓invoke() -
→˓ CORE/src/
→˓Routing/
→˓Dispatcher.
→˓php, line␣
→˓265
Dispatcher::dispatch()␣
→˓- CORE/
→˓src/
→˓Routing/
→˓Dispatcher.
→˓php, line␣
→˓237
[main] -␣
→˓APP/
→˓webroot/
→˓index.php,
→˓ line 84

Arriba está el seguimiento de pila generado al llamar Debugger::trace() en una acción de un controlador. Leer el
seguimiento de pila desde abajo hacia arriba muestra el órden de las funciones (cuadros de pila).

Obtener Un Extracto De Un Archivo

static Cake\Error\Debugger::excerpt($file,
$li-
ne,
$con-
text)

Saca un extracto de un archivo en $path (el cual es una dirección absoluta), resalta el número de la línea $line con el
número $context de líneas alrededor de este.

194 Capítulo 16. Depuración

CakePHP Book, Versión 4.x

pr(Debugger::excerpt(ROOT␣
→˓. DS .␣
→˓LIBS .
→˓'debugger.
→˓php', 321,
→˓ 2));

// Mostrará␣
→˓lo␣
→˓siguiente.
Array
(

[0] =>
→˓<code>
→˓<span␣
→˓style=
→˓"color:
→˓#000000">␣
→˓* @access␣
→˓public</
→˓span></
→˓code>

[1] =>
→˓<code>
→˓<span␣
→˓style=
→˓"color:
→˓#000000">␣
→˓*/
→˓</code>

[2] =>
→˓<code>
→˓<span␣
→˓style=
→˓"color:
→˓#000000">␣
→˓ ␣
→˓function␣
→˓excerpt(
→˓$file,
→˓$line,
→˓$context␣
→˓= 2) {</
→˓span></
→˓code>

[3] =>
→˓<span␣
→˓class=
→˓"code-
→˓highlight
→˓"><code>
→˓<span␣

(continué en la próxima página)

Obtener Un Extracto De Un Archivo 195

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓style=
→˓"color:
→˓#000000">␣
→˓

→˓$data =
→˓$lines =␣
→˓array();</
→˓span></
→˓code></
→˓span>

[4] =>
→˓<code>
→˓<span␣
→˓style=
→˓"color:
→˓#000000">␣
→˓

→˓$data =␣
→˓@explode(
→˓"\n",␣
→˓file_get_
→˓contents(
→˓$file));</
→˓span></
→˓code>
)

Aunque este método es usado internamente, puede ser útil si estás creando tus propios mensajes de error o entradas de
registros para situaciones customizadas.

static Cake\Error\Debugger::getType($var)

Consigue el tipo de una variable. Los objetos devolverán el nombre de su clase.

Usando El Registro Para Depurar

Registrar mensajes es otra buena manera de depurar aplicaciones, puedes usar Cake\Log\Log para hacer registros en
tu aplicación. Todos los objetos que usen LogTrait tienen una instancia del método log() que puede ser usado para
registrar mensajes:

$this->log(
→˓'Llegó␣
→˓aquí',
→˓'debug');

Lo anterior escribiría Llegó aquí en el registro de depuración. Puedes usar entradas de registro para ayudar a los
métodos de depuración que involucran redireccionamientos o búcles complejos. También puedes usar Cake\Log\
Log::write() para escribir mensajes de registro. Este método puede ser llamado estáticamente en cualquier lugar de
tu aplicación que un Log haya sido cargado:

// En el␣
→˓tope del␣

(continué en la próxima página)

196 Capítulo 16. Depuración

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓archivo␣
→˓que␣
→˓quieras␣
→˓hacer␣
→˓registros.
use Cake\
→˓Log\Log;

// En␣
→˓cualquier␣
→˓parte que␣
→˓Log haya␣
→˓sido␣
→˓importado.
Log::debug(
→˓'Llegó␣
→˓aquí');

Kit De Depuración

DebugKit es un complemento que proporciona una serie de buenas herramientas de depuración. Principalmente pro-
vee una barra de herramientas en el HTML renderizado, que porporciona una gran cantidad de información sobre tu
aplicación y la solicitud actual. Ver el capítulo Debug Kit para saber cómo instalar y usar DebugKit.

Kit De Depuración 197

CakePHP Book, Versión 4.x

198 Capítulo 16. Depuración

CAPÍTULO 17

ES - Deployment

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github138 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

138 https://github.com/cakephp/docs

199

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

200 Capítulo 17. ES - Deployment

CAPÍTULO 18

Email

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github139 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

139 https://github.com/cakephp/docs

201

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

202 Capítulo 18. Email

CAPÍTULO 19

Error & Exception Handling

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github140 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

140 https://github.com/cakephp/docs

203

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

204 Capítulo 19. Error & Exception Handling

CAPÍTULO 20

Events System

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github141 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

141 https://github.com/cakephp/docs

205

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

206 Capítulo 20. Events System

CAPÍTULO 21

Internationalization & Localization

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github142 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

142 https://github.com/cakephp/docs

207

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

208 Capítulo 21. Internationalization & Localization

CAPÍTULO 22

Logging

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github143 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

143 https://github.com/cakephp/docs

209

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

210 Capítulo 22. Logging

CAPÍTULO 23

Modelless Forms

class Cake\
Form\Form

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github144 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

144 https://github.com/cakephp/docs

211

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

212 Capítulo 23. Modelless Forms

CAPÍTULO 24

Plugins

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github145 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

145 https://github.com/cakephp/docs

213

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

214 Capítulo 24. Plugins

CAPÍTULO 25

REST

Muchos de los nuevos programadores de aplicaciones se estan dando cuenta de la necesidad de abrir el núcleo de la
funcionalidad a un mayor publico. Proporcionando acceso fácil y sin restricciones al núcleo de su API puede ayudar a
que su plataforma sea aceptada, y permite realizar mashups y fácil integración con otros sistemas.

Si bien existen otras soluciones, REST es una excelente manera de proporcionar un fácil acceso a la lógica que ha
creado para su aplicación. Es simple, generalmente basado en XML (estamos hablando de simple XML, nada como
un envoltorio de SOAP), y depende de los encabezados HTTP por dirección. Exponer una API utilizando REST en
CakePHP es simple.

La Configuración Simple

La forma más rapida para empezar a utilizar REST es agregar unas lineas para configurar la resource routes <resource-
routes> en su archivo config/routes.php .

Una vez que la ruta se ha configurado para mapear las solicitudes REST a cierto controlador de acciones, se puede
proceder a crear la lógica de nuestro controlador de acciones. Un controlador básico podría visualizarse de la siguiente
forma:

// src/
→˓Controller/
→˓RecipesController.
→˓php
class␣
→˓RecipesController␣
→˓extends␣
→˓AppController
{

public␣
→˓function␣

(continué en la próxima página)

215

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓initialize():␣
→˓void

{
␣

→˓parent::initialize();
→˓

→˓$this->
→˓loadComponent(
→˓'RequestHandler
→˓');

}

public␣
→˓function␣
→˓index()

{

→˓$recipes␣
→˓= $this->
→˓Recipes->
→˓find('all
→˓');

→˓$this->
→˓set(
→˓'recipes',
→˓

→˓$recipes);

→˓$this->
→˓viewBuilder()-
→˓>
→˓setOption(
→˓'serialize
→˓', [
→˓'recipes
→˓']);

}

public␣
→˓function␣
→˓view($id)

{

→˓$recipe =
→˓$this->
→˓Recipes->
→˓get($id);

→˓$this->
→˓set(

(continué en la próxima página)

216 Capítulo 25. REST

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓'recipe',
→˓$recipe);

→˓$this->
→˓viewBuilder()-
→˓>
→˓setOption(
→˓'serialize
→˓', [
→˓'recipe
→˓']);

}

public␣
→˓function␣
→˓add()

{

→˓$this->
→˓request->
→˓allowMethod([
→˓'post',
→˓'put']);

→˓$recipe =
→˓$this->
→˓Recipes->
→˓newEntity(
→˓$this->
→˓request->
→˓getData());
→˓

if (
→˓$this->
→˓Recipes->
→˓save(
→˓$recipe))
→˓{

→˓$message␣
→˓= 'Saved';

}␣
→˓else {

→˓$message␣
→˓= 'Error';

}

→˓$this->
→˓set([

→˓'message'␣

(continué en la próxima página)

La Configuración Simple 217

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓=>
→˓$message,

→˓'recipe'␣
→˓=>
→˓$recipe,

]);

→˓$this->
→˓viewBuilder()-
→˓>
→˓setOption(
→˓'serialize
→˓', [
→˓'recipe',
→˓'message
→˓']);

}

public␣
→˓function␣
→˓edit($id)

{

→˓$this->
→˓request->
→˓allowMethod([
→˓'patch',
→˓'post',
→˓'put']);

→˓$recipe =
→˓$this->
→˓Recipes->
→˓get($id);

→˓$recipe =
→˓$this->
→˓Recipes->
→˓patchEntity(
→˓$recipe,
→˓$this->
→˓request->
→˓getData());
→˓

if (
→˓$this->
→˓Recipes->
→˓save(
→˓$recipe))
→˓{

(continué en la próxima página)

218 Capítulo 25. REST

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓$message␣
→˓= 'Saved';

}␣
→˓else {

→˓$message␣
→˓= 'Error';

}

→˓$this->
→˓set([

→˓'message'␣
→˓=>
→˓$message,

→˓'recipe'␣
→˓=>
→˓$recipe,

]);

→˓$this->
→˓viewBuilder()-
→˓>
→˓setOption(
→˓'serialize
→˓', [
→˓'recipe',
→˓'message
→˓']);

}

public␣
→˓function␣
→˓delete(
→˓$id)

{

→˓$this->
→˓request->
→˓allowMethod([
→˓'delete
→˓']);

→˓$recipe =
→˓$this->
→˓Recipes->
→˓get($id);

→˓$message␣
→˓= 'Deleted
→˓';

(continué en la próxima página)

La Configuración Simple 219

CakePHP Book, Versión 4.x

(proviene de la página anterior)

if␣
→˓(!$this->
→˓Recipes->
→˓delete(
→˓$recipe))
→˓{

→˓$message␣
→˓= 'Error';

}

→˓$this->
→˓set(
→˓'message',
→˓

→˓$message);

→˓$this->
→˓viewBuilder()-
→˓>
→˓setOption(
→˓'serialize
→˓', [
→˓'message
→˓']);

}
}

Los controladores RESTful a menudo usan extensiones parseadas para mostrar diferentes vistas basado en diferentes
tipos de solicitudes. Como estamos tratando con solicitudes REST, estaremos haciendo vistas XML. Puedes realizar
vistas en JSON usando el CakePHP Vistas JSON y XML. Mediante el uso de XmlView se puede definir una opción de
serialize. Esta opción se usa para definir qué variables de vistas `` XmlView`` deben serializarse en XML.

Si se quiere modificar los datos antes de convertirlos en XML, no se debería definir la opción serialize, y en lugar
de eso, se debería usar archivos plantilla. Colocaremos las vistas REST de nuestro RecipesController dentro de tem-
plates/Recipes/xml. también podemos utilizar el Xml para una salida XML rápida y fácil en esas vistas. De esta forma,
así podría verse nuestra vista de índice:

//␣
→˓templates/
→˓Recipes/
→˓xml/index.
→˓php
// Realizar␣
→˓un␣
→˓formateo␣
→˓y␣
→˓manipulacion␣
→˓en
// $recipes␣
→˓array.
$xml =␣
→˓Xml::fromArray([

(continué en la próxima página)

220 Capítulo 25. REST

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓'response
→˓' =>
→˓$recipes]);
→˓

echo $xml->
→˓asXML();

Al entregar un tipo de contenido específico usando Cake\Routing\Router::extensions(), CakePHP busca auto-
máticamente un asistente de vista que coincida con el tipo. Como estamos utilizando XML como tipo de contenido, no
hay un asistente incorporado, sin embargo, si creara uno, se cargaría automáticamente para nuestro uso en esas vistas.

El XML procesado terminará pareciéndose a esto:

<recipes>
<recipe>

<id>
→˓234</id>

→˓<created>
→˓2008-06-13
→˓</created>

→˓<modified>
→˓2008-06-14
→˓</
→˓modified>

→˓<author>

→˓<id>23423
→˓</id>

→˓<first_
→˓name>Billy
→˓</first_
→˓name>

→˓<last_
→˓name>Bob</
→˓last_name>

</
→˓author>

→˓<comment>

→˓<id>245</
→˓id>

→˓<body>
→˓Yummy␣
→˓yummmy</
→˓body>

</
(continué en la próxima página)

La Configuración Simple 221

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓comment>
</

→˓recipe>
...

</recipes>

Crear la lógica para la acción de edición es un poco más complicado, pero no mucho. Ya que se está proporcionando
una API que genera XML como salida, es una opción natural recibir XML como entrada. No te preocupes, las clases
Cake\Controller\Component\RequestHandler y Cake\Routing\Router hacen las cosas mucho mas fáciles. Si
un POST o una solicitud PUT tiene un tipo de contenido XML, entonces la entrada se ejecuta a través de la clase de
CakePHP Xml, y la representación del arreglo de los datos se asigna a $this->request->getData(). Debido a esta
característica, el manejo de datos XML y POST se hace en continuamente en paralelo: no se requieren cambios en el
controlador o el código del modelo. Todo lo que necesita debe terminar en $this->request->getData().

Aceptando Entradas en otros formatos

Por lo general, las aplicaciones REST no solo generan contenido en formatos de datos alternativos, sino que también
acepta datos en diferentes formatos. En CakePHP, el RequestHandlerComponent ayuda a fácilitar esto. Por defecto,
decodificará cualquier entrada de datos en JSON / XML para solicitudes POST / PUT y proporcionar una versión del
arreglo de esos datos en $this->request->getData(). También puedes conectar deserializadores adicionales para
formatos alternativos si los necesitas, usando: RequestHandler::addInputType().

Enrutamiento RESTful

El enrutador de CakePHP fácilita la conexión de rutas de recursos RESTful. Ver la sección resource-routes para más
información.

222 Capítulo 25. REST

CAPÍTULO 26

Security

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github146 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Security

class Cake\
Utility\
Security

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github147 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

146 https://github.com/cakephp/docs
147 https://github.com/cakephp/docs

223

https://github.com/cakephp/docs
https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Cross Site Request Forgery

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github148 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

148 https://github.com/cakephp/docs

224 Capítulo 26. Security

https://github.com/cakephp/docs

CAPÍTULO 27

Sessions

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github149 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

149 https://github.com/cakephp/docs

225

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

226 Capítulo 27. Sessions

CAPÍTULO 28

Testing

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github150 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

Running Tests

150 https://github.com/cakephp/docs

227

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

228 Capítulo 28. Testing

CAPÍTULO 29

Validation

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github151 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

151 https://github.com/cakephp/docs

229

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

230 Capítulo 29. Validation

CAPÍTULO 30

La clase App

class Cake\
Core\App

La clase App se encarga de la localización de recursos y de la administración de rutas.

Búsqueda de clases

static Cake\Core\App::classname($name,
$ty-
pe
=
'',
$suf-
fix
=
'')

Éste método se utiliza para resolver el nombre completo de una clase en todo Cakephp. Como parámetros del método
entran los nombre cortos que usa CakePHP y devuelve el nombre completo (La ruta relativa al espacio de trabajo):

// Resuelve␣
→˓el nombre␣
→˓de clase␣
→˓corto␣
→˓utilizando␣
→˓el nombre␣
→˓y el␣
→˓sufijo.

(continué en la próxima página)

231

CakePHP Book, Versión 4.x

(proviene de la página anterior)

App::classname(
→˓'Auth',
→˓'Controller/
→˓Component
→˓',
→˓'Component
→˓');
// Salida:␣
→˓Cake\
→˓Controller\
→˓Component\
→˓AuthComponent

// Resuelve␣
→˓el nombre␣
→˓de plugin.
App::classname(
→˓'DebugKit.
→˓Toolbar',
→˓'Controller/
→˓Component
→˓',
→˓'Component
→˓');
// Salida:␣
→˓DebugKit\
→˓Controller\
→˓Component\
→˓ToolbarComponent

// Nombres␣
→˓con '\' se␣
→˓devuelven␣
→˓inalterados.
→˓

App::classname(
→˓'App\
→˓Cache\
→˓ComboCache
→˓');
// Salida:␣
→˓App\Cache\
→˓ComboCache

A la hora de resolver clases, primero se prueba con el espacio de nombres de App, si no existe, se prueba con el espacio
de nombres de Cake . Si no existe ninguno, devuelve false.

232 Capítulo 30. La clase App

CakePHP Book, Versión 4.x

Búsqueda de rutas al espacio de nombres

static Cake\Core\App::path(string
$pac-
ka-
ge,
string
$plu-
gin
=
null)

Se usa para la búsqueda de rutas basada en convenio de nombres de CakePHP:

// Buscar␣
→˓la ruta␣
→˓de␣
→˓Controller/
→˓ en tu␣
→˓aplicación
App::path(
→˓'Controller
→˓');

Se puede utilizar para todos los espacios de nombres de tu aplicacón. Además puedes extraer rutas de plugins:

// Devuelve␣
→˓la ruta␣
→˓del
→˓'Component
→˓' en␣
→˓DebugKit
App::path(
→˓'Component
→˓',
→˓'DebugKit
→˓');

App::path() sólo devuelve la ruta por defecto,no mostrará ningún tipo de información sobre las rutas adicionales
configuadas en autoloader.

static Cake\Core\App::core(string
$pac-
ka-
ge)

Se usa para buscar rutas de paquetes dentro del core de Cakephp:

// Devuelve␣
→˓la ruta␣
→˓de engine␣
→˓de cake.
App::core(

(continué en la próxima página)

Búsqueda de rutas al espacio de nombres 233

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓'Cache/
→˓Engine');

Búsqueda de plugins

static Cake\Core\Plugin::path(string
$plu-
gin)

Los plugins se localizan con el método Plugin. Por ejemplo, Plugin::path('DebugKit'); devuelve la ruta completa
al plugin DebugKit:

$path =␣
→˓Plugin::path(
→˓'DebugKit
→˓');

Localización de temas (nota:”themes”)

Dado que los temas (nota:”themes”) son también plugins, se localizan con el método anterior, «Plugin». (nota:”Aquí
se refiere a los themes que se pueden crear para modificar el comportamiento del bake, generador de código.”)

Cargar archivos externos (nota: “vendor”)

Lo ideal es que los archivos externos (“vendor”) se carguen automáticamente usando Composer, si necesita archivos
externos que no se pueden cargar automáticamente o no se pueden instalar con el Composer, entonces hay que usar
require para cargarlos.

Si no puede instalar alguna librería con el Composer, debería instalar cada librería en el directorio apropiado, siguiendo
el convenio del Composer: vendor/$author/$package. Si tiene una librería de autor “Acme” que se llama “Acme-
Lib”, la tiene que instalar en: vendor/Acme/AcmeLib. Asumiendo que la librería no usa nombres de clase compatibles
con “PSR-0”, puede cargar las clases definiéndolas en el classmap, dentro del archivo: composer.json en su aplica-
ción:

"autoload":
→˓{

"psr-4
→˓": {

→˓"App\\":
→˓"App",

→˓"App\\
→˓Test\\":
→˓"Test",

"":
→˓"./Plugin"

(continué en la próxima página)

234 Capítulo 30. La clase App

CakePHP Book, Versión 4.x

(proviene de la página anterior)

},

→˓"classmap
→˓": [

→˓"vendor/
→˓Acme/
→˓AcmeLib"

]
}

Si la librería no usa clases y sólo proporciona métodos,puede configurar el Composer para que cargue esos archivos al
inicio de cada petición(“request”), usando la estrategia de carga automática de ficheros files, como sigue:

"autoload":
→˓{

"psr-4
→˓": {

→˓"App\\":
→˓"App",

→˓"App\\
→˓Test\\":
→˓"Test",

"":
→˓"./Plugin"

},
"files

→˓": [

→˓"vendor/
→˓Acme/
→˓AcmeLib/
→˓functions.
→˓php"

]
}

Después de la configuración de las librerías externas, tiene que regenerar el autoloader de su aplicación usando:

$ php␣
→˓composer.
→˓phar dump-
→˓autoload

Si no usa Composer en su aplicación, tendrá que cargar manualmente cada librería en su aplicación.

Cargar archivos externos (nota: “vendor”) 235

CakePHP Book, Versión 4.x

236 Capítulo 30. La clase App

CAPÍTULO 31

Collections

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github152 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

152 https://github.com/cakephp/docs

237

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

238 Capítulo 31. Collections

CAPÍTULO 32

Folder & File

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github153 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

153 https://github.com/cakephp/docs

239

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

240 Capítulo 32. Folder & File

CAPÍTULO 33

Hash

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github154 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

154 https://github.com/cakephp/docs

241

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

242 Capítulo 33. Hash

CAPÍTULO 34

Http Client

class Cake\Network\Http\Client(mixed
$con-
fig
=
[])

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github155 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

155 https://github.com/cakephp/docs

243

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

244 Capítulo 34. Http Client

CAPÍTULO 35

Inflector

class Cake\
Utility\
Inflector

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github156 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

156 https://github.com/cakephp/docs

245

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

246 Capítulo 35. Inflector

CAPÍTULO 36

Number

class Cake\
I18n\Number

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github157 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

157 https://github.com/cakephp/docs

247

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

248 Capítulo 36. Number

CAPÍTULO 37

Registry Objects

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github158 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

158 https://github.com/cakephp/docs

249

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

250 Capítulo 37. Registry Objects

CAPÍTULO 38

Text

class Cake\
Utility\Text

static Cake\
Utility\
Text::uuid

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github159 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

159 https://github.com/cakephp/docs

251

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

252 Capítulo 38. Text

CAPÍTULO 39

Time

class Cake\
Utility\Time

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github160 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

160 https://github.com/cakephp/docs

253

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

254 Capítulo 39. Time

CAPÍTULO 40

Xml

class Cake\
Utility\Xml

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github161 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

161 https://github.com/cakephp/docs

255

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

256 Capítulo 40. Xml

CAPÍTULO 41

Constants & Functions

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github162 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

162 https://github.com/cakephp/docs

257

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

258 Capítulo 41. Constants & Functions

CAPÍTULO 42

Debug Kit

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github163 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

163 https://github.com/cakephp/docs

259

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

260 Capítulo 42. Debug Kit

CAPÍTULO 43

Migrations

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github164 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

164 https://github.com/cakephp/docs

261

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

262 Capítulo 43. Migrations

CAPÍTULO 44

Apéndices

En los apéndices encontrarás información relacionada a las nuevas características introducidas en cada versión, así
como también las guías de migración entre versiones.

Guía de Migración a 4.x

Información General

CakePHP Development Process

Nota: La documentación no es compatible actualmente con el idioma español en esta página.

Por favor, siéntase libre de enviarnos un pull request en Github165 o utilizar el botón Improve this Doc para proponer
directamente los cambios.

Usted puede hacer referencia a la versión en Inglés en el menú de selección superior para obtener información sobre el
tema de esta página.

165 https://github.com/cakephp/docs

263

https://github.com/cakephp/docs

CakePHP Book, Versión 4.x

Glosario

array de rutas
Un array
de atri-
butos
que son
pasados a
Router::url().
Típica-
mente se
ve algo
así:

[
→˓'controller
→˓' =>
→˓'Posts
→˓',
→˓'action
→˓' =>
→˓'view
→˓', 5]

Atributos
HTML

Un array
con cla-
ves =>
valores
que son
colocados
en los
atributos
HTML.
Por ejem-
plo:

// Dado
['class
→˓' =>
→˓'mi-
→˓clase
→˓',
→˓'target
→˓' =>
→˓'_
→˓blank
→˓']

//␣
→˓Generará
class=
→˓"mi-

(continué en la próxima página)

264 Capítulo 44. Apéndices

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓clase
→˓"␣
→˓target=
→˓"_
→˓blank
→˓"

Si una
opción
puede
usar su
nombre
como
valor,
entonces
puede
ser usado
true:

// Dado
[
→˓'checked
→˓' =>␣
→˓true]

//␣
→˓Generará
checked=
→˓"checked
→˓"

Sintaxis de
plugin

La sin-
táxis de
plugin se
refiere a el
punto que
separa los
nombres
de clases
indicando
que la
clase es
parte de
un plugin:

// El␣
→˓plugin␣
→˓es
→˓"DebugKit
→˓", y␣
→˓el␣

(continué en la próxima página)

Información General 265

CakePHP Book, Versión 4.x

(proviene de la página anterior)

→˓nombre␣
→˓de␣
→˓la␣
→˓clase␣
→˓es
→˓"Toolbar
→˓".

→˓'DebugKit.
→˓Toolbar
→˓'

// El␣
→˓plugin␣
→˓es
→˓"AcmeCorp/
→˓Tools
→˓", y␣
→˓el␣
→˓nombre␣
→˓de␣
→˓clase␣
→˓es
→˓"Toolbar
→˓".

→˓'AcmeCorp/
→˓Tools.
→˓Toolbar
→˓'

Notación de
punto

La no-
tación
de punto
define
un array
de rutas,
separan-
do los
niveles
anidados
con . Por
ejemplo:

Cache.
→˓default.
→˓engine

Apun-
tará al
siguiente

266 Capítulo 44. Apéndices

CakePHP Book, Versión 4.x

valor:

[

→˓'Cache
→˓' =>␣
→˓[

␣
→˓

→˓'default
→˓' =>␣
→˓[

␣
→˓

→˓'engine
→˓' =>
→˓'File
→˓'

␣
→˓]

]
]

CSRF
Cross Site
Request
Forgery.
Previene
los ata-
ques de
replay o
playback,
peticiones
dupli-
cadas y
peticiones
falsifica-
das desde
otros
dominios.

CDN
Content
Delivery
Network.
Le puedes
pagar a un
proveedor
para que
ayude a
distribuir
el con-
tenido a
centros
de datos

Información General 267

CakePHP Book, Versión 4.x

alrededor
del mun-
do. Esto
ayuda
a poner
elementos
estáticos
más cerca
de tus
usuarios
geográfi-
camente.

routes.php
Un archi-
vo en el
directorio
config
que con-
tiene las
configu-
raciones
de enru-
tamiento.
Este ar-
chivo se
incluye
antes de
que cada
petición
sea pro-
cesada.
Se deben
conectar
todas las
rutas que
necesita
tu apli-
cación
para que
cada pe-
tición sea
enrutada
correcta-
mente al
contro-
lador +
acción.

DRY
Don’t
repeat
yourself.
Es un
principio

268 Capítulo 44. Apéndices

CakePHP Book, Versión 4.x

de desa-
rrollo de
software
orientado
a reducir
la repe-
tición de
la infor-
mación
de todo
tipo. En
CakePHP,
DRY se
utiliza
para que
se pueda
escribir
las cosas
una vez
y reutili-
zarlos a
través de
su aplica-
ción.

PaaS
Platform
as a Ser-
vice. La
platafor-
ma como
servicio
propor-
cionará
recur-
sos de
hosting,
bases de
datos y
almace-
namiento
en caché
basado en
la nube.
Algunos
provee-
dores
populares
incluyen
Heroku,
Engine-
Yard y
Pagoda-
Box.

Información General 269

CakePHP Book, Versión 4.x

DSN
Data
Source
Name.
Una ca-
dena de
conexión
formatea-
da para
que sea
como
una URI.
CakePHP
soporta
conexio-
nes DSN
para Ca-
ché, Base
de datos,
Registro y
de E-mail.

270 Capítulo 44. Apéndices

PHP Namespace Index

c
Cake\Collection, 235
Cake\Console, 187
Cake\Controller, 125
Cake\Controller\Component, 139
Cake\Core, 231
Cake\Database, 165
Cake\Database\Schema, 182
Cake\Error, 192
Cake\Form, 211
Cake\I18n, 247
Cake\Model\Behavior, 169
Cake\Network\Http, 243
Cake\ORM, 165
Cake\ORM\Behavior, 169
Cake\Routing, 121
Cake\Utility, 255
Cake\Validation, 227
Cake\View, 153
Cake\View\Helper, 161

271

CakePHP Book, Versión 4.x

272 PHP Namespace Index

Índice

Símbolos
() (método de), 150, 151

A
afterFilter() (Cake\Controller\Controller method),

134
App (clase en Cake\Core), 231
array de rutas, 264
Atributos HTML, 264

B
beforeFilter() (Cake\Controller\Controller method),

134
beforeRender() (Cake\Controller\Controller method),

134
blackHole() (método de SecurityComponent), 137
BreadcrumbsHelper (clase en Cake\View\Helper), 159
breakpoint() (global function), 191

C
Cake\Collection (namespace), 235
Cake\Console (namespace), 187
Cake\Controller (namespace), 125
Cake\Controller\Component (namespace), 139
Cake\Core (namespace), 231
Cake\Database (namespace), 165
Cake\Database\Schema (namespace), 182
Cake\Error (namespace), 192
Cake\Form (namespace), 211
Cake\I18n (namespace), 247
Cake\Model\Behavior (namespace), 169
Cake\Network\Http (namespace), 243
Cake\ORM (namespace), 165–167
Cake\ORM\Behavior (namespace), 169
Cake\Routing (namespace), 121
Cake\Utility (namespace), 223, 245, 251, 253, 255
Cake\Validation (namespace), 227

Cake\View (namespace), 153
Cake\View\Helper (namespace), 159–161
CDN, 267
classname() (Cake\Core\App method), 231
Client (clase en Cake\Network\Http), 243
Controller (clase en Cake\Controller), 125
core() (Cake\Core\App method), 233
CSRF, 267

D
Debugger (clase en Cake\Error), 192
delete() (Cake\ORM\Table method), 167
doc (rol), 87
DRY, 268
DSN, 270
dump() (Cake\Error\Debugger method), 192

E
Entity (clase en Cake\ORM), 166
excerpt() (Cake\Error\Debugger method), 194

F
fetchTable() (Cake\Controller\Controller method),

132
FlashHelper (clase en Cake\View\Helper), 159
Form (clase en Cake\Form), 211
FormHelper (clase en Cake\View\Helper), 159

G
getType() (Cake\Error\Debugger method), 196

H
HtmlHelper (clase en Cake\View\Helper), 159

I
Inflector (clase en Cake\Utility), 245

273

CakePHP Book, Versión 4.x

J
JsonView (class), 157

L
loadComponent() (Cake\Controller\Controller

method), 133
log() (Cake\Error\Debugger method), 193

M
middleware() (Cake\Controller\Controller method),

134

N
Notación de punto, 266
Number (clase en Cake\I18n), 247
NumberHelper (clase en Cake\View\Helper), 160

P
PaaS, 269
paginate() (Cake\Controller\Controller method), 133
PaginatorComponent (clase en Ca-

ke\Controller\Component), 139
PaginatorHelper (clase en Cake\View\Helper), 160
path() (Cake\Core\App method), 233
path() (Cake\Core\Plugin method), 234
php:attr (directiva), 89
php:attr (rol), 90
php:class (directiva), 88
php:class (rol), 90
php:const (directiva), 88
php:const (rol), 89
php:exc (rol), 90
php:exception (directiva), 88
php:func (rol), 89
php:function (directiva), 88
php:global (directiva), 88
php:global (rol), 89
php:meth (rol), 90
php:method (directiva), 89
php:staticmethod (directiva), 89

Q
Query (clase en Cake\ORM), 165

R
redirect() (Cake\Controller\Controller method), 131
ref (rol), 87
render() (Cake\Controller\Controller method), 129
RFC

RFC 2606, 104
Router (clase en Cake\Routing), 121
routes.php, 268
RssHelper (clase en Cake\View\Helper), 160

S
Security (clase en Cake\Utility), 223
SecurityComponent (class), 136
SessionHelper (clase en Cake\View\Helper), 161
set() (Cake\Controller\Controller method), 128
setAction() (Cake\Controller\Controller method), 132
Sintaxis de plugin, 265
stackTrace() (global function), 191

T
Table (clase en Cake\ORM), 166
Text (clase en Cake\Utility), 251
TextHelper (clase en Cake\View\Helper), 161
Time (clase en Cake\Utility), 253
TimeHelper (clase en Cake\View\Helper), 161
TimestampBehavior (clase en Cake\Model\Behavior),

169
trace() (Cake\Error\Debugger method), 194
TranslateBehavior (clase en Cake\Model\Behavior),

169
TreeBehavior (clase en Cake\ORM\Behavior), 169

U
UrlHelper (clase en Cake\View\Helper), 161
uuid() (Cake\Utility\Text method), 251

V
View (clase en Cake\View), 153
viewClasses() (Cake\Controller\Controller method),

130

X
Xml (clase en Cake\Utility), 255
XmlView (class), 156

274 Índice

	CakePHP de un vistazo
	Convenciones sobre configuración
	La capa Modelo
	La capa Vista
	La capa Controlador
	Ciclo de una petición CakePHP
	Esto es solo el comienzo
	Lecturas complementarias
	Donde obtener ayuda
	La página oficial de CakePHP
	El Cookbook
	La Bakery
	La API
	Los casos de prueba
	El canal IRC
	Foro oficial de CakePHP
	Stackoverflow
	Donde encontrar ayuda en tu idioma
	Portugúes de Brasil
	Danés
	Francés
	Alemán
	Iraní
	Holandés
	Japonés
	Portugués
	Español

	Convenciones CakePHP
	Convenciones de Controlador
	Consideraciones URL para los nombres de Controladores

	Convenciones de nombre de clase y archivo
	Convenciones de Modelo y Base de datos
	Convenciones de Vistas

	CakePHP Folder Structure
	La carpeta src

	Guía de inicio rápido
	Tutorial Bookmarker (Favoritos)
	Instalar CakePHP
	Comprobar la instalación
	Crear la base de datos
	Configuración de la base de datos
	Crear el esqueleto del código
	Añadir encriptación (hashing) a la contraseña
	Obtener bookmarks con un tag específico
	Crear el método finder
	Crear la vista

	Tutorial Bookmarker (Favoritos) - Parte 2
	Añadir login
	Añadir logout
	Habilitar registros
	Restringiendo el acceso a favoritos
	Arreglar lista de consulta y formularios
	Listado consulta

	Mejorar la experiencia de etiquetado
	Añadir un campo calculado
	Actualizar las vistas
	Guardar el string de tags

	Para finalizar

	4.0 Migration Guide
	Tutoriales y Ejemplos
	Tutorial Gestor de Contenidos
	Obteniendo CakePHP
	Comprobando nuestra instalación

	Tutorial CMS - Creando la Base de Datos
	Configuración de la base de datos
	Creando nuestro primer modelo

	Tutorial Bookmarker (Favoritos)
	Instalar CakePHP
	Comprobar la instalación
	Crear la base de datos
	Configuración de la base de datos
	Crear el esqueleto del código
	Añadir encriptación (hashing) a la contraseña
	Obtener bookmarks con un tag específico
	Crear el método finder
	Crear la vista

	Tutorial Bookmarker (Favoritos) - Parte 2
	Añadir login
	Añadir logout
	Habilitar registros
	Restringiendo el acceso a favoritos
	Arreglar lista de consulta y formularios
	Listado consulta

	Mejorar la experiencia de etiquetado
	Añadir un campo calculado
	Actualizar las vistas
	Guardar el string de tags

	Para finalizar

	Tutorial Blog
	Obtener CakePHP
	Permisos de directorio en tmp
	Creando la base de datos del Blog
	Configurando la Base de Datos
	Configuración Opcional
	Sobre mod_rewrite

	Tutorial Blog - Parte 2
	Crear un modelo Artículo (Article)
	Crear el Controlador de Artículos (Articles Controller)
	Crear Vistas de Artículos (Article Views)
	Añadiendo Artículos
	Validando los Datos
	Editando Artículos
	Borrando Artículos
	Rutas (Routes)
	Conclusión
	Lectura sugerida para continuar desde aquí

	Tutorial Blog - Parte 3
	Crear categorias en Arbol
	Plugin de migración
	Modificando las tablas
	Generando el código base para las Categorías
	Agregar el TreeBehavior a CategoriesTable
	Reordenando categorías con TreeBehavior
	Modificando el ArticlesController
	Modificando el template de Articles

	Tutorial Blog - Autenticación y Autorización
	Creando el codigo para usuarios
	Autenticación (login y logout)
	Autorización (quién está autorizado a acceder qué)
	Lectura sugerida

	Contribuir
	Documentación
	Traducciones
	Nueva traducción
	Recordatorio para administradores de documentación
	Consejos para traductores

	Guía de formato para la documentación
	Tamaño de línea
	Cabeceras y secciones
	Párrafos
	Marcado en línea
	Listas
	Enlaces
	Enlaces externos
	Enlaces a otras páginas
	Enlaces a referencias cruzadas
	Evitar alertas de Sphinx

	Describir clases y sus contenidos
	Describir clases y constructores
	Evitar avisos de Sphinx
	Referencias cruzadas

	Código fuente
	Notas y avisos
	Ejemplos

	Tickets
	Reportar errores
	Reportar problemas de seguridad

	Código
	Configuración inicial
	Trabajar en un parche
	Enviar un Pull Request
	Seleccionar donde harán el merge tus cambios

	Estándares de codificación
	Añadir nuevas funcionalidades
	Configuración del IDE
	Tabulación
	Tamaño de línea
	Estructuras de control
	Operador ternario
	Archivos de plantilla

	Comparación
	Llamadas de funciones
	Definición de métodos
	Declaración de tipo
	Funciones anónimas (Closures)

	Encadenación de métodos
	Comentar el código
	Tipos de variables

	Incluir archivos
	Etiquetas PHP
	Sintaxis abreviada de echo

	Convenciones de nomenclatura
	Funciones
	Clases
	Variables
	Visibilidad de miembros
	Direcciones de ejemplos
	Archivos
	Hacer casts
	Constantes

	Cuidado al usar empty()/isset()

	Guía de compatibilidad hacia atrás
	Guías de migración
	Usar CakePHP
	Interfaces
	Clases

	Trabajando en CakePHP

	Instalación
	Requisitos
	Licencia
	Instalando CakePHP
	Mantente al día con los últimos cambios de CakePHP
	Instalación usando DDEV

	Permisos
	Configuración
	Desarrollo
	Producción
	A rodar!
	URL Rewriting
	Apache
	nginx
	IIS7 (Windows)
	No puedo usar Redireccionamientos de URL

	Configuration
	Routing
	Connecting Routes
	Using Named Routes
	Dispatcher Filters

	Request & Response Objects
	Request

	Controladores
	El App Controller
	Flujo de solicitud
	Acciones del controlador
	Interactuando con vistas
	Configuración de variables de vista
	Configuración de las opciones de la vista
	Renderizando una vista
	Renderizando una plantilla específica

	Negociación del tipo de contenido
	Negociación de tipo de contenido alternativos
	Redirigiendo a otras páginas
	Reenviando a un acción en el mismo controlador

	Cargando modelos adicionales
	Paginación de un modelo
	Configuración de componentes para cargar
	Callbacks del ciclo de vida de la petición
	Lista de eventos

	Métodos de callback del controlador
	Middleware del controlador
	Más sobre controladores
	El controlador de Páginas
	Componentes
	Authentication
	FlashComponent
	Seguridad
	Manejo de devoluciones de llamada blackhole
	Prevención de manipulación de formularios
	Uso
	Protección CSRF
	Deshabilitar la manipulación de formularios para acciones específicas

	Paginación
	Uso Básico
	Uso Avanzado
	Paginación Simple
	Utilizando Directamente PaginatorComponent
	Paginando Multiples Consultas
	Paginar el Mismo Modelo Varias Veces

	Controlar que Campos se utilizan para Ordenar
	Limitar el Número Máximo de Filas por Página
	Uniendo Asociaciones Adicionales
	Solicitudes de Página Fuera de Rango
	Paginación en la Vista

	Request Handling
	FormProtection
	Checking HTTP Cache
	Configurando componentes
	Componentes de alias
	Carga de componentes sobre la marcha

	Uso de componentes
	Creando un componente
	Incluyendo tu componente en tus controladores
	Usando otros componentes en tu componente
	Accediendo al controlador de un componente

	Devoluciones de llamadas de componentes
	Usando redireccionamiento en eventos de componentes

	Vistas
	Plantillas de vistas
	Layouts
	Elementos
	Más acerca de Vistas
	View Cells
	Themes
	Vistas JSON y XML
	Habilitación de vistas de datos en su aplicación
	Uso de vistas de datos con la clave Serialize
	Uso de una vista de datos con archivos de plantilla
	Creación de vistas XML
	Creación de vistas JSON
	Respuestas JSONP

	Ejemplo de uso

	Helpers
	Breadcrumbs
	FlashHelper
	FormHelper
	HtmlHelper
	NumberHelper
	PaginatorHelper
	RSS
	SessionHelper
	TextHelper
	TimeHelper
	UrlHelper

	Acceso a la base de datos & ORM
	Ejemplo rápido
	Más información
	Database Basics
	Query Builder
	Table Objects
	Entities
	Retrieving Data & Results Sets
	Custom Finder Methods

	Validating Data
	Saving Data
	Deleting Data
	Associations - Linking Tables Together
	Behaviors
	Core Behaviors
	CounterCache Behavior
	Timestamp Behavior
	Translate
	Tree
	Prerrequisitos
	Rápido vistazo
	Configuración
	Nivel de Nodos (profundidad)
	Alcance y árboles múltiples
	Recobro con campo de clasificación personalizada
	Guardar los datos jerarquizados
	Suprimir Nodos

	Schema System
	ORM Cache Shell

	Consola bake
	Caching
	Shells, Tasks & Console Tools
	More Topics
	Shell Helpers
	Interactive Console (REPL)
	Running Shells as Cron Jobs
	I18N Shell
	Completion Shell
	Plugin Shell
	Routes Shell
	Upgrade Shell
	Server Shell
	Cache Shell

	Depuración
	Depuración Básica
	Usando La Clase Debugger
	Imprimiendo Valores
	Enmascarando Datos

	Registros Con Trazas De Pila
	Generando seguimientos de pila
	Obtener Un Extracto De Un Archivo
	Usando El Registro Para Depurar
	Kit De Depuración

	ES - Deployment
	Email
	Error & Exception Handling
	Events System
	Internationalization & Localization
	Logging
	Modelless Forms
	Plugins
	REST
	La Configuración Simple
	Aceptando Entradas en otros formatos
	Enrutamiento RESTful

	Security
	Security
	Cross Site Request Forgery

	Sessions
	Testing
	Running Tests

	Validation
	La clase App
	Búsqueda de clases
	Búsqueda de rutas al espacio de nombres
	Búsqueda de plugins
	Localización de temas (nota:”themes”)
	Cargar archivos externos (nota: “vendor”)

	Collections
	Folder & File
	Hash
	Http Client
	Inflector
	Number
	Registry Objects
	Text
	Time
	Xml
	Constants & Functions
	Debug Kit
	Migrations
	Apéndices
	Guía de Migración a 4.x
	Información General
	CakePHP Development Process
	Glosario

	PHP Namespace Index
	Índice

