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Abstract

Over the last few years, the amount and availability of machine-readable Open, Linked, and Big
data on the web has increased. Simultaneously, several data management systems have emerged
to deal with the increased amounts of this structured data. RDF and Graph databases are two
popular approaches for data management based on modeling, storing, and querying graph-like
data. RDF database systems are based on the W3C standard RDF data model and use the
W3C standard SPARQL as their defacto query language. Most graph database systems are
based on the Property Graph (PG) data model and use the Gremlin language as their query
language due to its popularity amongst vendors. Given that both of these approaches have
distinct and complementary characteristics – RDF is suited for distributed data integration
with built-in world-wide unique identifiers and vocabularies; PGs, on the other hand, support
horizontally scalable storage and querying, and are widely used for modern data analytics
applications, – it becomes necessary to support interoperability amongst them. The main
objective of this dissertation is to study and address this interoperability issue. We identified
three research challenges that are concerned with the data interoperability, query interoperability,
and benchmarking of these databases. First, we tackle the data interoperability problem. We
propose three direct mappings (schema-dependent and schema-independent) for transforming an
RDF database into a property graph database. We show that the proposed mappings satisfy the
desired properties of semantics preservation and information preservation. Based on our analysis
(both formal and empirical), we argue that any RDF database can be transformed into a PG
database using our approach. Second, we propose a novel approach for querying PG databases
using SPARQL using Gremlin traversals – GREMLINATOR to tackle the query interoperability
problem. In doing so, we first formalize the declarative constructs of Gremlin language using a
consolidated graph relational algebra and define mappings to translate SPARQL queries into
Gremlin traversals. GREMLINATOR has been officially integrated as a plugin for the Apache
TinkerPop graph computing framework (as sparql-gremlin), which enables users to execute
SPARQL queries over a wide variety of OLTP graph databases and OLAP graph processing
frameworks. Finally, we tackle the third, benchmarking (performance evaluation), problem. We
propose a novel framework – LITMUS Benchmark Suite that allows a choke-point driven
performance comparison and analysis of various databases (PG and RDF-based) using various
third-party real and synthetic datasets and queries. We also studied a variety of intrinsic and
extrinsic factors – data and system-specific metrics and Key Performance Indicators (KPIs) that
influence a given system’s performance. LITMUS incorporates various memory, processor, data
quality, indexing, query typology, and data-based metrics for providing a fine-grained evaluation
of the benchmark. In conclusion, by filling the research gaps, addressed by this dissertation, we
have laid a solid formal and practical foundation for supporting interoperability between the
RDF and Property graph database technology stacks. The artifacts produced during the term
of this dissertation have been integrated into various academic and industrial projects.
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CHAPTER 1

Introduction

What started as an experimental infrastructure to interconnect, share and retrieve scientific
documents, between scientists working at various universities and organizations by Sir Tim
Berners-Lee at CERN in 19891, led to revolutionizing the ways of information sharing as we
know it today. These winds of revolution began on April 30, 1993, when this infrastructure,
today is known as the World Wide Web (WWW)[1] (or simply the Web), was made public
in order to facilitate its dissemination. This resulted in about 500 more servers using the free
source code, which accounted for the Web to around 1% of the global internet traffic by late
1993. These numbers increased exponentially, leading to 10,000 servers by the end of 1994 and
hundreds of millions, even billions more, as of writing this thesis.

The Web’s main advantage was that it linked all the disconnected, heterogeneous, and inconsistent
data from various distributed sources under one umbrella of a global interconnected, uniquely
identifiable distributed open information network. This capability of ubiquitous publication
and availability of information quick-started the rise of collaborative innovation and creativity
throughout the globe. As more and more organizations, stakeholders and individuals were
exposed to this information technology, the nature, amount, and rate of the information being
created and published quickly exploded, rendering the classical methods of data storage and
information retrieval in search of novel solutions. This resulted in a collaborative effort in data
management research, leading to the development of database management systems [2].

However, the Web’s published information was highly interconnected in nature, comprising com-
plex relationships between different individuals, organizations, concepts, and entities from diverse
domains resulting in a graph-like structure. The traditional relational database management
systems proved inefficient in storage and querying the graph-structured complex cross-domain
data with a loose requirement for data schema. Thus, a typical data management problem
becomes a graph data management problem when it is concerned with not only the analysis
of the values but also the discovery of the connections between them. Graphs are distinctly
valued when it comes to choosing formalisms for modeling real-world scenarios such as biological,
transport, communication, and social networks due to their intuitive data model.

This resulted in another fork of the mainstream research of information technology and data
1 https://home.cern/science/computing/birth-web
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management, giving rise to graph data management, which focuses on development and explora-
tion of methods for efficient data representation (and modeling), storage, and querying (and
traversing) of data in graph structures. Graph data management has revealed beneficial charac-
teristics in terms of flexibility and scalability by differently balancing between query expressivity
and schema flexibility. Graph analysis tools have turned out to be pioneering applications in
understanding these natural and human-made networks [3]. This peculiar advantage has resulted
in an unforeseen race of developing new task-specific graph systems, query languages, and data
models. These include property graphs, key-value, wide column, resource description framework,
etc. The two most popular data models for graph data management are the Property Graph
(PG) and the W3C Resource Description Framework (RDF) [4, 5].

Semantic Web, an extension of the WWW, enables intelligent access to the Web’s data by
exposing the data in a machine-readable format. The Semantic Web consists of a set of standards
set by the World Wide Web Consortium (W3C) footnotehttps://www.w3.org/. In the Semantic
Web, RDF is the standard data model [6], the standard query language is SPARQL [7], and
there are languages to describe structure, restrictions and semantics on RDF data (e.g. RDF
Schema [8], OWL [9], SHACL [10], and ShEx [11]). On the other hand, most Graph database
systems are based on the Property graph data model [12]. Unlike the Semantic Web, there is no
standard for data, query language (although there is a joint proposal GQL [13]), and the notions
of graph schema and integrity constraints are limited [14]. Some of the popular graph query
languages are Cypher [15] for Neo4j, Gremlin [16, 17] for the Apache TinkerPop [18]-enabled
systems (these cover a wide variety of commercial graph databases systems, cf. Section 2.2),
PGQL [19] of Oracle.

Both approaches have distinct and complementary characteristics – RDF is suited for distributed
data integration with built-in world-wide unique identifiers and vocabularies; Property graphs
on the other hand support horizontally scalable storage and querying, and are widely used
for modern data analytics applications (including OLTP). Present-day graph query languages
focus on flexible graph pattern matching (aka sub-graph matching), whereas graph computing
frameworks aim to provide fast parallel (distributed) execution of instructions. The consequence
of this rapid growth in the variety of graph-based data management systems has resulted in a
lack of standardization, which is the cradle of the severe lack of interoperability between these
systems (in particular the latter) [13].

1.1 Motivation, Problem Statement and Challenges

Given the intrinsic connection between RDF triple stores and Property graph databases, and
their popularity for representing open knowledge, it becomes necessary to develop methods to
allow interoperability among these systems.

This dissertation combines the data and semantics with the current technologies: Semantic Web
and Property graphs to leverage the best of both worlds. The overarching research problem this
dissertation investigates is:

2



1.1 Motivation, Problem Statement and Challenges

Overarching Research Problem: How can we support interoperability between the
Semantic Web and Property graph Databases?

The term “Interoperability” was introduced in the area of information systems. It could be defined
as the ability of two or more systems or components to exchange information and to use the
information that has been exchanged [20]. In the context of data management, interoperability
is concerned with the support of applications that exchange and share information across the
boundaries of existing databases [21].

Providing interoperability between database models, systems, and applications is a very concrete
and pragmatic problem, which stems from the need for reusing existing systems and programs
for building new applications [21]. Data and information interoperability is relevant for several
reasons, including:

• Promotes data exchange and data integration [22];

• Allows us to have a common understanding of the meanings of the data [23];

• Allows the creation of information and knowledge, and their subsequent reuse and sharing
[24];

• Facilitates access to a large number of independently created and managed information
sources of broad variety [24];

• Facilitates the reuse of available systems and tools [21];

• Allows to explore the best features of different approaches and systems [25];

• Enables a fair comparison of database systems by using benchmarks [26];

• Supports the success of emergent systems and technologies [21];

• It is a crucial factor for the development of new information systems [27].

One can define several forms of interoperability in information systems [28]. For instance, focusing
on the dimension of heterogeneity, Sheth [24] defined four levels of interoperability: system,
syntax, structure, and semantic. The system-level interoperability concerns the heterogeneity of
computer systems and communications. The syntax level considers machine-readable aspects
of data representation (i.e., data formats and serializations). The structure level involves
data modeling constructs and schematic heterogeneity. The semantic level requires that the
information system understand the semantics of the users’ information request and those of
information sources.

In the context of Web Languages and Ontologies, syntactic interoperability means that the
applications can take advantage of parsers and APIs, providing syntactical manipulation facilities.
Additionally, semantic interoperability implies that applications can understand the meaning of
representations and set up automatically mappings between different representations by content
analysis [29].

3



Chapter 1 Introduction

In the context of databases, interoperability can be divided into data (syntactic and semantic)
and query interoperability.

Syntactic interoperability refers to the ability of a database system to use data from other
database systems [30]. It could mean that both database systems can exchange information,
although they may not be aware of the meaning of such information. Turtle, TriG, RDF/XML,
RDF/JSON, and JSON-LD are data formats for encoding RDF data. In contrast, there is
no data format to encode property graphs. Given this restriction, some systems use graph
data formats (GraphML, DotML, GEXF, GraphSON). We discuss more about the several data
serialisation formats for RDF and Property graphs in Chapter 3 Section 3.1.1.

Semantic interoperability can be defined as the ability of database systems to exchange data in
a meaningful way. It implies that the systems have a common understanding of the meanings
of the data [23]. Here, the transformation methods have to be information and semantics,
preserving ensuring that there is no loss of data and meaning during the transformation process.
In such methods both, data and schema must participate in the transformation. Ref to the
chapter related work pointing to the existing works in this area. We discuss more about the
semantic interoperability between RDF and Property graphs in Chapter 3 Section 3.1.1.

Query interoperability implies the existence of methods to transform different query languages
or data accessing methods between two systems. It means that a query in the source database
system can be translated into one that can be directly executed on the target system [31]. Here,
the translation methods have to be query preserving, ensuring that the meaning of the original
is not altered in the transformation process. We discuss more about the query interoperability
topic in Chapters 3 and 5.

Thus, in general terms, syntactic interoperability between RDF and Property graph databases
means data exchange at the level of serialization formats. Semantic interoperability implies the
definition of data and schema mappings, and query interoperability implies query translations
among SPARQL and property graph query languages.

Based on a comprehensive literature review (discussed in detail in Chapter 3) about RDF and
Property graph interoperability, we identified several three main challenges, each comprising
of specific sub-challenges or issues that need to be understood and addressed. Each challenge
corresponds to a sub-research question (discussed in Section 1.2).

1.1.1 Challenge 1: Data Interoperability

The data interoperability challenge consists of two sub-challenges – syntactic and semantic
interoperability as discussed earlier. We discuss each of these next.

Syntactic Interoperability:

• There is no standard data format for encoding property graphs. This is a crucial issue to
support syntactic interoperability.
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• The most RDF serializations are triple-centric, while the most Property graph serializations
represent graph as lists of nodes and edges.

• Despite the serializations based on JSON or XML in both models, the syntaxes used are
difficult to map.

• The support for multi-values is different in the models. A property graph support arrays,
while RDF provides different types of lists.

• The RDF data model allows metadata about properties, i.e., edges between edges are
allowed. Although this feature is not common in real data, data mapping should be able
to manage it. Note that a property graph does not support multi-level metadata.

• RDF reification leads to an explosion in the size of the resulting graph. This can be
avoided by implementing a “smart” transformation that can recognize a set of triples
describing a reification, and map them to a single node in the property graph.

Semantic Interoperability:

• The RDF model presents features with special meaning (or semantics) that cannot be
modeled by the property graph data model (at least not in a trivial manner). Blank nodes,
reification, and entailment are some of these features. Similarly, it is not possible to model
more than one edge with the same label (two same edges) between two nodes in the RDF
data model, which can be represented in the PG data model.

• Usually, an RDF database contains a mix of data and schema. In such a case, it is
necessary to decide whether to extract the schema (and transform it independently) or
process the schema as part of the data.

• Another intrinsic feature of an RDF database is the occurrence of a partial schema. In
such a case, we must define whether the schema will be used or not. In the first case, it
could be necessary to “discover” the schema and then transform the data. Hence, such an
approach could imply the use of a transformation method that is schema independent, or
a combined method that supports data with or without schema.

• A semantic issue is the right and complete interpretation of a reified triple, and its
representation in a property graph.

• RDF Schema supports the definition of subclass and subproperty. Current property graph
database systems do not support these features.

• OWL, which is intended to be a layer above RDF Schema, supports more complex
constraints for classes (e.g., intersection) and properties (e.g., transitivity). The property
graph model does not support these features.

• An RDF database could contain semantic information that allows data inference (i.e., to
infer new triples based on the existing triples). Current graph database systems have not
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been designed to support inference.

• Discovering semantic information and resolving mismatches requires the application of
human intelligence and judgment. Hence, the semantic interoperability is determined by
the power of the translation methods to support data and semantics interpretation.

1.1.2 Challenge 2: Query Interoperability

• Unlike the standardization (via the W3C standards and ISO committees) of query languages
for the relational databases (SQL) and the RDF databases (SPARQL), property graph
databases do not have a standard query language2. This has led to the development of a
wide range of vendor-specific graph query languages (e.g., Cypher for Neo4j and Gremlin
for Apache TinkerPop).

• Most of the current property graph query languages do not have a solid formal foundation
(semantics, complexity, and expressiveness). This raises a critical challenge for supporting
query interoperability since a formal mapping between SPARQL and a property graph
language cannot be defined.

• The notion of schema in the context of property graph query languages is not strictly defined,
or even absent in some cases due to their NoSQL oriented nature. This creates another
challenge when aiming to transform RDF data (which consists of schema information) to
property graph data.

• Property graph query languages address two different paradigms: declarative and imperative.
For instance, Cypher is a declarative query language whereas Gremlin is an imperative
graph traversal language which also offers a declarative construct. This adds an extra
challenge since these two different paradigms operate on disparate sets of semantics (i.e.,
set vs. bag semantics) while aiming to support query interoperability.

• There are some on-going efforts, such as [33, 34], that advocate consolidating the relational
and graph algebras to lay a foundation for proving the equivalences between the different
transformations and mappings to support query interoperability between RDF and Property
graphs. Nonetheless, there is still scope for improvement.

Therefore, there is a need to propose either a – (i) standardized query language for property
graph databases (in progress), which will facilitate the formal definition and study of query
transformation methods, and/or (ii) a common bridge that supports translation of SPARQL
query language into several Property graph query languages or one widely popular language
such as Gremlin.

2 However, there is an early draft or a manifesto in progress at the time of writing this thesis – GQL [32].
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1.1.3 Challenge 3: RDF vs Property graph Database Benchmarking

Benchmarking is widely used for evaluating databases. Benchmarks exist for a variety of
abstractions, from simple data models to graphs and triple stores, to entire enterprise information
systems. The process of benchmarking databases is exceptionally tedious. Thus it demands
a high level of automation without compromising the quality of evaluation. Furthermore,
benchmarking software is required to be fair (discard any system or data-specific bias) and
modular architecture to promote reuse and reproducibility. While there exist several standalone
benchmarking tools and complete benchmarking software for both RDF and Property graph
databases, there is no single benchmark that caters all the above mention features and evaluates
both RDF and Property graph databases within the same environment.

The successful development of such a framework will have to address the following research
and implementation driven challenges [35], such as: (i) openness/fairness (provide support for
transparency and control of fine coarse configuration settings of both RDF and Property graph
databases within the framework ), (ii) modularity (provide support for integration of existing
third party data and systems for benchmarking), (iii) extensibility (provide easy support for
extending existing and adding new features) (iv) abstraction (i.e. provide support of a Graphical
User Interface (GUI) for the end user), (v) reproducibility (provide support for exporting
data, queries, configurations and results in standard serialization formats); (vi) full automation
(provide support for end to end automation of the complete benchmarking process, i.e. data
transformation and loading, system configuration and setup, query loading and translation,
benchmark execution, result and report generation), and lastly (vii) identifying suitable KPIs
(define and identify relevant Key Performance Indicators (KPIs) in order to pinpoint the effect
of various factors such as data quality, RAM, CPUs, Indexing, Query typology, etc., on the
performance of the participating RDF and Property graph databases.

Therefore, the end goal is to develop a fully automated, open, extensible, and reusable framework
that enables orchestrating end-to-end benchmarking for both RDF and Property graph databases
using a variety of real and synthetic datasets.

1.1.4 Methodology and Approach

In this section, we layout the methodology and approach used to identify, understand and
address the significant challenges (Challenges 1, 2, and 3 ) to be discussed in this dissertation by
bringing them all under a single umbrella framework. Understanding the relationship between the
Semantic Web and Property graph databases, we adopt the methodology used by Sequeda [36],
and decompose each technology into corresponding layers. This allows us to recognize the
similarities between these two technology stacks, thereby enabling us to build a well-defined
layer by layer mapping approach. Figure 1.1 shows the relationship between the Semantic Web
and Property graph databases.

We can make the following conclusions upon investigation:

• The first layer of both Semantic Web and Property graph databases are the graph data
models – RDF and Property graph.
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Figure 1.1: The Layered Cake mapping between the Semantic Web (RDF databases) and Property graph
databases.

• The next layer caters support for describing the schema using the RDFS, OWL in Semantic
Web, and a Property graph Schema.

• Both the technologies have a graph query language – SPARQL and Gremlin3

• Semantic Web technology has a standard for the data model and query language, whereas
the Property graph database domain is much open in terms of choice due to the lack of a
well-defined standard.

This direct correspondence between the two technology stacks shown in Figure 1.1 advocate
that it is possible to develop a framework setting that enables means to transform (virtualize)
the RDF databases as Property graph databases. Figure 1.2 presents the general framework for
supporting the interoperability between RDF and Property graph database using automatic
virtualization. This broadly identifies two challenges. First, one requires transforming (via direct
mapping) the Semantic Web data and schema, which is the RDF data model and OWL into
the corresponding Property graph data model and Property graph Schema (this is covered by
Challenge 1 - Data Interoperability). Second, it requires transforming (via direct mapping)
the SPARQL queries into corresponding Gremlin traversals (this is covered by Challenge 2 -
Query Interoperability). The third challenge is concerned with the integration and evaluation
of the proposed mappings (the results of addressing Challenge 1 and 2) in a unified, automatic,
open and extensible environment, which requires the development of a benchmarking framework
(this is covered by Challenge 3 - Database Benchmarking).

Thus, addressing all these three challenges enables us to answer the broad research problem
of this dissertation – "How can we support interoperability between the Semantic Web and
Property graph Databases?". In the next section we discuss the challenge-specific research
3 Our preferred choice of the Gremlin graph traversal language is explained in Chapter 2 Section 2.2.2.
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Figure 1.2: General Framework for supporting interoperability between the RDF and Property graph
databases.

questions addressed by thesis dissertation.

1.2 Research Questions

After identifying the main three challenges, we define the following three sub-research questions,
one for addressing each challenge. As mentioned earlier, collectively, these three sub-research
questions must be answered to tackle the overarching research problem of this dissertation, as
illustrated in Figure 1.3.

Next, we explain each of these three sub research questions.

RQ1: Data Interoperability – How can we directly map RDF Databases to Property
Graph Databases in an information preserving manner?

This research question’s main objective is to study the data interoperability between the
RDF and Property graph databases. Recall that this constitutes both syntactic and semantic
interoperability, as described in Section 1.1.1 of the current chapter. In order to answer this
question, we study existing works and define the notion of RDF, RDF Schema, Property graph,
and Property graph Schema in the context of edge-labeled multigraphs. We further analyze the
formal semantics and desirable properties that need to be captured in defining direct mappings.
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Overarching Research Question: 
How can we support interoperability

between the Semantic Web and
Property graph Databases?

RQ2: Query Interoperability  
How can we execute SPARQL

queries over Property graphs in a
query preserving manner? 

RQ1: Data Interoperability  
How can we directly map RDF
Databases to Property Graph
Databases in an information

preserving manner?

RQ3: Benchmarking  
How can we seamlessly orchestrate

the benchmarking of RDF vs
Property graph Databases in an

open, fair and reproducible manner?

Figure 1.3: The three sub research questions contribute to the overall research objective of this dissertation.

In particular, we identify and study three desirable properties of the direct database mappings:
computability, semantics preservation, and information preservation. We further delve into the
RDF Blank nodes and reification and possible means to support these special features within the
direct database mappings. Based on such analysis, we argue whether or not any RDF database
can be transformed into a Property graph database.

RQ2: Query Interoperability – How can we execute SPARQL queries over Property
graphs in a query preserving manner?

RDF and Property graph databases are two approaches for data management that are based on
modeling, storing, and querying graph-like data. While SPARQL is a W3C standard for querying
RDF databases, Gremlin is widely popular amongst the graph database community covering
both OLTP and OLAP systems, and due to the broad adoption by most commercial Property
graph databases. In this research question, we study the existing works on the SPARQL query
language with respect to its syntax, expressivity, and semantics. We also study the foundations
of the Gremlin traversal language and the Apache TinkerPop graph computing framework that
is used to execute these traversals. In doing so, we quickly realize the lack of a formal foundation
for capturing the semantics of Gremlin operators. We need to formally define and consolidate
the missing query fragment of the Gremlin traversal language using existing work on graph
relational algebra. We need to investigate further means to study the correspondence of Gremlin
constructs with the SPARQL query language operators. In doing so, we undertake a short study
about the interoperability between these two languages and review the current solutions to the
problem, identify their features, and discuss the inherent issues. We also formally study the
desirable properties required by the direct query mapping – query preservation.

RQ3: Benchmarking – How can we seamlessly orchestrate the benchmarking of RDF
vs Property graph Databases in an open, extensible, fair and reproducible manner?

Over the last few years, the amount and availability of Open, Linked, and Big data on the web
has increased. Simultaneously, there has been an emergence of several task-specific graph data
management to deal with the increased amounts of structured data. The RDF and Property
graph databases are the two most developed systems for graph data management. Apart from
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the format of the dataset that they consume, there are several other differences in how they
build indexes and execute queries. The main objective of this research question is to objectively
evaluate both the RDF and Property graph database systems for a given set of specific scenarios,
benchmarks involving particular query loads over characteristic datasets have been made openly
available by the graph community. In doing so, we review the existing benchmarking framework
and their suitability with respect to this dissertation’s research objective. However, none of
the existing tools allow the users to benchmark both of the above-mentioned databases in an
open, extensible, and transparent manner that also supports evaluating the underlying data
and query transformation approaches. We also need to investigate various KPIs that could
help understand the influence of various internal and external factors on the performance of the
participating database systems. Thus, we argue that this necessitates the study and development
of a benchmarking framework that is sufficiently versatile to orchestrate such benchmarks.

1.3 Thesis Overview

In order to present a high-level yet comprehensive overview of the achieved results, this section
consolidates the main contributions of the thesis. It provides references to scientific articles
addressing each research question and its corresponding contributions published throughout the
whole term of this dissertation.

1.3.1 Contributions

Contributions for RQ1: RDF2PG – Direct mappings for transforming RDF data
into Property graphs.

In order to answer the first research question (RQ1), concerned with supporting data interoper-
ability between RDF and Property graph databases, we define three database mappings [37,
38]: a simple mapping which allows transforming an RDF graph into a PG without considering
schema restrictions (in both sides); a generic mapping which allows transforming an RDF graph
(and an RDF schema) into a PG that follows the restrictions defined by a generic PG schema;
a complete mapping which allows transforming a complete RDF database into a complete
PG database (i.e., schema and instance). We also study the desirable properties of the above
database mappings: computability, semantics preservation, and information preservation [39].
Based on such analysis, we formally prove that the proposed mappings are, in fact, satisfying
these three properties and argue that it is indeed possible to transform any RDF database
into a PG database. In terms of data modeling, we can conclude that the PG data model
subsumes the RDF data model’s information capacity. We also implemented [37] the proposed
three direct mappings in a system – RDF2PG, which is openly available, demonstrating that our
mappings work. Figure 1.4 depicts a typical conceptual architecture of the RDF2PG data mapper
approach. After performing exhaustive experiments using a variety of openly available real and
synthetic datasets, we present empirical evidence advocating the applicability and validity of
our mappings [37].
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Figure 1.4: The conceptual architecture of the RDF2PG data mapping approach.

Contributions for RQ2: Gremlinator – A direct mapping approach for translating
SPARQL queries into declarative Gremlin traversals.

In order to answer the second research question (RQ2), concerned with supporting query
interoperability between RDF and Property graph databases, we:

• Studied the formal foundation of the Gremlin traversal language and identified the missing
formal query operator fragments;

• Consolidated the existing material on graph relational algebra, thereby formally defining
the missing operators in the Gremlin traversal language in a unified graph algebra [34, 40];

• Formally defined a direct mapping approach Gremlinator [41–43] (as shown in Figure 1.5)
for translating the SPARQL queries to corresponding Gremlin traversals thereby incre-
mentally covering the features of the SPARQL 1.0 and 1.1 query fragments.

• Developed an open implementation of our approach Gremlinator, which has been success-
fully integrated within the popular Apache TinkerPop graph computing framework as a
plugin [43, 44].

• Performed an exhaustive empirical analysis of Gremlinator on a variety of openly avail-
able datasets to illustrate the applicability and validity of our proposed mappings [41].
Furthermore, Gremlinator has also been adopted by key players (such as IBM Research,
National Library of Medicine, etc.) in the academia and industry in several use cases
(Knowledge Graphs, Life Sciences, Pharmaceuticals, etc.) advocating the usefulness of our
contribution [43].

Our work on Gremlinator was awarded as the Best Resource Paper4 at the 14th IEEE Inter-
national Conference on Semantic Computing (ICSC 2020) organised in San Diego, California,
USA from February 2 to 5, 2020.

4 http://harshthakkar.in/wp-content/uploads/2020/04/icsc2020bestpaper.jpg
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Figure 1.5: The conceptual architecture of the Gremlinator query mapping approach.

Contributions for RQ3: LITMUS Benchmark Suite – An automated open and
extensible framework for benchmarking RDF and Property graph databases.

Finally, for answering the third research question (RQ3), concerned with the performance
evaluation of the proposed mappings via benchmarking both RDF and Property graph databases,
we developed the LITMUS Benchmark Suite. LITMUS is a comprehensive framework that enables
the academicians, researchers, developers, and the organizations who employ databases for the
efficient consumption of their data, by allowing a choke-point driven performance comparison
and analysis of various RDF and Property graph-based graph data management systems, with
respect to different third-party real and synthetic datasets and queries. LITMUS consolidates all
the three sub research questions under the umbrella of one unified modular framework, as shown
in Figure 1.6, for orchestrating a fair and objective evaluation of RDF and Property graph
databases. We carried out all the experiments for evaluating our proposed mappings using the
proposed LITMUS framework. We also studied the effect of various internal and external data,
query, and system-specific factors on the overall performance of the database systems such as
Data quality [45, 46], CPU, RAM, Query typology, Indexing, etc. in our pursuit of answering
RQ3. We published several papers proposing [35], implementing [47] and demonstrating [48]
our work on the LITMUS Benchmark Suite.
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Figure 1.6: The LITMUS architectural framework for a user orchestrated benchmarking RDF and
Property graph Databases.

Our work [47] on LITMUS received the Best Research & Innovation Paper Award5 at the
SEMANTiCS 2017 conference organised in Amsterdam, Netherlands from September 11 to 14,
2017.

1.3.2 Publications

The following list of articles contributed to the scientific basis of the work carried out during
the term of this dissertation. These publications consist of Journal, Conference, Workshop
and Poster & Demo peer reviewed publications, and ArXiv pre-prints (not peer-reviewed)
technical reports. Furthermore, as a result of international collaboration encouraged during
the Marie-Curie ITN activities, several articles were published, some of which are indirectly
related to this dissertation, but have not been included as contributions (listed as miscellaneous
papers). For the co-authored publications, the ones with another Ph.D. student, include a
description of the individual contribution. Please note that most of the co-authored papers
include post-doctoral fellows, professors, master-or-bachelor students, and industry experts.
The author of this dissertation (Harsh Thakkar) uses the "we" pronoun throughout the content.
However, all of the contributions presented herein, except those with another Ph.D. student,
originated from the work of the author exclusively himself. Besides the listed publications, other
materials such as public software and datasets were also produced, which have been mentioned
in their corresponding chapters. Three publications of the author have received the Best Paper
5 https://2017.semantics.cc/awards
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Awards at conferences and workshops, during the term of this dissertation, which have been
marked in red ink next to the item in the list below.

Journal Papers (peer reviewed):

1. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Mapping RDF Databases to
Property Graphs. In IEEE Access, Vol. 8, 2020. In this publication Renzo and I made
equal contributions.

2. Dominik Tomaszuk, Renzo Angles, and Harsh Thakkar. PGO: Describing Property
Graphs in RDF. In IEEE Access, Vol. 8, 2020. In this publication I contributed to the
formalisation of the data models derived from my earlier work (above).

Conference Papers (peer reviewed):

3. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, and Jens Lehmann.
Let’s build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with
Sparql-Gremlin. In Proceedings of the IEEE 14th International Conference on Semantic
Computing (ICSC), pp. 408-415, San Diego, USA, 2020. [Best Paper Award]

4. Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal. Towards an
Integrated Graph Algebra for Graph Pattern Matching with Gremlin. In Proceedings of
the 28th International Conference on Database and Expert Systems Applications (DEXA
2017), Lyon, France, pp. 81-91. Springer, 2017.

5. Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
Trying Not to Die Benchmarking – Orchestrating RDF and Graph Data Management
Solution Benchmarks using LITMUS. In Proceedings of the 13th International Conference
on Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederland, pages 120-127. ACM,
2017. [Best Paper Award]

6. Kemele M Endris, Josè M. Gim̀enez-Garc̀ia, Harsh Thakkar, Elena Demidova, Antoine
Zimmermann, Christoph Lange, and Elena Simperl. Dataset Reuse: An Analysis of
References in Community Discussions, Publications and Data. In Proceedings of The 9th

International Conference on Knowledge Capture (K-CAP 2017), Austin, Texas, United
States, 2017. This work was co-authored with PhD student Kemele Endris (Leibniz
University of Hannover). In this paper, my contribution was designing and implementing
a setup of experiments for assessing the impact of data quality metrics on the overall
performance of the participating RDF databases. This was a derived extension of my
original work in 2016 on the assessment of data quality on the linked open datasets.

7. Harsh Thakkar. Towards an Open Extensible Framework for Empirical Benchmarking
of Data Management Solutions: LITMUS. In Proceedings of the 14th Extended Semantic
Web Conferences (ESWC 2017), 2017.

8. Harsh Thakkar, Kemele M. Endris, Josè M. Gim̀enez-Garc̀ia, Jeremy Debattista, Chris-
toph Lange, and Sóren Auer. Are Linked Datasets Fit for Open-domain Question An-
swering? A Quality Assessment. In Proceedings of the 6th International Conference on
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Web Intelligence, Mining and Semantics (WIMS 2016), Nîmes, France, June 13-15, pages
1-12, 2016. This is the foundational work on investigating the impact of data quality of
the linked open datasets on the overall performance of the RDF databases which is a
part of the third sub-research question (RQ3) orchestrating the benchmarking of RDF vs
Property graph databases. I recieved help for conducting a part of the the state of the
art survey for identifying existing works on the data quality metrics and performing the
experiments.

Workshop Papers (peer reviewed):

9. Harsh Thakkar, Maria-Esther Vidal, Sóren Auer. Formalizing Gremlin Pattern Matching
Traversals in an Integrated Graph Algebra (extended version). In Proceedings of the 2nd
International Semantic Web Conference (ISWC) Workshop on Contextualised Knowledge
Graphs (CKG), New Zealand, 2019.

10. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and Property Graphs
Interoperability: Status and Issues. In Proceedings of the 13th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Asunción (AMW 2019), Paraguay,
June 3-7, 2019.

11. Vinh Nguyen, Hong Yung Yip, Harsh Thakkar, Qingliang Li, Evan Bolton, and Olivier
Bodenreider. Singleton property graph: Adding a semantic web abstraction layer to graph
databases. In Proceedings of the 2nd International Semantic Web Conference (ISWC)
Workshop on Contextualised Knowledge Graphs (CKG), New Zealand, 2019.

12. Saeedeh Shekarpour, Kemele M Endris, Ashwini Jaya Kumar, Denis Lukovnikov, Kuldeep
Singh, Harsh Thakkar, and Christoph Lange. Question Answering on Linked Data:
Challenges and Future Directions. In Companion Proceedings of the 25th International
Conference Companion on World Wide Web (WWW), pages 693-698. 2016.

Poster & Demo Papers (peer reviewed):

13. Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sörenen Auer. Two for one:
Querying Property Graph Databases using SPARQL via GREMLINATOR. In Proceedings
of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and NetworkData Analytics (NDA), page 12, ACM,
USA, 2018.

14. Yashwant Keswani, Harsh Thakkar, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
The LITMUS Test: Benchmarking RDF and Graph Data Management Systems. In
Proceedings of the CEUR-WS (Poster & Demo), SEMANTiCS 2017, Nederland, 2017.

Pre-prints (not peer reviewed):

15. Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Sören Auer, and
Jens Lehmann. The Query Translation Landscape: A Survey. Pre-print arXiv:1910.03118,
pp. 1-25, 2019.

16. Harsh Thakkar, Dharmen Punjani, Yashwant Keswani, Jens Lehmann, and Sóren Auer.
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A Stitch in Time Saves Nine – SPARQL Querying of Property Graphs using Gremlin
Traversals. Pre-print arXiv:1801.02911, pp. 1-24, 2018.

Edited Volumes & Online Resources:

17. Reza Samavi, Mariano P. Consens, Shahan Khatchadourian, Vinh Nguyen, Amit P. Sheth,
José M. Giménez-García, and Harsh Thakkar. Proceedings of the Blockchain enabled Se-
mantic Web Workshop (BlockSW) and Contextualized Knowledge Graphs (CKG) Workshop
co-located with the 18th International Semantic Web Conference, BlockSW/CKG@ISWC,
Auckland, New Zealand, 2019.

18. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, Dharmen Punjani,
Jens Lehmann, Sören Auer. Gremlinator (sparql-gremlin) Resources, available online at
https://doi.org/10.6084/m9.figshare.8187110.v3, 2019.

19. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF2PG Experimental Data-
sets, available online at https://doi.org/10.6084/m9.figshare.12021156.v10, 2020.

Working Papers:

20. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Jens Lehmann, Sóren Auer. GREM-
LINATOR: SPARQL Querying of Property Graph Databases using Gremlin Traversals.
IEEE Access submission, 2020. (in progress)

21. Harsh Thakkar, Renzo Angles, and Dominik Tomaszuk. RDF2PG: Automatic Trans-
formation of RDF to Property Graphs. Demo paper, Venue TBD, 2020. (in progress)

Miscellaneous Papers (peer reviewed):

The following is the list of publications that originated during and are indirectly related to this
thesis but are not included in this dissertation.

22. Felipe Quécole, Romao Martines, Josè M. Gim̀enez-Garc̀ia, andHarsh Thakkar. Towards
Capturing Contextual Semantic Information about Statements in Web Tables. In Joint
Proceedings of the International Workshops on Contextualized Knowledge Graphs, and
Semantic Statistics (CKGSemStats) co-located with 17th International Semantic Web
Conference (ISWC 2018), USA, 2018.
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The following table presents an overview of the publication statistics of this dissertation. The
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full list of publications completed during this dissertation term is available in Appendix B.

Ph.D. Publication Statistics From 07.2015 to 07.2020 (5 Years)

Venue Accepted In Rev. Total Thesis Related
Journal 2 0 2 2 (100%)

Conference 8 0 8 6 (75%)

Workshop 6 0 6 4 (67%)

Poster/Demo 2 0 2 2 (100%)

Arxiv Preprints 6 0 6 6 (100%)

No. of Publications 24 00 24 20 (83%)

1.4 Thesis Outline

This thesis is structured into the following seven chapters:

• Chapter 1 – Introduction: introduces the thesis explaining the study’s motivation,
main research problem, challenges, and contributions that address each of the three relevant
research questions. It also lists the scientific publications and their statistics produced
during the term of this dissertation.

• Chapter 2 – Background & Preliminaries: introduces the fundamental concepts and
background covering the broad fields of Semantic Web, Linked Data, and Property graphs,
and Benchmarking that are required to align the context and provide a holistic overview
of the research problem.

• Chapter 3 – Related Work: summarizes the state-of-the-art in the respective domain
of the three research questions, highlighting the shortcomings of the existing works and
thereby setting the motivation for the required work done in the context of this thesis.

• Chapter 4 – Directly Mapping RDF Databases to Property graph Databases:
addresses the first research question (RQ1) concerned with the data interoperability issue
by proposing the direct mappings for transforming any RDF data into a corresponding
Property graph, covering both data and schema. It also defines the desired formal
properties of the proposed mappings and shows that the mappings are information and
semantics preserving. Furthermore, it discusses the implementation and an exhaustive
empirical evaluation of the proposed direct mappings.

• Chapter 5 – Gremlinator: Querying Property graph Databases using SPARQL:
addresses the second research question (RQ2) concerned with the query interoperability
issue by proposing a direct mapping approach (Gremlinator) for translating SPARQL
queries into a corresponding pattern matching Gremlin traversals. In doing so, it first
formalizes the Gremlin traversal language operators using a consolidated graph relational
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algebra. Furthermore, it discusses the implementation and integration of Gremlinator
into the popular Apache TinkerPop framework, its use cases and presents an exhaustive
empirical evaluation of the proposed query translation tool Gremlinator over both RDF
and Property graph databases thereby demonstrating that the proposed mapping is query
preserving.

• Chapter 6 – Automatic Benchmarking of RDF and Graph Databases: addresses
the third and final research question (RQ3) concerned with the database benchmarking
issue by presenting a novel benchmarking framework – LITMUS Benchmark Suite. LITMUS
is a first of its kind open, extensible, and reusable benchmarking framework for bench-
marking both RDF and Property graph databases. This chapter explains the design and
implementation of LITMUS and how it integrates all the three research questions of this
dissertation under one umbrella.

• Chapter 7 – Conclusion & Future Directions: finally concludes the work of this
dissertation summarizing our core contributions and its impact on the broader community
and lays out the direction of future work.
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CHAPTER 2

Background and Preliminaries

In this chapter we present and discuss the foundation technologies and formal concepts that are
required to understand the work presented in the context of this dissertation. This chapter is
structured into three main sections, as follows: Section 2.1 provides an overview of Semantic Web
Technologies and Linked Data, i.e W3C standard RDF data model, W3C standard SPARQL
query language, OWL and RDF triplestores (RDF databases). We do so using illustrative
examples that explain these basic concepts of Semantic Web technology stack. Section 2.2
introduces the reader to the Graph database/technology stack and introduces the notions of
Property graph data model, the Gremlin traversal language (also using illustrative examples)
and the Apache TinkerPop graph computing framework. Section 2.3 introduces the concept
of Knowledge Graphs (KGs) and highlight their importance summarizing the value they have
created (in terms of revenue and applicability)in the modern day information technology industry.
We also discuss the different types of KGs that are being currently used to address a variety of
real world data-driven problems. used Finally, Section 2.2 having introduced these concepts
summarizes this chapter.

2.1 Semantic Web & Linked Data

The Semantic Web is an evolving extension of the Web that allows data to be shared and
consumed across application, enterprise, and community boundaries in an intelligent manner.1

The idea of Semantic Web was first proposed by Berners-Lee et al. [49] in 2001 with an intent of
adding context information within the data itself that described concepts in the real world. The
technology stack of the Semantic Web consists of a set of standards: RDF (the data model),
OWL (the ontology language) and SPARQL (the query language). We introduce each of these
Semantic Web terminologies in the coming subsections aligning the reader with the context of
the work presented in this thesis.

The main advantage of Semantic Web lies in its powerful and structured representation of
data for its easy publishing and consumption. Tim Berners-Lee has proposed a five star data

1 http://www.w3.org/2001/sw/
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Figure 2.1: The Five Star Linked Open Data Publishing Principles. The PDF, XSL, CSV, RDF, and
Linked Open Data (LOD) represent the five levels of data publishing schemes in increasing order of
connectivity, accessibility and reusability.

publishing principle or scheme2 for open data as illustrated in Figure 2.13.

In the five star scheme, the Linked open Data (LOD) constitutes of the highest order. In order
to promote reusability and embed semantics in linked data, there are four principles proposed
by Tim Berners-Lee to adhere to [50]:

• Using URIs as names of the things (i.e. resources);

• Using HTTP URIs for dereferencing such that user can look up for these names easily;

• Looking up a URI should provide useful information, using the standards (RDF, SPARQL);

• Interlinking URIs so that people can discover more things.

The crux of the five star principles is to promote openness and interlinking of information over
the Web. Following these principles, more and more data is published on the Web which over
the years has lead to the development of Linked Open Data Cloud (LOD Cloud) [51], a network
of interconnected 5 star datasets. For instance, DBpedia [52] – which is a structured version of
Wikipedia4; Wikidata [53] – which is an uniform source for openly published Wikipedia articles;
YAGO5 [54] – which as an open source high-quality knowledge base extracted from Wikipedia
2 5 Star Linked Data Principles https://www.w3.org/2011/gld/wiki/5_Star_Linked_Data
3 Image source https://commons.wikimedia.org/wiki/File:5-star_deployment_scheme_for_Open_Data.png
4 http://www.wikipedia.org
5 YAGO https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/
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and other sources, are a few very popular examples.

2.1.1 RDF Data Model and OWL

The Resource Description Framework (RDF) is a well-known W3C standard, which is used for
data modeling and encoding machine readable content on the Web [55] and within intranets. RDF
provides the technological foundation for expressing the meaning (information, e.g. description)
of terms and concepts (resources, e.g. coffee machine) in the Web in a form that computers
(machines, e.g. applications) can readily process [49]. Resources, in this context means anything
that exists in the real world such as, images, text/documents, multimedia, physical objects, etc6.
RDF data is represented using a variety of data formats such as Turtle [56]7, N-Triples8, N39,
N-Quads10, TriG11, amongst others are a few important examples.

Assume the existence of three disjoint infinite sets: the set I of resource identifiers represented
as IRIs, the set B of anonymous resources called blank nodes, and the set L of simple atomic
values called literals. An RDF triple is a triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪ L) where s is
the subject, p is the predicate and o is the object. An RDF Graph is a set of RDF triples. To
illustrate the notion of RDF triples, consider the following example.

Example 2.1.1. Consider a subset of RDF triples from DBpedia [52] describing the relationship
between Elon Musk and Tesla Incorporation represented in the RDF turtle [56] format. Figure
2.2 shows a graphical representation of these RDF triples, i.e. an RDF graph.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: <http://dbpedia.org/property/>.
dbr:Elon_Musk rdf:type dbo:Person
dbr:Elon_Musk dbp:birthDate “1971-06-28”
dbr:Elon_Musk dbp:birthName “Elon Reeve Musk”
dbr:Elon_Musk dbp:ceo dbr:Tesla_Inc
dbr:Tesla_Inc rdf:type dbo:Organisation
dbr:Tesla_Inc dbp:name “Tesla, Incorporation”
dbr:Tesla_Inc dbp:date “2003-07-01”

In Semantic Web vocabularies (or RDF vocabularies) are used to represent the structural
information of the resources. RDF Schema [8] (RDFS), also know as the RDF vocabulary

yago-naga/yago/
6 The term resources and entities can be considered as synonyms in this context.
7 Turtle Specification https://www.w3.org/TR/turtle/
8 N-Triples Specification https://www.w3.org/TR/n-triples/
9 N3 Specification https://www.w3.org/TeamSubmission/n3/

10 N-Quads Specification https://www.w3.org/TR/n-quads/
11 TriG Specification https://www.w3.org/TR/trig/
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dbp:ceodbr:Elon_Musk

dbo:Person

dbr:Tesla_Inc

dbo:Organisation

rdf:type rdf:type
dbp:birthDate 

dbp:name

dbp:birthName dbp:date 
"Elon Reeve

Musk" 

"1971-06-28" 

"2003-07-01" 

"Tesla,
Incorporation" 

Figure 2.2: A graphical illustration of an RDF graph describing information about Elon Musk and Tesla
Incorporation as shown in example 2.1.1

description language12, is one such standardized light weight vocabulary that allows describing
the structure and relationships between real world entities using classes, entities and properties
which are defined by the users. The goal behind having such a standardized and controlled
environment for defining and describing resources is to promote reuse and ease of integration
(linking to other sources).

The Web Ontology Language (OWL) is language using which the meaning of terms, their
relationships and consistency between them is represented. Such a representation is referred
to as an Ontology [57]. OWL extends RDFS by allowing users to represent more complex
relationships between RDF resources, i.e. ontologies. As defined in the words of Struder et al.
[58] ”An ontology is a formal, explicit specification of a shared conceptualization". Typically,
ontologies are designed to evolve with the respective domain whose information they capture
with time and also as more heterogeneous data sources are added.

Example 2.1.2. The RDF schema information corresponding to the RDF triples in Example
2.1.1, is represented in the turtle [56] format, below:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.
@prefix dbr: <http://dbpedia.org/resource/>.
@prefix dbo: <http://dbpedia.org/ontology/>.
@prefix dbp: <http://dbpedia.org/property/>.
dbr:Elon_Musk rdf:type dbo:Person
dbr:Tesla_Inc rdf:type dbo:Organisation
dbo:Person rdf:type rdfs:Class
dbo:Person rdfs:label “Person”
dbo:Organisation rdf:type rdfs:Class
dbo:Organisation rdfs:label “Organisation”
dbp:birthDate rdf:type rdf:Property
dbp:birthDate rdfs:label “birth date”
dbp:birthDate rdfs:domain dbo:Person
dbp:birthDate rdfs:range rdfs:Literal
12 RDF Vocabulary Description Language https://www.w3.org/2001/sw/RDFCore/Schema/200203/
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dbp:birthName rdf:type rdf:Property
dbp:birthName rdfs:label “birth name”
dbp:birthName rdfs:domain dbo:Person
dbp:birthName rdfs:range rdfs:Literal
dbp:name rdf:type rdf:Property
dbp:name rdfs:label “name”
dbp:name rdfs:domain dbo:Organisation
dbp:name rdfs:range rdfs:Literal
dbp:date rdf:type rdf:Property
dbp:date rdfs:domain dbo:Organisation
dbp:date rdfs:range rdfs:Literal

While this example is based on the information obtained from Dbpedia, assume that we have
same information but from another source, say Wikidata. Here the entity Elon Musk is identified
using the identifier Q317521 and Tesla Incorporation using Q478214. Furthermore, the relations
birth name, ceo and birth date are identified using properties P1477, P169 and P569 respectively
as shown in the Example 2.1.3 below:

Example 2.1.3. Consider a subset of RDF triples from DBpedia [52] describing the relationship
between Elon Musk and Tesla Incorporation represented in the RDF turtle [56] format.

@prefix : <https://www.wikidata.org/wiki#>
@prefix _: <https://www.wikidata.org/wiki/Property#>
:Q317521 _:P31 :Q5
:Q317521 _:P569 “1971-06-28”
:Q317521 _:P1477 “Elon Reeve Musk”
:Q317521 _:P169 :Q478214
:Q478214 _:P31 :Q167037
:Q478214 _:P1448 “Tesla, Incorporation”
:Q478214 _:P571 “July 2003”

Now, using OWL it is possible to add specific semantics stating that the both the Elon Musk
entities in DBpedia and Wikidata are in fact the same person/resource/object, i.e. they point
to the same meaning. This is denoted via the owl:sameAs property – :Q317521 owl:sameAs
dbr:Elon_Musk. Similarly, for the Tesla Incorporation – Q478214 owl:sameAs dbr:Tesla_Inc.

2.1.2 SPARQL Query Language

SPARQL is a W3C recommendation since 2008 and the defacto standard query language for
RDF databases or triplestores (more on this in the next in Section 2.1.3), which is based on
graph pattern matching. Like SQL for relational databases, SPARQL is also a declarative query
language that relies heavily on joins. SPARQL 1.0 [59] defines basic types of graph patterns,
filter conditions (e.g. equalities), solution modifiers, and query forms. SPARQL 1.1 [7] extends
the first version with operators for aggregation, sub-queries and path queries. We briefly discuss
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the syntax and semantics of the SPARQL query language in the next sections. The syntax of a
SPARQL query will be presented by using the formalism presented in [60], but in agreement
with the W3C specifications.

SPARQL Syntax

Assume the existence of an infinite set V of variables disjoint from I, B and L. A filter constraint
is defined recursively as follows: (i) If ?X,?Y ∈ V and c ∈ I ∪ L then (?X = c) and (?X = ?Y)
are atomic filter constraints; (ii) If C1 and C2 are filter constraints then (!C1), (C1 || C2) and
(C1 && C2) are complex filter constraints.

A SPARQL graph pattern is defined recursively as follows: A tuple from (I ∪L∪ V )× (I ∪ V )×
(I ∪L∪V ) is a graph pattern called a triple pattern. If P1, P2 are graph patterns and C is a filter
constraint then {P1 JOINP2}, {P1 UNIONP2}, {P1 OPTIONALP2}, and {P1 FILTERC} are
graph patterns.

A solution modifier is given by any of the following clauses: DISTINCT allows to eliminate
duplicates; ORDER BY establishes the order of the solutions; GROUP BY allows to group the
solutions according to a given criteria; OFFSET defines a starting point in the list of solutions;
and LIMIT defines an upper bound on the number of solutions returned.

A query form defines the output of a query, and there are four types: SELECT returns a binding
table, ASK returns a boolean value, and CONSTRUCT and DESCRIBE return an RDF graph.
We concentrate our interest on SELECT queries.

Assume that ?X1 . . . ?Xn represents a list of variables such that n > 0. A SPARQL query
will be represented as a tuple QS = {S,W,GB,OB,LO} where: S is an expression SELECT
DISTINCT ?X1 . . . ?Xn; W is an expression WHERE P where P is a graph pattern; GB is
an expression GROUP BY ?X1 . . . ?Xn; OB is an expression ORDER BY β where β is ?X,
ASC(?X) or DESC(?X); L is an expression LIMIT n OFFSET m, or simply LIMIT n, where
n and m are positive integers. The operator DISTINCT and the clauses GB, OB and LO are
optional. The Listings 2.1 and 2.2 present examples different types of SPARQL queries. The first
query retrieves the answer to the question "What is the birth date of Elon Musk?". Whereas,
the second query expects a boolean answer to the question Is Elon Musk is the Owner of Tesla
Incorporation?.
PREFIX dbr: <http :// dbpedia.org/resource/>
PREFIX dbp: <http :// dbpedia.org/property/>
SELECT DISTINCT ?birthdate WHERE {
dbr:Elon_Musk dbp:birthDate ?birthdate . }

Listing 2.1: An Example of SPARQL SELECT query

PREFIX dbr: <http :// dbpedia.org/resource/>
PREFIX dbp: <http :// dbpedia.org/property/>
ASK WHERE { dbr:Elon_Musk dbp:owner dbr:Tesla_Inc . }

Listing 2.2: An Example of SPARQL ASK query
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Figure 2.3: The evaluation of the SPARQL SELECT query presented in listing 2.1.

Next, we present a short summary of the evaluation of a SPARQL query and its semantics.

SPARQL Semantics

The evaluation of a SPARQL query is defined in terms algebra operations over binding tables.
A binding table is a tabular structure where the head contains variables, and the body con-
tains bindings for such variables, i.e. IRIs and literals. Each row of the table is called
a solution mapping and contains an specific result of pattern matching. A solution map-
ping is a partial function µ : V → (I ∪ L), i.e. a list of variable → value assignments.
The result of evaluating a triple pattern over an RDF graph is a multiset of solution map-
pings. For example, the SPARQL query presented in Listing 2.1 looks for the birth date
of Elon Musk via the DBpedia property “dbp:birthDate". Hence, the result of this query is
a solution set of all the distinct values that exist for the relation “dbp:birthDate" in DBpe-
dia for that particular mapping µ such that µ(?birthdate) = “1971-06-28”, µ(?birthdate) =
“1971-6-28”^^<http://www.w3.org/2001/XMLSchema#date>. Figure 2.3, presents the bind-
ing table of the evaluation of SPARQL query form listing 2.1.

The evaluation (semantics) of a SPARQL query is defined by operations over multisets of
solution mappings. Specifically, the JOIN operator merges two multisets based on the “join”
of common variables, the UNION operator computes the union of multisets, the OPTIONAL
operator extends a multiset with the variables of another multiset when possible (following
outer join semantics), the FILTER operator selects the mappings that satisfy a filter constraint,
the SELECT operator projects the variables of a multiset, the DISTINCT operator removes
duplicated solution mappings, the GROUP BY operator allows to group and aggregate solution
mappings. The operators ORDER BY, LIMIT and OFFSET allows to format the final multiset
(SQL style).

We show brevity in discussing further about the semantics and expressivity of SPARQL query
language and point the interested reader to the works [60–63] that present an extensive evaluation
of the same. Next, we discuss about RDF databases and present an overview of their history of
development and characteristics.
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2.1.3 RDF Databases

RDF databases (or RDF Triplestores) are essentially the purpose-built databases optimized
to store and retrieve RDF data or triples. Much like relational databases, RDF triplestores
also provide a wide range of functionalities such as large-scale data storage, federated querying,
reasoning over the data, etc. RDF triplesstores can be queried using the W3C recommendation
SPARQL query language [62] (cf. Section 2.1.2). Recently, the increasing amount of RDF data
due to the rise of popularity of the Semantic Web has motivated the development of a variety of
RDF triplestores depending on the application use case [64]. RDF triplestores are used in a
variety of domains, social networking, crytocurrency and finance, pharmaceutical and biological
domain, chemistry, etc.,to name a few.

There exist a variety of implementations of RDF triplestores, which can essentially be grouped
into three categories – (a) relational-database based, (b) native based, and (c) hybrid. Relational
databases based triplestores are typically built by extending the commercial relational database
engines. Their main advantage is their highly optimised methods for storing and querying
relational data due to the three decades of academic research behind them. Examples of
relational based triplestores are Oracle 12c13, IBM DB214, Redland15, etc. In these type of
triplestores, data storage and querying is supported via a data and query translation client
or wrapper such as [65–67]. The native based triplestores are built from scratch, requiring
far more effort as compared to the relational-based triplestores. The native RDF triplestores
are optimised to store and retrieve RDF data efficiently and have shown to have an edge over
relational-based triplestores for performance [68]. One of the reason is that they avoid the
intermediate data and query conversion process. Examples of native triplestores are Jena TDB16,
4store17, Stardog18, etc. The third type of triplestores is the hybrid-based or multi-model
based triplestores. Hybrid-based triplestores support both relational-based and RDF-based
architectures for storing and querying RDF data. Both the relational and RDF data is stored
either physically or logically (as visualised relational graphs) in the hybrid scheme. Examples of
hybrid triplestores are Blazegraph19, Virtuoso20, MarkLogic21, etc.

Figure 2.4 present the ranked list of a variety of existing RDF triplestores as reported on DB-
Engines ranking website. Furthermore, a complete list of comparing various RDF triplestores
can be referred from https://en.wikipedia.org/wiki/Comparison_of_triplestores.

In the next section we briefly discuss about the Graph databases with respect to their data
model, query languages – Gremlin in particular, and their similarities and differences with RDF
triplestores.

13 https://www.oracle.com/database/12c-database/
14 https://www.ibm.com/analytics/db2
15 http://librdf.org/
16 https://jena.apache.org/documentation/tdb/
17 https://github.com/4store/4store
18 https://www.stardog.com/
19 https://blazegraph.com/
20 http://vos.openlinksw.com/owiki/wiki/VOS
21 https://www.marklogic.com/
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2.2 Graph Databases

Figure 2.4: The ranking of a variety of RDF triplestores as reported by the db-engines ranking website –
https://db-engines.com/en/ranking based on their popularity and other technical criteria.

2.2 Graph Databases

In Computer Science, Graph databases make use of graph structures to represent, store, and query
complex network of heavily interconnected data using nodes (vertices), edges (relationships) and
properties (attributes) [69]. Graphs are valued distinctly, when it comes to choosing formalisms
for modelling real-world scenarios such as biological, transport, communication, financial and
social networks due to their intuitive data model [70]. Nodes represent the entities, whereas
edges represent the relationships between them. Properties are used to represent additional
meta-data or information regarding a particular nodes, edge or a property. A graph database
is a part of the NoSQL databases which have been developed to address the limitations of
the relational databases. Graph databases store the data items as collections of entities and
relationships, thus querying these relationships within the database is generally fast [42] as
compared to relational databases. This is because graph databases allow index-free adjacency,
that is every element contains a direct pointer to its adjacent elements, and therefore necessity
for index lookups is mitigated. Graph databases are also available for generalised applications
and specialised application domains such as RDF triplestores, that can store any graph-like data.
Examples of graph databases are Neo4J[71], TinkerGraph22, Amazon Neptune23, JanusGraph24,
InfiniteGraph25, etc. Figure 2.5 presents a ranked list of Graph databases based on their

22 TinkerGraph http://tinkerpop.apache.org/docs/current/reference/#tinkergraph-gremlin
23 Amazon Neptune https://aws.amazon.com/neptune/
24 JanusGraph https://janusgraph.org/
25 InfiniteGraph https://www.objectivity.com/products/infinitegraph/
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Figure 2.5: The ranking of a variety of Graph databases as reported by the db-engines ranking website –
https://db-engines.com/en/ranking based on their popularity and other technical criteria.

popularity in the software industry.

The underlying data model of the Graph databases is the graph data model. There exist a
variety of graph data models, such as – (i) edge-labeled graph, (ii) property graph (aka labeled
property graph or LPG), (iii) RDF, are examples of very popular graph data models widely
in use. The main difference between these models is the way data is modeled and the support
for semantics and meta-data. The Edge-labeled graph data model is based on a directed
labeled multigraph, where there is no concept of properties. The Property Graph (PG) data
model is based on directed labeled multigraphs where nodes and edges can contain a collection
of key-value pairs called properties. The notion of schema for a property graph database has
not been developed, but some systems use the notions of node types and edge types in order to
enforce a schema [72]. The RDF data models is a special kind of data model that relies on RDF
data (cf. Section 2.1.1). The RDF data model can be interpreted as a edge-labeled multigraph
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which allows three types of nodes (web resources, anonymous resources called Blank Nodes,
and simple values called Literals) and two types of edges (data properties that relate resource
nodes with literals, and object properties that relate two resource nodes). Furthermore, RDF
allows supports representing meta-data via the use of RDF reification. Unlike the RDF data
model has SPARQL, the PG data model does not have a standardised query language. However,
the TinkerPop Gremlin graph traversal query language [16, 17], Cypher query language [15]
and GraphQL26, are very popular amongst the existing NoSQL graph database community.
Furthermore, there are also on-going efforts to propose standard for the graph query languages
such as GQL27 which a SQL-based extension for query property graphs.

Next, we briefly discuss the Property graph data model and the Gremlin traversal language.
For supporting interoperability between RDF and PG databases, the scope of this thesis, we
have selected Gremlin as target language, since it is more general than, e.g. CYPHER, as it
is supported by a wide range of property graph databases (including both OLTP and OLAP
processors, more on this in Section 2.2.2). Moreover, Gremlin supports both the imperative
(graph traversal) and declarative (graph pattern matching) style of querying. Lastly, the Apache
TinkerPop framework and Gremlin represent a virtual query machine, thus providing a flexible
abstraction layer between graph data storage and querying (analogous to how various Java
Virtual Machine languages can be compiled to be executed in the Java Runtime Environment).
We talk more about this in Section 2.2.3.

2.2.1 Property Graph Data Model

A Property Graph is a directed labeled multigraph whose main characteristic is that nodes
(or vertices) and edges can contain zero or more properties. A property is represented as a
name:value pair. Nodes, edges and properties could have labels which are used to describe their
role or type in the data domain.

Assume two disjoint infinite sets: the set L of element labels, and the set V of primitive values.
A property graph can be defined as a tuple GP = (N,E, P, λ, δ, ρ, σ) where N is a finite set of
nodes, E is a finite set of edges, P is a finite set of properties, λ is a (total) labeling function
(N∪E∪P )→ L, δ is a (total) incidence function E → (N×N), ρ is a (total) property-assignment
function P → (N ∪ E), and σ is a (total) value-assignment function P → V.

Property graph data is represented in a variety of data serialization formats such as GraphML
[73], GraphSON28, kryo29, GML[74], etc. To illustrate the notion of a Property graph, consider
the following example.

Example 2.2.1. Consider an example of a Property graph data representation, related to Elon
Musk and Tesla Incorporation, represented using the GraphML [73] format below:

<?xml version="1.0" encoding="UTF-8"?>
26 GraphQL https://graphql.org/
27 GQL standard https://www.gqlstandards.org/
28 GraphSON serialzation http://tinkerpop.apache.org/docs/3.4.1/dev/io/#graphson
29 kryo serialization https://github.com/EsotericSoftware/kryo
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Person

name="Elon Reeve Musk" 
birthDate=1971-06-28
age=46
birthPlace="South Africa"

Organisation

name="Tesla, Incorporation" 
founded=2003-07-01
hq="Palo Alto, CA, USA"
employees=37,543

ceo

since=2003 

Figure 2.6: An example of a Property graph representing the information about Elon Musk and Tesla
Incorporation.

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="a0" for="node" attr.name="label" attr.type="string"/>
<key id="a1" for="node" attr.name="name" attr.type="string"/>
<key id="a2" for="node" attr.name="birthDate" attr.type="Date"/>
<key id="a3" for="node" attr.name="age" attr.type="int"/>
<key id="a4" for="node" attr.name="birthPlace" attr.type="string"/>
<key id="a5" for="node" attr.name="founded" attr.type="string"/>
<key id="a6" for="node" attr.name="hq" attr.type="string"/>
<key id="a7" for="node" attr.name="employees" attr.type="int"/>
<key id="a8" for="edge" attr.name="label" attr.type="string"/>
<key id="a9" for="edge" attr.name="since" attr.type="int"/>
<graph id="G" edgedefault="directed">
<node id="n0">
<data key="a0">Person</data>
<data key="a1">Elon Reeve Musk</data>
<data key="a2">1971-06-28</data>
<data key="a3">46</data>
<data key="a4">South Africa</data></node>
<node id="n1">
<data key="a0">Organisation</data>
<data key="a1">Tesla, Incorporation</data>
<data key="a5">2003-07-01</data>
<data key="a6">Palo Alto, CA, USA</data>
<data key="a7">37,543</data></node>
<edge id="e0" source="n0" target="n2">
<data key="a8">ceo</data>
<data key="a9">2003</data>
</edge>
</graph>
</graphml>
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Figure 2.6 shows a graphical representation of a Property graph that describes the information
about Elon Musk and Tesla Incorporation as shown in example 2.2.1. Note that each node
contains a label which identifies its type (i.e. Person and Organisation), and one or more
properties (i.e. birthName, and age). On the other hand, each edge contains a label which
defines its type (ceo), and includes a since property.

2.2.2 Gremlin Traversal Language and Machine

Graph analysis tools have turned out to be one of pioneering applications in understanding
these natural and man-made networks [3]. Graph analysis is carried out using graph processing
techniques which ultimately boil down to efficient graph query processing. Graph Pattern
Matching (GPM), also referred to as the sub-graph matching is the foundational problem of
graph query processing. Many vendors have proposed a variety of (proprietary) graph query
languages to demonstrate the solvability of graph pattern matching problem. These modern
graph query languages focus either on traversal, where traversers move over vertices and edges
of a graph in a user defined fashion or on pattern-matching, where graph patterns are matched
against the graph database.

Gremlin [17] is one such modern graph query language, with a distinctive advantage over
others that allows both pattern matching (declarative) and graph traversal (imperative) style
of querying over property graphs. Gremlin is part of the Apache TinkerPop graph computing
framework30 (more on the TinkerPop graph computing framework in Section 2.2.3). Using
Gremlin implies that a user can reap benefits of both declarative and imperative matching
style within the same framework. Furthermore, conducting GPM in Gremlin can be of crucial
importance in cases such as:

• Querying very large graphs, where a user is not completely aware of certain dataset-specific
statistics or structure of the graph (e.g., the number of specific type of edges or nodes
existing in the graph);

• Creating optimal query plans, without the user having to dive deep into traversal optimiz-
ation strategies.

• In application-specific settings such as a question answering [75], users express information
needs (e.g., natural language questions) which can be better represented as graph pattern
matching problems than path traversals.

Gremlin is based on computing graph traversals over a property graph, i.e. the act of visiting
nodes and edges in an alternating manner (in some algorithmic fashion) [70]. In this sense, a
graph pattern matching query in Gremlin can be perceived as a path traversal [76].

30 Apache TinkerPop Project (https://tinkerpop.apache.org/)
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Gremlin Syntax

A Gremlin query is called a path traversal. A path traversal, denoted by the symbol Ψ, is
composed of an ordered list of steps called the single-step traversals. A single-step traversal
(SST), denoted by ψs, is an atomic operation of function which is applied over the elements in
the target graph (i.e. nodes and edges). For example, the Listing 2.3 shows a Gremlin query
where V(), .values(...), .has(...), .out(...) are single-step traversals.

g.V().has("name","Elon Reeve Musk").out("ceo").values("name")

Listing 2.3: Gremlin query (imperative) for the question “Elon Musk is the CEO of which organisation?”

Gremlin includes a large list of traversal operators whose syntax and use is described in the
TinkerPop3 documentation31. Gremlin supports a variety of operators such as:

• match contains a collection of traversal patterns that must hold true, allowing to express
pattern matching in a declarative form, i.e. enabling the declarative construct;

g.V().match(
.as("x").has("name","Elon Reeve Musk"),
.as("x").out("ceo").values("name").as("y")).select("y")

Listing 2.4: Gremlin query (declarative) for the question “Elon Musk is the CEO of which
organisation?”

• union allows to merge the results of an arbitrary number of traversals;

• optional allows to return the result of the specified traversal if it yields a result, else it
returns the calling element;

• where allows to filter the current object based on either the object itself or the path
history of the object, and can include operators like eq and neq to evaluate equalities or
inequalities, and operators and, or and not to introduce boolean conditions;

• group.by allows to organize (or group) the objects according to some function of the object
(e.g. a property);

• order.by allows to sort the objects;

• range(begin,end) allows to restrict the number of objects obtained by a traversal;

• limit is analogous to range(), save that the lower end range is set to 0;

• select allows to specify the object returned by the traversal;

• dedup allows to remove duplicated objects for the traversal stream.

31 http://tinkerpop.apache.org/docs/current/reference/
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The full list of all the operators provided by the Gremlin traversal language can be referred from
http://tinkerpop.apache.org/docs/current/reference/#graph-traversal-steps. Next,
we discuss the Gremlin traversal machine and the evaluation semantics of the Gremlin traversals.

Gremlin Traversal Machine

Theoretically, a set of traversers in T move (traverse) over a graph G (Property graph, cf. Figure
2.6) according to the instruction in (Ψ, i.e. the SST operations), and this computation is said to
have completed when there are either:

1. no more existing traversers (t), or

2. no more existing instructions (ψ) that are referenced by the traversers (i.e. program has
halted).

Result of the computation being either a null/empty set (i.e. former case) or the multiset union
of the graph locations (vertices, edges, labels, properties, etc.) of the halted traversers which
they reference. Rodriguez et al. [77] formally define the operation of a traverser t as follows:

G← µ
t ∈ T
{β, ς} ψ

→ Ψ (2.1)

where, µ: T → U is a mapping from the traverser to its location in G; ψ: T → Ψ maps a
traverser to a step in Ψ; β: T → N maps a traverser to its bulk32; ς: T → U maps a traverser
to its sack (local variable of a traverser) value.

Gremlin Semantics

As mentioned before a Gremlin traversal can be evaluated in either an imperative manner,
a declarative manner, or a combination of both. An imperative Gremlin traversal tells the
traversers how to proceed at each step in the traversal. In Gremlin the declarative construct
(graph pattern matching), analogous to SPARQL [60, 63, 78], is provided by the match()-step33.
The match()-step evaluates each of the input graph patterns over a graph G in a structure
preserving manner binding the variables and constants to their respective values [77]. However,
the order of execution of each graph pattern is up to the match()-step implementation, where
the variables and path labels are local only to the current match()-step. Due to this uniqueness
of the Gremlin match()-step it is possible to:

1. treat each graph pattern individually as a single step traversal and thus, construct composite
graph patterns by joining (path-joins) each of these single step traversals;

2. combine multiple match()-steps for constructing complex navigational traversals (i.e.
multi-hop queries), where each composite graph pattern (from a particular match()-step)

32 The bulk of a traverser is number of equivalent traversers a particular traverser represents.
33 http://tinkerpop.apache.org/docs/3.2.3/reference/#match-step
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Figure 2.7: The technology stack of the Apache TinkerPop graph computing framework.

can be combined using the join operator.

The evaluation of an input graph pattern/traversal in Gremlin is taken care by two functions:

1. the recursively defined match() function- which evaluates each constituting graph pattern
and keeps a track of the traversers location in the graph (i.e. path history), and,

2. the bind() function- which maps the declared variables (elements and keys) to their
respective values.

Example 2.2.2. We illustrate the evaluation of the Gremlin traversals shown in listings 2.3
and 2.4, as (G1) and (G2), over the graph G from Figure 2.6.

(G1) ==>"Tesla, Incorporation" (G2) ==>[y="Tesla, Incorporation"]

2.2.3 Apache TinkerPop Graph Computing Framework

The TinkerPop framework is a part of the top level project at the Apache foundation – the Apache
TinkerPop Project [18]. TinkerPop is a graph computing framework for both graph databases
(OLTP) and graph analytic systems (graph processors – OLAP). Analogous to a computer which
operates using data and a set of rules (algorithm), the TinkerPop graph computing framework
consists of two key elements – the data i.e. the graph, and the program i.e. the traversal. The
graph is a set of nodes, edges and properties (cf. Section 2.2.1), and the traversal is a Gremlin
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Figure 2.8: The TinkerPop-enabled graph database and graph processor providers.

traversal (cf. Section 2.2.2) which is a functional, data-flow based domain specific language
(DSL) for the storing and manipulating the graph data. Together, the TinkerPop framework
and Gremlin form a traversal machine (execution platform) and a traversal (programming)
language analogous to Scala34 and Java Virtual Machine35 (JVM). Using Gremlin and the
TinkerPop framework it is possible to construct another traversal language and execute it over
any TinkerPop-enabled graph system creating a virtual layer over the physical system. This is
similar to how a java program can be executed over any other JVM-enabled operating system
without the requirement of recompilation or rewriting. Figure 2.7 presents the technology stack
of the Apache TinkerPop graph computing framework36.

TinkerPop-enabled Graph Systems

The popularity of the TinkerPop framework has attracted various grapah database (OLTP) and
graph analytical system (OLAP) vendors to adopt it as depicted in Figure 2.8. In the past few
years the list of TinkerPop-enabled vendors has grown drastically which cover the key software
industry players such as Amazon, Microsoft, IBM, Neo4j, etc. We list a few of the notable
vendors below:

• Alibaba Graph Database [79] - A real-time, reliable, cloud-native graph database service
that supports property graph model.

• Amazon Neptune [80] - Fully-managed graph database service.

• ArangoDB [81] - OLTP Provider for ArangoDB.

• Blazegraph [82] - RDF graph database with OLTP support.

• CosmosDB [83] - Microsoft’s distributed OLTP graph database.

• ChronoGraph [84] - A versioned graph database.

• DSEGraph [85] - DataStax graph database with OLTP and OLAP support.

• GRAKN.AI [86] - Distributed OLTP/OLAP knowledge graph system.
34 Scala Programming Language https://www.scala-lang.org/
35 JVM https://en.wikipedia.org/wiki/Java_virtual_machine
36 TinkerPop stack http://tinkerpop.apache.org/docs/current/reference/
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• Hadoop (Spark) [87] - OLAP graph processor using Spark.

• Huawei Graph Engine Service [88] - Fully-managed, distributed, at-scale graph query and
analysis service that provides a visualized interactive analytics platform.

• IBM Graph [89] - OLTP graph database as a service.

• JanusGraph [90] - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache
Cassandra and Apache HBase support.

• Neo4j [71] - OLTP graph database (embedded and high availability).

• OrientDB [91] - OLTP graph database

• Apache S2Graph [92] - OLTP graph database running on Apache HBase.

• Sqlg [93] - OLTP implementation on SQL databases.

• Stardog [94] - RDF graph database with OLTP and OLAP support.

• Titan [95] - Distributed OLTP and OLAP graph database with BerkeleyDB, Apache
Cassandra and Apache HBase support.

However, a detailed list of TinkerPop-enabled graph systems can be accessed from http:
//tinkerpop.apache.org/providers.html.

TinkerPop-enabled Query Languages

One of the key benefits of using the TinkerPop-Gremlin technology stack is the leverage to its
coverage of third-party query language providers. TinkerPop provides interfaces for accessing a
variety of distinct and domain specific query languages such as the NoSQL query languages –
SPARQL, Cypher, GraphQL, etc.; Relational query language – SQL. As Gremlin is a Turing-
complete language any query written in any other query language can be compiled and executed
over the Gremlin traversal machine. Below we present a list of query-interfaces or query
interoperability bridges which are available to the TinkerPop users:

• Gremlin-Groovy37 is used to represent Gremlin traversals inside the Groovy language
and can be leveraged by any JVM-based project either through gmaven or its JSR-223
ScriptEngine implementation.

• Gremlin-Python38 is used to represent Gremlin traversals inside the Python language and
can be used by any Python virtual machine such as CPython and Jython.

• Gremlin-Java39 is used to represent Gremlin traversals inside the Java8 language. Gremlin-
Java is considered the canonical, reference implementation of Gremlin traversal language.

37 Gremlin-Groovy http://tinkerpop.apache.org/docs/current/reference/#gremlin-console
38 Gremlin-Python http://tinkerpop.apache.org/docs/current/reference/#gremlin-python
39 Gremlin-Java http://tinkerpop.apache.org/docs/current/reference/#_on_gremlin_language_variants
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• Gremlin-.NET40 used to represent Gremlin traversals inside the C# language and can be
used by any .NET-based VM.

• Gremlin-Scala41 is a scala based Gremlin variant for the TinkerPop framework.

• Gremlin-Ogre is a Gremlin language variant for Clojure. It provides an API that enhances
the expressivity of Gremlin within Clojure.

• Gremlin-SQL42 is a SQL-to-Gremlin traversal compiler which compiles ANSI SQL to
Gremlin traversals.

• Gremlin-SPARQL [41, 42] is a SPARQL-to-Gremlin traversal compiler. This is one of the
main contributions of this doctoral thesis (discussed in Chapter 5 addressing the RQ2
regarding the query interoperability between RDF and Property graph databases).

• Gremlin-Cypher43 is a Cypher-to-Gremlin traversal compiler.

The TinkerPop community is always accepting contributions from motivated developers and
vendors. There is a public forum44 that allows users, vendors and contributors to raise issues
and discuss future development and integration of features and interfaces. It’s wide popularity
can be observed from the supported graph systems and query languages which are completely
open-source and are available under the Apache 2.0 licence45 for further development and
commercial use. Next, we discuss about the role of both RDF and Property graph data models
in the rise and development of Knowledge Graphs (KG). In doing so we present the different
types of KGs, their large-scale adoption in the industry and a few use cases.

2.3 Knowledge Graphs

The term “Knowledge Graph” (KG) started gathering wide-spread attention after Google’s
announcement on May 16, 2012 [96]. The research on KGs had however been active since the
late 198046, when two dutch universities started a project called Knowledge Graph which was
conceived as a semantic network with some additional restrictions in order to enable algebraic
operations over graphs. While there is no formal definition of a KG, in general it is described as
a semantic network of real world entities or entities of interest and the connections amongst
them. Essentially KGs store factual information about real world entities in a semantically
meaningful manner as a structured graph. In doing so a KG also describes the possible types
of entities (classes) and the nature of their interactions (relations) as a schema. Apart from
Google’s KG, there are various publicly available KGs such as DBpedia [52], Wikidata [53],
YAGO [54], Freebase [97], etc. In [98], Heiko Paulheim characteristically defines a Knowledge
40 Gremlin.NET http://tinkerpop.apache.org/docs/current/reference/#gremlin-DotNet
41 Gremlin-Scala https://github.com/mpollmeier/gremlin-scala
42 SQL to Gremlin compiler https://github.com/twilmes/sql-gremlin
43 Cypher to Gremlin compiler https://github.com/opencypher/cypher-for-gremlin
44 TinkerPop dev-mailing-list https://lists.apache.org/list.html?dev@tinkerpop.apache.org
45 Apache 2.0 License https://www.apache.org/licenses/LICENSE-2.0
46 source: https://towardsdatascience.com/knowledge-graph-bb78055a7884
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Graph as follows:

Definition 1 (Knowledge Graph). A Knowledge Graph:

1. mainly describes real world entities and their interrelations, organised in a structured
graph;

2. defines possible classes and relations of entities in a schema;
3. allows for potentially interrelating arbitrary entities with each other;
4. covers various topical domains.

For example DBpedia [52] describes the city of Bonn (http://dbpedia.org/resource/Bonn,
we will use dbr:Bonn for short) as shown in the listing 2.5 below:
dbr:Bonn dbo:country dbr:Germany .
dbr:Bonn dbp:type "city"^^ rdf:langString .
dbr:Bonn dbo:foundingYear "0001 -01 -01"^^ xsd:gYear .
dbr:Bonn dbp:mayor "Ashok -Alexander Sridharan"^^ rdf:langString .
dbr:Bonn dbo:populationTotal "311287"^^ xsd:nonNegativeInteger .
dbr:Bonn dbo:postalCode "53111 -53229" .

Listing 2.5: A snippet of the triples describing the city of Bonn (http://dbpedia.org/resource/Bonn)

KGs can be domain specific such as a KG of automotives, life sciences, sports, etc., or open do-
main such as an encyclopedia of information on diverse subjects. Large-scale KGs typical contain
millions of entities and billions of facts [98]. A KG can be either completely based on RDF data
such as DBpedia or hybrid that gathers data from heterogeneous sources or knowledge bases and
formats based on the Property graph data model for instance. KGs have been adopted by a large
fraction of the commerical companies and are of utmost importance in AI-based applications such
as recommendation engines, questions answering, search engines and link prediction, digital/s-
mart assistants, etc., to name a few. Figure 2.9, obtained from https://www.slideshare.net/
Frank.van.Harmelen/adoption-of-knowledge-graphs-late-2019, presents the large-scale
adoption landscape of Knowledge Graphs by a wide variety of companies for custom use cases.

KGs have emerged to be an extremely profitable means of technology for a variety of companies
such as Google, Aamazon, Facebook, Yahoo, LinkedIn, etc [99]. This is reflected in the market
capital revenue figures as reported from a survey by PwC and Bloomberg47, shown in Figure
2.10.

KGs can be constructed around a variety of use cases, a few types of KGs are – Enterprise KGs,
Contextual KGs, Scholarly KGs, Personalised KGs, etc. We briefly explain each of these next:

• Enterprise Knowledge Graph (EKG) is typically built by an Enterprise around its
product(s). This KG encapsulates the knowledge around the production and consuption
of data or a particular product. Example of products are social networks, ecommerce, etc.
Examples of EKGs are Facebook’s Social Graph48, Bing Knowledge Graph49, etc.

47 source: https://www.slideshare.net/AlanMorrison/scaling-the-mirrorworld-with-knowledge-graphs
48 https://en.wikipedia.org/wiki/Social_graph
49 https://blogs.bing.com/search-quality-insights/2017-07/bring-rich-knowledge-of-people-places\
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2.3 Knowledge Graphs

Figure 2.9: The landscape of large-scale adoption of Knowledge Graphs in a variety of industrial domains
as consolidated by Frank Van Harmelen in 2019.

• Contextualized Knowledge Graph (CKG) is a KG that contains contextual information in
addition to the real world facts as metadata. The context dependent information can be
for instance the provenance and trust metadata about the events and facts contained in the
KG [100]. This information is extremely essential for answering contextual queries where
inference of knowledge becomes critical [99]. Examples of such contextual KG applications
are digital assistants (in conversational AI), consider a scenario where a user asks “On
which day was the 2014 Football Worldcup played?” followed by the question “What was
the weather on that day?”. In such a case the context of the conversation is key to answer
the question correctly.

• Personalized Knowledge Graph (PKG) is based on data personalization of a specific
user with respect to their particular product or device. The goal here is to enhance
the user experience by cataloguing the likes and dislikes of the user and then presenting
recommendations based on it. Examples of applications of PKGs are automotive industry,
such as in Tesla cars wherein the smart assistant (application) remembers the air conditioner
temperature setting and the choice of music of the user based on the past choice, and

-things-and-local-businesses-to-your-apps
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Figure 2.10: The market capital (revenue) generation by various companies leveraging Knowledge Graphs.

is set automatically without the person’s intervention. Another such domain is the
pharmaceutical and life sciences industry, where there is increasing use of PKGs [101].

• Scholarly Knowledge Graph is based on the scholar and bibliographic networks. It is graph
consisting of authors, their publications, their fields of study and their citation network.
Examples of SKGs are the Microsoft Academic Knowledge Graph [102] and the Open
Research Knowledge Graph [103].

Thus, it is clear that Knowledge Graphs are a key component for knowledge representation and
consumption in a variety of domains and enterprises. While curating, storing and querying them
is challenging, it is most certainly a very profitable technology going forward in the booming AI-
based industry. Knowledge Graphs are enabling companies to increase their customer interaction
by unlocking new opportunities.

2.4 Summary

In this chapter, we introduced the formal concepts and foundation technology stacks that are
required in order to understand the work presented in this thesis. We now, in the next chapter 3,
discuss the State-of-the-Art with respect to each of the research questions, and summarize their
limitations on top of which we build or work, that are the core contributions of this dissertation.
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CHAPTER 3

Related Work

Having introduced the formal concepts required to understand the work and contributions
presented in this dissertation (in chapters 1 and 2), we now we discuss the related work with
respect to the three main research questions (RQ1, RQ2 and RQ3) that contribute to answering
the overarching research objective of this dissertation:

Overarching Research Problem: How can we support interoperability between the
Semantic Web and Property graph Databases?

In the pursuit of investigating the existing works, we cover a broad range of approaches
addressing both data interoperability and query interoperability amongst Relational, RDF,
Graph, Document-based, Hierarchical, etc. database models. We then narrow the focus
specifically to those works that allow data and query interoperability between RDF and Graph
databases in sections 3.1 and 3.2 respectively. Furthermore, we also discuss the State-of-the-Art
in the database benchmarking domain in chapter 3.3. We also present a consolidated summary
in the form of figures and tables, highlight the research gaps which need to be addressed and
outline the contributions of this thesis. Finally, in section 3.4 we conclude the chapter with
outlining the shortcomings in the State-of-the-Art for the respective proposals and present the
step forward.

This chapter is based on the parts of related work from the following publications [39–41, 43,
45, 104–106]:

1. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Mapping RDF Databases to
Property Graphs. In IEEE Access, Vol. 8, 2020.

2. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, and Jens Lehmann.
Let’s build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with
Sparql-Gremlin. In Proceedings of the IEEE 14th International Conference on Semantic
Computing (ICSC), pp. 408-415, San Diego, USA, 2020. [Best Paper Award]

3. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and Property Graphs

43



Chapter 3 Related Work

Interoperability: Status and Issues. In Proceedings of the 13th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Asunción (AMW 2019), Paraguay,
June 3-7, 2019.

4. Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Sören Auer, and
Jens Lehmann. The Query Translation Landscape: A Survey. Pre-print arXiv:1910.03118,
pp. 1-25, 2019.

5. Harsh Thakkar, Dharmen Punjani, Yashwant Keswani, Jens Lehmann, and Sóren Auer.
A Stitch in Time Saves Nine – SPARQL Querying of Property Graphs using Gremlin
Traversals. Pre-print arXiv:1801.02911, pp. 1-24, 2018.

6. Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
Trying Not to Die Benchmarking – Orchestrating RDF and Graph Data Management
Solution Benchmarks using LITMUS. In Proceedings of the 13th International Conference
on Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederland, pages 120-127. ACM,
2017. [Best Paper Award]

7. Saeedeh Shekarpour, Kemele M Endris, Ashwini Jaya Kumar, Denis Lukovnikov, Kuldeep
Singh, Harsh Thakkar, and Christoph Lange. Question Answering on Linked Data:
Challenges and Future Directions. In Companion Proceedings of the 25th International
Conference Companion on World Wide Web (WWW), pages 693-698. 2016.

3.1 Data Interoperability between Databases

In this section we present the related work that targets the syntactic and semantic interoperability
between the RDF and PG data models. We group the efforts based on mapping of the data
model they target, i.e. RDF → PG, etc., and summarise their shortcomings. Please note that
→ implies unidirectional and ↔ implies a bidirectional transformation.

3.1.1 Syntactic Interoperability

The Syntactic interoperability is given by the facilities to transform data from one format to
another. Therefore, the main requirement to support syntactic interoperability is the existence
of data formats (i.e. a syntax for encoding data stored in a database), over which transformation
methods can be implemented.

RDF Databases ↔ Relational Databases

Almost all the existing approaches for supporting data interoperability between RDF and
Relational databases are semantic in nature. This is because the notion of a schema is native to
relational databases and it is, for this reason, not possible to have a relational database without
a schema. Therefore, all the approaches by default support transforming the relational schema
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to an RDF Schema. Though, in some approaches the integrity constraints may or may not be
preserved. Hence, we do not list any approaches that support purely a syntactic transformation.

RDF Databases ↔ Graph Databases

RDF → Property graphs: Turtle, TriG, RDF/XML, RDF/JSON and JSON-LD are data
formats for encoding RDF data. In contrast, there is no standardized data format to encode
Property graphs. Given this restriction, some systems use graph data formats (like GraphML,
DotML, GEXF, GraphSON), but none of them is able to cover all the features presented by the
Property graph data model.

Given a source data format S and a target data format T , the first option to support syntactic
interoperability is to define a textual mapping from S to T . Note that the schema of the database
is not considered in the transformation. Hence, the structure, semantics and restrictions of the
source data could not be preserved by the translated data. The existing syntactic transformation
approaches for converting RDF to Property graphs are as follows:

1. Hartig [107] proposes two transformations between RDF? and Property graphs. RDF?

is a syntactic extension of RDF which is based on reification. The first transformation
maps any RDF triple as an edge in the resulting Property graph. Each node has the
“kind” attribute to describe the type of a node (e.g. IRI). The second transformation
distinguishes data and object properties. The former are transformed into node properties,
and latter into edges of a Property graph. The limitation of the second transformations is
that metadata triples cannot be transformed. The shortcoming of this approach is that
RDF? isn’t supported by majority of RDF triplestores (except Blazegraph and the most
recent addition, AnzoGraph) and requires conversion of existing RDF data beforehand.

2. Schätzle et al. [108] propose a mapping which is native to GraphX (a parallel processing
system implemented on Apache Spark). The proposed graph model is an extension of the
regular graph, but lacking the concept of attributes. The mapping uses an special attribute
label to store the node and edge identifiers, i.e. each triple t = (s, p, o) is represented using
two vertices vs, v0, an edge (vs, vo) and properties vs.label = s, vo.label = o, (vs, vo).label
= p. The proposed method does not address blank nodes or RDF entailments.

3. Nyugen et al. [109] proposed LDM-3N (labeled directed multigraph-three nodes), a graph
model for RDF data. It is an extension of the regular graph, without the concept of
attributes, and represents each triple element as separate nodes, thus three nodes (3N) .
The LDM-3N graph model is used to address the Singleton Property (SP) based reified
RDF data. The problem with this approach is that – (i) it adds adds an extra computation
step (and 2n triples); and (ii) doesn’t cover RDF graph Schema; and misses the concept
of properties.

4. Tomaszuk [110] presented an approach that uses the YARS serialization for transforming
RDF data into Property graphs. This approach basically performs a transformation
between encoding schemes and does not consider the RDF schema and its entailments.
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This approach has several implementations, eg. neo4j-yars1 and TTL2YARS2.

Property graphs → RDF: With respect to the methods to transform Property graphs into
RDF graphs, the literature is very restricted. All the existing approaches only provide support
for syntactic interoperability. The current methods RDF? [107] and Das et al. [4] are based on
employing RDF reification. In the simplest case, for each edge in the Property graph there will
be a blank node (in the RDF graph) containing at least three nodes (resources or literals) and
three edges (properties). Such elements will be necessary to describe all the information of the
original edge. Both approaches do not consider the presence of a PG schema.

In a recently published article Matsumoto et al. [111], present the Graph to Graph Mapping
Language (G2GML) for mapping RDF graphs to Property graphs. This language can be
processed by an implementation called G2G Mapper (available at https://github.com/g2gml).
G2GML allows performing syntactic transformation of the RDF data and Graph serialisation
such as (kryo, GraphML, etc.) However, there is no formal background or analysis of the
proposed mappings and this approach does not support mapping RDF Schema and Blank nodes.

In the context of the scope of this thesis, we will focus on the State-of-the-Art that address the
data interoperability between RDF and Graph data models. Table 3.1, presents a consolidated
summary of related work that addresses the data interoperability issue between the RDF and
Property graph data model along with the transformation features they offer.

Work Target Type Direct Mapping Formal Def. Schema Reif./ B.N. I.P.
RDF? [107, 112] RDF ↔ PG syntactic No Yes No No/No –
S2X [108] RDF → PG syntactic - No No No/No No
LDM-3N [109] RDF → PG syntactic No No No No/No No
G2GML [111] RDF ↔ PG syntactic No No No No/No No
Das et al. [4] PG → RDF syntactic No No No No/No No
YARS [110] PG → RDF syntactic No No No No/No No

Table 3.1: A consolidated summary of related work supporting data interoperability between RDF and
Property graphs. Here, B.N. refers to whether the approach supports Blank Nodes, Reif. refers to whether
the approach supports RDF reification, I.P. refers to whether the approach is Information Preserving,
and the “-” refers to the lack of evidence in the respective work. The type of the arrow in the column
“Target” represents whether the proposed transformation is omni-directional or bi-directional.

3.1.2 Semantic Interoperability

Semantic interoperability between databases means that both, source and target systems, are
able to understand the meaning of the data to be exchanged. It implies that both, data and
schema must participate of the transformations method.

A common approach to support semantic interoperability is the definition of data and schema
transformation methods. The schema transformation method takes as input the schema of
1 https://github.com/lszeremeta/neo4j-sparql-extension-yars
2 https://github.com/lszeremeta/ttl-to-yars
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the source database, and generates a schema for the target database. Similarly, the data
transformation method allows to move the data from the source database to the target database,
but taking care of the target schema. The transformation methods can be implemented by using
data formats or data definition languages.

RDF Databases ↔ Relational Databases

In this section, we discuss the related work addressing the data interoperability between RDF
and Relational databases. We refrain from dwelling into much detail, as relational databases
are not the focus of this thesis, instead list only selected works for the sake of completeness.
We point the interested reader to studies such as [113–115], where a detailed report of the
State-of-the-Art on this topic can be referred from.

RDF → RDB:

1. In [116] propose RETRO, wherein RDF data is exhaustively parsed to extract domain-
specific relational schema. The schema corresponds to the so-called vertical partitioning,
i.e., one table for every extracted predicate, each table is composed of <subject object>
attributes.

2. In [117, 118] Ramanujan et al. propose R2D3, a novel approach to create a relational
virtual normalized schema (view) on top of RDF data. Schema elements are extracted
from RDF schema; if schema is missing or incomplete, schema information is extracted by
thoroughly exploring the data. A relational view is created using those schema constructs.
This generated schema provides support for executing SQL queries over RDF databases.

3. In OntoAccess Hert et al. [119], present a novel approach that allows vocabulary-based
write access over relational data. It consists relational database to RDF mapping language
called R3M, which consists of an RDF format and algorithms for translating queries to
SQL.

RDB → RDF:

1. In [65, 120] Chebotko et al. propose two many-to-one mappings: (i) a mapping between
the triples and the tables, and (ii) a mapping between pairs of the form (triple, pattern,
position) and relational attributes. In addition this approach assumes that the underlying
relational database is denormalized, and stores RDF terms. The two semantics deviate in
the definition of the OPTIONAL algebra operator.

2. In Triplify Auer et al. [121] propose an approach to publish RDF from relational databases,
which is based on mapping HTTP-URI requests to database queries expressed in SQL
queries. These are used to match subsets of the stored contents and map them to classes

3 R2D source code https://github.com/michaelbrunnbauer/rdf2rdb
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and properties. This approach transforms the resulting relations into RDF statements
and publishes the data in various RDF serializations.

3. In D2RQ Bizer et al. [122] propose a mapping representation which supports both automatic
and manual operation modes for transforming RDF database to Relational database. In
the automatic mode, RDF Schema vocabulary is created, in accordance with the reverse
engineering method, for the translation of foreign keys to properties. In the manual mode,
the contents of the database are exported to an RDF in accordance with mappings stored
in RDF.

4. In AuReLi (Automatic Relational Database to Linked Data Converter) Polfliet et al. [123]
propose a D2RQ-based approach which uses several string similarity measures associating
attribute names to existing vocabulary entities in order to complete the automation of the
transformation of databases. They also propose a a low-cost method to automatically link
the relevant data from other datasets.

5. In R2RML Das et al. [124] propose the popular W3C recommendation, which is a language
for specifying mappings from relational to RDF data. In R2RML a mapping takes as
input a logical table, which consists of – (i) a database table, (ii) a database view4, or a
SQL query. Each logical table is mapped to a set of triples by rules called triples map.
The R2RML produces by default, all the triples in the default graph of the output RDF
triples dataset

6. In [125] Elliot et al. propose a custom mapping language that allows transforming relational
data to RDF. The mapping language they propose is less expressive than R2RML [126]
and lacks the support for URI templates.

7. In SquirrelRDF Seaborne et al. [127] present an approach that extracts data from a number
of databases and integrates that data into a business process. Their proposal supports
RDF views and allows for the execution of queries against it.

8. In Ultrawrap [67] Sequeda et al. propose the RDF2RDB mapping on top of existing
relational databases. This approach creates an RDF ontology from the SQL schema, based
on which it next creates a set of logical RDF views over the relational database. The views,
called Tripleviews, are an extension of the famous triple tables (subject, predicate, object)
with two additional columns: subject and object primary keys respectively. This mappings
approach by this approach possess desirable properties such as information preservation
and soundness.

9. The work by Priyatna [128] is an extension of the approach by Chebotko et al. [65, 120],
wherein the additional feature is the provided support for user defined R2RML mappings.
This is achieved by incorporating R2RML mappings in the α and β mappings as well as
genCondSQL(), genPRSQL() and trans() functions.

10. In [126] Rodriguez-Muro et al. propose an R2RML-based mapping approach for trans-
forming a relational database into RDF database. This is achieved by obtaining a virtual
representation of the RDF graph via the R2RML mappings. Their approach uses a set of

4 It is called an “R2RML view” as it is like an SQL view without the capability to modify the database
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PGRDF

RDB STTL

HTML
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 RDF ⋆

CSV JSON

Figure 3.1: A graphical representation of the, existing efforts found in published literature, i.e. the State-
of-the-Art addressing the data interoperability issue between RDF, Graph, Relational, and Heterogeneous
data models respectively. The edges in black (→) denote the existing works, whereas the edge in
blue (→) denotes the contribution of this thesis, supporting the transformation between RDF and Graph
data model (covering both syntactic and semantic mappings). The node in dashed-line represents an
intermediate approach mapping RDF to RDF?.

Datalog rules, as an intermediate language, in order to preserve the data semantics.

11. In Ontop [129] Calvanese et al. present a relational database to RDF database transform-
ation approach which is based on the R2RML mappings over general relational schemas.
This is achieved by exposing relational databases as virtual RDF graphs by linking the
terms (classes and properties) in the ontology to the data sources through mappings.

RDF Databases ↔ Graph Databases

To the best of our knowledge, there is no existing method that supports data and schema
transformations (semantic interoperability) between RDF and PGs. However, there exist some
proposals for supporting syntactic interoperability (as discussed in the previous subsection)
between RDF and Property graphs via the use of an intermediate data transformation language.

3.1.3 Other Approaches for Data Interoperability

There exist approaches that aim to support data interoperability amongst RDF, XML, JSON,
CSV and other heterogeneous data formats at the same time. These approaches cannot be
classified in one of the above mentioned categories (i.e. syntactic or semantic) as the notion and
presence of a strict schema is not native to these heterogeneous data formats. In this subsection,
we present a summary of a few selected approaches.

RDF ↔ Heterogeneous formats:

1. RML [130] is a generic language which allows to define mappings/rules that allow trans-
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forming data from heterogeneous serialisation and structures to RDF. RML supports
JSON, XML, CSV, and Relational databases. RML is defined as a superset of R2RML.

2. SPARQL-Generate [131] generates RDF from RDF dataset and a set of documents in
arbitrary formats. It is designed as an extension of SPARQL 1.1. SPARQL-Generate
supports XML, JSON, CSV, GeoJSON, HTML, and CBOR5.

3. In [132] Bischof et al. propose XSPARQL which is a query language based on SPARQL [7,
59] and XQuery [133, 134] for transformations from RDF into XML and back. It is built
on top of XQuery in a syntactic and semantic view.

4. In [135] Battle et al. propose Gloze which is a tool for bi-directional mapping between
XML and RDF. It uses information available in the XML Schema for describing how XML
is mapped into RDF and back again.

5. In [136] Connolly et al. propose GRDDL is a markup language for for obtaining RDF
data from XML and XHTML documents via associated transformation algorithms. These
are typically represented in XSLT.

6. SPARQL Template Transformation Language (STTL) [137] are languages that allow data
transformation between RDF and other languages or formats.

Figure 3.1 presents a graphical summary of the related works covering the State-of-the-Art that
are concerned with both the syntactic and semantic data interoperability issue amongst RDF,
Relational, Graph, and other heterogeneous data modelling and serialisation formats.

3.2 Query Interoperability between Databases

In this section we briefly survey the related work with regard to techniques and tools that address
the query interoperability problem by supporting the translation and execution of query languages.
We present the general related work with respect to the query language(s) supported by four
database categories: Relational, Graph-based, Hierarchical and Document-based. Furthermore,
we will focus Query interoperability between RDF and Property graph databases is a current
issue due to the lack of a standard query language for Property graphs.

3.2.1 Graph-based ↔ Relational

A research topic closely related to our work is the query interoperability between SPARQL and
SQL, which was investigated in e.g. [65, 120, 125, 126, 129]. Next, we categorise and list the
efforts and proof of concept implementations that target the query interoperability gap between
the RDF-Relation Database (RDB), and RDB-Property graph query languages respectively.

5 CBOR (Concise Binary Object Representation) is a binary representation of JSON.
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SPARQL→ SQL: There is a substantial amount of work been done for conversion of SPARQL
queries to SQL queries [120, 125, 126, 128, 129, 138].

1. Calvanese et al. propose Ontop [129]6, which exposes relational databases as virtual
RDF graphs by linking the terms (classes and properties) in the ontology to the data
sources through mappings. This virtual RDF graph can then be queried using SPARQL
by dynamically and transparently translating the SPARQL queries into SQL queries over
the relational databases.

2. In [126] Rodriguez-Muro et al. present an approach that generates an optimized SQL from
SPARQL by using Datalog as an intermediate language. This approach also provides a
well-defined specification of the SPARQL semantics used in the translation. In addition,
their approach, which is implemented within Ontop [129] also supports R2RML mappings
over general relational schemas. The authors show, using the Ontology Based Data Access
(OBDA), that their implementation can outperform other well known SPARQL-to-SQL
systems, as well as commercial triple stores by large margin.

3. In [125], Elliot et al. introduce a SPARQL-to-SQL translation technique that focuses on
the generation of efficient SQL queries. They proposes several translation SQL model-
algorithms implementing different operators of a SPARQL query (algebra). In contrast
to many existing works, this work aims to generate flat/un-nested SQL queries, instead
of multi-level nested-queries, so SQL query optimizers can achieve better performance.
However, their mapping language lacks support for URI templates and is less expressive
than R2RML.

4. In [65, 120] Chebotko et al. proposes a translation function that takes a query and two
many-to-one mappings: (i) a mapping between the triples and the tables, and (ii) a
mapping between pairs of the form (triple, pattern, position) and relational attributes. A
translation function returns a SQL query by fusing and building up the previous primitives
given a graph pattern. The translation function generates SQL joins from UNIONs and
OPTIONALs between sub-graph patters. The two semantics deviate in the definition of
the OPTIONAL algebra operator.

5. In [128] Priyatna et al. propose an approach which is the extension of work by Chebotko
et al. [120] to include user-defined R2RML mappings, which are incorporated within the
α and β mappings as well as the genCondSQL(), genPRSQL() and trans() functions.
For each, an algorithm is devised, considering the various situations found in R2RML
mappings like the absence of Reference Object Map.

6. In [138] Zemeke et al. propose an approach that makes use of non-standard SQL constructs
for SPARQL-to-SQL translation and lacks formal proof that the translation is correct and
an empirical evaluation with realistic data is missing.

7. In Ultrawrap [67], Sequeda et al. propose an RDF2RDB mapping-based execution of
SPARQL queries over relational databases. As mentioned earlier, this approach first
transforms the data by creating an RDF ontology from the SQL schema, based on which

6 Ontop system (http://ontop.inf.unibz.it/)
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it next creates a set of logical RDF views (called Tripleviews) over the relational database.
Given a SPARQL query, each triple pattern maps to a Tripleview. The proposed approach
has been shown to be information and query preserving respectively.

SQL → SPARQL: In [116] Rachapalli et al. present RETRO, a formal semantics preserving
the translation from SQL to SPARQL. Their deals only with schema mapping and query
mapping rather than to transform the data physically. Schema mapping derives a domain-
specific relational schema from RDF data. Query mapping transforms an SQL query over the
schema into an equivalent SPARQL query, which in turn is executed against the RDF store.

SQL → CYPHER: CYPHER7 is the graph query language used to query the Neo4j8 graph
database. There has been no work yet aiming to convert the SQL to CYPHER. However, there
are some examples9 that show the equivalent CYPHER queries for certain SQL queries.

CYPHER → SQL: Cyp2sql [139] is a tool for the automatic transformation of both data and
queries from Neo4j to a relational database. During the transformation, the following tables
are created: Nodes, Edges, Labels, Relationship types, plus materialized views to store the
adjacency list of the nodes. CYPHER queries are then translated to SQL queries tailored to
that data storage scheme.

SQL → Gremlin: There is initial work that shows Gremlin queries that are converted from
SQL queries for the Northwind database. The proof-co-concept of this work can be found on a
web-page[140]. However, it does not propose any algorithm or approach that can be used to
convert SQL from any relational schema to Gremlin queries or traversals. It is limited to showing
example SQL queries and corresponding Gremlin queries including the different traversal steps
that are used for the mapping.

Gremlin → SQL: In [141], the authors propose a direct mapping approach for translating
Gremlin queries (without the side effect step) to SQL queries. They discuss a generic technique
to translate a subset of Gremlin queries (queries without side effect steps) into SQL leveraging
the relational query optimizers. They propose techniques that make use of a novel schema
which exploits both relational and non-relational storage for property graph data by combining
relational storage with JSON storage for adjacency information and vertex and edge attributes
respectively.

7 CYPHER Query Language (https://neo4j.com/developer/cypher-query-language/)
8 Neo4j (https://neo4j.com/)
9 SQL to CYPHER (https://neo4j.com/developer/guide-sql-to-cypher/)
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3.2.2 Graph-based ↔ Document-based

The main motivation behind exploring this path was to enable SQL users and legacy systems to
access the new class of NoSQL document databases with their sole SQL knowledge.

SPARQL → Document-based: The rational here is identical to that of SPARQL-to-SQL,
with one extra consideration: scalability. Native triple stores become prone to scalability issues
when storing and querying significant amounts of RDF data. Users resorted to more scalable
solutions to store and query the data [142]. The most studied database solution by the research
community, we found, was MongoDB.

1. In D-SPARQ [143] Mutharaju et al. present an approach that focuses on the efficient
processing of join operation between triple patterns of a SPARQL query. RDF data
is physically materialized in a cluster of MongoDB stores, following a specific graph
partitioning scheme. SPARQL queries are converted to MongoDB queries following the
same.

2. In SPARQL-to-X [144] Michel et al. propose a generic two-step approach is suggested,
with a showcase using MongoDB. The article proposes to convert a SPARQL query to a
pivot intermediate query language called Abstract Query Language (AQL). The translation
uses a set of mappings in xR2RML mapping language, which describe how data in target
databases are mapped into RDF model, without converting data to RDF. AQL has a
grammar that is similar to SQL both syntactically and semantically.

3.2.3 Graph-based ↔ Hierarchical

This bridge seeks to build interoperability environments between semantic and XML database
systems, to enable ontology-based data access to XML data, and to add a semantic layer on top
XML data and services for integration purposes.

SPARQL → XPath/XQuery: Enabling XPath traversal or XQuery functional programming
styles on top of RDF data can be an interesting feature to equip native RDF stores with, in
order to embark adopters from the XML world into the Semantic Web world. The following are
a few approaches that address this feature.

1. In [145] Groppe et al. propose an approach that allows an indirect translation of SPARQL
by embedding it inside a XQuery. This method involves firstly representing SPARQL in
form of tree of operators. The translation involves data translation, from RDF to XML,
and the translation of the operators to XQuery queries accordingly. The translation from
an operator into an XQuery constructs is based on transformation rules, which replace
the embedded SPARQL constructs with XQuery constructs.

2. In SPARQL2XQuery [146–148] Bikakis et al. propose a translation approach that is based
on a mapping model between OWL ontology (existing or user-defined) and XML Schema.
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Figure 3.2: A graphical representation of the, existing efforts found in published literature, State-of-the-Art
addressing the query interoperability issue between RDF, Graph, Relational, Hierarchical and Document-
based databases respectively. The edges in black (→) denote the existing works supporting the translation
between the corresponding query languages (i.e. adjacent nodes). The edge in blue (→) denotes the
contribution of this thesis, supporting the translation of SPARQL queries to Gremlin traversals. The
node in dashed-line represents an intermediate approach mapping SPARQL queries to SPARQL? queries.

Mappings can either be automatically extracted by analyzing the ontology and XML
schema, or manually curated by a domain expert. SPARQL queries are posed against the
ontology without knowledge of the XML schema.

3. In XQL2Xquery [149] Fischer et al. propose an approach wherein the variables of the basic
graph patter (BGP) are mapped to XQuery values. A for loop and a path expression is
used to retrieve subjects and bind any variables encountered, then nested under every
variable, iterate over the predicates and bind their variables.

XPath/XQuery → SPARQL: In [150] Droop et al. present a translation approach that
includes data transformation from XML to RDF. During the data transformation process, XML
nodes are annotated with information used to support all XPath axes. For example, type
information, attributes, namespaces, etc. The above annotations conform to the structure of
the generated RDF and are used to generate the final SPARQL query.

3.2.4 Other Intermediate Graph-based Approaches

SPARQL → SPARQL?: In [112, 151] Hartig et al. have defined extensions of the SPARQL
query language that capture an alternative approach to represent statement-level metadata that
can be used in Property graphs (see [107]). This proposal, called SPARQL? is an RDF?-aware
extension that introduces new features that enable users to directly access metadata triples
in queries. However, this approach requires transforming the existing RDF data to the RDF?

data model, thereby adding an intermediate step, which is an conceptual extension of the RDF
data model (cf. Section 3.1.2). Furthermore, it is not possible to query native Property graph
databases using SPARQL?. It is for this reason not a suitable candidate for directly addressing
the query interoperability issue between the RDF and Property graph databases.

Figure 3.2 presents a graphical summary of the related works that are concerned with the query
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interoperability issue between various database query languages. In the context of this thesis,
we will focus on the State-of-the-Art that address the query interoperability between RDF and
Graph databases.

3.2.5 Commercial Database Approaches

To the best of our knowledge, there is no formally published work or openly available software
that addresses the query interoperability issue between SPARQL and any Property graph query
language on a broader scale. On the other hand, Commercial graph databases, such as AWS
Neptune, BlazeGraph, and Stardog do provide some form of data interoperability between the
RDF and Property graph data model, however they are black-box systems as the technology is
proprietary. On the other hand, they do not provide query interoperability between RDF and
Property graph data models by translating SPARQL queries to any other Property graph query
language, that is publicly known. Some of them (such as AWS Neptune and Azure Cosmos DB)
provide support for querying using both Gremlin traversals and SPARQL directly, without any
form of translation to or from SPARQL. It is for this reason, these commercial databases cannot
be considered as related work. A similar argument holds for other TinkerPop-enabled Graph
databases10.

10 TinkerPop-enabled Graph Databases http://tinkerpop.apache.org/providers.html
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3.3 Benchmarking Frameworks for RDF and Property graph
Databases

Benchmarking is widely used for evaluating databases (i.e. Data Management Systems). Bench-
marks exist for a variety of levels of abstraction from simple data models to graphs and triple
stores, to entire enterprise information systems. We describe the current state of the art in
benchmarking, in particular for: (a) Relational databases, (b) Graph databases, (c) RDF stores,
and (d) Cross-domain (multi-modal) databases benchmarking efforts. We identify the scope
and shortcomings of existing benchmarking efforts, to determine the gaps that need to be taken
into consideration.

1. In Relational Data Management Systems, the benchmarks of the Transaction Processing
Performance Council (TPC) [159] are well established. TPC uses discrete metrics for
measuring the performance of the relational DMS. The online transaction processing
benchmarks TPC-C and TPC-E use a transactions per minute metric. The analytics
TPC-H and decision support TPC-DS benchmarks use the queries per hour and cost
per performance metrics, respectively.

2. For Graph Data Management Systems, there exist benchmarks, some of which are in their
early stages (such as HPC Scalable Graph Analysis Benchmark [160], Graph 500 [161],
XGDBench [162]) that deal with graph suitability transformations and graph analysis.
However, they do not succeed to define standards for graph modelling and query languages.

3. Benchmarking RDF Data Management Systems. The substantial increase in the number
of applications that use RDF data has encouraged the need for large-scale benchmarking
efforts on all aspects of the Linked Data life cycle, mostly focusing on query processing [163].
RDF DMS benchmarks use real (i.e., DBpedia or Wikidata) and synthetic (i.e., Berlin
SPARQL Benchmark or WAT-DIV) datasets to evaluate DMS performance over custom
stress-loads and setup environments.11 DBpedia SPARQL Benchmark (DBPSB) [164]
assesses RDF Data Management Systems performance over DBpedia by creating a query
workload derived from the DBpedia query logs. The aim of the Lehigh University
Benchmark (LUBM [165]) is to evaluate the performance of Semantic Web triple stores
over a large synthetic dataset that complies to a university domain ontology. The Waterloo
SPARQL Diversity TEST Suite (WatDiv [166]) provides data and query generators to
enable benchmarking of RDF Data Management Systems against a varying query structure
(also complexity) to understand correlation of query typology with the variance in DMS
performance. SP2Bench [167], one of the most commonly used synthetic data based
benchmarks, uses the schema of the DBLP bibliographic dataset12 to generate arbitrarily
large datasets.

4. Benchmarking Cross-domain Data Management Systems. There are only a few efforts that
benchmark cross-domain DMS so far. The Berlin SPARQL Benchmark (BSBM [168])
is a synthetic data benchmark, based on an e-commerce use cases built around a set of
products offered by different vendors. It provides the dataset and queries for both RDF

11 https://www.w3.org/wiki/RdfStoreBenchmarking
12 http://dblp.uni-trier.de/db/
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and Relational DMS benchmarking. Pandora13, uses the Berlin SPARQL Benchmark
data to benchmark RDF stores against relational stores (Jena-TDB, MonetDB, GH-
RDF-3X, PostgreSQL, 4Store). Graphium [169] is a similar study benchmarking RDF
stores against Graph stores (Neo4J, Sparksee/DEX, HypergraphDB, RDF-3X) on graph
datasets including a 10M triple graph data generated using the Berlin SPARQL Benchmark
data generator. More recently, the LDBC [170] focused on combining industry-strength
benchmarks for graph and RDF data management systems. The LDBC introduces a new
choke-point analysis methodology for developing benchmark workloads, which tries to
combine user input with feedback from system experts.

Table 3.3 (see next page) presents a consolidated summary of the existing approaches with
respect to the State of the Art in benchmarking Relational, Graph, RDF, and other cross-domain
Data Management Systems (databases).

13 http://pandora.ldc.usb.ve/
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Type Benchmark RDB RDF Graph Description
TPC [159] X The Transaction Processing Performance Council (TPC) [159] is well estab-

lished for benchmarking relational Data Management Systems. TPC provides
a range of benchmarks such as the online transaction processing benchmarks
TPC-C and TPC-E (which employ transactions per minute metric), the
analytics TPC-H and decision support TPC-DS (which employ the queries
per hour and cost per performance metrics).

XGDBench [162] X is a graph database benchmarking platform for cloud computing systems, which
is an extension of the famous Yahoo! Cloud Serving Benchmark. The authors
benchmarked AllegroGraph, Fuseki, Neo4j, and OrientDB using XGDBench
on Tsubame 2.0 HPC cloud environment.

HPC [160] X The HPC Scalable Graph Analysis Benchmark consists of a range of tests for
examining a variety of independent attributes of the hardware of High Perform-
ance Computing systems. HPC addresses graph-specific tasks such as graph
suitability transformations and graph analysis over graph Data Management
Systems in a distributed environment.

Graph500 [161] X is a benchmark for data intensive supercomputing systems and its applications.
It does not consider benchmarking typical graph databases.

DBPSB [164] X The DBpedia SPARQL Benchmark (DBPSB) benchmarks RDF Data Man-
agement Systems using DBpedia by creating a query workload derived from
the DBpedia query logs.

Si
ng

le
-d
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n

LUBM [165] X The Lehigh University Benchmark (LUBM) benchmarks RDF Data Man-
agement Systems over a large synthetic dataset that complies to a university
domain ontology.

WatDiv [166] X The Waterloo SPARQL Diversity TEST Suite (WatDiv) benchmarks RDF
Data Management Systems using their synthetic data and query generators
in order to analyze the corelation between DMS performance against varying
query structures and complexities (query typology).

SP2Bench [167] X is one of the most commonly used synthetic data-based RDF DMS benchmarks,
which uses the schema of the DBLP bibliographic dataset (http://dblp.
uni-trier.de/db/) to generate custom sized datasets.

IGUANA [171] X is a generic SPARQL benchmark execution framework focused on benchmarking
RDF Data Management Systems and federated querying.

FEASIBLE [172] X is a feature-based (data-driven and structural) SPARQL benchmarking frame-
work for RDF Data Management Systems. It employs an automatic approach
for the generation of benchmarks using query logs.

LSQ [173] X consists of real world SPARQL queries extracted from the logs of public
SPARQL endpoints. These queries are extracted from four public endpoints:
DBpedia (logs 232 million triples), Linked GeoData (LGD) (1 billion triples),
Semantic Web Dog Food (SWDF) (300 thousand triples) and the British
Museum (BM) 1.4 million triples).

HOBBIT [163] X is an end-to-end benchmarking platform (in early stage) focused towards
large-scale benchmarking on all aspects of the Linked Data life cycle. It will
enable data, query and task generation functionalities (in later stages) for
benchmarking of RDF Data Management Systems under custom stress loads
for the querying of RDF graphs using industrial use-case queries.

BSBM [168] X X The Berlin SPARQL Benchmark (BSBM) is a synthetic data-based e-
commerce use case scenario for benchmarking RDF and Relational Data
Management Systems. It provides custom generators for creating datasets and
queries of custom size and typology.

Pandora X X Pandora (http://pandora.ldc.usb.ve/) is a benchmark which uses the
BSBM data to assess the performance of RDF stores against relational stores
(i.e. Jena-TDB, MonetDB, GH-RDF-3X, PostgreSQL, 4Store).

C
ro

ss
-d

om
ai

n Quertzal-RDF [174] X X is a RDF and Graph DMS benchmarking framework, which offers a novel
SPARQL to SQL translation engine for multiple backends. Its current version
supports benchmarking DB2, PostgreSQL and Apache Spark. It offers custom
query loads for both DBpedia (real) and LUBM (synthetic) datasets.

Graphium [169] X X Is a benchmarking plus result visualization effort, comparing RDF stores
against Graph stores (i.e. Neo4J, Sparksee/DEX, HypergraphDB, RDF-3X)
on custom graph datasets including a 10M triple dataset (using the BSBM
data generator).

LDBC [170] X X The Linked Data Benchmark Council (LDBC) is focused on curating industry-
strength benchmarks for both graph and RDF Data Management Systems.
It introduces a choke-point driven analysis methodology for analyzing and
developing benchmark workloads.

Table 3.3: A consolidated summary of the State-of-the-Art in benchmarking frameworks for Relational,
RDF and Graph Data Management Systems. 59
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3.4 Summary

In this chapter, we presented the existing approaches in the respective State-of-the-Art for – data
interoperability, query interoperability between RDF and Graph databases, and the frameworks
for benchmarking them. Next, we summarize their shortcomings, highlight the research gaps
with respect to each of these and outline the challenges that may be faced in overcoming them.

• Data Interoperability between RDF and Graph databases: It is evident from
the State-of-the-Art for supporting data interoperability between various data models,
that there is a severe lack of efforts targeting the RDF and Property graph data models
specifically. While the existing RDF ↔ Property graph transformation approaches focus
merely on enabling syntactic interoperability, some of them also do not provide a direct
mapping (as shown in Table 3.1). Furthermore, the existing approaches also do not
support transforming RDF Schema, Blank nodes, RDF reification and it’s entailments
(inferencing) into a Property graph. Thus, there is a need for an approach that allows
both syntactic and semantic query interoperability between RDF and Property graph data
models covering RDF Schema, Blank nodes, RDF reification and it’s entailments.

• Query Interoperability between RDF and Graph databases: A majority of the
existing works in the State-of-the-Art support addressing the query interoperability are
focused on SQL ↔ SPARQL translation (as shown in Table 3.2). Both SPARQL and SQL
are declarative query languages and operate over the same relational algebra. Gremlin is
a functional property graph query language which offers both declarative and imperative
constructs. Furthermore, the Property graph domain lacks a standardized query language,
unlike the RDF and RDB data models and Gremlin has not been thoroughly studied with
respect to its execution semantics and expressivity. Therefore, in contrast to these existing
query interoperability translation efforts, we have to overcome the challenge of mediating
between two very different execution paradigms. More specifically, those efforts applied
query rewriting techniques between languages, which are rooted in relational algebra
operations, whereas we had to bridge more disparate query paradigms. While this poses a
significant challenge, it is also the reason why substantial performance differences can be
observed depending on the different query characteristics.

• Benchmarking RDF and Graph databases: The existing benchmarks, have various
domain-specific strengths. However, they also display limitations regarding the need
of having an integrated generalized benchmarking framework. The existing efforts, for
instance, (i) do not offer the capability of benchmarking both RDF and Property graphs in
a single environment; (ii) do not offer a complete automation or a common framework for
reproducing existing benchmarks; (iii) with the exception of HOBBIT, do not offer an end-
to-end benchmarking and result visualization solution of cross domain Data Management
Systems; and (iv) do not allow easy integration of existing benchmarks in an user-driven
fashion. Therefore, it is necessary to develop an automated open, extensible and reusable
benchmarking framework that address all the above mentioned limitations for RDF and
Property graph Data Management Systems (databases).
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CHAPTER 4

Directly Mapping RDF Databases to Property
graph Databases

RDF [6] and Graph databases [69] are two approaches for data management that are based on
modeling, storing and querying graph-like data. The database systems based on these models
are gaining relevance in the industry due to their use in various application domains where
complex data analytics is required [175]. Both, RDF and Graph database systems are tightly
connected as they are based on graph-oriented database models. RDF databases are based on
the RDF data model [6], their standard query language is SPARQL [7], and RDF Schema [8]
allows to describe classes of resources and properties (i.e. the data schema). On the other hand,
most graph databases are based on the Property Graph (PG) data model, there is no standard
query language, and the is no standard notion of property graph schema [14]. Therefore, RDF
and PG databases are dissimilar in the data model, schema, query language, meaning, and
content. Given the heterogeneity between RDF triplestores and Property graph databases, and
considering their graph-based data models, it becomes fair and necessary to develop methods to
allow interoperability among these systems. To the best of our knowledge, the research about
the interoperability between RDF and PG databases is very restricted ( as discussed in Section
3.1 of Chapter 3). While there exist some system-specific (i.e. indirect) approaches, most of
them are oriented to data transformation (focusing mostly on syntactic interoperability), lack
solid formal foundations and even overall compatibility in some cases.

In this chapter we address the first research question (RQ1) that is concerned with addressing
data interoperability issue between the RDF and Property graph databases.

RQ1: Data Interoperability – How can we directly map RDF Databases to Property
Graph Databases in an information preserving manner?

The main contributions of this chapter are the following: (a) we define three database map-
pings [106]: (i) a simple mapping which allows transforming an RDF graph into a PG without
considering schema restrictions (in both sides); (ii) a generic mapping which allows transform-
ing an RDF graph (without RDF schema) into a PG that follows the restrictions defined by
a generic PG schema; (iii) a complete mapping which allows transforming a complete RDF

61



Chapter 4 Directly Mapping RDF Databases to Property graph Databases

database into a complete PG database (i.e. schema and instance); and (b) We also study three
desirable properties of the above database mappings: computability, semantics preservation,
and information preservation. Based on such analysis and our comprehensive evaluations by
implementing the mappings in RDF2PG, we formally prove that two of the proposed mappings
are in fact satisfying these three properties and argue that it is indeed possible to transform any
RDF database into a PG database. In terms of data modeling, we can conclude that the PG
data model subsumes the information capacity of the RDF data model.

This chapter is based on the following publications [38, 39, 106]:

1. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Mapping RDF Databases to
Property Graphs. In IEEE Access, Volume 8, 2020.

2. Dominik Tomaszuk, Renzo Angles, and Harsh Thakkar. PGO: Describing Property
Graphs in RDF. In IEEE Access, Vol. 8, 2020.

3. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and Property Graphs
Interoperability: Status and Issues. In Proceedings of the 13th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Asunción (AMW 2019), Paraguay,
June 3-7, 2019.

The remainder of this chapter is structured into five sections, starting with Section 4.1, we
provide formal graph-based definitions of the notions of RDF graph, RDF graph schema,
Valid RDF graph; Section 4.2, provides formal definitions of the notions of a Property Graph,
Property Graph Schema, and Valid Property Graph; Section 4.3, presents and discusses the
novel direct RDF to Property graph mappings (and their properties) addressing both schema-
dependent and schema-independent data with concrete illustrations; Section 4.4, elaborates on
our implementation, experimental setup, methodology of the evaluation. It also presents the
findings from the results of the conducted experiments demonstrating the validity and scalability
of the proposed mappings and also it’s limitations; Finally, Section 4.5 concludes the chapter
outlining future work.

4.1 RDF Database (as an edge-labeled graph)

In this section, we formally introduce the main elements concerning RDF databases. Specifically,
we define the concepts of RDF graph, RDF graph Schema, and introduce the notion of a valid
RDF graph.

The Resource Description Framework (RDF) is a well-known W3C standard, which is used for
data modeling and encoding machine readable content on the Web [6] and within intranets. An
RDF graph can be seen as a set of triples, roughly analogous to nodes and edges in a graph
database. However, RDF is more specific in defining disjoint vertex-sets of Blank nodes, literals
and IRIs. In the rudimentary form, an RDF graph is a directed, edge-labeled, multigraph or
simply an edge-labeled graph.

Assume that I, B and L are three disjoint infinite sets, corresponding to IRIs, blank nodes
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and literals respectively. An IRI identifies a concrete web resource, a blank node identifies an
anonymous resource, and a literal is a basic value (e.g. a string, a number or a date). We will
use the term RDF resource to indicate any element in the set I ∪B.

4.1.1 RDF Graph

Informally, an RDF graph is a set of RDF triples. An RDF triple is a tuple t = (v1, v2, v3) where
v1 ∈ I ∪B is called the subject, v2 ∈ I is called the predicate and v3 ∈ I ∪B ∪ L is called the
object. Here, the subject represents a resource, the predicate represents a relationship of the
resource, and the object represents the value of such relationship. Given a set of RDF triples S,
we will use sub(S), pred(S) and obj(S) to denote the sets of subjects, predicates, and objects in
S respectively.

There are different data formats to encode a set of RDF triples, including Notation3 (N3) [176],
RDF/XML [177], N-Triples [178], Turtle [179] and N-Quads [180]. The following example shows
a set of RDF triples encoded using the Turtle data format.

Example 4.1.1. Consider a subset of RDF triples from DBpedia related to Elon Musk repres-
ented in the turtle [56] format.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix voc: <http://www.example.org/voc/> .
@prefix ex: <http://www.example.org/data/> .

ex:Tesla_Inc rdf:type voc:Organisation .
ex:Tesla_Inc voc:name "Tesla, Inc." .
ex:Tesla_Inc voc:creation "2003-07-01"^^xsd:date .
ex:Tesla_Inc voc:ceo ex:Elon_Musk .
ex:Tesla_Inc voc:location _:b1 .
ex:Elon_Musk rdf:type voc:Person .
ex:Elon_Musk voc:birthName "Elon Musk" .
ex:Elon_Musk voc:age "46"^^xsd:int .
_:b1 rdf:type voc:City .
_:b1 voc:name "Palo Alto" .
_:b1 voc:country _:b2 .
_:b2 rdf:type voc:Country .
_:b2 voc:name "US" .
_:b2 voc:is_location_of ex:Tesla_Inc .

The lines beginning with @prefix are prefix definitions and the rest are RDF triples. A prefix
definition associates a prefix (e.g. voc) with an IRI (e.g. http://www.example.org/voc/). Hence,
a full IRI like http://www.example.org/voc/Person can be abbreviated as a prefixed name
voc:Person. We will use prefix(r) and name(r) to extract the prefix and the name of an IRI r
respectively.
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In order to facilitate readability, we will use prefixed names instead of full URIs. Moreover,
we will assume that there exists a standard way to transform a full URI into a prefixed name,
and vice versa (e.g. by using an internal index or an external service like DRPD [181]). A
blank node is usually represented as _: followed by a blank node label which is a series of name
characters (e.g. _:b1). There are other ways to encode blank nodes (e.g. []), but we will use
the above for simplicity. Given a blank node b, the function lab(b) returns the label of b.

We will consider two types of literals: a simple literal which is a Unicode string (e.g. "Elon
Musk"), and a typed literal which consists of a string and a datatype IRI (e.g. "46"ˆˆxsd:int).
Numbers can be unquoted and boolean values may be written as either true or false. Given a
literal l, the function val(l) returns the string of l.

The example shows the six types of valid RDF triples: (iri, iri, iri) in line 5, (iri, iri, literal)
in line 6, (iri, iri, bnode) in line 9, (bnode, iri, iri) in line 13, (bnode, iri, literal) in line 14, and
(bnode, iri, bnode) in line 15. Any other combination is considered invalid.

A set of RDF triples can be visualized as a graph where the nodes represent the resources,
and the edges represent properties and values. However, the RDF model has a particular
feature: an IRI can be used as an object and predicate in an RDF graph. For instance, the
triple (voc:ceo, rdfs:label, "Chief Executive Officer") can be added to the graph shown in
Example 4.1.1 to include metadata about the property voc:ceo. It implies that an RDF graph is
not a traditional graph because it allows edges between edges, and consequently an RDF graph
cannot be visualized in a traditional way. Next, we introduce a formal definition of the RDF
data model which is able to support the above feature. Next, we formally define the notion of
an RDF graph.

Definition 2 (RDF Graph). An RDF graph is defined as a tuple
GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) where:

• NR is a finite set of nodes representing RDF resources (i.e. resource nodes divided in IRI
nodes and blank nodes);

• NL is a finite set of nodes representing RDF literals (i.e. literal nodes), satisfying that
NR ∩NL = ∅;

• EO is a finite set of edges called object property edges;

• ED is a finite set of edges called datatype property edges1, satisfying that EO ∩ED = ∅.;

• αR : NR → I ∪B is a total one-to-one function that associates each resource node with a
resource identifier (i.e. either a IRI or a blank node identifier);

• αL : NL → L is a total one-to-one function that associates each literal node with a single
literal;

• βO : EO → (NR ×NR) is a total function that associates each object property edge with a
1 The terms “object property” and “datatype property” have been taken from the Web Ontology Language
(OWL) [182]
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pair of resource nodes;

• βD : ED → (NR × NL) is a total function that associates each datatype property edge
with a resource node and a literal node;

• δ: (NR ∪NL ∪ EO ∪ ED)→ I is a partial function that assigns a resource class label to
each node or edge.

Note that the function δ has been defined as being partial in order to support a partial connection
between schema and data (which is usual in real RDF datasets). However, it is possible to
define the following simple procedure to make the function δ total: For each resource r ∈ NR, if
r /∈ dom(δ) then assign δ(r) = rdfs:Resource. Therefore, we will assume that every resource in
an RDF graph defines its resource class.

Concerning the issue about an IRI u occurring as both resource and property, note that u will
occur as resource and property separately. In such a case, we will have a bipartite graph. The
same applies for blank nodes.

Given a set of RDF triples S, the procedure to create a formal RDF graph
GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) from S is defined as follow:

• For every resource r ∈ sub(S), there is a node n ∈ NR with αR(n) = r;

– If (r, rdf:type, c) ∈ S then δ(n) = c, else δ(n) = rdfs:Resource;

• For every literal l ∈ obj(S) ∩ L, there is a node n ∈ NL;

– If l is a simple literal then αL(n) = l and δ(n) = xsd:string;

– If l is a typed literal of the form valueˆˆdatatype then αL(n) = value and δ(n) =
datatype;

• For every triple (s, p, o) ∈ S where o ∈ I ∪B, there is an edge e ∈ EO with δ(e) = p and
βO(e) = (n, n′), such that αR(n) = s and αR(n′) = o;

• For every triple (s, p, o) ∈ S where o ∈ L, there is an edge e ∈ ED with δ(e) = p and
βD(e) = (n, n′), such that αR(n) = s and αL(n′) = o.

The RDF triples shown in example 4.1.1 can be graphically represented as an edge-labeled
graph, referred to as an RDF graph, is shown in Figure 4.1. We can represent the sample RDF
from Figure 4.1, using the formal definition mentioned above as follows:

1 NR = {n1, n2, n3, n4} ,
2 NL = {n5, n6, n7, n8, n9, n10} ,
3 EO = {e1, e2, e3, e4} ,
4 ED = {e5, e6, e7, e8, e9, e10} ,
5 αR(n1) = ex:Tesla_Inc , αR(n2) = ex:Elon_Musk , αR(n3) = _:b1 , αR(n4) = _:b2 ,
6 αL(n5) = "Tesla, Inc." , αL(n6) = "2003-07-01" , αL(n7) = "Elon Musk" , αL(n8) = "46" ,

αL(n9) = "Palo Alto" , αL(n10) = "US" ,
7 βO(e1) = (n1, n2) , βO(e2) = (n1, n3) , βO(e3) = (n3, n4) , βO(e4) = (n4, n1) ,
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Figure 4.1: A graphical illustration of an RDF graph describing information about Elon Musk and Tesla
Incorporation. We use abbreviated IRIs throughout this chapter.

8 βD(e5) = (n1, n5) , βD(e6) = (n1, n6) , βD(e7) = (n2, n7) , βD(e8) = (n2, n8) ,
βD(e9) = (n3, n9) , βD(e10) = (n4, n10) ,

9 δ(n1) = voc:Organisation , δ(n2) = voc:Person ,
10 δ(n3) = voc:City , δ(n4) = voc:Country
11 δ(n5) = xsd:string , δ(n6) = xsd:date ,
12 δ(n7) = xsd:string , δ(n8) = xsd:int ,
13 δ(n9) = xsd:string , δ(n10) = xsd:string ,
14 δ(e1) = voc:ceo , δ(e2) = voc:location , δ(e3) = voc:country , δ(e4) = voc:is_location_of ,

δ(e5) = voc:name , δ(e6) = voc:creation , δ(e7) = voc:birthName , δ(e8) = voc:age ,
δ(e9) = voc:name , δ(e10) = voc:name .

Additionally, Figure 4.1 shows a graphical representation of the RDF graph described above.
The IRI nodes are represented as ellipses, the blank nodes are represented as dotted ellipses
and literal nodes are presented as rectangles. Each node is labeled with two IRIs: the inner
IRI indicates the resource identifier, and the outer IRI indicates the resource class of the node.
Each edge is labeled with an IRI that indicates its property class. We use balloons to indicate
the object identifiers.
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4.1.2 RDF Graph Schema

RDF Schema (RDFS) [8] defines a standard vocabulary (i.e., a set of terms, each having a
well-defined meaning) which enables the description of resource classes and property classes.
From a database perspective, RDF Schema allows to define the structure of the data in an RDF
graph, i.e. a schema for RDF data.

In order to describe classes of resources and properties, the RDF Schema vocabulary defines the
following terms: rdfs:Class and rdf:Property represent the classes of resources, and properties
respectively; rdf:type can be used (as property) to state that a resource is an instance of a
class; rdfs:domain and rdfs:range allow to define domain resource classes and range domain
classes for a property, respectively. Note that rdf: and rdfs: are the prefixes for RDF and
RDFS respectively.

An RDF Schema description consists into a set of RDF triples, so it can be encoded using RDF
data formats. The following example shows an RDF Schema document which describes the
structure of the data shown in Example 4.1.1, using the Turtle data format.

Example 4.1.2. The schema of the RDF graph (cf. Figure 4.1) extracted from DBpedia related
to Elon Musk represented in the turtle [56] format, below:

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix voc: <http://www.example.org/voc/> .

voc:Organisation rdf:type rdfs:Class .
voc:Person rdf:type rdfs:Class .
voc:City rdf:type rdfs:Class .
voc:Country rdf:type rdfs:Class .
xsd:string rdf:type rdfs:Class .
xsd:date rdf:type rdfs:Class .
xsd:int rdf:type rdfs:Class .
voc:ceo rdf:type rdf:Property .
voc:ceo rdfs:domain voc:Organisation .
voc:ceo rdfs:range voc:Person .
voc:location rdfs:domain voc:Organisation .
voc:location rdfs:range voc:City .
voc:country rdf:type rdf:Property .
voc:country rdfs:domain voc:City .
voc:country rdfs:range voc:Country .
voc:is_location_of rdf:type rdf:Property .
voc:is_location_of rdfs:domain voc:City .
voc:is_location_of rdfs:range voc:Organisation .
voc:name rdf:type rdf:Property .
voc:name rdfs:domain voc:Organisation .
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voc:name rdfs:domain voc:City .
voc:name rdfs:domain voc:Country .
voc:name rdfs:range xsd:string .
voc:creation rdf:type rdf:Property .
voc:creation rdfs:domain voc:Organisation .
voc:creation rdfs:range xsd:date .
voc:location rdf:type rdf:Property .
voc:birthName rdf:type rdf:Property .
voc:birthName rdfs:domain voc:Person .
voc:birthName rdfs:range xsd:string .
voc:age rdf:type rdf:Property .
voc:age rdfs:domain voc:Person .
voc:age rdfs:range xsd:int .

Note that: a resource class rc is defined by a triple of the form (rc rdf:type rdfs:Class); a
property class pc is defined by a triple of the form (pc rdf:type rdf:Property); a triple (pc
rdfs:domain rc1) indicates that the resource class rc1 is part of the domain of pc (i.e. a resource
of class rc1 could have an outgoing property pc); a triple (pc rdfs:range rc2) indicates that the
resource class rc2 is part of the range of pc (i.e. a resource of class rc1 could have an incoming
property pc).

If the range of a property class pc is a resource class (defined by the user), then pc is called
an object property (e.g. voc:ceo). If the range is a datatype class, defined by RDF Schema
or another vocabulary, then pc is called a datatype property (e.g. age). The IRIs xsd:string,
xsd:integer and xsd:dateTime are examples of datatypes defined by XML Schema [183]. Let
IDT ⊂ I be the set of RDF datatypes.

Note that the RDF schema presented in Example 4.1.2 provides a complete description of
resource classes and property classes. However, in practice, it is possible to find incomplete or
partial RDF schema descriptions. In particular, a datatype could not be defined as a resource
class, and a property could not define its domain or its range.

We will assume that a partial schema can be “normalized” to be a total schema. In this
sense, we will use the term rdfs:Resource2 to complete the definition of properties without
domain or range. For instance, suppose that our sample RDF Schema does not define the range
of the property class voc:ceo. In such case, we will include the triple (voc:ceo, rdfs:range,
rdfs:Resource) to complete the definition of voc:ceo.

Now, we introduce the notion of RDF graph schema as a formal way to represent an RDF schema
description. Assume that IV ⊂ I is the set that includes the RDF Schema terms rdf:type,
rdfs:Class, rdfs:Property, rdfs:domain and rdfs:range.

Definition 3 (RDF Graph Schema). An RDF graph schema is defined as a tuple SR =
(NS , ES , φ, ϕ) where:

• NS is a finite set of nodes representing resource classes;
2 According to the RDF Schema specification [8], rdfs:Resource denotes the class of everything.
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• ES is a finite set of edges representing property classes;

• φ : (NS ∪ ES)→ I \ IV is a total function that associates each node or edge with an IRI
representing a class identifier;

• ϕ: ES → (NS ×NS) is a total function that associates each property class with a pair of
resource classes.

Recall that IDT denotes the set of RDF datatypes. Given an RDF Schema description D, the
procedure to create an RDF graph schema SR = (NS , ES , φ, ϕ) from D is given as follows:

1. Let C = {rc | (rc, rdf:type, rdfs:Class) ∈ D∨(pc, rdfs:domain, rc) ∈ D∨(pc, rdfs:range, rc) ∈
D}

2. For each rc ∈ C, we create n ∈ NS with φ(n) = rc

3. For each pair of triples (pc, rdfs:domain, rc1) and (pc, rdfs:range, rc2) in D, we create
e ∈ ES with φ(e) = pc and ϕ(e) = (n1, n2), satisfying that n1, n2 ∈ NS , φ(n1) = rc1 and
φ(n2) = rc2.

According to the above definition, the RDF graph schema shown in Example 4.1.2 can be
formally represented as follows:

1 NS = {n1, n2, n3, n4, n5, n6, n7} ,
2 ES = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10} ;
3 φ(n1) = {voc:Organisation} , φ(n2) = {voc:Person} , φ(n3) = {voc:City} ,

φ(n4) = {voc:Country} , φ(n5) = {xsd:string} , φ(n6) = {xsd:date} , φ(n7) = {xsd:int}
4 φ(e1) = {voc:ceo} , φ(e2) = {voc:location} , φ(e3) = {voc:country} ,

φ(e4) = {voc:is_location_of} , φ(e5) = {voc:name} , φ(e6) = {voc:creation} ,
φ(e7) = {voc:birthName} , φ(e8) = {voc:age} , φ(e9) = {voc:name} ,
φ(e10) = {voc:name} ,

5 ϕ(e1) = (n1, n2) , ϕ(e2) = (n1, n3) , ϕ(e3) = (n3, n4) , ϕ(e4) = (n4, n1) , ϕ(e5) = (n1, n5) ,
ϕ(e6) = (n1, n6) , ϕ(e7) = (n2, n5) , ϕ(e8) = (n2, n7) , ϕ(e9) = (n3, n5) ,
ϕ(e10) = (n4, n5) .

Figure 4.2 shows a graphical representation of an RDF schema description from example 4.1.2.

4.1.3 Valid RDF Graph

Given the definitions of RDF graph and RDF graph schema, we introduce the notion of Valid
RDF graph as the procedure to verify that an RDF graph satisfies the data and structure
restrictions established by an RDF graph schema.

Definition 4 (Valid RDF graph). Given an RDF graph schema SR = (NS , ES , φ, ϕ) and an
RDF graph GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ), we say that GR is valid with respect to
SR, denoted as GR |= SR, iff:
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Figure 4.2: The Schema of the RDF graph shown in Figure 4.1.

1. for each r ∈ NR ∪NL, it applies that there is rc ∈ NS where δ(r) = φ(rc);

2. for each e ∈ EO with βO(e) = (n, n′), it applies that there is pc ∈ ES where δ(e) = φ(pc),
ϕ(pc) = (rc, rc′), δ(n) = φ(rc) and δ(n′) = φ(rc′).

3. for each e ∈ ED with βD(e) = (n, n′), it applies that there is pc ∈ ES where δ(e) = φ(pc),
ϕ(pc) = (rc, rc′), δ(n) = φ(rc) and δ(n′) = φ(rc′).

Here, condition (1) validates that every resource node is labeled with a resource class defined
by the schema; condition (2) verifies that each object property edge, and the pairs of resource
nodes that it connects, are labeled with the corresponding resource classes; and condition (3)
verifies that each datatype property edge, and the pairs of nodes that it connects (i.e. a resource
node and a literal node), are labeled with the corresponding resource classes.

Finally, we present the notion of RDF database.

Definition 5 (RDF Database). An RDF database is a pair (SR, GR) where SR is an RDF
graph schema and GR is an RDF graph satisfying that GR |= SR.
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4.2 Property Graph Database

In this section, we introduce the main elements comprising of Property graph (PG) databases
(or simply graph databases). Specifically, we formally define the concepts of a Property graph,
Property graph Schema, and a valid Property graph. Furthermore, we illustrate these concepts
via corresponding examples.

4.2.1 Property Graph

A Property Graph is a labeled directed multigraph whose main characteristic is that nodes and
edges can contain a set (possibly empty) of name-value pairs referred to as properties. From
the point of view of data modeling, each node represents an entity, each edge represents a
relationship (between two entities), and each property represents a specific characteristic (of an
entity or a relationship). Currently, there are no standard definitions for the notions of PG and
PG Schema. We therefore present formal definitions that cover most of the features provided by
current PG database systems.

Example 4.2.1. Consider an example of a Property graph data representation, related to Elon
Musk and Tesla Incorporation, represented using the GraphML [73] format below:

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">

<key id="a0" for="node" attr.name="label" attr.type="string"/>
<key id="a1" for="node" attr.name="birthName" attr.type="string"/>
<key id="a2" for="node" attr.name="name" attr.type="string"/>
<key id="a3" for="node" attr.name="age" attr.type="int"/>
<key id="a4" for="node" attr.name="creation" attr.type="string"/>
<key id="a5" for="edge" attr.name="label" attr.type="string"/>
<key id="a6" for="edge" attr.name="since" attr.type="int"/>

<graph id="G" edgedefault="directed">
<node id="n0">
<data key="a0">Person</data>
<data key="a1">Elon Reeve Musk</data>
<data key="a3">46</data>
</node>
<node id="n1">
<data key="a0">Organisation</data>
<data key="a2">Tesla, Incorporation</data>
<data key="a4">2003-07-01</data>
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Figure 4.3: A graphical representation of a Property Graph.

<edge id="e0" source="n0" target="n2">
<data key="a5">ceo</data>
<data key="a6">2003</data>
</edge>
</graph>
</graphml>

Figure 4.3 presents the GraphML data from example 4.2.1 in a graphical representation of a
Property Graph. The circles represent nodes, the arrows represent edges, and the boxes contain
the properties for nodes and edges. Next we introduce a formal definition for this graph-based
structure.

Assume that L is an infinite set of labels (for nodes, edges and properties), V is an infinite set of
(atomic or complex) values, and T is a finite set of data types (e.g. string, integer, date, etc.). A
value in V will be distinguished as a quoted string. Given a value v ∈ V, the function type(v)
returns the datatype of v. Given a set S, P+(S) denotes the set of non-empty subsets of S.

Definition 6 (Property Graph). A Property Graph is defined as a tupleGP = (N,E,P,Γ,Υ,Σ,∆)
where:

• N is a finite set of nodes, E is a finite set of edges, P is a finite set of properties, and N,E,P
are mutually disjoint sets;

• Γ : (N ∪ E)→ L is a total function that associates each node or edge with a label;

• Υ : P→ (L× V) is a total function that assigns a label-value pair to each property.

• Σ : E→ (N× N) is a total function that associates each edge with a pair of nodes;

• ∆ : (N ∪ E) → P+(P) is a partial function that associates a node or edge with a non-
empty set of properties, satisfying that ∆(o1) ∩ ∆(o2) = ∅ for each pair of objects
o1, o2 ∈ dom(∆)

The above definition supports PGs with the following features: a pair of nodes can have zero
or more edges; each node or edge has a single label; each node or edge can have zero or more
properties; and a node or edge can have the same label-value pair one or more times.

On the other side, the above definition does not support multiple labels for nodes or edges. We
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have two reasons to justify this restriction. First, this feature is not supported by all graph
database systems. Second, it complicates the definition of schema-instance consistency.

Given two nodes n1, n2 ∈ N and an edge e ∈ E, satisfying that Σ(e) = (n1, n2), we will use
e = (n1, n2) as a shorthand representation for e, where n1 and n2 are called the “source node”
and the “target node” of e respectively. Furthermore, it is possible for two nodes/edges to
have the same properties values, but not the same property objects (i.e. σ(o1) ∩ σ(o2) = ∅).
Given the above definition, the sample property graph presented in Figure 4.3 can be formally
described as follows:

1 N = {n1, n2} ,
2 E = {e1} ,
3 P = {p1, p2, p3, p4, p5} ,
4 Γ(n1) = {Organisation} , Γ(n2) = {Person} ,
5 Γ(e1) = {ceo} ,
6 Υ(p1) = (name, "Tesla, Inc.") , Υ(p2) = (creation, 2003-07-01) ,

Υ(p3) = (birthName, "Elon Musk") , Υ(p4) = (age, 46) , Υ(p5) = (since, 2003)
7 Σ(e1) = {n1, n2} ,
8 ∆(n1) = {p1, p2} , ∆(n2) = {p3, p4} , ∆(e1) = {p5} .

4.2.2 Property Graph Schema

A Property graph schema defines the types of nodes, edges and properties allowed in a given
Property graph database. As with relational databases, the schema allows to define and validate
the structure of a property graph. In GraphML [73], the schema information is embedded within
the data itself, which is defined by the XML attribute-tags. For the GraphML document to be
valid, it is necessary to have the headers defined either in a DTD (document type definition) or
an XML schema.

Example 4.2.2. Consider an example of a Property graph schema data, corresponding to the
example 4.2.1, represented in GraphML [73] format below:

<?xml version="1.0" encoding="UTF-8"?>
<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<key id="a0" for="node" attr.name="label" attr.type="string"/>
<key id="a1" for="node" attr.name="birthName" attr.type="string"/>
<key id="a2" for="node" attr.name="age" attr.type="int"/>
<key id="a3" for="node" attr.name="creation" attr.type="string"/>
<key id="a4" for="edge" attr.name="label" attr.type="string"/>
<key id="a5" for="edge" attr.name="since" attr.type="int"/>
<graph id="G" edgedefault="directed">
</graph>
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Figure 4.4: The Schema of the Property Graph as shown in Fig. 4.3.

</graphml>

Figure 4.4 shows a graphical representation of a Property graph schema data from example
4.2.2.

Next, we present the formal definitions of Property Graph Schema and introduce the notion of
Valid Property Graph.

Definition 7 (Property Graph Schema). A property graph schema is defined as a tuple
SP = (NS ,ES ,PS ,Θ,Π,Φ,Ψ) where:

• NS is a finite set of node types;

• ES is a finite set of edge types;

• PS is a finite set of property types;

• Θ : (NS ∪ ES)→ L is a total function that assigns a label to each node or edge;

• Π : PS → (L× T) is a total function that associates each property type with a property
label and a data type;

• Φ : ES → (NS × NS) is a total function that associates each edge type with a pair of node
types;

• Ψ : (NS ∪ ES)→ P+(PS) is a partial function that associates a node or edge type with a
non-empty set of property types, satisfying that Ψ(o1)∩Ψ(o2) = ∅, for each pair of objects
o1, o2 ∈ dom(Ψ)

The property graph schema shown in Figure 4.4 can be formally described using our formal
definition as follows:

1 NS = {n1, n2} ,
2 ES = {e1} ,
3 PS = {p1, p2, p3, p4, p5} ,
4 Θ(n1) = {Organisation} , Θ(n2) = {Person} , Θ(e1) = {ceo} ,
5 Π(p1) = (name,String) , Π(p2) = (creation,Date) , Π(p3) = (birthName, String) ,

Π(p4) = (age, Integer) , Π(p5) = (since,Date) ,
6 Φ(e1) = (n1, n2) ,
7 Ψ(n1) = {p1, p2} , Ψ(n2) = {p3, p4} , Ψ(e1) = {p5}
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4.2.3 Valid Property Graph

Given the definitions of Property graph and Property graph schema, we introduce the notion of
Valid Property graph as the procedure to verify that an Property graph satisfies the data and
structure restrictions established by an Property graph schema.

Definition 8 (Valid Property Graph). Given a PG schema SP = (NS ,ES ,PS ,Θ,Π,Φ,Ψ) and a
PG GP = (N,E,P,Γ,Υ,Σ,∆), we say that GP is valid with respect to SP , denoted as GP |= SP ,
iff:

1. for each n ∈ N, it applies that there is nt ∈ NS satisfying that:

(a) Γ(n) = Θ(nt);

(b) for each p ∈ ∆(n), there is pt ∈ Ψ(nt) satisfying that Υ(p) = (l, v) and Π(tp) =
(l, type(v)).

2. for each e = (n, n′) ∈ E, it applies that there is et ∈ ES with Φ(et) = (nt, nt′) satisfying
that:

(a) Γ(e) = Θ(et), Γ(n) = Θ(nt), Γ(n′) = Θ(nt′);

(b) for each p′ ∈ ∆(e), there is pt′ ∈ Ψ(et) satisfying that Υ(p′) = (l′, v′) and Π(pt′) =
(l′, type(v′)).

Here, condition (1a) validates that every node is labeled with a node type defined by the schema;
condition (1b) verifies that each node contains the properties defined by its node type; condition
(2a) verifies that each edge, and the pairs of nodes that it connects, are labeled with an edge
type, and the corresponding node types; and condition (2b) verifies that each edge contains the
properties defined by the schema.

Finally, we present the notion of PG database.

Definition 9 (Property Graph Database). A property graph database DP is a pair (SP , GP )
where SP is a PG schema and GP is a PG satisfying that GP |= SP .

4.3 Direct Mappings for Data Transformation

In this section, we formally define the mappings for transforming RDF graphs (source model)
into the Property graphs (PGs) (target model).

Upon comparison of RDF graphs and PGs, we see that both share the main characteristics
of a traditional labeled directed graph, that is, nodes and edges contain labels, the edges are
directed, and multiple edges are possible between a given pair of nodes. However, there are also
some differences between them:
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• An RDF graph allows three types of nodes (IRIs, blank nodes and literals) whereas a PG
allows a single type of node;

• Each node or edge in an RDF graph contains just a single value (i.e. a label), whereas
each node or edge in a PG could contain multiple labels and properties respectively;

• An RDF graph supports multi-value properties, whereas a PG usually just support
mono-value properties;

• An RDF graph allows to have edges between edges, a feature which isn’t supported in a
PG (by definition);

• A node in an RDF graph could be associated with zero or more classes or resources, while
a node in a PG usually has a single node type.

In addition to the above structural differences, RDF Schema gives special semantics to the
terms in its vocabulary. For example, the terms rdf:Statement, rdf:subject, rdf:predicate and
rdf:object can be used to describe explicitly RDF statements. This feature, called “reification”,
is not studied in this article as it is rarely used in practice.

A very interesting feature of both, RDF and PG databases, is the support for schema-less
databases, i.e. the databases could not have a fixed data structure. In the particular case of
RDF, it it possible to find three types of datasets: datasets without schema definitions, datasets
that merge data and schema; and datasets that separate schema and instance.

Depending on whether or not the input RDF dataset has schema, the database mappings can
be classified into two types: (i) schema-dependent: one that generates a target PG schema
from the input RDF graph schema, and then transforms the RDF graph into a PG; and (ii)
schema-independent: one that creates a generic PG schema (based on a predefined structure)
and then transforms the RDF graph into a PG. Additionally, we maintain a dictionary (e.g.
DRPD [181]) which preserves the prefix form of IRIs (e.g. dbo:Person) with their extended
form (http://dbpedia.org/ontology/Person) and the class label ("Person") associated with
them. We now formally define and discuss each of the two types of direct transformations.

4.3.1 Simple Database Mapping (SDM)

This section describes the schema-independent database mapping DM1 which allows to transform
an schema-less RDF database into a schema-less PG database. DM1 is just composed of an
instance mapping which allows to transform the input RDF graph into a PG graph.

Given an RDF database DR = (∅, GR), we define the database mapping DM1 = (∅, IM1) such
that DM1(DR) = (∅, GP ) where GP = IM1(GR). The instance mapping IM1 is defined next.

Instance Mapping IM1

The instance mapping IM1 is defined as follows:
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Definition 10 (Instance mapping IM1). Let GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) be
an RDF graph and GP = (N,E,P,Γ,Υ,Σ,∆) be a PG. The instance mapping IM1(GR) = GP

is defined as follows:

1. For each r ∈ NR

• There will be n ∈ N with Γ(n) = name(δ(r))

2. For each op ∈ EO satisfying that βO(op) = (r, r′) where r, r′ ∈ NR

• There will be e ∈ E with Γ(e) = name(δ(op)) and Σ(e) = (n1, n2) where n1, n2 ∈ N
correspond to r, r′ respectively.

3. For each dp ∈ ED satisfying that βD(dp) = (r, l) where r ∈ NR and l ∈ NL

• There will be p ∈ P with Υ(p) = (name(δ(dp)), αL(l))

• ∆(n) = ∆(n) ∪ p such that n ∈ N corresponds to r.

In general terms, the instance mapping IM1 creates PG nodes from resource nodes, PG
properties from datatype properties, and PG edges from object properties. Nodes, edges and
properties are labeled with the name of the corresponding resource class label (defined by the
function δ) or the name of the resource identifier (when function δ is undefined).

For example, the PG obtained after applying IM1 over the RDF graph shown in Figure 4.1 is
shown in the listing 4.3.1 below:

1 N = {n1, n2, n3, n4} ,
2 E = {e1, e2, e3, e4} ,
3 P = {p5, p6, p7, p8, p9, p10} ,
4 Γ(n1) = Organisation , Γ(n2) = Person , Γ(n3) = City , Γ(n4) = Country , Γ(e1) = ceo ,

Γ(e2) = location , Γ(e3) = country , Γ(e4) = is_location_of
5 Υ(p5) = (name, "Tesla, Inc.") , Υ(p6) = (creation, "2003-07-01") ,

Υ(p7) = (birthName, "Elon_Musk") , Υ(p8) = (age, "46") , Υ(p9) = (name, "Palo Alto") ,
Υ(p10) = (name, "US")

6 Σ(e1) = {n1, n2} , Σ(e2) = {n1, n3} , Σ(e3) = {n3, n4} , Σ(e4) = {n4, n1} ,
7 ∆(n1) = {p5, p6} , ∆(n2) = {p7, p8} , ∆(n3) = {p9} , ∆(n4) = {p10} .

Figure 4.5 shows a graphical representation of the PG described above.

Properties of DM1

In this section we evaluate the properties of the database mapping DM1, i.e. computability,
semantics preservation and information preservation. Recall that DM1 just contains the instance
mapping IM1, and the output is a PG database without RDF graph schema.

Proposition 1. The database mapping DM1 is computable.
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Figure 4.5: Property graph obtained after applying the instance mapping IM1 to the RDF graph shown
in Figure 4.1.

It is easy to see that the procedure presented in Definition 10 can be implemented as an
algorithm.

Proposition 2. The database mapping DM1 is semantic preserving.

Note that DM1 assumes that there is no RDF graph schema, i.e. no schema restrictions are
considered. Moreover, the output PG database does not contain a PG schema. Hence, it is
straightforward to see that DM1 is semantic preserving.

Proposition 3. The database mapping DM1 is not information preserving.

Note that the instance mapping IM1 loses multiple pieces of information from the input RDF
graph. In particular, it extracts simple labels from IRIs and blank nodes (e.g. by removing the
namespace part of a IRI). Hence, it is not possible to define an inverse mapping which is able to
reconstruct all the original information.

Although the database mapping DM1 does not satisfy the information preservation property,
it is a simple method to transform RDF datasets that contains a merge of data and schema.
In particular, it works well with RDF graphs where each resource defines its resource class by
means of the rdf:type term.

4.3.2 Generic Database Mapping (GDM)

This section describes the schema-independent database mapping DM2 which allows to transform
a schema-less RDF database into a complete PG database. DM2 is composed of a schema
mapping SM2 and an instance mapping IM2 such that SM2 generates a “generic” PG schema
(always the same) and IM2 allows to generate a PG graph from the input RDF graph.

Given an RDF database DR = (∅, GR), we define the database mapping DM2 = (SM2, IM2)
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such that DM2(DR) = (SP , GP ) where SP is a generic PG schema and GP = IM2(GR). The
schema mapping SM2 and the instance mapping IM2 are defined next.

Generic Property Graph Schema

First we introduce a property graph schema which is able to model any RDF graph.

Definition 11 (Generic Property Graph Schema). Let S∗ = (NS ,ES ,PS ,Θ,Π,Φ,Ψ) be the PG
schema defined as follows:

1 NS = {n1, n2, n3} ,
2 ES = {e1, e2, e3, e4, e5, e6} ,
3 PS = {p1, p2, p3, p4, p5, p6} ,
4 Θ(n1) = {Resource} , Θ(n2) = {BlankNode} , Θ(n3) = {Literal} ,
5 Θ(e1) = {ObjectProperty} , Θ(e2) = {ObjectProperty} , Θ(e3) = {ObjectProperty} ,

Θ(e4) = {ObjectProperty} , Θ(e5) = {DatatypeProperty} ,
Θ(e6) = {DatatypeProperty} ,

6 Π(p1) = (iri, String) , Π(p2) = (type,String) , Π(p3) = (id, String) , Π(p4) = (type,String) ,
Π(p5) = (value,String) , Π(p6) = (type, String) , Π(p7) = (type,String) ,
Π(p8) = (type,String) , Π(p9) = (type, String) ,

7 Φ(e1) = (n1, n1) , Φ(e2) = (n2, n2) , Φ(e3) = (n1, n2) , Φ(e4) = (n2, n1) , Φ(e5) = (n1, n3) ,
Φ(e6) = (n2, n3) ,

8 Ψ(n1) = {p1, p2} , Ψ(n2) = {p3, p4} , Ψ(n3) = {p5, p6} ,
9 Ψ(e1) = {p7} , Ψ(e2) = {p8} , Ψ(e3) = {p9} .

In the above definition: the node type Resource will be used to represent RDF resources, the
node type Literal will be used to represent RDF literals, the edge type ObjectProperty allows
to represent object properties (i.e. relationships between RDF resources), and the edge type
DatatypeProperty allows representing datatype properties (i.e. relationships between an RDF
resource an a literal). Figure 4.6 shows a graphical representation of the generic PG schema.

Instance Mapping IM2

Now, we define the instance mapping IM2 which takes an RDF graph and produces a PG
following the restrictions established by the generic PG schema defined above.

Definition 12 (Instance mapping IM2). Let GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) be
an RDF graph and GP = (N,E,P,Γ,Υ,Σ,∆) be a PG. The instance mapping IM2(GR) = GP

is defined as follows:

1. For each r ∈ NR

• There will be n ∈ N with Γ(n) = Resource
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Figure 4.6: A generic Property graph schema.

• There will be p ∈ P

• If αR(r) ∈ I then Υ(p) = (iri, αR(r))

• If αR(r) ∈ B then Υ(p) = (id, αR(r))

• There will be p′ ∈ P with Υ(p′) = (type, δ(r))

• ∆(n) = {p, p′}

2. For each l ∈ NL

• There will be n ∈ N with Γ(n) = Literal

• There will be p ∈ P with Υ(p) = (value, αL(l))

• There will be p′ ∈ P with Υ(p′) = (type, δ(l))

• ∆(n) = {p, p′}

3. For each op ∈ EO satisfying that βO(op) = (r1, r2) where r1, r2 ∈ NR

• There will be e ∈ E with Γ(e) = ObjectProperty, and Σ(e) = (n1, n2) where n1, n2 ∈ N
correspond to r1, r2 ∈ NR respectively

• There will be p ∈ P with Υ(p) = (type, δ(op))

• ∆(e) = {p}
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4. For each dp ∈ ED satisfying that βD(dp) = (r, l) where r ∈ NR and l ∈ NL

• There will be e ∈ E with Γ(e) = DatatypeProperty, and Σ(e) = (n1, n2) where
n1, n2 ∈ N correspond to r and l respectively

• There will be p ∈ P with Υ(p) = (type, δ(dp))

• ∆(e) = {p}

According to the above definition, the instance mapping IM2 creates PG nodes from resource
nodes and literal nodes, and PG edges from datatype properties and object properties. The
property type is used to maintain resource class identifiers and RDF datatypes. The property
iri is used to store the IRI of RDF resources and properties. The property value is used to
maintain a literal value.

For example, the PG obtained after applying IM2 over the RDF graph shown in Figure 4.1 is
shown in the listing 4.3.2 below:

1 N = {n1, . . . , n10} ,
2 E = {e1, . . . , e10} ,
3 P = {p1, . . . , p30} ,
4 Γ(n1) = Resource , Υ(p1) = (iri, "ex:Tesla_Inc") , Υ(p2) = (type, "voc:Organisation") ,

∆(n1) = {p1, p2} ,
5 Γ(n2) = Resource , Υ(p3) = (iri, "ex:Elon_Musk") , Υ(p4) = (type, "voc:Person") ,

∆(n2) = {p3, p4} ,
6 Γ(n3) = BlankNode , Υ(p5) = (id, "_:b1") , Υ(p6) = (type, "voc:City") , ∆(n3) = {p4, p5} ,
7 Γ(n4) = BlankNode , Υ(p7) = (id, "_:b2") , Υ(p8) = (type, "voc:City") , ∆(n4) = {p6, p7} ,
8 Γ(n5) = Literal , Υ(p9) = (value, "Tesla, Inc.") , Υ(p10) = (type, "xsd:string") ,

∆(n5) = {p9, p10} ,
9 Γ(n6) = Literal , Υ(p11) = (value, "2003-07-01") , Υ(p12) = (type, "xsd:date") ,

∆(n6) = {p11, p12} ,
10 Γ(n7) = {Literal} , Υ(p13) = (value, "Elon Musk") , Υ(p14) = (type, "xsd:string") ,

∆(n7) = {p13, p14} ,
11 Γ(n8) = {Literal} , Υ(p15) = (value, "46") , Υ(p16) = (type, "xsd:int") , ∆(n8) = {p15, p16} ,
12 Γ(n9) = {Literal} , Υ(p17) = (value, "Palo Alto") , Υ(p18) = (type, "xsd:string") ,

∆(n9) = {p17, p18} ,
13 Γ(n10) = {Literal} , Υ(p19) = (value, "US") , Υ(p20) = (type, "xsd:string") ,

∆(n10) = {p19, p20} ,
14 Γ(e1) = ObjectProperty , Σ(e1) = {n1, n2} , Υ(p21) = (type, "voc:ceo") , ∆(e1) = {p21} ,
15 Γ(e2) = ObjectProperty , Σ(e2) = {n1, n3} , Υ(p22) = (type, "voc:location") , ∆(e2) = {p22}

,
16 Γ(e3) = ObjectProperty , Σ(e3) = {n3, n4} , Υ(p23) = (type, "voc:country") , ∆(e3) = {p23}

,
17 Γ(e4) = ObjectProperty , Σ(e4) = {n3, n4} , Υ(p24) = (type, "voc:is_location_of") ,

∆(e4) = {p24} ,
18 Γ(e5) = DatatypeProperty , Σ(e5) = {n3, n5} , Υ(p25) = (type, "voc:name") , ∆(e5) = {p25}

,
19 Γ(e6) = DatatypeProperty , Σ(e6) = {n1, n6} , Υ(p26) = (type, "voc:creation") ,
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Figure 4.7: Property graph obtained after applying the instance mapping IM2 to the RDF graph shown
in Figure 4.1.

∆(e6) = {p26} ,
20 Γ(e7) = DatatypeProperty , Σ(e7) = {n2, n7} , Υ(p27) = (type, "voc:birthName") ,

∆(e7) = {p27} ,
21 Γ(e8) = DatatypeProperty , Σ(e8) = {n2, n8} , Υ(p28) = (type, "voc:age") , ∆(e8) = {p28} ,
22 Γ(e9) = DatatypeProperty , Σ(e9) = {n3, n9} , Υ(p29) = (type, "voc:name") , ∆(e9) = {p29}

,
23 Γ(e10) = DatatypeProperty , Σ(e10) = {n4, n10} , Υ(p30) = (type, "voc:name") ,

∆(e10) = {p30} .

Figure 4.7 shows a graphical representation of the PG described above.

Properties of DM2

In this section we evaluate the properties of the database mapping DM2. Recall that DM2 is
a formed by the schema mapping SM2 and the instance mapping IM2, where SM2 always
creates a generic PG schema S∗.

Proposition 4. The database mapping DM2 is computable.
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It is not difficult to see that an algorithm can be created from the description of the instance
mapping IM2, presented in Definition 12.

Lemma 1. The database mapping DM2 is semantics preserving.

It is straightforward to see (by definition) that any PG graph created with the instance mapping
IM2 will be valid with respect to the generic PG schema S∗.

Theorem 1. The database mapping DM2 is information preserving.

In order to prove that DM2 is information preserving, we need to provide a database mapping
DM−1

2 which allows to transform a PG database into an RDF database, and show that for
every RDF database DR, it applies that DR = DM−1

2 (DM2(DR).

Recalling that the objective of this section is to provide a schema-independent database mapping,
we will assume that for any RDF database DR = (SR, GR), the RDF graph schema SR is null
or irrelevant to validate GR. Hence, we just define an instance mapping IM−1

2 which allows
to transform a PG graph into an RDF database, such that for every RDF graph GR, it must
satisfy that GR = IM−1

2 (IM2(GR)).

Definition 13 (Instance mapping IM−1
2 ). Let GP = (N,E,P,Γ,Υ,Σ,∆) be a property

graph and GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) be an RDF graph. The instance mapping
IM−1

2 (GP ) = GR is defined as follows:

1. For each n ∈ N satisfying that Γ(n) = Resource, p1, p2 ∈ ∆(n), Υ(p1) = (iri, v1) and
Υ(p2) = (type, v2), then there will be r ∈ NR with αR(r) = v1 and δ(r) = v2

2. For each n ∈ N satisfying that Γ(n) = BlankNode, p1, p2 ∈ ∆(n), Υ(p1) = (id, v1) and
Υ(p2) = (type, v2), then there will be r ∈ NR with αR(r) = v1 and δ(r) = v2

3. For each n ∈ N satisfying that Γ(n) = Literal, p1, p2 ∈ ∆(n), Υ(p1) = (value, v1) and
Υ(p2) = (type, v2), then there will be r ∈ NL with αL(r) = v1 and δ(r) = v2

4. For each e ∈ E satisfying that Γ(e) = ObjectProperty , p ∈ ∆(e), Υ(p) = (type, v),
Σ(e) = (n1, n2), then there will be op ∈ EO with δ(op) = v, βO(op) = (r1, r2) where
r1 ∈ NR corresponds to n1 ∈ N, and r2 ∈ NR corresponds to n2 ∈ N

5. For each e ∈ E satisfying that Γ(e) = DatatypeProperty , p ∈ ∆(e), Υ(p) = (type, v),
Σ(e) = (n1, n2), then there will be dp ∈ ED with δ(dp) = v, βD(dp) = (r1, r2) where
r1 ∈ NR corresponds to n1 ∈ N, and r2 ∈ NL corresponds to n2 ∈ N

Hence, the above method defines that for each node labeled with Resource or BlankNode is
transformed into a resource node, each node labeled with Literal is transformed into a literal
node, each edge labeled with ObjectProperty is transformed into a resource-resource edge, and
each edge labeled with DatatypeProperty is transformed into a resource-literal edge. Additionally,
the property iri is used to recover the original IRI identifier for Resource nodes, the property
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id is used to recover the original identifier for BlankNode nodes, and the property type allows us
to recover the IRI identifier of the resource class associated to each node or edge.

It is not difficult to verify that for any RDF graph GR, we can produce a PG graph GP =
SM3(GR), and then recover GR by using IM−1

2 (GP ).

4.3.3 Complete Database Mapping (CDM)

This section describes the schema-dependent database mapping DM3 which allows to transform
a complete RDF database into a complete PG database. DM3 is composed of a schema mapping
SM3 and an instance mapping IM3 such that SM3 generates a PG schema from the input
RDF graph schema, and IM3 generates a PG graph from the input RDF graph.

Recall that IDT is the set of IRIs referencing RDF datatypes, and T is the set of PG datatypes.
Assume that there is a total function f : IDT → T which maps RDF datatypes into PG datatypes.
Additionally, assume that f−1 is the inverse function of f , i.e. f−1 maps PG datatypes into
RDF datatypes.

Given an RDF database DR = (SR, GR), we define the database mapping DM3 = (SM3, IM3)
such that DM3(DR) = (SP , GP ) where SP = SM3(SR) and GP = IM3(GR). The schema
mapping SM3 and the instance mapping IM3 are defined next.

Schema mapping SM3

We define a schema mapping SM3 which takes an RDF graph schema as input and returns a
PG Schema as output.

Definition 14 (Schema Mapping SM3). Let SR = (NS , ES , φ, ϕ) be an RDF schema and
SP = (NS ,ES ,PS ,Θ,Π,Φ,Ψ) be a PG schema. The schema mapping SM3(SR) = SP is defined
as follows:

1. For each rc ∈ NS satisfying that φ(rc) /∈ IDT

• There will be nt ∈ NS with Θ(nt) = φ(rc)

2. For each pc ∈ ES satisfying that ϕ(pc) = (rc1, rc2)

• If φ(rc2) ∈ IDT then

– There will be pt ∈ PS with Π(pt) = (φ(pc), f(φ(rc2))), Ψ(nt) = Ψ(nt) ∪ pt where
nt ∈ NS corresponds to rc1 ∈ NS .

• If φ(rc2) /∈ IDT then

– There will be et ∈ ES with Θ(et) = φ(pc), Φ(et) = (nt1, nt2) where nt1, nt2 ∈ NS
correspond to rc1, rc2 ∈ NS respectively.
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Hence, the schema mapping SM3 creates a node type for each resource type (with exception of
RDF data types);, creates a property type for each object property, and creates an edge type
for each value property.

Assume that the function f is defined by the following datatype assignments: f(xsd:string) =
String, f(xsd:int) = Integer and f(xsd:date) = Date. Hence, the PG schema obtained from
the RDF graph schema shown in Figure 4.2 is shown in listing 4.3.3 below:

1 NS = {n1, n2, n3, n4} ,
2 ES = {e1, e2, e3, e4} ,
3 PS = {p5, p6, p7, p8, p9, p10} ,
4 Θ(n1) = voc:Organisation , Θ(n2) = voc:Person , Θ(n3) = voc:City , Θ(n4) = voc:Country ,
5 Θ(e1) = voc:ceo , Θ(e2) = voc:location , Θ(e3) = voc:country , Θ(e4) = voc:is_location_of ,
6 Π(p5) = (voc:name, String) , Π(p6) = (voc:creation,Date) , Π(p7) = (voc:birthName, String)

, Π(p8) = (voc:age, Integer) , Π(p9) = (voc:name,String) , Π(p10) = (voc:name, String) ,
7 Φ(e1) = (n1, n2) , Φ(e2) = (n1, n3) , Φ(e3) = (n3, n4) ,
8 Φ(e4) = (n4, n1) ,
9 Ψ(n1) = {p5, p6} , Ψ(n2) = {p7, p8} , Ψ(n3) = {p9} , Ψ(n4) = {p10} .

Instance Mapping IM3

Now, we define the instance mapping IM3 which takes an RDF graph as input and returns a
PG as output.

Definition 15 (Instance Mapping IM3). Let GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) be
an RDF graph and GP = (N,E,P,Γ,Υ,Σ,∆) be a PG. The instance mapping IM3(GR) = GP

is defined as follows:

1. For each r ∈ NR

• There will be n ∈ N with Γ(n) = δ(r)

• There will be p ∈ P

• If αR(r) ∈ I then Υ(p) = (iri, αR(r))

• If αR(r) ∈ B then Υ(p) = (id, αR(r))

• ∆(n) = {p}.

2. For each op ∈ EO satisfying that βO(op) = (r1, r2)

• There will be e ∈ E with Γ(e) = δ(op), Σ(e) = (n1, n2) where n1, n2 ∈ N correspond
to r1, r2 ∈ NR respectively.

3. For each dp ∈ ED satisfying that βD(dp) = (r1, r2)
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Figure 4.8: Property graph obtained after applying the instance mapping IM3 to the RDF graph shown
in Figure 4.1.

• There will be p ∈ P with Υ(p) = (δ(dp), αL(r2)), ∆(n) = ∆(n) ∪ {p} where n ∈ N
corresponds to r1 ∈ NR.

According to the above definition, the instance mapping IM3 creates a node in GR for each
resource node, creates a property in GR for each datatype property, and creates an edge in GR
for each object property.

For example, the PG obtained after applying IM3 over the RDF graph shown in Figure 4.1 is
shown in the listing 4.3.3 below:

1 N = {n1, n2, n33, n4} ,
2 E = {e1, e2, e3, e4} ,
3 P = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10} ,
4 Γ(n1) = voc:Organisation , Γ(n2) = voc:Person ,
5 Γ(n3) = voc:City , Γ(n4) = voc:Country ,
6 Γ(e1) = voc:ceo , Γ(e2) = voc:location , Γ(e3) = voc:country , Γ(e4) = voc:is_location_of ,
7 Υ(p1) = (iri, "ex:Tesla_Inc") , Υ(p2) = (iri, "ex:Elon_Musk") , Υ(p3) = (id, "_:b1") ,

Υ(p4) = (id, "_:b2") , Υ(p5) = (voc:name, "Tesla, Inc.") ,
Υ(p6) = (voc:creation, "2003-07-01") , Υ(p7) = (voc:birthName, "Elon Musk") ,
Υ(p8) = (voc:age, "46") , Υ(p9) = (voc:name, "Palo Alto") , Υ(p10) = (voc:name, "US")

8 Σ(e1) = {n1, n2} , Σ(e2) = {n1, n3} , Σ(e3) = {n3, n4} , Σ(e4) = {n4, n1} ,
9 ∆(n1) = {p1, p5, p6} , ∆(n2) = {p2, p7, p8} , ∆(n3) = {p3, p9} , ∆(n4) = {p4, p10} .

Figure 4.8 shows a graphical representation of the PG described above.

Properties of DM3

In this section we will evaluate the properties of the database mapping DM3. Recall that DM3
is formed by the schema mapping SM3 and the instance mapping IM3.
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Proposition 5. The database mapping DM3 is computable.

It is straightforward to see that Definition 14 and Definition 15 can be transformed into
algorithms to compute SM3 and IM3 respectively.

Lemma 2. The database mapping DM3 is semantics preserving.

Note that the schema mapping SM3 and the instance mapping IM3 have been designed to
create a PG database that maintains the restrictions defined by the source RDF database. On
one side, the schema mapping SM3 allows to transform the structural and semantic restrictions
from the RDF graph schema to the PG schema. On the other side, any PG generated by the
instance mapping IM3 will be valid with respect to the generated PG schema.

The semantics preservation property of DM3 is supported by the following facts:

• We provide a procedure to create a complete RDF graph schema SR from a set of RDF
triples describing an RDF schema, i.e. each property defines its domain and range resource
classes.

• We provide a procedure to create an RDF graph GR from a set of RDF triples, satisfying
that every node and edge in GR is associated with a resource class; it allows a complete
connection between the RDF instance and the RDF schema.

• The schema mapping SM3 creates a node type for each user-defined resource type, a
property type for each datatype property, and an edge for each object property.

• Similarly, the instance mapping IM3 creates a node for each resource, a property for each
resource-literal edge, and an edge for each resource-resource edge.

Theorem 2. The database mapping DM3 is information preserving.

In order to prove that DM3 is information preserving, we will define a database mapping
DM−1

3 = (SM−1
3 , IM−1

3 ) which allows to transform a PG database into an RDF database.
The inverse mapping DM−1

3 must satisfy that D = DM−1
3 (DM3(D)) for any RDF database

D. Next we define the schema mapping SM−1
3 and the instance mapping IM−1

3 .

Definition 16 (Schema mapping SM−1
3 ). Let SP = (NS ,ES ,PS ,Θ,Π,Φ,Ψ) be a PG schema

and SR = (NS , ES , φ, ϕ) be an RDF schema. The schema mapping SM−1
3 (SR) = SP is defined

as follows:

• Let C = {n | n ∈ range(Θ)} ∪ {n = f−1(t) | (u, t) ∈ range(Π)}

• Let ω : C → NS be a function that maps IRIs to resource classes

• For each n ∈ C

– There will be rc ∈ NS with φ(rc) = n
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– ω(n) = rc

• For each et ∈ ES with Φ(et) = (nt1, nt2)

– There will be pc ∈ ES with φ(pc) = Θ(et) and ϕ(pc) = (ω(nt1), ω(nt2))

• For each nt ∈ NS

– For each pt ∈ Ψ(nt) with Φ(pt) = (n, t)

∗ There will be pc ∈ ES with phi(pc) = n and ϕ(pc) = (ω(nt), ω(f−1(t)))

In general terms, the schema mapping SM−1
3 creates a resource class for each node type, an

object property for each edge type, and a datatype property for each property type. Given a
PG schema SP = SM3(SR), the schema mapping SM−1

3 allows to “recover” all the schema
constraints defined by SR, i.e SM−1

3 (SP ) = SR.

An issue of SM−1
3 , is the existence of RDF datatypes which are not supported by PG databases.

For example, rdfs:Literal has no equivalent datatype in PG database systems. The solution
to this issue is to find a one-to-one correspondence between RDF datatypes and PG datatypes.

Definition 17 (Instance mapping IM−1
3 ). Let GP = (N,E,P,Γ,Υ,Σ,∆) be a property

graph and GR = (NR, NL, EO, ED, αR, αL, βO, βD, δ) be an RDF graph. The instance mapping
IM−1

3 (GP ) = GR is defined as follows:

1. For each n ∈ N, there will be r ∈ NR where

a) αR(r) = v such that p ∈ ∆(n) and Υ(p) = (iri, v) or Υ(p) = (id, v)

b) δ(r) = Γ(n)

c) For each p ∈ ∆(n) satisfying that Υ(p) = (lab, val) and lab /∈ {iri,id}, there will
be l ∈ NL and dp ∈ ED with αL(l) = val, δ(l) = f−1(type(val)), δ(dp) = lab and
β(dp) = (r, l)

2. For each e ∈ E where Σ(e) = (n1, n2), there will be op ∈ EO with δ(op) = Γ(e) and
β(op) = (r1, r2) such that r1, r2 correspond to n1, n2 respectively.

Hence, the above method defines that each node in GP is transformed into a resource node
in GR, each property in GP is transformed into a datatype property in GR, and each edge in
GP is transformed into an object property in GR. Given a PG GP = IM3(GR), the instance
mapping IM−1

3 allows to “recover” all the data in GR, i.e IM−1
3 (GP ) = GR.

Note that each RDF graph produced by the instance mapping IM−1
3 will be valid with respect

to the schema produced with the corresponding schema mapping SM−1
3 . Hence, any RDF

database DR can be transformed into a PG database by using the database mapping DM(DR),
and DR could be recovered by using the database mapping DM−1

3 .
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4.4 Experimental Evaluation

The objective of this experimental evaluation is to examine the performance and scalability
of the database mappings presented in this work. This section includes a description of the
implementation, the evaluation methodology, the experimental results, and the corresponding
discussion.

4.4.1 Implementation

We have developed a java application called rdf2pg which implements the mappings described
in this article. The source code and the executable jar file of rdf2pg can be downloaded from
Github (https://github.com/renzoar/rdf2pg). The tool can be executed in command line
by using an expression with the structure

java -jar rdf2pg.jar <m> <i> <s>

where <m> indicates the database mapping (-sdm = simple database mapping, -gdm = generic
database mapping, -cdm = complete database mapping), <i> indicates the input instance RDF
graph file, and <s> indicates the input RDF schema file (in case of using -gdm or -cdm ).

The output of the simple database mapping is a file encoding a PG. In addition, the generic and
the complete instance mappings produce a second file containing the PG schema. The current
implementation uses the YARS-PG [184] data format for both output files.

The rdf2pg API includes an interface named PGWriter which can be implemented to sup-
port other data formats. The use of PGWriter is very simple as it provides the methods
WriteNode(PGNode node) and WriteEdge(PGEdge edge) which should be implemented with the
corresponding instructions to write nodes and edges in the output data format.

In order to support the processing of large RDF data files, rdf2pg uses the StreamRDF class
provided by Apache Jena. Additionally, rdf2pg implements two methods for writing the output
file: a memory-based method which creates a PG object (which follows the definition presented
in Section 4.2); and a disk-based method which writes the output by using a minimal set of
structures.

Additionally, we have developed a Java application called rdfs-processor which provides three
functionalities: analysis of an RDF Schema file to obtain basic information (i.e. the number of
resource classes, number of property classes, and number of datatypes); normalization of an
RDF Schema, in the case of incomplete definitions (e.g. empty domains); and schema discovery
from an RDF data file.

The functionality of schema discovery is very relevant for this paper because most of the available
RDF datasets do not provide an RDF Schema file. Our method for schema discovery follows
the approach described in [185]. In general terms, the method reads the set of RDF triples
two times: in the first pass, it identifies resource classes and property classes; in the second
pass, it determines the domain and range for each property class. The output is an RDF file
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Dataset Type Nature Structure
SP2B [187] Bibliographic Synthetic Regular
Linked GeoData [188] Spatial Real Regular
WatDiv [166] E-commerce Synthetic Irregular
BSBM [168] E-commerce Synthetic Regular
Wikidata [189] Open Knowledge Base Real Irregular

Table 4.1: Datasets used in the experimental evaluation.

Graph ID Dataset #Triples File Size (*.nt)
G1 SP2B 328 42 KB
G2 SP2B 1,285 206 KB
G3 SP2B 10,303 1.6 MB
G4 SP2B 100,073 16.2 MB
G5 SP2B 1,000,009 165 MB
G6 GeoData 4,914,217 740.7 MB
G7 WatDiv 7,159,355 1.01 GB
G8 BSBM 38,333,972 10.01 GB
G9 Wikidata 41,191,235 6.27 GB

Table 4.2: RDF Graphs used in the experimental evaluation.

containing a basic description of the RDF Schema by means of the terms rdf:type, rdfs:Class,
rdf:Property, rdfs:domain and rdfs:range. The source code of the rdfs-processor is available
in Github (https://github.com/renzoar/rdfs-processor).

4.4.2 Methodology and Experimental Setup

The experimental evaluation consists of a series of experiments that combine three variables:
database mapping, data source, RDF graph size, and processing power. We evaluate the three
database mappings defined in this paper: simple mapping, generic mapping, and complete
mapping. We consider four sources of RDF data whose characteristics (domain, nature, and
structure) are shown in Table 4.1. We use nine RDF graphs (obtained from the data sources)
whose size3 goes from 328 triples to 41,191,235 triples, as shown in Table 4.2.

The processing power variable indicates the use of machines with different characteristics in
terms of hardware. In this case, we used four virtual machines hosted in the Google Cloud
Platform, having a varying number of CPUs (Intel Skylake), main/primary memory size (RAM),
and secondary memory size (SSD). The technical specification of each machine is shown in Table
4.3. All the machines worked with Debian GNU/Linux 9 (amd64 built on 20200309) as the
operating system and Java OpenJDK 1.8.0_242 (64-Bit) without a graphic environment.

Based on the above variables, we evaluated the database mappings in terms of performance and
scalability. The performance is measured as the running time (or runtime) required to execute a
3 The size of an RDF graph is expressed in terms of the number of triples. Note that the disk space occupied by
a set of triples depends on the RDF data format used [186].
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Machine ID Type #vCPUs RAM SSD
VM1 n1-standard-2 2 7.5GB 100GB
VM2 n1-standard-4 4 15GB 100GB
VM3 n1-standard-8 8 30GB 100GB
VM4 n1-standard-16 16 60GB 100GB

Table 4.3: Virtual Machines (Google Cloud Platform) used in the experimental evaluation.

Graph ID #Classes #Properties #Datatypes
G1 5 19 2
G2 6 20 2
G3 8 54 2
G4 9 55 2
G5 12 64 2
G6 393 60 3
G7 40 85 1
G8 1292 36 3
G9 24 44 2

Table 4.4: RDF Schemas used in the experimental evaluation. This table shows the number of resource
classes, property classes, and datatype definitions.

mapping and construct the corresponding output database (schema graph and instance graph).
To do this, the rdf2pg application uses the built-in Java function System.currentTimeMillis
to register the runtime. The objective is to determine the computational complexity of the
mappings in practice.

Each mapping is evaluated under two notions of scalability. Former, we measure the scalability
with respect to the size of the input data (i.e. the number of triples). The objective is to
determine the behavior of the mappings with RDF graphs of different sizes. Later, we analyze
the scalability with respect to the computational resources. The objective is to determine the
dependency of each mapping with respect to the hardware.

4.4.3 Experimental Results

Our experimental evaluation begins with the extraction of the RDF Schema for each RDF graph.
This task was performed by using the rdfs-processor tool described in Section 4.4.1. Table 4.4
shows information about the corresponding RDF Schemas. We can observe that: the SP2B
graphs do not change too much in terms of the number of classes and properties; the number
of classes in GeoData and BSBM is larger than the number of properties; a small number of
datatypes are defined in the graphs.

Once we had the RDF Schema files for each dataset, we executed the experiments in the virtual
machines. Every execution of the rdf2pg application was configured to use the maximum amount
of primary memory allowed by the machine. To do this, we use the -Xmx parameter defined by
Java. Table 4.5, Table 4.6 and Table 4.7 show the runtimes for the simple mapping, the generic

91



Chapter 4 Directly Mapping RDF Databases to Property graph Databases

Graph VM1 VM2 VM3 VM4
G1 3544 1247 1226 1263
G2 1644 1153 1057 1072
G3 2203 1516 1282 1364
G4 4245 3154 2428 2524
G5 16714 14133 11578 12079
G6 89930 69582 66290 67458
G7 193389 156963 148793 149272
G8 ? ? 782718 741916
G9 ? 593914 616252 625932

Table 4.5: Runtimes (in milliseconds) for the simple data mapping. Undefined runtimes are represented
with “?”.

Graph VM1 VM2 VM3 VM4
G1 1359 1015 960 1099
G2 1642 1101 1030 1093
G3 1953 1411 1218 1260
G4 3545 2564 1904 2170
G5 14636 10772 8566 8483
G6 68390 50471 49977 47064
G7 96449 77464 81579 83639
G8 ? 550476 486106 487969
G9 ? 413090 427542 381572

Table 4.6: Runtimes (in milliseconds) for the generic data mapping. Undefined runtimes are represented
with “?”.

mapping and the complete mapping respectively.

In general terms, we can observe that the mappings worked well with most of the graphs (i.e.
G1 to G7). However, there were problems to complete the task for graphs G8 and G9, running
on virtual machines VM1 and VM2. Specifically, the execution of rdf2pg produced an error of
“insufficient memory for the Java Runtime Environment”. Hence, our current implementation
has a restriction to process large input graphs with small-memory machines.

The above problem is related to the main memory (RAM) required to manage the intermediate
objects used by the mappings. Being more specific, the mappings create a HashMap to store
all the nodes and their properties, and such a structure could be very large for some graphs.
Note that the number of nodes is not directly related to the number of triples. For example, we
observed that the number of nodes generated for G8 was higher than G9, even when G9 has
more triples than G8. It explains why the simple mapping was able to process G9, but it was
not able to process G8, both using VM2.

In order to analyze the scalability of the mappings with respect to the size of the input data, we
selected the runtimes obtained with VM4. As shown in Figure 4.9, the execution time of all the
mappings grows up in concordance with the size of the input graphs, i.e., the larger the size
of the graph, the larger the runtime. Note also that the runtimes of the mappings are under
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Graph VM1 VM2 VM3 VM4
G1 1659 1083 1004 1062
G2 1642 1194 1111 1117
G3 1984 1515 1318 1403
G4 4269 2920 2442 2505
G5 20685 1524 12629 12737
G6 97101 78374 74898 69639
G7 200952 173607 161105 145027
G8 ? ? 817471 800303
G9 ? ? 609577 603040

Table 4.7: Runtimes (in milliseconds) for the complete data mapping. Undefined runtimes are
represented with “?”.

SDM GDM CDM
Graph PG PG PGS PG PGS
G1 12K 39K 352 15K 553
G2 43K 190K 352 61K 710
G3 320K 1.5M 352 466K 2.3K
G4 3.1M 15M 352 4.5M 3.1K
G5 32M 149M 352 46M 4.0K
G6 125M 731M 352 214M 22K
G7 224M 711M 352 276M 19K
G8 2.6G 7.7G 352 3.3G 872K
G9 1.1G 5.0G 352 1.7G 2.8K

Table 4.8: Size (in bytes) of the output files produced during the experimental evaluation of the database
mappings (SDM, GDM and CDM). PG and PGS mean property graph and property graph schema
respectively.

the baseline defined by the graph sizes. Hence, we can conclude that the complexity of the
mappings is linear with respect to the size of the input.

In order to analyze the scalability of the mappings with respect to the computational power, we
prepare a plot for each mapping showing the runtimes for all the virtual machines (see Figures
4.10, 4.11 and 4.12). The plots show that the runtimes decrease for VM1, VM2, and VM3;
however, the runtimes for VM3 and VM4 are not so different. The latter implies that there is a
threshold in which the computational power does not reduce the execution time of the mapping.

As a general conclusion, we can say that the three database mappings presented in this work have
an efficient implementation to process large datasets and work under mid-size computational
resources. All the input and output files described in the above experiments are available in
Figshare [37].
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Figure 4.9: Scalability of the database mappings with respect to the size of the input data. The X-axis
has graph sizes and the Y-axis has runtimes (in log scale). The “Base” line indicates the sizes of the
input graphs in the log scale.

4.4.4 Interoperability in Practice

In order to show the practical use of the database mappings proposed in this article, we conducted
a complete ETL process that involves: Extracting RDF data from an RDF dataset; Transforming
the extracted RDF data to PG data, and Loading the transformed data into a property graph
database system. Due to its popularity and availability of features for data loading, we selected
Neo4j as the target database system.

The main issue in this experiment is the configuration of rdf2pg to generate and encode property
graphs into a data format that can be consumed by the Neo4j system. To do this, we created
the Neo4jWriter class as an implementation of the PGWriter interface provided by rdf2pg. The
Neo4jWriter class allows exporting a property graph as a set of Cypher instructions to create
nodes and edges. For example, the property graph shown in Figure 4.5 will be exported as
follows:

1 CREATE ( n15 : City {name : ’ Palo Alto ’ } )
2 CREATE ( n12 : Person {birthName : ’ Elon Musk ’ , age : ’ 4 6 ’ } )
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Figure 4.10: Scalability of the simple database mapping with respect to the hardware. The X-axis has
virtual machines and the Y-axis has runtimes (in log scale).

3 CREATE ( n33 : Country {name : ’US’ } )
4 CREATE (n1 : Organ i sat ion {name : ’ Tesla , Inc . ’ , c r e a t i on : ’ 2 0 0 3 0 7 0 1 ’ } )
5 CREATE (n1 ) [ e5 : ceo ] >( n12 )
6 CREATE (n1 ) [ e6 : l o c a t i o n ] >( n15 )
7 CREATE ( n15 ) [ e7 : country ] >( n33 )
8 CREATE ( n33 ) [ e8 : i s_ loca t i on_o f ] >( n1 )

To demonstrate the validity of our mappings, we used the property graph obtained by applying
the simple database mapping over the RDF graph G2, i.e. the SP2B file containing 1,285 triples.
The output file containing Cypher instructions was loaded in Neo4j Desktop 1.2.3 by using the
browser-based user interface. The loading process took 7 ms, resulting in a property graph with
270 nodes, 348 relationships, 677 properties, and 260 labels. A graphical representation of the
loaded property graph, obtained from the Neo4j browser, is shown in Figure 4.13.

The above experiment was repeated for the generic and the complete database mappings.
The generic mapping produced, after 55 ms, a property graph containing 949 nodes, 1285
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Figure 4.11: Scalability of the generic database mapping with respect to the hardware. The X-axis has
virtual machines and the Y-axis has runtimes (in log scale).

relationships, 2911 properties, and 949 labels. The complete mapping took 8 ms, producing a
property graph with the same number of elements produced by the simple mapping.

All the information related to this data loading experiment, including the output files and the
charts of the property graphs, are available in Figshare [37].

4.4.5 Limitations

The limitations of the mappings presented in this paper, we highlight the following: the simple
mapping is not suitable for RDF datasets with complex vocabularies as the common names will
be merged in the resulting property graph; the generic mapping works with any RDF dataset,
but the size of the output property graph will be bigger than the other two mappings; the
complete mapping is suitable for any RDF dataset, but in practice, it requires a special directory
to map prefixes to namespaces. A general limitation of the three mappings is that they are not
able to deal with the special semantics defined by the RDF model (e.g. reification) and the
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Figure 4.12: Scalability of the complete database mapping with respect to the hardware. The X-axis has
virtual machines and the Y-axis has runtimes (in log scale).

inference rules supported by RDF Schema (e.g. sub-class, sub-property). We plan to study
these features in the future.

4.5 Summary

In this chapter, we have proposed a novel approach, which consists of three direct mappings,
to transform RDF databases into PG databases. We demonstrate, empirically and formally,
that the mappings have an efficient implementation to process large datasets. We showed that
two of the proposed mappings satisfy the property of information preservation, i.e. there exist
inverse mappings that allow recovering the original databases without losing information. These
results allow us to present the following conclusion about the information capacity of the PG
data model with respect to the RDF data model.

Corollary 1. The property graph data model subsumes the information capacity of the RDF
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Figure 4.13: Graphical representation of the property graph produced by applying the simple database
mapping over the RDF graph G2.

data model.

Although our methods assume some condition for the input RDF databases, they are generic and
can be easily extended (by overloading the mapping functions) to provide support for features
such as inheritance and reification. Furthermore, our formal definitions will be very useful to
study query interoperability [41–43] and query preservation between RDF and PG databases
(i.e. transformations among SPARQL and PG query languages). Thus, with this contribution,
we take a substantial step by laying the core formal foundation for supporting interoperability
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between RDF and PG databases.

As future work, we plan to incorporate features such as RDF reification techniques (n-ary
relationships, named graphs, etc), inheritance, and OWL 2 RL. We would also like to further
examine the impact of each reification technique in terms of mapping complexity, time, PG data
volume, and other parameters as future work.
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CHAPTER 5

GREMLINATOR: Querying Property graph
Databases using SPARQL

Knowledge graphs have become popular over the past years and frequently rely on the Resource
Description Framework (RDF) or Property Graphs (PG) as underlying data models. However,
the query languages for these two data models – SPARQL for RDF and Gremlin for property
graphs – lack interoperability. While there exist some approaches that study the issue of query
interoperability, most of the work is focused on addressing RDF and relational database query
languages – SPARQL and SQL. As compared to these efforts we have to overcome the challenge
of mediating between two very different execution paradigms. More specifically, those efforts
applied query rewriting techniques between languages, which are rooted in relational algebra
operations, whereas we had to bridge more disparate query paradigms. While this poses a
significant challenge, it is also the reason why substantial performance differences can be observed
depending on the different query characteristics.

In this chapter we address the following second research question (RQ2) that is concerned with
addressing query interoperability issue between the RDF and Property graph databases.

RQ2: Query Interoperability – How can we execute SPARQL queries over Property
graphs in a query preserving manner?

The main contributions of this chapter are the: (i) formalisation of the declarative construct of
the Gremlin traversal language using a consolidated graph relational algebra, and (ii) GREMLIN-
ATOR which a novel approach that enables the execution of W3C standard SPARQL queries
over Property graph databases by translating them into pattern matching Gremlin traversals.
GREMLINATOR is the first approach that allows users to access and query a wide variety of
Graph databases avoiding the necessity of learning a new Graph Query Language. Gremlin is
a system agnostic traversal language covering both OLTP graph databases and OLAP graph
processors, thus ideal for supporting query interoperability for Graph databases. We present a
comprehensive empirical evaluation and demonstrate the applicability of sparql-gremlin with
leading graph stores – Neo4j, Sparksee and Apache TinkerGraph and compare the performance
with the leading RDF stores – Virtuoso, 4Store and JenaTDB. Our experimental evaluation
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reveals a substantial performance gain when leveraging the Gremlin counterparts of the SPARQL
queries, particularly for star-shaped and complex queries. Currently, GREMLINATOR is available
as a plugin for the Apache TinkerPop graph computing framework (as the sparql-gremlin
plugin).

This chapter is based on the following publications [34, 40–42, 190]:

1. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, and Jens Lehmann.
Let’s build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with
Sparql-Gremlin. In Proceedings of the IEEE 14th International Conference on Semantic
Computing (ICSC), pp. 408-415, San Diego, USA, 2020. [Best Paper Award]

2. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and Property Graphs
Interoperability: Status and Issues. In Proceedings of the 13th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Asunción (AMW 2019), Paraguay,
June 3-7, 2019.

3. Vinh Nguyen, Hong Yung Yip, Harsh Thakkar, Qingliang Li, Evan Bolton, and Olivier
Bodenreider. Singleton property graph: Adding a semantic web abstraction layer to graph
databases. In Proceedings of the 2nd International Semantic Web Conference (ISWC)
Workshop on Contextualised Knowledge Graphs (CKG), New Zealand, 2019.

4. Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sörenen Auer. Two for one:
Querying Property Graph Databases using SPARQL via GREMLINATOR. In Proceedings
of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and NetworkData Analytics (NDA), page 12, ACM,
USA, 2018.

5. Harsh Thakkar, Dharmen Punjani, Yashwant Keswani, Jens Lehmann, and Sören Auer.
A Stitch in Time Saves Nine – SPARQL Querying of Property Graphs using Gremlin
Traversals. Pre-print arXiv:1801.02911, pp. 1-24, 2018.

6. Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal. Towards an
Integrated Graph Algebra for Graph Pattern Matching with Gremlin. In Proceedings of
the 28th International Conference on Database and Expert Systems Applications (DEXA
2017), Lyon, France, pp. 81-91. Springer, 2017.

The remainder of this chapter is structured into eight sections, starting with Section 5.1
discusses the operators of the declarative of the Gremlin traversal language and formalizes
them using a consolidate graph relational algebra. Section 5.2 sheds light on the proposed
novel query translation approach GREMLINATOR and its architecture. Section 5.3 discusses the
implementation methodology of GREMLINATOR and its current limitations. Section 5.4 presents
the methodology, design and execution a comprehensive experimental evaluation of the proposed
mapping by executing queries over three top of the line RDF and Property graph databases,
thereby demonstrating its applicability. Section 5.5 presents and discusses the findings of our
conducted exhaustive experiments and provides empirical evidence that the proposed approach
is query preserving. Section 5.6 discusses the Apache TinkerPop integration of GREMLINATOR
and lends pointers to its pen-source resources. Section 5.7 discusses the academic and industrial
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use cases of GREMLINATOR thereby providing proof of its credibility and adoption by a larger
audience. Finally, Section 5.8 concludes this chapter and points to the direction ahead.

5.1 Graph Relational Operators of Gremlin Traversal Language

In this section, we contribute to establishing a formal base for a graph query algebra, by
surveying and integrating existing graph query operators [60, 63, 70, 76, 191, 192], with respect
to the Gremlin traversal language. Moreover, we formalize the graph pattern matching construct
of the Gremlin query language. Lastly, we provide a formal specification of pattern matching
traversals for the Gremlin language, which can serve as a foundation for implementing a Gremlin
based query compilation engine.

As a result, the formalization of graph query algebra supports the integration and interoperability
of different graph data models [72] (e.g., executing SPARQL queries on top of Gremlin [41, 42]),
helps to prevent vendor lock in scenarios and boosts data management benchmarking efforts
such as LITMUS [48, 193, 194].

5.1.1 Defining Gremlin Operators

We now consolidate various unary, binary, extended and graph-specific graph query operators
from the existing literature and define them in the context the Gremlin traversal language.

Unary operators

Projection (πa,b,..) : R∪S → Σ∗: operator projects values of a specific set of variables a, b, .., n
(i.e. keys and elements), from the solution of a matched input graph pattern P , against the
graph G. Moreover, the results returned by (πa,b) are not deduplicated be default, i.e. the
result will contain as many possible matched values or items as the input pattern P . This
operator is present in all standard graph query languages (e.g. SELECT in SPARQL, and MATCH
in CYPHER).

Selection (∃(p)), is analogous to the filter operator (σ), as defined in [13, 192], restricts the
match of a certain graph pattern P against a graph G, by imposing conditional expressions
(p) e.g., inequalities and/or other traversal-specific predicates (where predicate is a proposition
formula).

Binary operators

Concatenation [76] (◦): E∗ × E∗ → E∗: concatenates two paths (cf. Definition 19). For
instance, if (i, α, j) and (j, β, k) are two edges in a graph G, then their concatenation is the new
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path (i, α, j, β, k); where i, j, k ∈ V and α, β ∈ Le.

Union operator (]): P (E∗) × P (E∗) → P (E∗) : is the multiset union1 (bag union) of two
path traversals or graph patterns. For instance, {(1,2), (3,4), (3,4), (4,5)} ] {(1,2), (3,4)} =
{(1,2), (1,2), (3,4), (3,4), (3,4), (4,5)}. The results of this operator, like projection, are not
deduplicated by default.

Join (./◦): P (E∗)× P (E∗)→ P (E∗) : produces the concatenative join of two sets of paths
(path traversals [76]) such that if P,R ∈ P (E∗), then

P ./◦ R = {p ◦ r | p ∈ P ∧ r ∈ R ∧ (p = ε ∨ r = ε ∨ γ+(p) = γ−(r))}2

For instance, if P = {(v1, e1, v2), (v2, e2, v3)} and R = {(v2, e2, v3), (v2, e2, v1)}, then,

P ./◦ R = {(v1, e1, v2, v2, e2, v3), (v1, e1, v2, v2, e2, v1)},

where v1, v2, v3 ∈ V ; e1, e2 ∈ Le.

Left-join (d|><|), Right-join ( |><|d) and the Anti-join (.) operators: these operators, are not explicitly
implemented in Gremlin, unlike in other graph query languages [70]. Their results can, however,
be simulated by the user, at run-time via selecting desired values of elements, vertices or edges
declaring using the projection operator. For instance, an anti-join can be "computationally"
achieved by not’ing an argument in the match step by using .not() Gremlin step.

General Extensions.

We borrow the extended relational operators Grouping (†a(p)), Sorting (<⇑a,⇓b(p)) and De-
duplication (δa,b,..(p)) which have been defined in [192]. A detailed illustration with formal
definitions of extended operators can be found in [2].

Graph-specific Extensions.

Various graph/traversal-specific operators have been defined in works such as [76, 191]. Further-
more, there also exist certain application-specific extensions of algebra operators, such as the α
and β operators, for graph data aggregation (used in complex graph network analysis) defined
by [3]. We present graph-specific operators, some of which have been adapted from [191, 192]
and propose additional operators based on the algebra defined by [70, 76].
1 Note that the domains and ranges of each of these sets are the power sets.
2 Here, (γ−, γ+) denote the first and last elements of a path respectively.
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Op. Arity Operation Operator Gremlin Step Step type
Get vertices Vg g.V() -0 Get edges Eg g.E() -
Selection ∃(p) .where() Filter

Property filter σacondition(p) .has()/.values() Filter
Projection Πa,b,...(p) .select() Map

De-duplication δa,b,..(p) .dedup() Filter
Restriction λsl (p) .limit() Filter
Sorting <⇑a,⇓b(p) .order().by() Map
Grouping †a(p) .group().by() Map/SideEffect

1

Traverse (out/in) lv2
v1[e](p) .out()/.in() FlatMap

Join p ./◦ r .and() Filter2 Union p ] r .union() Branch

Table 5.1: A consolidated list of graph relational algebra operators with their corresponding instruction
steps in the Gremlin traversal language.

• The Get-vertices/Get-edges null-ary operators (Vg/ Eg): return the list of vertices/edges,
respectively. These operators, w.r.t. Gremlin query construct, denote the start of a
traversal. It is also possible to traverse from a specific vertex/edge in a graph, given their
id’s. Furthermore, they can be used to construct custom indexes over elements depending
on user’s choice.

• The Traverse operator (lv2
v1[e](p)): P (V ∪ E)× Σ∗ → P (V ∪ E) : is an adapted version,

analogues to the expand-both operator defined by [191].

The traverse operator represents the traversing over the graph operation (traversing in ↓
or out ↑ from a vertex (v1 ) to an adjacent vertex (v2 ) given the edge label [e], where
(v1, v2) ∈ V, e ∈ Le).

• The Property filter operator (σv/econdition(p)): P (V ∪ E) × S → Σ∗ : is a binary operator
which: (i) filters the values of selected element (vertex/edge), if a condition is declared,
(ii) otherwise, it simply returns the value of the element’s property.

• The Restriction unary operator (λsl (p)) is an adaptation of [195], which we borrow
from [192]. It takes a list as input and returns the top s values, skipping specified l values.
It is analogous to the LIMIT and OFFSET modifier keyword pair in SPARQL.

5.1.2 Graph Pattern Matching via Traversing

Graph Pattern Matching (GPM for short) is generally perceived as a subgraph matching
problem (aka subgraph isomorphism problem) [196]. GPM can be done over both undirected
and directed graphs respectively. Traditionally, GPM refers to a computational task of evaluating
(or matching) graph patterns (sub-graphs) over a graph G in a graph database [13]. The most
trivial form of a graph pattern is the Basic Graph Pattern (BGP). A set of BGPs form a Complex
Graph Pattern (CGP). Matching has been formally defined in various texts such as [13, 60, 196,
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197]. We adapt the definition provided by [13] in our current context:

Definition 18 (Match of a Graph Pattern JP KG). A graph pattern P = (Vp, Ep, γp, λp, σp); is
matching the graph G = (V,E, γ, λ, σ), iff the following conditions are satisfied:

1. there exist mappings λp and σp such that, all variables are mapped to constants, and all
constants are mapped to themselves (i.e. λp ∈ λ, σp ∈ σ),

2. each edge é ∈ Ep in P is mapped to an edge e ∈ E in G, each vertex v́ ∈ Vp in P is
mapped to a vertex v ∈ V in G,

3. the structure of P is preserved in G (i.e. P is a sub-graph of G)

The principle of matching in edge-labeled graphs is analogous to that of the property graph (ref.
Def. 18), i.e. – (i) there exists a mapping φp such that all constants are mapped to themselves
and variables are mapped to constants; and (ii) the structure of P is preserved in G.

In Gremlin, GPM is performed by traversing3 over a graph G. In this sense, a GPM query in
Gremlin can be perceived as a path traversal [76]. Rodriguez et al. [76] define a path as:

Definition 19 (Path). A path p in a graph G is a sequence, where p ∈ E? and E ⊂ (V ×L×V )4.
A path allows for repeated edges and the length of a path is denoted by ||p||, which is equal to
the number of edges in p.

Each path query is composed is composed of an ordered list of one or more atomic operations
called Single-Step Traversals (SSTs) ψs [70]. These are atomic-operations over the elements in a
graph (i.e. nodes and edges) such as property-filter, label-filter, out/in edge traversal, out/in
node traversal, etc. Through function composition and currying , it is possible to define a query
of arbitrary length [70]. These path queries can be a combination of either a source, destination,
labelled traversal or all of them in a varying fashion, depending on the user defined query.

Example 5.1.1. For instance, consider a simple path traversal to the oldest person that marko
knows over the graph G as show in Figure 5.1. Listing 5.1 represents the gremlin query for the
described traversal.

1 g .V( ) . has ( "name" , "marko " ) . out ( " knows " ) . va lue s ( " age " ) .max( )
Listing 5.1: Return the age of the oldest person marko knows

Here, g.V() i.e. Vg is the traverser definition bijective to V where, ]iµ((Vg)i) = V. Functionally,
this query be written using function currying as:

max(valuesage(outknows(hasname=marko(Vg))))) (5.1)
3 The act of visiting vertices (v ∈ V ) and edges (e ∈ E) in a graph is performed in an alternating manner (in
some algorithmic fashion) [70].

4 The kleene star operation ? constructs the free monoid E? =
⋃∞

n=0 Ei. where E0 = {ε}; ε is the identity/empty
element.
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Figure 5.1: An example of a Property graph from the Apache TinkerPop project network.

The terms outknows, valuesage and hasname are the single-step Gremlin operations/traversals.
In [70], Rodriguez presents the itemisation of such single-step traversals which can be used to
represent a complex path traversal. Thus, as described earlier, through functional composition
and currying one can represent a graph traversal of random length. If i is the starting vertex in
G, then the traversal shown in listing 5.1 can be represented as following function:

f(i) = max(εage ◦ vin ◦ e
knows
lab+ ◦ eout ◦ ε

marko
name+) (i) (5.2)

where, f : P(V) → P(S).

In order to illustrate the evaluation of a Gremlin traversal Ψ over a property graph G (JΨKG,
cf. Definition 18), let us consider another example of a Gremlin traversal, shown in listing 5.2
below.

1 g .V( ) . as ( ’ x ’ ) . has ( ’name ’ , ’marko ’ ) . out ( ’ Created ’ ) . as ( ’ y ’ )
Listing 5.2: Gremlin traversal for "What is created by Marko?".

Here, the underlying single step traversals are .has(’name’,’Marko’) and .out(’Created’)
which basically refer to the HasStep() and VertexStep() instructions in the Gremlin instruction-
set library [76, 77] respectively. Whereas, the as()-steps, which denote the start (and the end)
of a traversal (or input graph patterns), are the naming variables analogous to the variables
in a SPARQL query [77]. Furthermore, g.V(), returns the set of all vertices in the graph. We
present a thorough categorization of these SSTs in Table 5.2 of Section 5.2.1.

Example 5.1.2. We illustrate the evaluation of graph patterns (a) and (b) from Figure 5.2,
over the graph G from Figure 5.1.

(a) v[3] (b) c=v[4], c=v[6]
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g.V().as('x').has('name','marko').out('created').as('y'))

(a)

Created
y 

CreatedKnows

Kn
ow

s
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name = marko

x 

g.V().match( __.as('a').out('created').as('b'), 
         __.as('a').out('knows').as('c')).select('c')

(b)

a c 

Figure 5.2: The graphical illustration of a (a) basic graph pattern and (b) a complex graph pattern,
expressed in Gremlin to be matched over a property graph in Figure 5.1.

Evaluation of the match()-step in Gremlin

The match()-step in Gremlin, evaluates the input graph patterns over a graph G in a structure
preserving manner binding the variables and constants to their respective values (cf. Defini-
tion 18). We denote the evaluation of a gremlin traversal Ψ over a Property graph G, using the
notation JΨKG which is borrowed from [60, 198]. When a match()-step is encountered by the
Gremlin machine, it treats each graph pattern as an individual path traversal. These graph
patterns are represented using as()-step5 (step-modulators6 i.e. naming variables) such as a, b,
c, etc.), which typically mark the start (and end) of particular graph patterns or path traversals.

However, the order of execution of each graph pattern is up to the match()-step implementation,
where the variables and path labels are local only to the current match()-step. Due to this
uniqueness of the Gremlin match()-step it is possible to:

1. treat each graph pattern individually as a single step traversal and thus, construct composite
graph patterns by joining (path-joins) each of these single step traversals;

2. combine multiple match()-steps for constructing complex navigational traversals (i.e.
multi-hop queries), where each composite graph pattern (from a particular match()-step)
can be joined using the concatenative join (ref. Section 5.1.1).

For instance, consider the Gremlin traversal shown in Listing 5.3 below.

1 g .V( ) . match ( __. as ( ’ a ’ ) . out ( ’ c r ea ted ’ ) . as ( ’b ’ ) ,
2 __. as ( ’b ’ ) . has ( ’name ’ , ’ lop ’ ) ,
3 __. as ( ’b ’ ) . in ( ’ c r ea ted ’ ) . as ( ’ c ’ ) ,
4 __. as ( ’ c ’ ) . has ( ’ age ’ , 30) ) . s e l e c t ( ’ a ’ , ’ c ’ ) . by ( ’name ’ )
Listing 5.3: This traversal returns the names of people who created a project named ’lop’ that was also
created by someone who is 30 years old.

5 Meaningful names can be used as variable names for enhancing query readability.
6 Rodriguez et al. [70] refer to step modulators as ‘syntactic sugar’ that reduce the complexity of a step’s
arguments by modifying the previous step.
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Each of the comprising four graph patterns (traversals) of the query (listing 5.3), can be
individually represented using the curried functional notation as described in Equation 5.1.
Thus,

f(i) = (ecreatedlab+ ) ◦ eout (i); g(i) = (εlopname+ ◦ vin) (i); (5.3)

h(i) = (ecreatedlab+ ) ◦ ein (i); j(i) = (ε30
age+ ◦ vin) (i) (5.4)

The input arguments of the match()-step are the set of graph patterns defined above in
equations 5.3 and 5.4, which form a composite graph pattern (the final traversal (Ψ)). At
run-time, when a traverser enters match()-step, it propagates through each of these patterns
guaranteeing that, for each graph pattern, all the prefix and postfix variables (i.e. "a", "b", etc)
are binded with their labelled path values. It is only then allowed to exit, having satisfied this
condition. In simple words, though each of these graph patterns is evaluated individually, it is
made sure that at run-time, the overall structure of the composite graph pattern is preserved by
mapping the path labels to declared variables.

For instance, in the query (ref. listing 5.3), the starting vertex of g(i) labelled as "b" which is
the terminal vertex of f(i), similarly for h(i) and j(i) with vertex labelled as "c". It is therefore
necessary, to keep a track of the current location of a traverser in the graph, to preserve traversal
structure. This is achieved in Gremlin by match() and bind() functions respectively, which we
outline next.

The evaluation of an input graph pattern/traversal in Gremlin is taken care by two functions:

1. the recursively defined match() function- which evaluates each constituting graph pattern
and keeps a track of the traversers location in the graph (i.e. path history), and,

2. the bind() function- which maps the declared variables (elements and keys) to their
respective values.

Using equations (5.3, 5.4) (curried functional form of path traversals) in the recursive definition
of match() by [77], we have:

JtKg =



Jbindb(f(t∆a(t) ∧∆m1))Kg : ∆a 6= φ = ∆m1
Jg(t∆b(t) ∧∆m2)Kg : ∆b 6= φ = ∆m2
Jbindc(h(t∆b(t) ∧∆m3))Kg : ∆b 6= φ = ∆m3
Jj(t∆a(t) ∧∆m4)Kg : ∆c 6= φ = ∆m4
t : otherwise,

(5.5)

where, t∆a
(t) is the labelled path of traverser t. A path (ref. definition 19) is labelled "a" via

the step-modulator .as(), of the traverser in the current traversal (Ψ); ∆m1, ∆m2, ∆m3 are
hidden path labels which are appended to the traversers labelled path for ensuring that each
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Figure 5.3: Conceptual architecture for formalizing a Gremlin traversal using graph relation algebra.

pattern is executed only once; and bindx(t) is defined as:

bindx(t) =


t∆x

(t) = µ(t) : ∆x(t) = φ

t : ∆x(t) = µ′(t)
φ : otherwise.

(5.6)

where µ′: T → U, is a function that maps a traverser to its current location in the graph G
(e.g., v ∈ V, V ∈ U) [77]. It (µ′) can be perceived analogues to µ, which maps elements and
keys to values in G, however in later case the value is the location of a traverser in G.

5.1.3 Mapping Gremlin traversals to Graph Algebra

We now present a mapping algorithm for encoding a given Gremlin pattern-matching traversal,
relational graph algebra. Figure 5.3, describes the conceptual architecture for formalizing
Gremlin traversals. We follow a bottom-up approach in order to construct the relational graph
algebra based on the traversal.

1. The input query is parsed and its constituent individual graph patterns are extracted from
the match()-step and the optional where() step. /* Parse step

2. For each single graph patterns (single path traversals) in the query, we first construct the
curried functional form (ref. equation 5.1). /* Steps 2-12 are the Build steps

3. We then map the get-vertices/get-edges operator for the encountered g.V()/g.E() step (i.e.
to the first graph pattern) respectively.

4. Append a traverse-operator to all the respective in-coming and outgoing edge traversals
for each, that appear inside the match()-step.

5. Append a property-filter operator to all the respective has() and values() steps based
on the match()-step.

6. Multiple match() steps can be connected processed using the concatenative join operator.

7. Append a selection operator, if the match() step is succeeded by a where() step (this is
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an optional in gremlin queries).

8. Append a projection operator, if select()-step is declared with a match() or where()
step.

9. Append a deduplication operator, based on whether the dedup() step is declared after the
select() step.

10. Append a sorting operator, if the order() step with an optional by() modifier is declared
after the select() step.

11. Append a grouping operator, if the group() step with an optional by() modifier is declared
after the select() step.

12. Map the union operator if the query contains a union()-step7. While Union is a binary
operator, a union of multiple patterns can be constructed using a left deep join tree
representation.

We now present three examples to illustrate the formalization of gremlin traversals using graph
relational algebra.

Query Formalisation Example 1

The example gremlin traversal as shown in listing 5.3, can be formalized as:

†name
(
Πa,c(Jσ

c
age=30 ↓

c
b [created]σbname=lop ↑

b
a [created](Vg)︸                                                               ︷︷                                                               ︸

t

Kg)
)

(5.7)

Query Formalisation Example 2

Consider the following gremlin traversal shown in listing 5.4 below:

1 g .V( ) . match (
2 __. as ( ’ a ’ ) . hasLabel ( ’ person ’ ) . va lue s ( ’ age ’ ) . as ( ’b ’ ) ) . s e l e c t ( ’b ’ )

. order ( ) . by ( asc )
Listing 5.4: This traversal returns the list all the persons in the ascending order of the age.

The gremlin traversal shown above (Listing 5.4) can be formalized as follows:

<⇑b

(
ΠbJσ

b
ageσ

a
label=person(Vg)︸                         ︷︷                         ︸

t

Kg
)

(5.8)

7 It is not a common practice to use a union()-step in Gremlin GPM traversals, as multiple match()-steps in
conjunction with where()-steps can be used as per required (the ad infinitium style of traversing [77]).
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Query Formalisation Example 3

Consider the following gremlin traversal shown in listing 5.5 below,

1 g .V( ) . union (
2 __. match ( __. as ( ’ a ’ ) . out ( ’ c r ea ted ’ ) . as ( ’ c ’ ) ) ,
3 __. match ( __. as ( ’b ’ ) . out ( ’ c r ea ted ’ ) . as ( ’ c ’ ) ) ) . s e l e c t ( ’ a ’ , ’ c ’ )
Listing 5.5: This traversal returns the list of all the people who have collaboratively created a software.

The gremlin traversal shown above (Listing 5.5) can be formalized as follows:

Πb,c

(
J↑ca [created](Vg)Kg ] J↑cb [created](Vg)︸                                                  ︷︷                                                  ︸

t = t1 ] t2

Kg
)

(5.9)

5.2 GREMLINATOR Approach

In this section, we discuss the GREMLINATOR approach for translating SPARQL queries into
pattern matching Gremlin traversals. We first start by elaborating on the correspondence
between the components of SPARQL queries and Gremlin traversals respectively. In doing so,
we create a formal analogy borrowing the evaluation semantics of a SPARQL query [13, 60, 78]
and put them in context of Gremlin traversals [70, 76, 77]. For a detailed discussion on the
semantics of Gremlin graph operators we refer to [34].

5.2.1 Mapping SPARQL BGPs to Gremlin SSTs

We know that, each subject (s) and object (o) (i.e. nodes) in a triple is connected through
only one predicate (p) relation (i.e. edges). Furthermore, Gremlin provides a pattern matching
construct, analogous to SPARQL using the match()-step, enabling the user to represent a
complex traversal using multiple individual connected or disconnected graph patterns (i.e.
SSTs).

Due to this functionality and given the nature of the information encoded in a triple, it is
possible to represent the underlying traversal operation using an SST, which is represented by
its predicate/edge. Thus, each predicate in a triple pattern of a SPARQL BGP manifests the
SST required for matching the graph pattern. We illustrate the different types of Gremlin SSTs
and their correspondence with the SPARQL triple patterns in Table 5.2.

We classify the itemization of the Gremlin SSTs from [77] into four categories, that can be
combined together to form a complex path traversal (analogous to CGP in SPARQL). This
categorization is based on the predicate-object combination (s p o) of the corresponding
SPARQL triple pattern, i.e. whether it refers to the – label of a vertex/edge (L) or property
literal/value of a vertex/edge (P1) or variable associated to a property value (P2) or a traversal
to-and-from a vertex given an edge (E). The corresponding SSTs can be grouped into the
following four cases:
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SST SPARQL Triple Pattern (P) Corresponding Gremlin Step γ(P) = ψs Case
Lv { ?x v:label "person" .} [MatchStartStep(x), HasStep([∼label.eq(person)]), MatchEndStep]
Le { ?x e:label "knows" .} [MatchStartStep(x), HasStep([∼label.eq(knows)]), MatchEndStep] L

Pv { ?x v:name "Marko" .} [MatchStartStep(x), HasStep([name.eq(Marko)], MatchEndStep]
Pe { ?x e:weight "0.8" .} [MatchStartStep(x), HasStep([weight.eq(0.8)]), MatchEndStep] P1

Pe { ?x e:weight ?y .} [MatchStartStep(x), PropertiesStep([weight],value), MatchEndStep(y)]
Pv { ?x v:name ?y .} [MatchStartStep(x), PropertiesStep([name],value), MatchEndStep(y)] P2

EOUT { ?x e:knows ?x .} [MatchStartStep(x), VertexStep(OUT,[knows],vertex), MatchEndStep(y)]
EIN { ?y e:knows ?x .}* [MatchStartStep(y), VertexStep(IN,[knows],vertex), MatchEndStep(x)] E

Table 5.2: Correspondence between the SPARQL triple patterns and single step traversals (SSTs) from
the Gremlin instruction library. Each of the SPARQL triple pattern can be mapped to a particular
Gremlin single step traversal.

• Case L – Traversal to access the label values of a vertex or an edge (Lv/Le)

• Case P1/P2 – Traversal to access the property values of a vertex or an edge (Pv/Pe)

• Case E – Incoming/outgoing traversal between two adjacent vertices given an edge label
(Ein/Eout)

These four categories serve as our base cases that can be used to construct any complex traversal
given their corresponding SPARQL CGPs. Table 5.2 illustrates the association between Gremlin
SSTs (ψs) and the SPARQL triple patterns.

For the SPARQL BGP from listing 5.1 the corresponding Gremlin SSTs for the triple patterns
are the cases – Pv (as the traversal is to access the property value of a vertex) and Eout (as the
traversal is from a vertex named "Marko" via the edge labelled "Created").

5.2.2 Mapping SPARQL Queries to Gremlin Traversals

Given that SPARQL is a graph pattern matching query language, it is intuitive to use SPARQL
to query property graphs. Moreover, we have seen that Gremlin provides several features to
express pattern matching in terms of path traversal. Next, we describe the SPARQL to Gremlin
query transformation function.

SPARQL-to-Gremlin Transformation Function

Consider the function γ(P ), which takes a SPARQL graph pattern P as input and returns a
Gremlin expression.

The function γ is defined recursively as follows:

• If P is a triple pattern (v1, v2, v3) then γ(P ) = _as("v1").has("v2","v3") when v3 ∈ L,
and γ(P ) = _as("v1").out("v2").as("v3") when v3 ∈ I;

• If P is a graph pattern of the form {P1 JOINP2} then
γ(P ) = match(γ(P1),γ(P2));
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• If P is a graph pattern of the form {P1 UNIONP2} then
γ(P ) = union(γ(P1),γ(P2));

• If P is a graph pattern of the form {P1 OPTIONALP2} then
γ(P ) = γ(P1).optional(γ(P2));

• If P is a graph pattern of the form {P1 FILTERC} then
γ(P ) = γ(P1).where(γ(C)).

We overload the function γ to evaluate a filter condition C as follows:

• If C is (?X = c) then γ(C) = ("?X",eq("c"));

• If C is (?X =?Y ) then γ(C) = ("?X",eq("?Y "));

• If C is (!C1) then γ(C) = not(γ(C1));

• If C is (C1 || C2) then γ(C) = or(γ(C1),γ(C2));

• If C is (C1 && C2) then γ(C) = and(γ(C1),γ(C2)).

We also overload the function γ to evaluate solution modifiers and the SELECT clause as follows:

• If E is a clause GROUP BY ?X1 . . . ?Xn then
γ(E) = .group.by("?X1"). ....by("?Xn");

• If E is a clause ORDER BY ?X then γ(E) = .order.by("?X",incr);

• If E is a clause ORDER BY ASC(?X) then γ(E) = .order.by("?X",incr);

• If E is a clause ORDER BY DESC(?X) then γ(E) = .order.by("?X",decr);

• If E is a clause LIMIT n then γ(E) = .limit(n);

• If E is a clause LIMIT n OFFSET m then γ(E) = .range(m,n);

• If E is the clause SELECT ?X1 . . . ?Xn then γ(E) = .select("?X1",. . . ,"?Xn");

• If E is the clause SELECT DISTINCT ?X1 . . . ?Xn then
γ(E) = .select(’"?X1",. . . ,"?Xn").dedup().

Given a SPARQL query QS = {S,W,GB,OB,LO}, the Gremlin expression obtained from QS

will be:

g.V().γ(P ).γ(GB).γ(OB).γ(LO).γ(S) = Ψ

Note that the sequence of steps in the Gremlin expression reflects the structure of the input
SPARQL query. Although the above definition assumes that all the components of a query are
present, it is easy to deduce the transformation when one or more optional components are
missing.
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Operation SPARQL k/w Gremlin k/w SPARQL construct Gremlin construct
Matching WHERE { ... } MatchStep(AND,[]) WHERE { BGP1 . BGP2 . ... BGPn} [MatchStep(AND,[[ψ1],[ψ2], ..., [ψn]]
Restriction FILTER(C) IsStep(C) FILTER (?v1 <30) IsStep(lt(30))
Join JOIN AndStep() BGP1 * BGP2 * ... * BGPn AndStep([[ψ1], [ψ2], ..., [ψ2]])
Projection SELECT SelectStep() SELECT ?v1 ?v2 ... ?vn SelectStep([a, b, ... , n])
Combination UNION UnionStep() {BGP1} UNION {BGP2} UnionStep(ψ1,ψ2)
Left Join OPTIONAL CoalesceStep() {BGP1} OPTIONAL { BGP2} ψ1,CoalesceStep(ψ2)
Deduplication DISTINCT DedupStep() DISTINCT ?v1 DedupStep([v1])
Restriction LIMIT(M) RangeStep(0,M) LIMIT 2 RangeStep(0,2)
Restriction OFFSET(N) RangeStep(N,M+N) OFFSET 10 RangeStep(10,12)
Sorting ORDER BY() OrderStep() ORDER BY DESC(?a) OrderStep([[value(a), desc]])
Grouping GROUP BY() GroupStep() GROUP BY(?a) GroupStep(value(a))

Table 5.3: A consolidated summary of the SPARQL constructs and keywords along with their corresponding
Gremlin constructs and instruction steps.

g.V().match(

   as(‘a’).hasLabel(‘person’),

  as(‘a’).out(‘knows’).as(‘b’),

  as(‘a’).out(‘created’).as(‘c’),

  as(‘b’).out(‘created’).as(‘c’),
         

as(‘a’).values(‘age’).as(‘d’).where('d',lte(30))).select(‘a’,’b’,’c’)

SELECT ?a ?b ?c   WHERE {

       ?a v:label "person" .

       ?a e:knows ?b .

       ?a e:created ?c .

       ?b e:created ?c .

       ?a v:age ?d .  

       FILTER (?d <= 30)  }

Gremlin Traversal [ 𝛾(Q) = 𝛹 ]SPARQL Query (Q)

BGPs

query modifier

SSTs 
(𝜓

s
)

query modifier

𝛾

𝛾

𝛾

𝛾

𝛾

𝛾

Figure 5.4: Transformation Example 1. Illustration of the transformation of an input SPARQL query
(Q) to the corresponding Gremlin pattern matching traversal (Ψ).

5.2.3 Explanation of the Transformation

In this subsection, we explain the SPARQL to Gremlin mapping in more detail and use as
example two query transformation, shown in Figures 5.4 and 5.5. Furthermore, Table 5.3
presents a summary of the equivalences between SPARQL operators and Gremlin expressions.

Triple patterns. Given a triple pattern (v1, v2, v3), the transformation function generates a
different Gremlin expression depending on whether v3 is a literal, or it refers to a IRI. In both
cases the result is a simple traversal expression. In our sample transformation, the triple pattern
?a v:label "person" is translated to the Gremlin expression as("a").hasLabel("person").

JOIN graph patterns. A graph pattern {P1 JOINP2} implies a natural join between the
multisets obtained from P1 and P2. This behavior is simulated in Gremlin by using the operator
match, as it allows the join of a set of traversals. It is important to mention that a match can
occur inside another match, in any level of nesting, so recursive matching is supported.
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g.V().match(

   as(‘person’).hasLabel(‘person’),

  as(‘person’).out(‘created’).as(‘project’),
  
as(‘person’).values(‘age’).as(‘age’).where('age',lt(30)))

.select(‘age’).group().by().range(0,2)

SELECT ?age WHERE { 

          ?person v:label "person" . 

          ?person e:created ?project . 

          ?person v:age ?age .  

          FILTER (?age < 30)  }

 GROUP BY (?age) LIMIT 2  

Gremlin Traversal [ 𝛾(Q) = 𝛹 ]SPARQL Query (Q)

BGPs SSTs 
(𝜓

s
)

query modifier

aggregation

𝛾

𝛾

𝛾

𝛾

𝛾

Figure 5.5: Transformation Example 2. Illustration of the transformation of an input SPARQL query
(Q) to the corresponding Gremlin pattern matching traversal (Ψ).

OPTIONAL graph patterns. An optional graph pattern allows to introduce optional
matching. Given a pattern P = {P1 OPTIONALP2}, if the optional P2 does not match, then
the results of P1 are returned unchanged, else additional bindings of P2 are added to the solution
of P . The OPTIONAL operator corresponds to a left outer join operation in relational algebra.
Optional graph patterns are supported in Gremlin by using the operator .optional().

UNION graph patterns. A UNION operator allows to combine the solutions of two graph
patterns. Gremlin provides the operator code to implement the union of two SSTs (i.e. the result
set of two traversals). The solution set returned after the union operation is not de-duplicated
by default, because of the governing bag semantics. Thus, all possible solutions are returned.

FILTER graph patterns. The FILTER operator is used to restrict the results obtained after
evaluating a graph pattern. Several types of filter conditions are supported, including equalities,
inequalities and boolean conditions (in our example, ?d <= 30). Filter conditions are supported
in Gremlin by using the operator .where(C), where C is a constraint. Gremlin provides several
operators to implement simple and complex filter conditions.

SELECT. This clause allows to project the variables in multiset obtained by the graph pattern
matching step. This feature is implemented in Gremlin by using the .select() operator
(analogous to the SELECT operator in SPARQL).

Solution Modifiers. The solution set returned by the evaluation of a graph pattern is not
de-duplicated or ordered by default, as both languages operate on bag semantics. Therefore,
solution modifiers are used to sort, group or filter duplicated objects in the solution. Each
SPARQL query modifier considered in this paper has a corresponding operator in Gremlin.
For instance, the DISTINCT operator of SPARQL is implemented with the dedup operator of
Gremlin.
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5.3 Implementation

In this section, we discuss the implementation of GREMLINATOR approach (i.e. the Apache
TinkerPop sparql-gremlin plugin).

5.3.1 Encoding Prefixes

We encode the prefixes of SPARQL queries within the GREMLINATOR implementation, in order
to aid the translation process. We define the custom namespace:
http://tinkerpop.apache.org/traversal/ for the graph elements (i.e. vertex, edge, and
properties). For instance, an edge is referred to using the URI:

http://tinkerpop.apache.org/traversal/edge.

We also define custom prefixes for the IRIs, keeping in mind the corresponding Gremlin SSTs.
For instance, the label prefix (which is a predicate in a SPARQL query - “rdfs:label") is
encoded as e:label or v:label (where e=edge, v=vertex).

5.3.2 GREMLINATOR (sparql-gremlin) Architecture

In GREMLINATOR, an input SPARQL query passes through a series of four steps as shown in
Figure 5.6, which comprise of the translation pipeline, to obtain the resultant Gremlin traversal.

Step 1 The input SPARQL query is first parsed using the Jena SPARQL processing module
(ARQ). This allows: (i) validating the query, i.e. checking whether the input query is a valid
SPARQL query, and (ii) generating an abstract syntax tree (AST) representation.

Step 2 After the AST of the parsed SPARQL query is obtained, the opWalker then visits each
triple pattern of the SPARQL query and maps or re-writes them to the corresponding Gremlin
SSTs, i.e. via the Rewriter module (cf. Figure 5.6).

Step 3 Thereafter, depending on the operator precedence obtained from the AST of the parsed
SPARQL query, each of the corresponding SPARQL operators are mapped to their corresponding
instruction steps from the Gremlin instruction library. A final conjunctive traversal (Ψ) is then
generated by the Translation Writer module, by appending the SSTs and instruction steps.

Step 4 Finally, this final conjunctive traversal (Ψ) is used to generate Gremlin Bytecode8,
which can be executed on any TinkerPop-enabled graph DMS.

Algorithm 1 we describe the GREMLINATOR SPARQL-to-Gremlin query mapping algorithm.
8 Bytecode is a list of primitive-valued, nested arrays of the form: bytecode = [op,arg*]* where an arg can be
another chunk of bytecode.
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bytecode

Figure 5.6: The GREMLINATOR (sparql-gremlin) query translation pipeline.

Algorithmus 1 : GREMLINATOR SPARQL-to-Gremlin query mapping algorithm
input :SQ : SPARQL Query
output :GT : Gremlin Traversal

1 GT ← ∅; T ← ∅ // list of single step traversals (SST) - T

2 ; AST ← getAST(SQ); BGPs ← getAllBGPs(AST)
3 foreach bgpi ∈ BGPs do
4 ti ← t ∪ ψbgpi

5 ti ← t ∪ ψbgpi.s
∪ ψbgpi.p

∪ ψbgpi.o

6 ti ← TraversalBuilder(bgpi, G)
7 T ← T ∪ ti // mapping BGPs to Gremlin SSTs (ψs = ρ(bgpi)) cf. Table 5.2

8 end
9 // building the Gremlin operator A.S.T. (cf. Table 5.3)

10 if c← AST.FILTER, ∃c 6= ∅ then
11 foreach c ∈ AST do
12 T ← T ∪ WhereTraversalStep(ψc)
13 end
14 end
15 if c← AST.UNION then
16 GT ← UnionStep(Match(T ))
17 end
18 if |T |> 1 then
19 GT ← Match(T)
20 else
21 GT ← GT ∪ T
22 end
23 if c← AST.ORDERBY then
24 GT ← T ∪ OrderStep(ψc)
25 end
26 if c← AST.GROUPBY then
27 GT ← T ∪ GroupByStep(ψc)
28 end
29 if c← AST.LIMIT then
30 if k ← AST.OFFSET then
31 GT ← T ∪ RangeStep(k, c+ k)
32 else
33 GT ← T ∪ RangeStep(c)
34 end
35 end
36 return GT
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5.3.3 SPARQL Coverage and Limitations

Currently, GREMLINATOR supports the translation of SPARQL SELECT queries. It covers the
SPARQL 1.0 specification (cf. Table 5.3), along with a subset of SPARQL 1.1 features (e.g.
aggregation operators, explicit negation, solution modifiers). Furthermore, GREMLINATOR
allows execution of composite queries over Graph DMSs. A composite query is a combination
of both SPARQL and Gremlin constructs, wherein a SPARQL query can be appended with
gremlin steps thus allowing a combination of declarative and imperative constructs. For instance:
g.sparql("SELECT * WHERE { }").out().label().dedup()

The current limitation of GREMLINATOR is that it does not support SPARQL queries with
variables in the predicate position. Meaning that the predicate (p) in a triple pattern {s p o
.} cannot be expressed as a variable. It has to be a defined operation for the traversal to be
generated. This is because traversing a graph, natively in TinkerPop3, is not possible without
knowing the precise (graph) traversal operation to the destination (vertex/edge) from the source
(vertex/edge). However, this limitation is mitigated with the release of TinkerPop4 release, as it
supports variables in predicate positions.

5.4 Experimental Evaluation

In this section, we describe – the evaluation methodology, the dataset and query descriptions, a
carefully curated experimental setup (keeping in mind the various settings available to both RDF
and Graph DMSs). We discuss the empirical evidence supporting the validity of our approach,
report results and their meticulous discussion.

5.4.1 Evaluation Methodology

In order to empirically evaluate GREMLINATOR, we answer the following key questions:

Q1) Query preservation: Do the GREMLINATOR generated Gremlin traversals return the
same results as their SPARQL counterparts? i.e. is the proposed approach preserving the
meaning of the input queries?

Q2) Translation validity: Do the GREMLINATOR generated Gremlin traversals return the
same results as the (manually created) traversals by the Gremlin experts? i.e. is the
proposed approach generating valid traversals?

Q3) Performance analysis: What do we observe upon comparing the execution performance
of the SPARQL queries and their Gremlin counterparts?
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5.4.2 Evaluation Metrics

The following conditions and metrics were considered for reporting all results.

• Query translation time (in milliseconds or ms) is reported for the average of 10 runs for
each query translation (average time taken to translated a SPARQL query to a Gremlin
traversal).

• Query execution time (in milliseconds or ms) is reported is the average of 10 runs for each
query (of both SPARQL and translated Gremlin traversals).

• Caching – Queries were executed in both cold and warm cache settings for all DMSs.
Where, a warm cache: implies that the cache is not cleared after each query run, and cold
cache: implies that the cache is cleared using the echo 3 > /proc/sys/vm/drop_caches
UNIX command after each query run.

• Indexing schemes – For Graph DMSs, query execution time is reported for both with and
without creating explicit (manually created) indices. We elaborate on the reason for this,
next.

Indexing in RDF Triplestores vs Graph Databases

RDF triplestores (or simply RDF DMSs9) typically consist of pre-defined indices. While, it
is theoretically possible to have an RDF DMS totally index-free, it would imply performing a
linear search through the entire set of RDF triples when executing each query against dataset.
For this reason, having a strongly defined index setting within a RDF DMS by default is salient.
For instance, Virtuoso maintains two all-purpose full (bitmap indices over PSOG, POGS) and
three partial indices (over SP, OP GS) in the default configuration10. Furthermore, 4Store in its
default setting maintains a set of three full indices (R, P, M) [199], where – the R-index is a
hash-map index over RDF resources (URIs, Literals, and Blank nodes); the P-index consists
of a set of two radix trees per predicate, using a 4-bit radix; and the M-index is a hash-map
based indexing scheme over RDF Graphs (G). Lastly, Jena TDB maintains three indices using
a custom persistent implementation of B+ Trees11.

On the other hand, the same cannot be said for Graph DMS wherein these indices can be
created explicitly, depending upon the use case. Graph DMSs implement index-free adjacency
(or neighbourhood) between the connected components (i.e. nodes). This implies that when
searching through a Graph DMS, one is actually traversing through the index pointers rather
than indexes themselves. For this reason, Graph DMSs do not require having a strongly
defined index setting by default12. They rather offer the possibility of creating explicit indexes

9 Instead of referring to the systems individually as an RDF triplestore or Graph database, we use the term Data
Management System (DMS) throughout the chapter for better readability.

10 RDF indexing scheme in Virtuoso (http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/)
11 RDF indexing scheme in Apache Jena TDB (https://jena.apache.org/documentation/tdb/architecture.

html#triple-and-quad-indexes)
12 https://neo4j.com/blog/rdf-triple-store-vs-labeled-property-graph-difference/
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Northwind Dataset Features RDF stats Property graph stats
Classes 11 -
Entities 4413 -
Distinct subjects 4413 -
Distinct objects 8187 -
Properties 55 55
Number of Categories 8 8
Number of Customers 91 91
Number of Employees 9 9
Number of Orders 830 830
Number of Vendors 34 34
Number of Products 77 77
Number of Regions 4 4
Number of Shippers 3 3
Number of Suppliers 29 29
Number of Territories 53 53
Number of Instances or Nodes 3209 3209
Number of Triples or Edges 33003 6177

Table 5.4: Northwind RDF and Property graph dataset statistics

over custom graph elements (nodes, edges, attributes, etc), using a variety of data structures,
depending on the implementation. For instance, TinkerGraph supports the creation of regular
and composite hash-map indices (multiple key-value pairs) over node and edge attributes. Neo4j
supports declaring regular indices (composite indices are supported in v3.5 and beyond) on
graph elements (including labels). It offers a variety of indices ranging from Lucene index (for
textual attributes) and as SBTREE-based index (numeric ones, such as IDs), which is based
on custom implementation of B-Trees with several optimizations related to data insertion and
range queries 13. Lastly, like others Sparksee also supports user-defined indices on attributes,
using a bitmap index implemented using sorted B-trees [200].

As we pointed out earlier, it is not possible to have a completely index-free RDF DMS. Thus,
in order to grasp a better understanding of query performance with respect to various factors
(such as indexing schemes, query typology and cache configuration) and also for the sake of
fairness (towards Graph DMSs) we ran all the experiments with two Graph DMS settings:
without and with manually created indices.

5.4.3 Datasets

We used the following datasets for the experimental evaluation of GREMLINATOR:

• Northwind14 dataset, which consists of synthetic data describing an e-commerce scenario
between a fictional company "Northwind Traders", its customers and suppliers. Originated
as a sample dataset shipped with Microsoft Access, the Northwind dataset is famous for
benchmarking in relational database community;

13 Indexing scheme in Neo4j (https://neo4j.com/docs/cypher-manual/current/schema/index/)
14 Northwind dataset (https://northwinddatabase.codeplex.com/)
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BSBM Dataset Features RDF stats Property graph stats
Classes 159 -
Entities 71015 -
Distinct subjects 71017 -
Distinct objects 166384 -
Properties 40 40
Number of Products 2785 2785
Number of Producers 60 60
Number of Product Features 4745 4745
Number of Product Types 151 151
Number of Vendors 34 34
Number of Offers 55700 55700
Number of Reviewers 1432 1432
Number of Reviews 27850 27850
Number of Instances or Nodes 92757 92757
Number of Triples or Edges 1000313 238309

Table 5.5: BSBM RDF and Property graph dataset statistics

• Berlin SPARQL Benchmark [168] (BSBM) dataset, which consists of synthetic data
describing an e-commerce use case, involving a set of products, their vendors, and consumers
who review the products. BSBM is widely famous for benchmarking RDF DMSs as it
offers the flexibility of generating graphs of custom size and density. We generated one
million triples for our experiments.

Tables 5.5 and 5.4 present the statistics of both the RDF and Property graph versions of the
Northwind and BSBM datasets. The respective PG versions of the RDF datasets were created
using trivial RDF graph pattern to PG pattern mapping rules. The python scripts for PG data
generation (with the mappings), are accessible from [201].

5.4.4 Queries

We created a set of 30 SPARQL queries, for each dataset, which cover 10 different query features
(i.e. three queries per feature with a combination of various modifiers). Table 5.6, summarizes
their query design and the feature distribution. These features were selected after a systematic
study of SPARQL query semantics [60, 78]. The queries cover a mix of BSBM [168] explore
use cases15. Furthermore, a gold standard dataset of corresponding Gremlin traversals for the
SPARQL queries, was created by three Gremlin experts. These expert generated traversals
were used for a two-fold validation of the traversals generated by our approach (for Q2, cf.
Section 5.4.1).

15 BSBM Explore Use Cases (http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/
spec/20110607/ExploreUseCase/index.html#querymixes)
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Query Feature FILTER COUNT LIMIT DISTINCT No. of TPs. No. of Proj. var.
C1 CGP X X 2 2
C2 CGP X 1 1
C3 CGP X 1 1
F1 CONDITION X(1) 3 3
F2 CONDITION X(2) 3 3
F3 CONDITION X(1) X 2 1
L1 RESTRICTION X(1) X X 4 2
L2 RESTRICTION X 2 2
L3 RESTRICTION X 2 2
G1 GROUP BY X X 2 2
G2 GROUP BY X(1) 6 2
G3 GROUP BY X 1 2
Gc1 GROUP BY + COUNT X X 3 2
Gc2 GROUP + COUNT X 2 2
Gc3 GROUP + COUNT X X 1 2
O1 ORDER BY X 1 1
O2 ORDER BY X(1) 4 3
O3 ORDER BY X X 1 1
U1 UNION X(2) X 8 1
U2 UNION X(2) 6 2
U3 UNION X(2) X 4 1
Op1 OPTIONAL X(1) 3 3
Op2 OPTIONAL X X 6 2
Op3 OPTIONAL X(2) 8 3
M1 MIXED X X 3 2
M2 MIXED X X X 2 2
M3 MIXED X X 4 2
S1 STAR X(1) X 12 11
S2 STAR X(1) X 5 4
S3 STAR X(1) 10 9
TOTAL 30 Queries per Dataset - - - - - -

Table 5.6: A description of the feature compositions in each of the query dataset.

5.4.5 System Setup

We configured the following Data Management Systems: RDF triplestores: Openlink Virtuoso
[v7.2.4], JenaTDB16 [v3.2.0], 4Store [v1.1.5]; Graph databases: TinkerGraph [18] [v3.2.3],
Neo4j17 [v1.9.6], Sparksee18 [v5.1]. All experiments were performed on the following machine
configuration: CPU: Intel® Xeon® CPU E5-2660 v3 (2.60GHz), RAM: 128 GB DDR3, HDD:
512 GB SSD, OS: Linux 4.2-generic. To ensure the reproducibility of our results, we provide
the scripts, data and queries here19, and also provide a persistent URL20 referring to all the
resources used in this paper. All queries were executed in both cold and warm cache settings.
The reported query translation and execution times are in milliseconds (ms).

16 Apache JenaTDB (https://jena.apache.org/documentation/tdb/index.html)
17 Neo4j Graph Database (https://neo4j.com/)
18 Sparksee – formerly DEX (http://sparsity-technologies.com/#sparksee)
19 Experimental Setup (https://github.com/harsh9t/Gremlinator-Experiments)
20 All GREMLINATOR resources (https://doi.org/10.6084/m9.figshare.8187110.v3) [201]
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5.5 Results and Discussion

We report the results with respect to the evaluation methodology described earlier. We executed
the SPARQL queries against the three RDF triplestores and the GREMLINATOR translated
Gremlin traversals against the three graph databases for both data sets and retrieved their
results (for answering Q1, Q3). Furthermore, we also executed the (manually) expert generated
Gremlin traversals on the graph databases, and compared their results with the GREMLINATOR
generated traversals for a two-fold validation (for answering Q2).

We point the interested reader to [201], which is a persistent URL pointing to all the resources
(scripts, queries, data, experimental setup, etc.) used in our experiments. The average time (of
10 runs per query) for translating a SPARQL query to the corresponding Gremlin traversal is
14 ms for BSBM and 12.5 ms for Northwind queries respectively.

5.5.1 Q1 - Query Preservation

We observed that for each SPARQL query and its translated Gremlin traversal, the returned
results are equivalent (i.e. have the same values for each corresponding variable in the result set).
The only difference was their representation format. SPARQL queries returned results as tables,
whereas Gremlin traversals returned results as lists (or list of sets). Table 5.7 presents a subset
of the query result. The complete list of all the queries and their corresponding results can be
accessed from the Google spreadsheet available at (https://docs.google.com/spreadsheets/
d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw/). Additionally, we validated the result
returned by each translated Gremlin traversal against the corresponding manually created
Gremlin traversal by the Gremlin experts (as stated in Section 5.4.4), for a two-fold cross-
validation. Thus, based on the detailed empirical evidence gathered from our carefully conducted
experiments we can conclude that the proposed translation approach is query preserving.
Therefore, the evaluation of a SPARQL query Q over an RDF graph RDF is equivalent to the
the evaluation of the translated Gremlin traversal Ψ over the corresponding Property graph G,
notationally: JQKRDF ≡ JΨKG.

5.5.2 Q2 - Translation Validity

We report that both Gremlin traversals (i.e. automatically translated via GREMLINATOR and
manually translated by the Gremlin experts), when executed against the graph databases, also
returned the same results. Therefore, the translated traversals are valid. We point the interested
reader to the Google spreadsheet pointed our earlier (subsection above) for the complete results.

5.5.3 Q3 - Performance Analysis

Figures 5.7 and 5.8, presents the plots of our experimental results, in all four settings, for the
BSBM and Northwind datasets respectively. The plots follow log scale for execution time (in ms).

124

https://docs.google.com/spreadsheets/d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw/
https://docs.google.com/spreadsheets/d/183aOScNR6y7GVv8NVOl16_TELS1oZA4R9HKSZVWo3jw/


5.5 Results and Discussion

Q. SPARQL Query Feature SPARQL Query Result Gremlin Traversal Result
C1 SELECT (COUNT (DISTINCT (?product)) as

?total) WHERE { ?a v:type "review" . ?a e:edge
?product . }

BGP 2787 2787

F3 SELECT DISTINCT ?pid WHERE
{ ?a v:productID ?pid . ?a
v:ProductPropertyNumeric_1 ?property1 .
FILTER ( ?property1 = 1 ) }

FILTER ?pid bsbm:inst/Product1636
bsbm:inst/Product2295

{ pid=1636 } { pid=2295 }

L2 SELECT ?rating1 WHERE { ?a v:type "review"
. ?a v:Rating_1 ?rating. ?a e:edge ?product.
?product v:productID ?pid . FILTER ( ?pid =
343 ) .} LIMIT 2

LIMIT ?rating1 9 7 { rating1=9 } { rating1=7 }

G2 SELECT ?product WHERE { ?a v:type "reviewer"
. ?a v:reviewerID ?rid. ?a e:edge ?review . ?review
v:Rating_1 ?rating1. ?review e:edge ?product.
?product v:productID ?pid. FILTER ( ?rid = 86).
} GROUP BY (?rating1)

GROUP
BY

?product bsbm:inst/Product1107
bsbm:inst/Product1301
bsbm:inst//Product1852 bsbm:inst/Product2291
bsbm:inst/Product1098 bsbm:inst/Product1954
bsbm:inst/Product1994 bsbm:inst/Product1355
bsbm:inst/Product734 bsbm:inst/Product1448
bsbm:inst/Product1426 bsbm:inst/Product1817
bsbm:inst/Product1141 bsbm:inst/Product1194
bsbm:inst/Product451 bsbm:inst/Product1294
bsbm:inst/Product1532

{ product=1107 } { product=1301 } {
product=1852 } { product=2291 } {
product=1098 } { product=1954 } {
product=1994 } { product=1355 } {
product=734 } { product=1448 } {
product=1426 } { product=1817 } {
product=1141 } { product=1194 } {
product=451 } { product=1294 } {
product=1532 }

Gc2 SELECT ?product (COUNT (?review) as ?total)
WHERE { ?review v:type "review" . ?review
e:edge ?product . ?product v:productID ?pid. }
GROUP BY (?product) LIMIT 10

GROUP
COUNT

?product ?total bsbm:inst/Product2588 1
bsbm:inst/Product3 1 bsbm:inst/Product2331
2 bsbm:inst/Product2553 3
bsbm:inst/Product1803 5
bsbm:inst/Product2440 7
bsbm:inst/Product2201 5 bsbm:inst/Product316
3 bsbm:inst/Product2210 7

{Product=2588, Total=1} {Product=3,
Total=1} {Product=2331, Total=2}
{Product=2553, Total=3} {
Product=1803,Total=5 } { Product=2440,
Total=7 } { Product=2201, Total=5 } {
Product=316, Total=3 } { Product=2210,
Total=7 }

O2 SELECT DISTINCT ?product ?label WHERE
{ ?a v:productTypeID ?tid. FILTER(?tid =
58). ?a e:edge ?product. ?product v:productID
?pid. ?product v:label_n ?label. } ORDER BY
(?product) LIMIT 5

ORDER
BY

product label bsbm:inst/Product11 "pipers
pests" bsbm:inst/Product18 "boondogglers"
bsbm:inst/Product489 "airsickness simplices
skiing" bsbm:inst/Product694 "nahuatls ter-
rifiers direr" bsbm:inst/Product709 "jacinth
medusoids"

{pid=11, lab=pipers pests} {pid=18,
lab=boondogglers} {pid=489, lab=airsickness
simplices skiing} {pid=694, lab=nahuatls terrifi-
ers direr} {pid=709, lab=jacinth medusoids}

U1 SELECT ?label WHERE { { ?a v:productTypeID
?tid. FILTER(?tid = 58). ?a e:edge ?product.
?product v:productID ?pid. ?product v:label_n
?label. }UNION { ?a v:productTypeID ?tid. FIL-
TER(?tid = 102). ?a e:edge ?product. ?product
v:productID ?pid. ?product v:label_n ?label. }}
LIMIT 10

UNION ?label "airsickness simplices skiing" "nahuatls
terrifiers direr" "jacinth medusoids" "slowed
cloche" "meshwork" "nonradical warehousing"
"furnacing" "accommodator" "collectivized math-
ematics" "brachiate writeoff"

{ label=airsickness simplices skiing } { la-
bel=nahuatls terrifiers direr } { label=jacinth
medusoids } { label=slowed cloche } { la-
bel=meshwork } { label=nonradical } { la-
bel=warehousing } { label=furnacing } { la-
bel=accommodator } { label=collectivized math-
ematics } { label=brachiate writeoff }

Op1 SELECT ?pTex2 ?pText3 ?pNum2 WHERE {
?product v:productID ?pid . FILTER ( ?pid
= 343 ) . ?product rdfs:label ?label. ?product
v:ProductPropertyTextual2 ?propertyTextual_2
. ?product v:ProductPropertyTextual3 ?prop-
ertyTextual_3 . OPTIONAL { ?product
v:productID ?pid . FILTER ( ?pid = 350
) . ?product rdfs:label ?label. ?product
v:ProductPropertyNumeric_2 ?propertyNu-
meric2 . ?product v:ProductPropertyTextual3
?propertyTextual_3 .}}

OPT. pText2 pText3 pNum2 ""cyanided uncharged
gametes"" ""fluorosis appeasing railheads criti-
cizers satirizer controllers"" 758

{pText_2=cyanided uncharged gametes,
pText_3=fluorosis appeasing railheads criti-
cizers satirizer controllers, pNum2_2=758}

M1 SELECT ?reviewer (COUNT (?product) as ?total)
WHERE { ?reviewer v:type "reviewer". ?re-
viewer e:edge ?review. ?review e:edge ?product
. } GROUP BY (?reviewer) ORDER BY DESC
(?total) LIMIT 10

MIX bsbm:inst/Reviewer1294 42
bsbm:inst/Reviewer501 41
bsbm:inst/Reviewer424 39
bsbm:inst/Reviewer281 38
bsbm:inst/Reviewer1263 38

[1294:42, 501:41, 424:39, 281:38, 1263:38]

S1 SELECT ?plabel ?label ?flabel ?proptext1
?proptext2 ?proptext3 ?propnum1 ?propnum2
?comment WHERE { ?producer v:type
"producer". ?producer v:label_n ?plabel.
?producer e:edge ?product. ?product v:type
"product". ?product v:productID ?pid. FIL-
TER(?pid = 343). ?product v:label_n ?label.
?product v:comment ?comment. ?product
v:ProductPropertyTextual_1 ?proptext1.
?product v:ProductPropertyTextual_2 ?prop-
text2. ?product v:ProductPropertyTextual_3 ?pr-
optext3. ?product v:ProductPropertyNumeric_1
?propnum1. ?product
v:ProductPropertyNumeric_2 ?propnum2.
?product e:edge ?pfeature. ?pfeature v:type
"product_feature". ?pfeature v:label_n ?flabel. }
LIMIT 1

STAR ?label ?comment ?p ?f ?productFeature ?produ-
cer ?propertyTextual1 ?propertyTextual2 ?prop-
ertyTextual3 ?propertyNumeric_1 ?propertyNu-
meric1_2 "ors" "sobbers kynurenic undergoing
remained horsed sidings hutzpa continence flighty
japingly semiretired crispest chukkers bambooz-
ler shivah lagged miggs snickering arbitrators
propped osmic mismeeting dissimulate fraudu-
lently cabled yeller truncheons sigil expatriating
viceless merrymakers fetas recompenses disreput-
ability taperer multiplexed toddler disaffiliating
radiating worshipper flamboyance waggly both-
ering swindlers eucharistical enserfing lightfaced
tench tramping margraves bewilderment deutero-
nomy contravened fourpenny coveralls traitorous-
ness millpond redetermine jeremiad resealable ab-
reaction marblers whisks" bsbm:inst/Producer8
bsbm:inst/ProductFeature11 "entoiling" "assig-
nat disrobe" "housewifeliness neoliths proselyt-
izers infirmable meditations bedchair maschera
hagfish saplings prearranges debacles bedews
straying grouter stereophonically" "cyanided un-
charged gametes" "fluorosis appeasing railheads
criticizers satirizer controllers" 1165 1526

[ProductPropertyNumeric_1:[1165], pro-
ductID:[343], ProductPropertyTex-
tual_1:[cyanided uncharged gametes], Pro-
ductPropertyNumeric_2:[1526], ProductProp-
ertyTextual_2:[fluorosis appeasing railheads
criticizers satirizer controllers], label_n:[ors],
comment:[sobbers kynurenic undergoing re-
mained horsed sidings hutzpa continence
flighty japingly semiretired crispest chukkers
bamboozler shivah lagged miggs snickering
arbitrators propped osmic mismeeting dissim-
ulate fraudulently cabled yeller truncheons
sigil expatriating viceless merrymakers fetas
recompenses disreputability taperer multiplexed
toddler disaffiliating radiating worshipper flam-
boyance waggly bothering swindlers eucharistical
enserfing lightfaced tench tramping margraves
bewilderment deuteronomy contravened
fourpenny coveralls traitorousness millpond
redetermine jeremiad resealable abreaction
marblers whisks],type:[product]],label:hedgehogs
barstools,label_prod:assignat disrobe

Table 5.7: Comparison of results of a subset of SPARQL queries and their corresponding Gremlin traversals
for the BSBM dataset.
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Furthermore, we also report the detailed query-wise results in tabular format in Appendix A,
for more comprehensive understanding. As we observe similar trend of performance of SPARQL
vs. Gremlin queries over both the datasets, which is evident from Figures 5.7 and 5.8 and also
the Tables A.1 and A.2 of Appendix A. We, therefore, only present the detailed performance
analysis for the BSBM dataset. Furthermore, a similar performance trend was also observed
in an independent study by [202] (cf. Section 5.7.1), which use GREMLINATOR, comparing
SPARQL queries executed over Openlink Virtuoso vs the translated gremlin traversals executed
over JanusGraph. We organize our observations on the performances of participating DMSs as
follows, and present our discussion.

Graph DMSs without indexing scheme

Our findings for cold and warm cache are:

1. Cold cache: SPARQL queries perform better with respect to Gremlin traversals, lever-
aging the indexing schemes of RDF DMSs. They perform 1-2 times faster on simple
queries (C1, C2) and order by (O1, O3); and 3-5 times faster for union and mixed queries
(U1-3, M1-3). Whereas, Gremlin traversals perform 1-2 times faster on restriction (L1, L3),
group by (G1-3) and conditional (F1-3) queries; 3-5 times faster on group count (Gc1-3)
and star (S1-3) queries. We note that aggregation queries (counts, group counts) in Graph
DMSs are an order of magnitude faster compared to RDF DMSs, since they do not have
to execute multiple inner joins in addition to the aggregation operations. Moreover, for
star-shaped queries (queries with bushy plans having 5 or more triple patterns, a filter and
4 or more projection variables) Gremlin traversals outperform their SPARQL counterparts
by at least one order of magnitude for S1, S2 and at least two orders of magnitudes for S3
(with 10 BGPs, 1 filter and 9 projection variables).

2. Warm cache: SPARQL queries reap the most benefits of warm caching in RDF DMSs
compared to the Gremlin traversals in Graph DMSs. We observe that on average, in
this setting, the performance gain is up to 1-1.8 times for star-shaped and mixed queries,
2-3 times for aggregation (counts), condition (filter) and re-ordering (order by, group by)
queries, and 3-5 times for CGPs and union queries. On the other hand, as can be expected,
Gremlin traversals benefit little from warm caching. On average, in this setting, the
performance gain is up to 1.3 times for aggregation (count, group count) and star-shaped
queries; up to 1.5 times for re-ordering (order-by, group-by) and condition (filters) queries;
up to 2 times for mixed, union and restriction (limit) queries.

Graph DMSs with indexing scheme

We created composite indices for each Graph DMS on attributes such as "name", "customerId",
"unitPrice", "unitsInStock", and "unitsOnOrder" for the BSBM dataset. Similarly, on
"type", "productID", "reviewerID", and "productTypeID" for the Northwind dataset. The
indices use the hash-map data structure. We did not re-execute SPARQL queries on RDF DMSs,
as there was no change in their indexing setting.
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5.5 Results and Discussion

Figure 5.7: Performance comparison of SPARQL queries vs the translated Gremlin traversals for BSBM
dataset with respect to RDF and Graph DMSs in different configuration settings.
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Figure 5.8: Performance comparison of SPARQL queries vs the translated Gremlin traversals for Northwind
dataset with respect to RDF and Graph DMSs in different configuration settings.
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1. Cold cache: Gremlin traversals perform significantly faster when executed on Graph
DMSs with composite indices. We observe that, as compared to the previous (cold cache +
without index) setting, the improvement on an average is 1-2 times for union, mixed and
group by traversals; 2-3 times for re-ordering (group-by, order-by) traversals; 3-5 times for
regular and restriction traversals; and >5 times for aggregation and star-shaped traversals.

2. Warm cache: In this setting the Graph DMSs (i.e. Gremlin traversals) register similar
performance gain pattern with respect to the RDF DMSs in the non-indexed configuration.

5.5.4 Discussion

In this section, we present a discussion about the query execution performance with respect to
some factors influencing the outcome of a particular DMS:

Query typology: We observe that for –

(1) Simple/Linear queries (such as C1-3, F1-3, L1-3) the SPARQL and Gremlin traversal
performance is comparable;

(2) SPARQL outperforms corresponding Gremlin traversals for union queries. This is because,
in SPARQL a union occurs between two or more sets of triple patterns. Whereas in
the declarative construct (pattern matching) of Gremlin, a union occurs between two
.match()-steps (i.e. Gremlin treats each .match()-step as a distinct traversal and then
executes a union on top of it); However, in the imperative construct of Gremlin, this is
not the case, since we do not "need" to use the .match()-step inside a union()-step.

(3) Whereas, for complex queries (such as star-shaped and aggregation queries), Gremlin
traversals outperform their SPARQL counterparts (due to the absence of expensive joins).

(4) Lastly, for queries with higher number of projection variables (greater 2) and query
modifiers (count, distinct, limit + offset, filter), Gremlin traversals show a performance
gain of more than an order of magnitude compared to the corresponding SPARQL queries
(e.g. F1, F2, O2, S1, S2, S3). This advantage, is not as pronounced when comparing
queries with a fewer number of projection variables and query modifiers.

Query caching – (cold vs warm): Both RDF and Graph DMSs perform better when using
warm caching. We observe that SPARQL queries perform better compared to the corresponding
Gremlin traversals. One reason for this is that Gremlin traversals perform overall considerately
better (except in cases of union queries) by leveraging the locality advantage of the underlying
property graph data model and cannot be optimized further without explicitly creating additional
composite indices. Out of all three RDF DMSs, Jena gains most from a warm cache, e.g. up to
5 times performance increase in cases such as union and CGP queries.
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Indexing scheme: The one-sided dominance of Virtuoso among all the evaluated RDF DMSs
is extremely noticeable. This is because, Virtuoso maintains a variety of full and partial indices
(as mentioned earlier). Moreover, we also observed that Virtuoso employs custom partition
clustering and caching schemes on top of these indices to provide an adaptable solution to all
kinds of workloads. The indices in Virtuoso are column-wise by default21, which take only
one-third of the space compared to row-wise indices. On the contrary, other RDF DMSs such
as 4Store and JenaTDB do not use such mechanisms. Graph DMSs, have limited options, in
terms of underlying indexing data structure implementation, for creating manual indexes in a
given version. One reason is that, there has not been an explicit need for using complex index
schemes (as in Virtuoso), since composite indices based on B+ trees and hash-maps provide
sufficient performance for traversal operations.

Thus, based on these findings, we can summarize that for complex queries (such as aggregation,
star-shaped, and queries with higher number of projection variables + query modifiers) the
corresponding Gremlin pattern matching traversals outperform SPARQL queries. Whereas, for
union queries, SPARQL has a significant performance advantage.

5.6 Gremlinator as a Reusable Resource

For a first-hand system demonstration of the Apache TinkerPop sparql-gremlin plugin (i.e.
GREMLINATOR approach) we have prepared – (a) a video tutorial,22 and (b) a web application23

for this purpose. (c) a desktop application of GREMLINATOR (standalone .jar bundle) which
requires Java 1.8 JRE installed on the corresponding host machine, downloadable from the web
demo website.

5.6.1 Technical Quality

Since sparql-gremlin plugin is a part of the Apache foundation, community software de-
velopment best practices were followed to ensure quality and resuability. A few of the best
practices followed are – (i) Apache Maven was used as the project management framework. The
respective maven artifact is deployed at (https://search.maven.org/artifact/org.apache.
tinkerpop/sparql-gremlin/3.4.1/jar); (ii) Extensive Unit Tests covering a wide variety of
test cases were implemented; (iii) Automated Tests and Build of the software was conducted
using the Travis CI API24, and (iv) Reference and Code documentations were created using
Javadocs (cf. Sections 5.6.2 and 5.6.3).

21 Indexing scheme used in Openlink Virtuoso (http://docs.openlinksw.com/virtuoso/rdfperfrdfscheme/)
22 Gremlinator Demo Video – https://www.youtube.com/watch?v=Z0ETx2IBamw
23 Gremlinator Web Demo – Mirror 1 http://gremlinator.iai.uni-bonn.de:8080/Demo and Mirror 2 http:

//195.201.31.31:8080/Demo/
24 Travis CI API (https://docs.travis-ci.com/api/)
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5.7 Community Adoption (Use Cases)

5.6.2 Availability

The availability of the resource, licensing and source code information is clubbed in two groups,
for the – (i) Apache TinkerPop sparql-gremlin plugin25, and (ii) Independent sparql-gremlin
implementation26 respectively. Both the source codes are available under the Apache License
2.027

5.6.3 Reusability and Maintenance

In order to ensure ease of reusability of sparql-gremlin, we have provided an illustrative and
user-friendly documentation in the following manner:

• Apache TinkerPop reference documentation28 – explains the working of the sparql-gremlin
plugin and other technical details about it’s installation, use, etc. in the TinkerPop frame-
work;

• Independent implementation documentation29 – which is the independent source code of
the proposed sparql-gremlin translation, which enables easy adoption and extension of
our work, for custom use-cases. For instance, the re-use of our work by IBM Research
AI [202], to integrate the sparql-gremlin translator within their query engine.

5.7 Community Adoption (Use Cases)

Our GREMLINATOR approach and its Apache TinkerPop sparql-gremlin is gaining attention
and adoption by both the academia and industry communities. We report few such use cases
next.

5.7.1 IBM Research AI use case

In the recent research study [202] published by IBM Research, GREMLINATOR has been extended
and reused in order to support scalable reasoning over large scale Knowledge Graphs targeted
towards industrial applications. The SPARQL to Gremlin translation is embedded in the query
layer in order to execute SPARQL queries over the property graph data stored in JanusGraph30.
The authors have compared the performance of executing SPARQL queries over the Openlink
Virtuoso triplestore to that of executing the translated Gremlin traversals over JanusGraph.
25 https://github.com/apache/tinkerpop/tree/master/sparql-gremlin
26 https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin
27 http://www.apache.org/licenses/LICENSE-2.0
28 TinkerPop reference docs (http://tinkerpop.apache.org/docs/current/reference/#sparql-gremlin)
29 Independent Github repository (https://github.com/LITMUS-Benchmark-Suite/sparql-to-gremlin/blob/

master/README.md)
30 JanusGraph (https://janusgraph.org/)
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They report a similar performance trend of Gremlin traversals as compared to SPARQL queries
using the LUBM31 dataset for 100 universities to that reported in our study.

5.7.2 SANSA Stack use case

The Scalable Semantic Analytics (SANSA) Stack [203] exercises distributed computing via
Apache Spark and Flink in order to enable scalable machine learning, inference and querying
capabilities for large knowledge graphs. GREMLINATOR is employed in the query layer of the
SANSA Stack version 0.332 as an experimental feature to allow executing SPARQL queries
over the Apache Spark and Apache Flink using Gremlin traversals. The maven artifact is avail-
able from – https://mvnrepository.com/artifact/io.github.litmus-benchmark-suite/
gremlinator/1.0/usages.

5.7.3 Contextualised Knowledge Graph use case

This use case is about adding a semantic web abstraction layer on top of Graph databases
by employing GREMLINATOR for querying a Contextualised Knowledge Graph (CKG). This
project aims to simulate PG-style characteristics (e.g. node and edge properties) to RDF KGs
via extending the singleton property semantics [204]. The applications of the CKG model are
aimed towards curating an Open Knowledge Network (OKN) infrastructure for the storage
and querying of biomedical data related to patients’ health. This use case is currently under
development.

5.7.4 Open Research Knowledge Graph use case

The European Research Council funded project ScienceGRAPH proposes the development of
an Open Research Knowledge Graph [103], which is will be the first Knowledge Graph based
infrastructure that for the publication and consumption of scholarly data. This preliminary
study envisions to extend GREMLINATOR in order to execute SPARQL queries over a large
scholarly communication based Knowledge Graph stored in Neo4j graph database.

5.8 Summary

In this chapter, we presented GREMLINATOR, a novel method and a tool for executing SPARQL
queries over property graph databases using Gremlin pattern matching traversals. With
GREMLINATOR we lay a substantial step in order to bridge the query interoperability gap
between the RDF and Property graph DMSs, concerning both the semantic web and graph
databases communities. GREMLINATOR has been successfully integrated as a (sparql-gremlin)
31 LUBM dataset (http://swat.cse.lehigh.edu/projects/lubm/)
32 First release (https://github.com/SANSA-Stack/SANSA-Stack/releases/tag/2017-12), Changelog (http:

//sansa-stack.net/sansa-0-3/)
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5.8 Summary

plugin of the popular Apache TinkerPop project, and is also freely available as an independent
resource for promoting reuse and extension over custom use cases. We have also presented a
comprehensive empirical evaluation of our approach, using state-of-the-art RDF and Graph
DMSs, demonstrating the validity and applicability of our approach. The evaluation demonstrates
the substantial performance gain obtained by translating SPARQL queries to Gremlin traversals,
specifically for star-shaped and complex queries. Finally, we discuss the attention GREMLINATOR
has gained from both academia and industry research fraternities so far, in the form of use cases
which further demonstrate the applicability and validity of our contribution.
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CHAPTER 6

Automatic Benchmarking of RDF and Graph
Databases

Over the last few years, the amount and availability of Open, Linked and Big data on the web
has increased. Simultaneously, there has been an emergence of a number of Data Management
Solutions1 (DMSs) to deal with the increased amounts of structured data. The available DMSs
for graph structured data can be broadly divided in two categories on the basis of the data
model they address: 1.) Triple Stores, which use the RDF data model and 2.) Graph Databases,
which use the PG data model. Apart from the format of the dataset that they consume, there
are several other differences in the manner in which they build indexes and execute queries.

In order to objectively decide which DMS are suitable with respect to particular scenarios,
benchmarks involving particular query loads over characteristic datasets have been defined. Some
of the existing benchmarking tools have their own dataset generators and corresponding queries
to run on these datasets [166, 168]. Furthermore, given that benchmarking is an extremely
tedious task demanding repetitive manual effort, therefore it is advantageous to automate the
whole process. However, none of the tools allow the users to benchmark both of the above
mentioned categories of graph DMSs, i.e. triple stores and graph databases, in an automatic
unified and comparable manner. We argue that the the increasing number of available DMSs in
both categories necessitates a benchmarking tool which is sufficiently versatile to perform those
benchmarks.

In this chapter we address the following third research question (RQ3):

RQ3: Benchmarking – How can we seamlessly orchestrate the benchmarking of RDF
vs Property graph Databases in an open, extensible, fair and reproducible manner?

The main contribution of this chapter is LITMUS Benchmark Suite, which is the first
framework, that is able to benchmark both RDF and Property graph databases. To this end
LITMUS is a comprehensive framework, that allows academicians, researchers, DMS developers
and the organizations a choke-point driven performance comparison and analysis of various
1 In the context of this chapter we use the terms Databases and Data Management Systems interchangeably.
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DMSs (Graph and RDF-based), with respect to different third-party real and synthetic datasets
and queries. LITMUS provides fine-grained environment configuration options, a comprehensive
set of system and data-specific key performance indicators and a quick analytical support via
custom visualization (i.e. plots) for the benchmarked DMSs. Along with this, there are also
other side contributions related to the study of the influence of factors such as data quality,
system and data-specific metrics which have been formally published.

This chapter is based on the following publications [35, 45, 47]:

1. Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
Trying Not to Die Benchmarking – Orchestrating RDF and Graph Data Management
Solution Benchmarks using LITMUS. In Proceedings of the 13th International Conference
on Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederland, pages 120-127. ACM,
2017. [Best Paper Award]

2. Harsh Thakkar. Towards an Open Extensible Framework for Empirical Benchmarking
of Data Management Solutions: LITMUS. In Proceedings of the 14th Extended Semantic
Web Conferences (ESWC 2017), 2017.

3. Harsh Thakkar, Kemele M. Endris, Josè M. Gim̀enez-Garc̀ia, Jeremy Debattista, Chris-
toph Lange, and Sóren Auer. Are Linked Datasets Fit for Open-domain Question Answer-
ing? A Quality Assessment. In Proceedings of the 6th International Conference on Web
Intelligence, Mining and Semantics (WIMS 2016), Nîmes, France, June 13-15, pages 1-12,
2016.

The remainder of this chapter is structured into five sections, starting with Section 6.1 which
presents the architecture of the proposed framework and discusses the role of each of the four
components within. Section 6.2 sheds light on the implementation methodology, the integrated
datasets, databases systems and supported queries. Section 6.3 discusses the selected metric,
parameters and KPIs which have been implemented to facilitate a detailed analysis of the system
and data level results of the benchmarks. Section 6.4 presents the findings of the comprehensive
experimental evaluation demonstrating the benchmarking of three top of the line RDF and
Property graph DMS each and discusses its limitations. Finally, Section 6.5 concludes the
chapter summarizing the contributions and the future direction.

6.1 LITMUS Framework Architecture

In this section, we present the conceptual architecture of the LITMUS Benchmark Suite. It
comprises of four major facets: Data Facet (F1), Query Facet (F2), System Facet (F3), and
Benchmarking Core (F4) (ref. Figure 6.1). The role of each facet is as follows:

The complete source is well documented and made available publicly2. The first prototype
of LITMUS framework (v0.1) is released on Docker Hub platform3 for encouraging first hand
2 LITMUS Benchmark Suite – https://github.com/LITMUS-Benchmark-Suite/
3 LITMUS docker – https://hub.docker.com/r/litmusbenchmarksuite/litmus/
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Figure 6.1: The architectural overview of the LITMUS Benchmark Suite.

experience and user feedback.

6.1.1 Data Facet

The Data Facet consists of the (i) Dataset(s) and the (ii) Data Integration Module. Datasets
chosen for benchmarking can be real datasets such as DBpedia4, Wikidata5, synthetic datasets
such as the Berlin SPARQL Benchmarking (BSBM) [205], Waterloo SPARQL Diversity Test
Suite (WatDiv) [206], or hybrid datasets comprising both real and synthetic data. The Data
Integration Module is responsible for (a) making data available to the system in the requested
formats (such as N-Triples, Graphs, CSV, SQL) by carrying out appropriate data conversion and
mapping tasks (cf. Challenge C1), and (b) loading the desired format of data to the respective
DMSs selected for the benchmark.

6.1.2 Query Facet

The Query Facet comprises of the (i) Queryset(s), and the (ii) Query Conversion Module. The
Queryset refers to the set of query input files. The Query Conversion Module will be one of the
key components addressing the language barrier (Challenge C2). It is responsible for converting
the input SPARQL queries to the respective DMSs’ query languages (such as Gremlin, SQL, etc).
The conversion will be performed by developing an intermediate language/logic representation
4 http://wiki.dbpedia.org/
5 https://www.wikidata.org/

137

http://wiki.dbpedia.org/
https://www.wikidata.org/


Chapter 6 Automatic Benchmarking of RDF and Graph Databases

of the input query. The aim of this module is to allow efficient conversion of a wide variety of
SPARQL queries (such as path, star-shaped, and snowflake queries) to other query languages,
ultimately breaking the language barrier.

6.1.3 System Facet (DMS Facet)

The System Facet consists of (i) DMSs and (ii) DMS Configuration and Integration module.
The DMS Configuration and Integration module is responsible for (i) providing easy integration,
via wrapper(s) or as a plug-in, of the DMSs, and (ii) monitoring and configuring the integrated
DMSs for the benchmark. On top of this, this module makes use of Docker containers6 to ensure
a fair allocation of resources and to provide the necessary segregation required for conducting
realistic benchmarks.

6.1.4 Benchmarking Core

The Benchmarking Core is the heart of the LITMUS framework, consisting of three modules: (i)
Controller and Tester, (ii) Profiler, and (iii) Analyser. The Controller and Tester is responsible
for executing the respective scripts for loading data, fetching the queries to their corresponding
DMSs, validating the specified system configurations, and finally, executing the benchmark on
the selected setting (i.e. executing respective SPARQL and Gremlin queries against RDF and
Graph DMSs). The Profiler is responsible for: (a) generating and loading various profiles (stress
loads, query variations, etc.) for conducting the benchmark tests and (b) storing the custom
benchmark results. We use the matplotlib7 python library is used for generating box-plots
of benchmark results, where as statistical analysis is carried out using the the Pandas python
library, to calculate various parameters, e.g. arithmetic mean, median, standard deviation etc.
The Analyser is responsible for collecting the benchmark results from the Profiler and generates
performance reports. It performs correlation analysis between the parameters specified by the
user. The final results (reports) will then presented to the end user in a suitable visualisation.

6.2 The LITMUS Environment

In this section we discuss the implementation details of the first working prototype of the
LITMUS Benchmark Suite. The proposed LITMUS framework consists of a number of plug-
n-play modules, which ensures interoperability and extensibility of future DMSs and datasets in
the existing infrastructure. Figure 6.2 presents the architecture of the first working prototype of
LITMUS, showcasing the interaction between its various constituent components/modules.

GUI module: provides a graphical user interface (GUI) for the user to allow easy configura-
tion of the benchmark to be executed. It allows the user to select from the integrated DMSs,
datasets, queries and KPIs, and save, import, export configurations, results, etc. artifacts
6 Docker technology – https://www.docker.com/
7 Matplotlib library – https://matplotlib.org/
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Figure 6.2: The component driven architecture of the first working prototype of LITMUS Benchmark
Suite.

produced during the benchmark. Figure 6.3 shows a screen of the GUI module. The GUI has
been created using the TKinter library8 in Python for the users. This GUI operates on top of
the Docker image (described next). It allows to do away with the Command Line arguments,
and allows them to save benchmarking configurations, and load them subsequently.

Figure 6.3: The graphical user interface of the LITMUS Benchmark Suite.

LITMUS docker: The whole framework is encapsulated in a single configurable docker
container, to ensure necessary isolation during the benchmarking process (cf. Figure 6.2). The
8 TKinter python library – https://docs.python.org/3/library/tk.html
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main advantage of running a software as a Docker container is that it decouples the application
code from the machine on which the code is being run on. This simplifies the process of running
the framework, as the only prerequisite of running this framework is a machine which is capable of
running a docker container. The user does not have to undergo the process of installing individual
modules and DMSs on the machine. We now describe in brief the cultivated environment for
LITMUS, consisting of datasets, DMSs, queries and the benchmark environment configuration
supported in its current release.

6.2.1 Integrated Datasets

LITMUS framework currently provides support for benchmarking RDF DMSs (which are RDF
stores), and Graph DMSs (which are Graph stores) using corresponding versions of Linked data
(in RDF and Graph formats) against a set of corresponding queries (SPARQL and Gremlin).
We list the datasets that were converted from the RDF graphs to Property graphs (PGs), to
ensure a uniform and fair benchmarking process.

In the current version of LITMUS, we do not consider the semantics of blank RDF nodes
(as in DBpedia and Wikidata) during the conversion of RDF graphs to PGs. Addressing these
underlying semantics of RDF graphs, requires an in-depth study of information preserving
techniques. We provide a proof-of-concept implementation for transforming RDF graphs (in this
case directed edge-labelled multi-graphs) [.nt files] to PGs (directed, edge-labeled, attributed
multi-graphs) [.graphml files].

We use the same approach proposed in Chapter 4, in order to transform the RDF data into
property graph data. We present a short summary of employed conversion logic. Please note
that since none of the selected datasets have blank nodes and is only instance data (no explicit
schema is made available in terms of an .owl file or otherwise), the conceptualisation of the
conversion presented next is relatively straight-forward. Our proposed approach (cf. Chapter 4),
however supports conversion of complex RDF data as well.

Given that a RDF triple consists of {s p o.}, each of the S, P are IRIs and O can be either
a IRI or a literal/value. We distinguish between two types of RDF triples as: (i) attribute triple–
if the object is a literal; (ii) relationship triple– if it is a URI. Attribute triples correspond to
properties in a PG, and relationship triples to edges. Furthermore, predicates { s p o } can be
URI, which can be labels (rdfs:label), types (rdfs:type), etc in a RDF graph. Depending on the
type of a predicate, we distinguish whether the properties are of edges or nodes in a PG. We
point the interested reader to [151], for a detailed understanding and illustration of the RDF →
PG transformation.

Berlin SPARQL Benchmark [168] (BSBM) – is a synthetic dataset built around an e-
commerce use case, where a set of products is offered by different vendors and different consumers
have posted reviews about products. BSBM offers custom dataset and query generator scripts,
which can be used to generate datasets and queries of varying size and complexity. We provide
generated RDF data (.nt file) and converted PGs (.graphml file) (using custom scripts) for 1M
and 10M triples with the v0.1 of LITMUS.
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Waterloo SPARQL Diversity Test Suite [166] (WatDiv) – is a synthetic dataset which
is again based on the e-commerce use case scenario, however the distinct characteristic that all
instances of the same entity have mixed number of of attributes. The WatDiv has a dataset
generator, uses a configuration file which is written using the WatDiv DDL to define certain
parameters. The dataset generator tool generates the dataset using the values of the underlying
parameters defined in the configuration files in the nt format. We provide generated RDF data
(.nt files, using its data generation script) and converted PGs (.graphml files) (using custom
scripts) for 1M and 10M triples with the v0.1 of LITMUS.

DBpedia [52] – is a crowd-sourced community effort to extract structured information from
Wikipedia and make this information available on the Web. The DBpedia dump consists of
multiple files in the ttl format. We provide a proof-of-concept property graph of DBpedia.
However, we do not benchmark it since it consists blank node semantics, which are not currently
supported by LITMUS v0.1 framework. The script developed for the conversion can be found
here9.

Northwind10 – is a synthetic dataset describing an ecommerce scenario about the sales and
purchase transactions that happen between the company Northwind Traders and its customers
and suppliers respectively. The Northwind Dataset was originally shipped in form of csv files,
however there are certain RDF versions available as well. We provide both RDF data (.nt files)
and converted property graph data (.graphml files) with LITMUS.

6.2.2 Integrated DMSs

LITMUS currently provides support for benchmarking eight DMSs (four each of RDF & Graph
DMS), as listed below:

RDF DMSs The following RDF DMS can be evaluated in the LITMUS framework:

1. Openlink Virtuoso11

2. gh-RDF-3x12

3. Apache Jena TDB13

4. 4Store14

For each of the RDF DMS, LITMUS includes two shell scripts for – (i) benchmarking the process
of loading a RDF dataset in a RDF DMS; and (ii) benchmarking the SPARQL query execution
9 DBpedia Property graph converter https://github.com/LITMUS-Benchmark-Suite/

dbpedia-graph-convertor
10 Northwind Database https://northwinddatabase.codeplex.com/
11 Openlink Virtuoso – https://virtuoso.openlinksw.com/
12 RDF-3X – https://github.com/gh-rdf3x/gh-rdf3x
13 Apache Jena – https://Jena.apache.org/
14 4Store DMS – http://www.4store.org/
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process against a DMS. We employ the elapsed time parameter of the ’/usr/bin/time’ utility
has been used to measure the execution time for both the tasks for all the RDF DMSs.

Graph DMSs The following Graph DMS can be benchmarked in the current release of LIT-
MUS:

1. Sparksee (formerly known as DEX Graph)15

2. Neo4j16

3. OrientDB17

4. Apache TinkerPop18

For each Graph DMS, LITMUS includes four scripts (2 shell scripts, 2 groovy scripts) which
are used for – (i) benchmarking the process of loading a Graph dataset in a Graph DMS, using
the Gremlin Groovy console; and (ii) benchmarking the Gremlin Query execution against a
Graph DMS, using the Gremlin Groovy console. The execution time for both the tasks has been
measured using the ’System.currentTimemillisecs()’ Groovy function.

There is a central Python script, which manages the execution of all the DMSs inside the
Docker which the user has selected to evaluate by calling the respective shell-scripts. The
functions for collecting the data and generating CSV files, after the benchmarking tasks have
been run on the DMSs are also defined in this Python script. There is a log file associated with
the Python script which can be used to track the exact status of the benchmarking process at
any moment.

6.2.3 Supported Queries

To demonstrate a benchmark using LITMUS, we curated a query dataset including both
SPARQL and Gremlin queries, as proposed in Section 5.4.4 of Chapter 5. We summarize
the query features as summarized in Table 6.1. A total number of 30 SPARQL queries were
created (3 of each query feature) for each RDF dataset. We created their corresponding
Gremlin counterparts manually for each Graph dataset. The queries are executed using both
warm and cold cache settings, where a warm cache: implies that the cache is not cleared
after each query run, and cold cache: implies that the cache is cleared using the ’echo 3 >
/proc/sys/vm/drop_caches’ unix command after each query. While running a query, the DMSs
compute intermediate results and store them in the memory. These intermediate results may be
useful for the next query which is run on the system. Running the queries in two configurations
allow the users to study the correlation between performance of the DMSs with respect to query,
dataset-specific characteristics, and the order in which they are run. Additionally, the influence

15 Sparksee Technologies – http://www.sparsity-technologies.com/
16 Neo4J – https://neo4j.com/
17 Orient DB – http://orientdb.com/
18 Apache TinkerPop – http://tinkerpop.apache.org/
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Query No. Feature Count Description
C1-C3 CGPs 3 Queries with mixed number of basic graph patterns (BGPs)
F1-F3 FILTER 3 CGPs with a combination of >=1 FILTER
L1-L3 LIMIT+OFFSET 3 CGPs with a combination of >=1 LIMIT constraints
G1-G3 GROUP BY 3 CGPs with GROUP BY feature
Gc1-Gc3 GROUP COUNT 3 CGPs with GROUP BY + COUNT
O1-O3 ORDER BY 3 CGPs with ORDER BY feature
U1-U3 UNION 3 CGPs with UNION feature
Op1-Op3 OPTIONAL 3 CGPs with a OPTIONAL BGPs
M1-M3 MIX 3 CGPs with a combination of varying features
S1-S3 STAR 3 CGPs forming a STAR shape execution plan
TOTAL 10 30 -

Table 6.1: Feature distribution in preset queries provided with the LITMUS Benchmark Suite.

of factors like the query length, query size, Graph patterns on the performance of the system
can be seen when run in the queries are run in warm cache configuration.

6.2.4 Execution Environment

In order to have a fair comparison, it is highly critical to ensure that all DMSs run under identical
conditions for eliminating any bias towards a specific run, and avoiding any inconsistencies
and anomalies observed in results. However, the inherent non-deterministic factors e.g., OS
scheduling, context switches, and interrupts are beyond a user’s control. As a result the following
set of rules are followed to ensure a fair evaluation procedure.

1. Each query execution task is carried out individually and is ran several times (default: 10
times, user can define this before-hand) for each DMS to nullify the effect of anomalies.

2. Every run of the task is run in isolation. No other unnecessary process(es) is running in
the background during the benchmark.

3. Each dataset loading task makes use of a new location for every run. This ensures that no
run is getting an undue advantage of an already existing set of files.

Result Logging and Visualization. Separate CSV files are created after parsing all the log
files which are generated when the benchmarking tasks on various DMSs are done. Statistical
Analysis is done on the generated CSV files, using the Pandas library in Python, to calculate
various statistical parameters like the arithmetic mean, median, standard deviation etc. This
data is exported in the form of individual tables for each parameter. The data is visualized
using multiple boxplots in a single plot using the matplotlib [207] module.
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6.3 Performance Evaluation

LITMUS caters a wide variety of performance evaluation parameters and metrics to allow an
in-depth analysis of underlying internal and external factors of a DMS.

6.3.1 Selected Parameters

Perf-tool Utility. LITMUS uses the perf-tool19 utility to measure a variety of CPU and
RAM-specific parameters, e.g. L1d-cache-misses, L1i-cache-misses, DTLB-misses, etc. for enabling
a comprehensive analysis of the participating DMSs. However, since the number of hardware
counters on any machine is limited, a single run is not sufficient to measure the large number
of parameters offered by the perf-tool utility. We segregate the parameters offered by the
perf-tool utility into four groups. Both the benchmarking tasks, viz. (i) loading the dataset a
DMS, and (ii) executing a query on a DMS, are run separately for each group of parameters.
This is done to ensure that the framework is in a position to measure all the parameters even
when run on a machine, where the number of hardware counters is low.

One of the major features of the LITMUS framework is to facilitate the users in performing
a comprehensive analysis of the DMSs. A wide range of parameters are selected, to ensure
that the various factors like the utilization of various levels of cache, the branch predictions,
the instructions, the data Translation look-a-side buffers, Page faults, CPU migrations, are
considered when a DMS is evaluated, and subsequently compared with the other DMSs. These
parameters also enable the users to identify the reason(s) for a superior or inferior performance
of any particular DMS.

The detailed analysis using the parameters allow the DMS developers to analyze the DMS
they are developing and identify the possible cause of an inferior performance, and thereby work
in a direction to rectify the faults. This will eventually lead to a better DMS being developed.
We present an itemization of the parameters considered to evaluate a performance of a DMS:

1. Cycles : The number of cycles taken to execute a task (e.g. loading a dataset, etc.).

2. Instructions : The number of instructions executed per given task.

3. Cache references : The total number of cache references made during a given task.

4. Cache misses : The total number of cache misses occurred during a given task.

5. Bus cycles : The number of bus cycles taken during a given task.

6. L1 data cache loads : The total number of L1 cache loads that occur during a given task.

7. L1 data cache load misses : The total number of L1 data cache load misses that occur
during a given task.

19 Perf tool – https://perf.wiki.kernel.org/index.php/Main_Page
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8. L1 data cache stores : The L1 data cache stores that occurduring a given task.

9. dTLB loads : The data translation lookaside buffer (dTLB) loads that occur during a given
task.

10. dTLB load misses : The dTLB load misses that occur during a given task.

11. LLC loads : The Last level Cache (LLC) loads that occur during a given task.

12. LLC load misses : The LLC load misses that occur during a given task.

13. LLC stores : The LLC stores the pre-fetches that occur during a given task.

14. Branches : The total number of branches that are encountered during a given task.

15. Branch misses : The total number of branches missed during a given task.

16. Context switches : The total context switches that happen during a given task.

17. CPU migrations : The CPU migrations that occur during a given task.

18. Page faults : The page faults that occur during a given task.

A set of separate log files is generated for each benchmarking task per DMS. These log files
are parsed using regular expressions in Python, to obtain the relevant data from them, and the
data is stored in CSV files. Pandas, a python data analysis library, is used to process the data
and do elementary statistical analysis on the it.

6.3.2 Selected Metrics and KPIs

In this section we discuss about the metrics and Key Performance Indicators (KPIs) that
correspond to the performance of a DMS. These include factors that directly influence the
performance of a DMSs such as System related metrics and other indirect factors associated
with the Data that being consumed by the respective DMSs. Applications based on these
graph-based systems (both RDF and Property graph databases) are influenced by these factors
which can be observed by the metrics and KPIs presented next.

System related Metrics

Apart from the memory (RAM and cache) and time based KPIs, such as the dataset loading time
and query execution time (both warm and cold caches) for each DMS and each query, LITMUS
provides a list statistical metrics for result aggregation and analysis. We provide support
for computing the mean [µ] (arithmetic, harmonic and geometric), median [x̃], standard
deviation [σx], variance [σ2], minimum [min(x)] and maximum [max(x)] for all of the
above mentioned CPU and memory-specific parameters using the pandas20 python data analysis
20 Pandas Data Analysis Library – http://pandas.pydata.org/

145

http://pandas.pydata.org/


Chapter 6 Automatic Benchmarking of RDF and Graph Databases

Dimension Metric

D1. Availability

1. Estimated De-referenceability
2. Estimated De-referenceability of Forward Links
3. No Misreported Content Types
4. RDF Availability
5. Endpoint Availability

D2. Interlinking
1. Estimated Interlink Detection
2. Estimated External link Data Providers
3. Estimated De-reference Backlinks

D3. Data diversity 1. Human Readable Labelling
2. Multiple Language Usage

D4. Consistency 3. Ontology Hijacking
4. Misused OWL Datatype Or Object Properties

D5. Trust and
Provenance

1. Proportion of triples with dc:creator or dc:publisher properties
2. Adoption of PROV-O Provenance
3. Proportion of provenance statements

Table 6.2: Linked Open Data quality assessment dimensions and metrics relevant to open domain Question
Answering systems.

library. Furthermore, we also provide functionality to export all the metrics results, in CSV file
(comma separated value) format and LATEX-tabular format.

Data related Metrics

Amongst the previously mentioned factors which directly contribute to the performance of a
DMS, there are also other indirect factors that affect the performance of the application which
uses a particular DMS. Data Quality is one such intrinsic factor. Data quality plays a crucial
role in terms of hindering the performance (with respect to precision and recall) of a system in
an application such as question answering.

Answering questions spoken or written in natural language (cf. [45] for an overview) is an
increasingly popular setting in which graph technology applications for end users consume Web
Data to satisfy sophisticated information needs. In such a setting, users expect answers to
be correct, or at least relevant, even when they have not phrased their question precisely or
when their speech has been recorded with a low fidelity. Thus, to support, for example, query
disambiguation, answer retrieval, results ranking, Web Data consumed in such settings therefore
has to meet a certain level of quality.

Quality can generally be defined as “fitness for use”, but there are a lot of concrete factors
that influence a dataset’s fitness for use such as question answering settings and in specific
application domains. In studies such as [45, 46, 208], we thoroughly studied and identified a
number of metrics and dimensions related to the quality assessment of Linked Open Datasets
that indirectly contribute to the performance of DMSs in a data-centric application such as
open domain question answering. In doing so, we have used automatic assessment of linked data
quality by benchmarking framework – Luzzu [209].

We evaluated subsets of the Linked Open Datasets such as DBpedia21 and Wikidata22 using
21 https://wiki.dbpedia.org/
22 https://www.wikidata.org/
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the Luzzu framework and identified the following metrics (shown in Table 6.2) and dimensions
to be relevant for the overall quality of the data.

For a detailed insight into the experiments and analysis of the data quality based dimensions
and metrics, we point the interested reader to the respective studies [45, 46, 208] and skip it
from being included into the current text as it is slightly orthogonal to context of this doctoral
thesis. In this chapter, we only focus on the contributions related to LITMUS Benchmark
Suite.

6.3.3 Data Visualisation

LITMUS provides automated support for visualizing results of the benchmark using the python
matplotlib data visualization library in the form of boxplots to ease the process of decision
making. The boxplot presents the median value, first quartile, third quartile and the extreme
outliers. The Inter Quartile Range (IQR) is defined as the difference of the value at the third
quartile and the first quartile. An extreme outlier, is defined as a value which is not in the range
(first quartile −1.5 ∗ IQR, third quartile +1.5 ∗ IQR). These extreme outliers correspond to
the anomalous runs which were executed. We use a two color coding scheme to highlight the
difference between RDF DMSs (using green) and Graph DMSs (using blue). A distinct plot is
generated for each parameter (as mentioned above), used for each task per DMS.

6.4 Experimental Evaluation

We demonstrate the working of LITMUS to showcase its applicability, functionality and
suitability for conducting benchmarks in a user-configured fashion. Keeping in mind the
extensive amount of results and plots generated during the benchmark, we list only subset of
the complete benchmark results (which includes benchmarking only a few parameters, queries
and tasks). The Benchmarking Tasks selected are (i) Dataset loading time; and (ii) Query
execution (both Warm and Cold Cache) time. The selected Parameters are (a) CPU migrations;
(b) page-faults; and (c) instructions; for the executed queries. We selected all the system-based
Metrics and KPIs as discussed in Section 6.3.2.

In this chapter, we only present the results of benchmarking all DMSs using the Northwind
dataset. However, a complete set of all the results for both the Northwind and BSBM datasets
over all selected parameters and KPIs can be accessed online via the Google Drive folder –
https://drive.google.com/drive/folders/0B3aUtDGGrGadZWNPNzRScnlOY3M.

6.4.1 System Setup

We used the following configuration for running the LITMUS Benchmark Suite:

• CPU: Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz

147

https://drive.google.com/drive/folders/0B3aUtDGGrGadZWNPNzRScnlOY3M


Chapter 6 Automatic Benchmarking of RDF and Graph Databases

DMS G_mean H_mean Max Mean Median Min Var.

4Store 0.89 0.86 5.010 0.97 0.83 0.640 0.45
Jena 8.21 8.21 9.780 8.22 8.16 7.700 0.13
Neo4J 1.48 1.47 2.023 1.49 1.44 1.278 0.031
OrientDB 3.51 3.48 5.612 3.53 3.43 2.832 0.22
RDF3X 0.69 0.68 0.920 0.69 0.66 0.580 0.006
Sparksee 0.72 0.72 0.888 0.72 0.73 0.640 0.001
TinkerGraph 0.61 0.61 1.138 0.62 0.60 0.477 0.010
Virtuoso 0.27 0.27 0.580 0.27 0.27 0.250 0.002

Table 6.3: The loading time (in seconds) performance comparison for Northwind (respective versions)
in all the DMSs. The highest and lowest values for mean are shown using the bold and italic fonts
respectively.

• RAM: 8 GB DDR3; L1d & L1i Caches: 32 KB; L2 Cache: 256 KB; L3 Cache: 3072 KB

• RDF DMSs: Openlink Virtuoso [7.2.5], Apache Jena TDB [3.2.0] , 4store [1.1.5], RDF3X

• Graph DMSs: Apache TinkerPop [3.2.4], Neo4J [1.9.6], Sparksee [5.1], OrientDB [2.1.3]

Dataset loading time. The reported dataset loading time is in seconds (s) and is the
average of 10 data loads for each DMS (of both RDF and Graph).

Query execution time. The reported query execution time is in seconds (s) and is the
average of 10 runs for each query (of both SPARQL and its translated Gremlin counterpart).

Caching scheme. Queries were executed in both cold and warm cache settings for all con-
sidered DMSs. Where, a warm cache: implies that the cache is not cleared after each query run,
and cold cache: implies that the cache is cleared using the ’echo 3 > /proc/sys/vm/drop_caches’
UNIX command after each query run.

Indexing scheme. All DMSs were used for benchmarking in their vanilla state (i.e. without
any explicit changes in their vendor provided configurations.)

6.4.2 Results and Discussion

We now present and discuss our observations after running the benchmark for all the selected
DMSs for a selected number of KPIs using tables and plots generated by LITMUS.

Table 6.3 presents the loading time performance comparison of loading Northwind dataset
for all DMSs respectively. Here, in terms of dataset loading time, we observe that Virtuoso is
the fastest followed by TinkerGraph and the slowest reported time is by Apache Jena.

Furthermore, Tables 6.4 and 6.5 present the execution time (both cold and warm cache) per-
formance comparison on Query 14 (C1) (shown below, SPARQL listing 6.1, Gremlin listing 6.2)
for all DMSs respectively.
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DMS G_mean H_mean Max Mean Median Min Var.

4Store 0.021345 0.020474 0.270 0.026250 0.0200 0.020 0.001562
Jena 0.175700 0.175530 0.199 0.175875 0.1740 0.165 0.000065
Neo4J 0.026553 0.026302 0.046 0.026825 0.0270 0.019 0.000017
OrientDB 0.030312 0.029398 0.155 0.032475 0.0310 0.023 0.000410
RDF3X 0.000000 0.000000 0.030 0.000750 0.0000 0.000 0.000023
Sparksee 0.027483 0.027321 0.045 0.027675 0.0270 0.023 0.000013
TinkerGraph 0.209582 0.203346 0.363 0.216650 0.2075 0.136 0.003564
Virtuoso 0.000000 0.000000 0.026 0.001600 0.0010 0.000 0.000016

Table 6.4: The warm cache execution time (in seconds) performance comparison for running Query 14
(C1) (respective version) on all DMSs. The highest and lowest values for mean are shown using the bold
and italic fonts respectively.

DMS G_mean H_mean Max Mean Median Min Var.

4Store 4.560672 4.558177 5.050 4.563250 4.510 4.340 2.492506e-02
Jena 0.180934 0.180595 0.200 0.181275 0.179 0.163 1.273327e-04
Neo4J 0.028353 0.027910 0.044 0.028875 0.027 0.021 3.626603e-05
OrientDB 0.051870 0.051043 0.091 0.052875 0.049 0.041 1.329327e-04
RDF3X 0.566901 0.563066 0.730 0.571000 0.540 0.470 5.101538e-03
Sparksee 0.044497 0.044061 0.071 0.044950 0.045 0.034 4.435641e-05
TinkerGraph 0.179499 0.177933 0.258 0.181050 0.187 0.136 5.741000e-04
Virtuoso 0.001278 0.001206 0.003 0.001375 0.001 0.001 3.429487e-07

Table 6.5: The cold cache execution time (in seconds) performance comparison for running Query 14
(C1) (respective version) on all DMSs. The highest and lowest values for mean are shown using the bold
and italic fonts respectively.

Query 14 (C1): “List all the distinct products from the "Beverages" category.”

1 SELECT DISTINCT ?name WHERE {
2 ?a <http :// northwind . com/model/categoryName> " Beverages " .
3 ?a <http :// northwind . com/model/productName> ?name . }

Listing 6.1: Query 14 (C1) in SPARQL.

1 g .V( ) . match (__. as ( ’ a ’ ) . has ( " categoryName " , " Beverages " ) , __. as ( ’ a ’ ) .
va lue s ( "name" ) . as ( ’name ’ ) ) . s e l e c t ( ’name ’ ) . dedup ( )

Listing 6.2: Query 14 (C1) in Gremlin.

Here, we observe that (for query 14): (i) For warm cache – RDF3X is the fastest in terms of
query execution time, followed by Virtuoso, whereas TinkerPop (tinker) is the slowest; and (ii)
For cold cache – Virtuoso is the fastest in terms of query execution time, followed by Neo4J,
whereas 4Store is the slowest.

The better performance of Virtuoso and RDF3X (RDF DMSs) in terms of query execution
can be traced back to the fact that they both inherently maintain implicit indices. The default
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indexing scheme23 in Virtuoso enables it to declare 2 full indices (PSOG, POGS) and 3 partial
indices (SP, OP GS) over the RDF graphs. Whereas RDF3X maintains 6 hash-based indices
(SPO, POS, OPS, PSO, OSP, SOP) over the RDF graphs giving them an upper edge in terms of
performance. In case of TinkerPop (Graph DMS), these indices have to be declared explicitly by
the user, depending on their need. Since, we did not explicitly declare any index, hence weaker
performance is observed.

Query 20 (Gc2): “Group the products in the "Seafood" category by their total unit price.”

1 SELECT (COUNT(? un i tPr i c e ) as ? t o t a l ) WHERE {
2 ?a <http :// northwind . com/model/categoryName> " Seafood " .
3 ?a <http :// northwind . com/model/ un i tPr i ce> ? un i tPr i c e . }
4 GROUP BY(? un i tPr i c e )

Listing 6.3: Query 20 (Gc2) in SPARQL.

1 g .V( ) . match (__. as ( ’ a ’ ) . has ( " categoryName " , " Seafood " ) , __. as ( ’ a ’ ) .
va lue s ( " un i tPr i c e " ) . as ( ’ un i tP r i c e ’ ) ) . s e l e c t ( ’ un i tPr i c e ’ ) .
groupCount ( )

Listing 6.4: Query 20 (Gc2) in Gremlin.

Figures 6.4 to 6.7 present a sample of the plots for CPU migrations for both cold and warm
caches, page-faults and number of instructions executed, for Query 20 (Gc2) (SPARQL listing 6.3
and Gremlin listing 6.4), demonstrating the versatility of LITMUS in terms of generating plots
of varying details of selected KPIs.

In conclusion, we would like to point out that due to RDF3X’s lack of support for SPARQL
queries with aggregation functions and other complex features such as OPTIONAL, UNION,
etc., not all results are reported for RDF3X. Therefore, we excluded RDF3X from the final
comparison of RDF vs Graph databases for the sake of fairness. We have presented a detailed
analysis with respect to the graph data management (loading and conversion of RDF and Graph
data) for the selected databases in Chapter 4. Similarly, a detailed analysis with respect to
querying the RDF and Graph data stored in the select databases is discussed in Chapter 5,
to avoid unnecessary repetition of our observations. In this section, we have only focused on
discussing the evaluation of the various RDF and Graph databases supported by LITMUS
Benchmark Suite and the extent to which it reportes the selected KPIs. Next, we discuss the
shortcomings LITMUS.

6.4.3 Limitations

At present, LITMUS does not support the following features:

• Federated querying – Multiple sources/endpoints being queried at the same time.
23 RDF indexing scheme in Virtuoso – https://virtuoso.openlinksw.com/dataspace/doc/dav/wiki/Main/

VirtRDFPerformanceTuning#RDFIndexScheme
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6.4 Experimental Evaluation

Figure 6.4: CPU Migrations for Query 20 in warm cache.

Figure 6.5: CPU Migrations for Query 20 in cold cache.
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Figure 6.6: Page Faults - loading the Northwind dataset.

Figure 6.7: Instructions - loading the Northwind dataset.
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6.5 Summary

• Parallel querying & updates – Multiple users/clients querying and updating a single source
at the same time.

• Support for generation of synthetic datasets and queries. We "use" other benchmarks that
offer such support and leave it up to the user to chose what they deem fit according to
their needs.

6.5 Summary

In this chapter, we presented the LITMUS Benchmark Suite, which is a novel framework
enabling benchmarking of both RDF and Property graphs via supporting execution of SPARQL
queries over graph databases. It also provides support for visualizing results of benchmarked
DMSs using custom plots and an easy to use GUI. In its complete capacity, LITMUS is
a common platform for benchmarking RDF, Graph and Relational DMSs, promoting easy
interoperability, reusability and replicability of existing benchmarks. As compared to other
benchmarking efforts, e.g. Graphium [169], LITMUS provides an end-to-end benchmarking
solution ensuring full flexibility to user. With LITMUS it is possible to easily orchestrate
benchmarking by adding other DMSs and use various real and synthetic data, whereas, the
prior is a one time benchmarking effort result. LDBC [170] on the other hand is an established
independent authority which leads a community effort towards standardizing Graph DMS
benchmarks and also a graph query language. It consists of individual benchmarks such as the
social network, graph-analytics and semantic publishing benchmarks respectively. However, to
the best of our knowledge, LDBC does not provide an open extensible automated framework
such as LITMUS, which can be used for both small and large scale benchmarking appealing
both industry and the academia researchers.
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CHAPTER 7

Conclusion and Future Directions

Knowledge Graphs (KG) have become popular over the past years and frequently rely on the
W3C standard Resource Description Framework (RDF) or Property graphs (PG) as underlying
data models. However, these data models and query languages – W3C standard SPARQL
for RDF and Gremlin for PGs – severely lack interoperability. The work presented in this
dissertation is concerned with addressing the interoperability between RDF and Property graph
databases. The overarching research problem this dissertation investigates is:

Overarching Research Problem: How can we support interoperability between the
Semantic Web and Property graph Databases?

Answering the overall research problem of this thesis requires addressing the main three
challenges related to it. In particular, these three challenges (as discussed in Chapter 1) are
the data interoperability (cf. Chapter 4), query interoperability (cf. Chapter 5), and the
performance evaluation by automatic benchmarking of RDF and Property graph database
systems (cf. Chapter 6) respectively. After identifying the main three challenges, we defined the
following three sub-research questions, one for addressing each challenge. As mentioned earlier,
collectively, these three sub research questions must be answered to tackle the overarching
research problem of this dissertation, as illustrate in Figure 7.1. Next, we summarize how each
of these three sub research questions was addressed and our contributions related to them each.

7.1 The Interoperability Story in a Nutshell

First, we tackled the research problem (RQ1), which is concerned with the data interoperability
between the RDF and Property graph databases.

RQ1: Data Interoperability – How can we directly map RDF Databases to Property
Graph Databases in an information preserving manner?
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Overarching Research Question: 
How can we support interoperability

between the Semantic Web and
Property graph Databases?

RQ2: Query Interoperability  
How can we execute SPARQL

queries over Property graphs in a
query preserving manner? 

RQ1: Data Interoperability  
How can we directly map RDF
Databases to Property Graph
Databases in an information

preserving manner?

RQ3: Benchmarking  
How can we seamlessly orchestrate

the benchmarking of RDF vs
Property graph Databases in an

open, fair and reproducible manner?

Figure 7.1: The three sub research questions contribute to the overall research objective of this dissertation.

Answering of RQ1 is crucial for this thesis as RDF and Property graphs are two underlying
data models that are used to represent, store and query data in the Semantic Web and Graph
database systems. While there are some approaches to transforming RDF graphs into property
graphs, and vice versa, they lack compatibility and a solid formal foundation. In order to
answer RQ1, we first study the notion of “interoperability” in the context of databases (i.e.,
syntactic and semantic interoperability) [39]; next, we formally define the notions of data and
schema for the Property graph data model, after that, we conceptualize the RDF data model
and schema in the context of edge-labeled graphs and finally study the desired formal properties
that need to be satisfied to transform the data between these two data models [38, 39, 106].
In Chapter 4, we propose three direct mappings (schema-dependent and schema-independent)
for transforming an RDF database into a property graph database. We formally show that
two of the proposed mappings satisfy the properties of semantics preservation and information
preservation [38, 104, 106]. The existence of both mappings allows us to conclude that the
property graph data model subsumes the RDF data model’s information capacity. Furthermore,
we implement an application consisting of the proposed three formal mappings – RDF2PG. We
empirically evaluate our mappings’ performance using a variety of real and synthetic datasets
and demonstrate its applicability using an instance of Neo4j graph database system. Thus,
with the contributions RQ2, we take a substantial step by laying the core formal foundation for
supporting data interoperability between RDF and PG databases. As a result of this work, we
have open-sourced the following resources:

• The novel direct mappings implementation RDF2PG is accessible at https://github.
com/renzoar/rdf2pg.

• The independent implementation of the RDFS processor is accessible at https://github.
com/renzoar/rdfs-processor.

• The data and queries used in the experiments of this work are accessible at https:
//doi.org/10.6084/m9.figshare.12021156.v5 [37].

After that, we tackled the second research question (RQ2) concerned with the query interop-
erability between the RDF and Property graph databases.
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7.1 The Interoperability Story in a Nutshell

RQ2: Query Interoperability – How can we execute SPARQL queries over Property
graphs in a query preserving manner?

In order to answer RQ2, we first study the state-of-the-art concerned with the formal foundation
of SPARQL and Gremlin, respectively. While there exists comprehensive material [105] on the
foundations and expressivity of SPARQL, the same cannot be said for Gremlin. We then, in
Chapter 5, study the formal semantics and syntax of the Gremlin traversal language, identify the
gaps in the formal foundation and define the missing operators in a consolidated graph relational
algebra [40, 210]. We also study the desired formal property that needs to be satisfied to preserve
the semantics during the query translation process. Thereafter, we define the mappings and
implement GREMLINATOR [41–43], which is a novel approach that translates SPARQL queries
to Gremlin pattern matching traversals for querying Property graphs. We present a systematic
and comprehensive empirical evaluation of the proposed approach and report interesting insights
by investigating the query execution performance over leading RDF and Graph databases on
popular datasets [41–43]. Our carefully orchestrated experiments empirically demonstrate that
the proposed query translation is query preserving. Thus, with the contributions of RQ2, we
take a substantial step by laying the core formal foundation for supporting query interoperability
between RDF and PG databases. As a result of this work, we have open-sourced the following
resources:

• We deliver an open and independent implementation accessible at https://github.
com/LITMUS-Benchmark-Suite/sparql-to-gremlin of GREMLINATOR, which can be
integrated within custom use cases.

• We deliver ‘sparql-gremlin,’ a plugin of the Apache TinkerPop graph computing
framework (version 3.4.0-onwards, first released January 2019) accessible at https:
//github.com/apache/tinkerpop/tree/master/sparql-gremlin that allows querying
a variety of both OLTP and OLAP graph systems.

• The complete set of data, queries, and scripts are accessible at https://doi.org/10.
6084/m9.figshare.8187110.v3.

• We provide an online video tutorial of GREMLINATOR accessible at https://www.youtube.
com/watch?v=Z0ETx2IBamw, and a live demonstration of the same at the deployed instance
http://gremlinator.iai.uni-bonn.de:8080/Demo/ for a first-hand experience.

Our work on GREMLINATOR was awarded as the Best Resource Paper1 at the 14th IEEE
International Conference on Semantic Computing (ICSC 2020) organized in San Diego, California,
USA from February 2 to 5, 2020.

Finally, we tackled the third research question (RQ3), which is concerned with the performance
evaluation via benchmarking both RDF and Property graph databases.

1 http://harshthakkar.in/wp-content/uploads/2020/04/icsc2020bestpaper.jpg
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RQ3: Benchmarking – How can we seamlessly orchestrate the benchmarking of RDF
vs. Property graph Databases in an open, extensible, fair, and reproducible manner?

The main objective of this question is to objectively evaluate both the RDF and Property graph
database systems for a given set of specific scenarios, benchmarks involving particular query loads
over characteristic datasets have been made openly available by the graph community. Then
in Chapter 6, for answering RQ3, we review the state-of-the-art on benchmarking frameworks,
their suitability for evaluating both RDF and Property graph databases collectively. However,
none of the existing tools allow the users to benchmark both of the above-mentioned databases
in an open, extensible, and transparent manner that also supports evaluating the underlying
data and query transformation approaches. We also investigated various Key Performance
Indicators (KPIs) that could help understand the influence of a variety of internal and external
factors on the performance of the participating database systems. After that, we identified a
variety of metrics and parameters (which account for the investigated KPIs) with respect to
CPU, RAM, query typology, indexing, data quality, etc. in works [45, 46, 48]. To the best
of our knowledge, the proposed LITMUS [35, 47] is the first framework able to benchmark
both RDF and Property graph databases in the same environment. Moreover, LITMUS
provides benefits that are partially present in other benchmarking frameworks but not in their
combination. In particular, LITMUS is able to: (i) promote reusability via providing a unified
open, extensible architecture for orchestrating user-driven benchmarks, (ii) provide a list of
comprehensive CPU and memory-based metrics and parameters for performance evaluation,
(iii) offer full automation of the underlying tedious sub-tasks, and (iv) support an in-depth
post-benchmark performance reporting via custom visualization using tables and plots. We
conducted comprehensive experiments demonstrating the applicability and validity of LITMUS,
by orchestrating automatic benchmarking top of the line three RDF and three Property graph
databases.

Thus, with the contributions of RQ3, we take a substantial step by making it feasible to
benchmark both RDF and Property graph database within a single open, extensible, reusable
framework. As a result of this work, we have open-sourced the following resources:

• We deliver an open and independent implementation of LITMUS accessible at https:
//github.com/LITMUS-Benchmark-Suite/.

• The entire set of results and queries are made accessible at https://drive.google.com/
open?id=0B3aUtDGGrGadZWNPNzRScnlOY3M.

• The free docker version of the LITMUS framework is available at https://hub.docker.
com/r/litmusbenchmarksuite/litmus/.

Our work [47] on LITMUS received the Best Research & Innovation Paper Award2 at the
SEMANTiCS 2017 conference organised in Amsterdam, Netherlands from September 11 to 14,
2017.

In conclusion, by bridging the research gap addressed by the work presented in this dissertation,

2 https://2017.semantics.cc/awards
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7.1 The Interoperability Story in a Nutshell

we have laid a firm formal and practical foundation for addressing the interoperability gap
between the RDF and Property graph databases technology stacks. These research contributions
render several benefits, a few of which are summarized as follows:

• Collectively the direct mappings for both data in RDF2PG [106] and query in GREMLIN-
ATOR [41, 43] will allow applications based on Semantic Web standards, like SPARQL
and RDF, to use Property graph databases in a non-intrusive fashion;

• GREMLINATOR enables the users familiar with W3C SPARQL to query a variety of
TinkerPop-enabled graph databases, avoiding the need to learn a new graph query language;

• The GREMLINATOR can be used in a hybrid query layer setting between RDF triplestores
and Property graph databases (e.g. as a single layer on top of AWS Neptune [80] rather
than the current two separate physical layers) wherein a particular query can be dispatched
to the database capable to answer the query more efficiently [4]. In particular, property
graph databases have been shown to work very well for a wide range of queries, which
benefit from the locality in a graph. Rather than performing expensive joins, property
graph databases use micro indices to perform traversals;

• LITMUS enables a broad audience of researchers and databases vendors for benchmarking
a spectrum of RDF and Property graph databases (both OLTP and OLAP systems) using
frameworks such as LDBC [211] and LITMUS [47];

• Collectively all the three contributions will facilitate efforts for bridging the data and
query interoperability gap between the Semantic Web and Graph database communities
by serving as a stepping stone for the standardisation process3.

The work invested in this dissertation has resulted in successfully addressing the challenges
identified within the scope of three major European Union-funded projects. We summarize the
contribution of this thesis with respect to these projects as follows:

• WDAQUA ITN4: The Answering Questions using Web Data (WDAQUA), which is
a Marie Skłodowska-Curie Innovative Training Network (ITN), was the primary driver
of this Ph.D. thesis. It was incubated to advance the field of data-driven open domain
Question Answering (QA) through a combination of international training, research, and
innovation. The WDAQUA ITN project ran from 2015 to 2019, and with the contributions
of this thesis (along with other Ph.D. students involved in it) was successfully closed.

• SANSA5: The Scalable Semantic Analytics Stack (SANSA) is a big data engine for scalable
processing of large-scale RDF data. SANSA uses technologies such as Spark and Flink,
which offer fault-tolerant, highly available, and scalable approaches to process massive
sized datasets efficiently. SANSA provides the facilities for Semantic data representation,
Querying, Inference, and Analytics. SANSA is one of the main academic use cases of
the contributions made by this thesis, specifically the graph query layer, where the query

3 Part of the work in this thesis was invited for discussion at the recent W3C Graph Data Standardisation
workshop (https://www.w3.org/Data/events/data-ws-2019/)

4 http://wdaqua.eu/
5 http://sansa-stack.net/
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interoperability problem’s results have been used.

• BOOST4.06: The Big Data for Factories (BOOST4.0) is an on-going (2018-2021) flagship
EU project put together with a collaboration of 50 global partners involving 20 academic
and 30 industrial institutions. BOOST4.0 has been incubated to lead the construction of
the European Industrial Data Space to improve the competitiveness of Industry 4.0. It
will guide the European manufacturing industry in introducing Big Data in the factory,
providing the industrial sector with the necessary tools to obtain the maximum benefit of
Big Data. In production and manufacturing environments, data is often the choke-point
in supporting interoperability between systems that produce data (sensors, machines, and
other devices) and applications that perform analytics. This thesis’s results, specifically in
the data interoperability problem, have been successfully contributed to the BOOST4.0
project.

7.2 Limitations and Future Work

Despite successfully addressing the research objective of this dissertation, few limitations of
the presented contributions remain perfected in the scope of the thesis. We list the following
limitations in the chronology of the research questions they address next.

RQ1) Regarding the data interoperability contributions made in Chapter 4: (i) the simple
mapping is not suitable for RDF datasets with complex vocabularies as the common names
will be merged in the resulting property graph; (ii) while the generic mapping works with
any RDF dataset, the size it’s output property graph will be bigger than the other two
mappings; lastly (iii) all the proposed three direct mappings currently do not offer support
for transforming RDF data with reification and the inference rules supported by RDF
Schema (e.g., sub-class, sub-property). This limitation is to be addressed by studying
these features in the future.

RQ2) Regarding the query interoperability contributions made in Chapter 5: the current version of
GREMLINATOR supports the translation of only SPARQL SELECT queries, of which it covers
the SPARQL 1.0 specification (cf. Table 5.3), along with a subset of SPARQL 1.1 features
(e.g. aggregation operators, explicit negation, solution modifiers, Property path). Our work
can be extended to support other SPARQL query types such as ASK, CONSTRUCT, and
DESCRIBE, thereby increasing the query fragment coverage. Furthermore, a substantial
amount of work is required to support the translation of the SPARQL mentioned above
query types with respect to the formal semantics and expressivity of the Gremlin traversal
language. We found this to be the biggest choke-point, and at the same time, a huge
opportunity in continuing ahead with research in this direction.

RQ3) Regarding the database benchmarking contributions made in Chapter 6, the LITMUS
Benchmark Suite does not support: (i) Federated Querying – multiple sources/endpoints
being queried at the same time; (ii) Parallel Querying & Updates – multiple users/clients
querying and updating a single source at the same time; (iii) the automatic generation of

6 https://boost40.eu/
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synthetic datasets and queries. Instead, it allows the use of other benchmarks, via modular
integration (plug-n-play style), that offer such support and leave it up to the user to chose
what they deem fit according to their needs. In its current state LITMUS is more of a
proof-of-concept framework and not a polished industry/commercial product. Perhaps it
is an opportunity for a significant re-implementation of the same and can be launched as
a novel startup.

7.3 Outlook and Closing Remarks

Based on our findings, the contributions made in this thesis, and studying the current trends, we
now forecast the following general outlook for the Semantic Web, Graph database, and Artificial
Intelligence research communities:

• Querying Hybrid Knowledge Graphs (KGs): As discussed in Section 2.3 of Chapter 2,
construction and use of hybrid KGs (i.e. KGs built using both RDF and Property graph
data models) has become more and more relevant with the rise in need for automated,
integrated data-driven systems. Massive amounts of funding and research put together in
projects such as BOOST4.07, advocates the current trend, and here lies a huge opportunity.
Both the RDF and Property graph databases cater to distinct advantages with respect to
the flexibility of schema, querying, and storage of data, which has already been established
in this thesis. Querying these hybrid KGs using a hybrid query layer will allow the user to
leverage the best of both the worlds (support for reasoning and federated querying via
SPARQL, and efficient execution of graph-algorithms and tasks via Gremlin). Existing
commercial systems such as AWS Neptune [80] could harness this by building such a
hybrid query layers instead of maintaining two separate physical data and query layers.
Developing such an application will undoubtedly require a detailed study of the query
language expressivity and semantics, where there is another opportunity for novel research
(as mentioned earlier in this chapter).

• Virtualization of Graph databases: As demonstrated by Contextualized Knowledge
Graph (CKG) use case by NLM (cf. Section 5.7, Chapter 5) and the large-scale knowledge
graph reasoning use case by IBM Research [202] GREMLINATOR can be successfully
employed in a variety of applications as a virtualized query layer on top of Property graph
databases systems. Due to the advantage catered by Apache TinkerPop framework [18],
GREMLINATOR can be used to query both OLTP and OLAP systems using SPARQL.
There is certainly a lot of scope in this direction for the adoption of our contributions
and extending its coverage to support other query types in SPARQL (as discussed in the
section above).

• Question Answering (QA) over Property graphs: QA has almost always been
carried out over RDF powered KGs. There exists a substantial amount of work [212–215]
in this regard covering the entire QA pipeline [216] – entity linking, entity disambiguation,
natural language processing, and other machine learning approaches. However, there is
not much work done in the direction of supporting QA over Property graphs. One primary

7 https://boost40.eu/
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Chapter 7 Conclusion and Future Directions

reason for this is the lack of tools that allow translation of natural language questions into
a formal Property graph query language. This can now be addressed with our contribution
GREMLINATOR, as it enables executing SPARQL queries over Property graph databases
directly. Thus, all the existing components and QA pipelines can be used in conjunction
with GREMLINATOR and RDF2PG for enabling full-scale QA over Property graph and
hybrid-based KGs.

• Identifying suitable Databases for domain specific-use cases: The contributions
made in this thesis can be used for a better understanding of performance issues covering
a wide variety of RDF and Property graph database by automatically benchmarking
them with respect to specific use cases (addressing big data, complex queries, and hybrid
ontologies), which have an explicit requirement of federated/distributed and/or graph
analytical querying, in fields such as Life Sciences, Pharmaceutical, Automotive, Finance.
Furthermore, machine learning-based approaches can be used for automatically classifying
and delegating specific queries over RDF vs. Graph databases based on pre-defined criteria
(e.g., query typology) at run-time. For instance, recommendation and analytical queries
(retrieving similar movies based on given criteria) that consists of a high number of joins
and graph-based tasks (shortest path, page rank, etc.) can be automatically identified and
executed over Graph databases. At the same time, simple queries with a fewer number
of joins/triples (typically used in question answering systems – who is the father of Jon
Snow?) can be executed over RDF databases/triplestores.

In conclusion, from what we have experienced so far, the field of Property graph is yet very
young, and with the rise of data and query language standards, it is certainly picking up mo-
mentum. Additionally, the work formulated in this dissertation lies at the very core of addressing
the elephant-sized interoperability issue in the international room global database community.
This is evident that despite a very recent introduction, works such as GREMLINATOR and
RDF2PG have started getting attention and adoption from academia and industry, respectively.
The most important by-product of this work, is the Apache TinkerPop sparql-gremlin plugin’s
reuse and adoption, which has resulted into the authors involvement in international collaborat-
ive standardization efforts such as Graph Query Language (GQL)8, Linked Data Benchmark
Council (LDBC)9, Property graph Schema Working Group (PGSWG)10, Existing Languages
Working Group (ELWG)11. Apart from the above-mentioned activities, there are several other
industry collaborations in progress, which, unfortunately, cannot be mentioned in this thesis due
to their commercial restrictions. We expect the community to build on top of the laid formal
and practical foundation for supporting interoperability between the RDF and Property graph
databases presented in this dissertation.

8 https://www.gqlstandards.org/
9 http://ldbcouncil.org/

10 https://docs.google.com/document/d/1YBD0o6VsFbkhyFIi5jfYhtx16TmKVDWFoLCPw8ZRU3k/edit
11 https://www.gqlstandards.org/existing-languages
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APPENDIX A

Full Results of the SPARQL - Gremlin
Performance Comparison

Here, we report the detailed query-wise runtime results in tabular format corresponding to the
plots reported previously in Figures 5.7 and 5.8 as shown in Section 5.5.3 of Chapter 5.
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Query Gremlin Traversal Execution Time (ms, without indexes) SPARQL Query Execution Time (ms, with indexes) Gremlin Traversal Execution Time (ms, with indexes)
Tinker
(cold)

Tinker
(warm)

Neo4j
(cold)

Neo4j
(warm)

Spaksee
(cold)

Spaksee
(warm)

Virtuoso
(cold)

Virtuoso
(warm)

Jena
(cold)

Jena
(warm)

4store
(cold)

4store
(warm)

Tinker
(cold)

Tinker
(warm)

Neo4j
(cold)

Neo4j
(warm)

Spaksee
(cold)

Spaksee
(warm)

C1 220.12 136.7 177.60 152.72 306.8 272.67 458.15 167.25 1652 1614 260 152.5 191.6 107.69 157.3 80.05 253.82 184
C2 302.6 187.3 272.67 231.36 340.84 224.48 61.25 21.5 390 361.25 232.5 65 238.1 100.52 218.46 97.14 279.01 203.7
C3 17.7 15.4 18.50 15.29 38.86 13.81 271 70.25 404.63 384 227.5 70 1.5 0.33 9.43 2.86 29.5 3.68
F1 16.32 15.4 19.72 16.40 32.66 22.08 172.25 45.5 448 417.5 275.25 72.5 17.83 15.27 11.93 4.75 26.2 3.49
F2 45.6 33.5 67.06 53.17 102.61 73.70 84.15 23.75 945.5 871.5 632 148.25 1.12 0.9 34.67 16.3 49.7 23.82
F3 22.8 20.1 29.37 25.81 44.93 25.34 43.3 15 812.75 904.3 655 132.5 1.15 0.72 2.4 1.15 29 3.77
L1 17.6 16 34.73 33.09 39.20 19.97 14.45 7.25 379.15 369.25 245 72.5 0.246 0.169 3.85 1.74 17.8 5.3
L2 107.17 56.57 71.37 32.05 105.26 68.42 44.5 21.25 456.75 416.5 287.5 55.3 77.9 49.41 45.26 17.98 43.8 21.52
L3 6.84 6.4 18.80 14.77 9.09 8.53 8.3 4.75 433 429.75 382.25 175 0.79 0.63 3.25 1.72 12.75 4.29
G1 42.57 28.87 50.14 22.49 48.11 43.54 61.45 22.5 811.34 544.21 465.19 132.75 18.52 8.01 28.3 4.18 29.3 9.29
G2 19.15 16.23 35.70 16.58 20.76 18.87 272.3 69.25 434.3 383.75 212.5 60.34 18.5 16.5 18.2 3.98 11.67 3.89
G3 260.47 149.1 248.53 156.58 306.06 287.54 77.25 50.5 916.5 858 682.5 130 269.5 163.3 133.4 54.52 212.82 174.25
Gc1 24.6 22.36 15.85 11.27 29.59 25.2 289 171.25 1535 1450 425 305 0.33 0.268 4.92 2.08 7.92 3.05
Gc2 23.47 21.36 21.49 17.09 27.04 24.85 110.3 94.25 2809.75 2717.3 2727.5 1110.25 0.737 0.679 6.07 2.34 5.88 3
Gc3 23.98 21.6 19.27 15.62 28.78 25.01 102 30 1063 1045.75 287.5 120.75 0.762 0.667 5.19 2.25 6.31 2.79
O1 328.57 192.77 238.3 173.95 461.59 402.64 183.5 164.7 1234.25 1200 207.45 130.5 294.68 193.44 210.2 77.75 331.9 227.24
O2 20 17.3 32.93 25.32 56.64 35.68 44.5 15.3 530 403.25 278 87.5 4.56 2.63 8.12 3.96 26.7 3.39
O3 525.81 357.98 489.63 369.2 612.04 483.51 604 519 2645.5 2109 650.9 321.65 205.1 158.18 196.87 153.76 338.74 179.82
U1 45.72 23.17 53.15 48.6 111.62 58.78 44.89 13.25 498.5 504 207.5 90 18.98 9.42 28.51 13.49 47.5 15.59
U2 373.95 203.61 402.40 378.1 503 286.24 34 10.75 444.5 403 190 55 257.5 173.2 159.01 68.63 307.53 152.7
U3 278.89 173.01 328.60 287.29 565.19 329.1 151.4 40.75 1111 1169 507.5 190 218.73 153.9 141.52 47.14 224.1 72.67
M1 1221.7 765.7 246.25 116.57 453.82 367.93 74.15 58.5 3445.15 3417.5 1535 498 899 618.25 126.33 75.79 226.23 130.7
M2 806.1 537.4 283.76 161.43 327.01 276.04 120.6 98.25 3513.75 3418.25 2857.5 1412.5 657.6 451 143.61 87.81 139.6 55.84
M3 551.6 309.32 161.72 81.63 261.92 168.91 84 75.5 3384.25 3367 1080 343 402.7 235.9 66.48 34.36 102.35 39.37
S1 20.75 15.5 25.38 16.72 38.83 32.79 388.15 108.5 593 630 253 70 1.55 0.79 2.54 1.97 12.91 3.94
S2 17.5 15.4 21.16 14.8 26.45 21.89 332 89.5 442 413 202.5 80 1.45 0.82 2.39 1.71 10.18 3.42
S3 34.02 26.65 40.75 31.54 52.57 40.2 40641 40329 22663 21180 2175 1730 7.02 4.46 15.92 8.02 31.2 6.84

Table A.1: Performance comparison of SPARQL queries vs the translated Gremlin traversals in both cold and warm caches for the BSBM dataset.
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Query Gremlin Traversal Execution Time (ms, without indexes) SPARQL Query Execution Time (ms, with indexes) Gremlin Traversal Execution Time (ms, with indexes)
Tinker
(cold)

Tinker
(warm)

Neo4j
(cold)

Neo4j
(warm)

Spaksee
(cold)

Spaksee
(warm)

Virtuoso
(cold)

Virtuoso
(warm)

Jena
(cold)

Jena
(warm)

4store
(cold)

4store
(warm)

Tinker
(cold)

Tinker
(warm)

Neo4j
(cold)

Neo4j
(warm)

Spaksee
(cold)

Spaksee
(warm)

C1 11.49 5.45 17.7 13.3 23.89 13.8 36.25 3.75 364 374 298 93 7.75 4.25 12.87 6.17 14.4 6.64
C2 20.757 11.8 28.3 21.2 31.13 15.7 25 2.75 395 389 290 80 11.52 6.14 18.4 5.26 23.9 10.52
C3 10.76 5.84 18.9 12.6 24 11.4 52 4.25 399 392 318 90 7.5 4.25 12.38 4.58 15.17 7.1
F1 0.77 0.8 3.49 2.7 4.45 2.4 12 4.33 363 369 273 115 0.53 0.29 2.16 1.03 2.45 1.32
F2 15.45 8.47 24.5 12.09 34.3 17.62 6 2 370 427 270 124 9.6 6.25 19.52 9.26 24.4 11.08
F3 2.4 1.24 6.68 5.41 11.28 9.7 5 2.65 470 373 252 115 1 0.72 8.15 3.38 7.6 3.46
L1 1.5 0.73 4.49 3.6 5.3 4.09 7.75 5 439 349 280 112 0.55 0.4 3.01 1.39 4.5 2.16
L2 2.96 0.47 7.43 4.6 4.75 2.8 12 2.5 364 364 295 113 0.39 0.38 4.12 1.83 4.57 2.25
L3 17.01 8.98 29.1 18.42 37.5 24.2 4 2.5 410 378 279 108 11.43 6.42 21.68 8.09 27.1 15.32
G1 6 2.15 12.16 8.81 4.39 3.2 64 18.25 433 461 245 103 1.46 1.11 3.22 1.26 3.04 2.27
G2 5.14 1.8 10.6 5.5 3.62 2.7 27 9.75 348 369 285 92 2.29 0.9 3.72 2.35 2.8 2.19
G3 6.32 1.5 13.27 9.76 4.86 3.8 2.75 2 471 476 328 157 1.34 0.85 5.25 3.99 3.95 3.04
Gc1 10.2 5.45 17.3 13.6 15.49 9.52 9 6.33 440 467 247 88 7.25 3.9 10.83 7.05 9.66 4.6
Gc2 25 14.09 38.1 23.9 36.6 15.67 6 2.75 385 354 250 105 15.92 9.25 23.62 9.84 18.9 7.01
Gc3 0.783 0.68 6.89 3.7 4.61 3.8 47.75 4.25 753 775 248 118 0.52 0.47 3.42 3.33 3.52 3.43
O1 18.25 12.23 28 17.4 40.6 25.3 4.5 2.25 446 483 267 125 12.32 7.5 19.1 8.44 27.46 12.2
O2 28 17.4 39.2 23 54.3 27.81 20 8.25 321 354 270 95 19.2 11.93 22.3 6.85 35.49 13.8
O3 18.45 10.44 28.3 18.02 42.78 24.64 3.75 2.25 545 573 300 120 10.65 6.6 18.4 5.41 28.27 11.3
U1 67.25 36.75 70.6 46.25 81.72 39.78 27.75 3.75 377 368 240 115 43.75 24.11 35.64 15.46 45.34 28.76
U2 68.5 35.45 89.8 42.61 107.76 48.28 16.5 2.75 529 536 252.5 130 40 23.25 53.21 29.71 69.2 33.71
U3 75.5 42.6 98.5 54.4 157.6 62.91 31.5 4.5 346 434 260 112.5 44.5 23.58 65.31 28.33 120.49 73.79
M1 22.45 12.4 37.8 23.4 49.14 24.5 12 6.25 457 473 325 140 12.87 6.9 18.09 7.97 24.1 13.8
M2 2.56 1.65 6.94 3.67 51.2 26.3 8 3 373 423 301 118 1.6 1.13 6.02 3.26 28.6 15.36
M3 2.5 1.92 7 4.16 50.8 25.4 35 14.5 563 547 298 110 1.8 1.25 4.07 3.38 27.8 15.59
S1 35.8 28.4 42.6 20.9 35.6 15.9 176 67.5 451 372 278 135 32.5 17.3 26.47 12.15 21.4 10.63
S2 7.85 5.03 11.8 5.3 21.4 10.8 50 24.75 328 369 253 98 4.09 3.25 2.25 2.02 18.9 8.51
S3 4.23 1.42 6.9 3.8 17.6 8.3 902 824 362 406 250 80 1.25 0.82 9.15 5.01 11.9 6.02

Table A.2: Performance comparison of SPARQL queries vs the translated Gremlin traversals in both cold and warm caches for the Northwind
dataset.

183





APPENDIX B

Complete List of Publications

Following is the complete list of publications and articles1 produced during the development of
this Ph.D. thesis (07-2015 to 05-2020).

Journal Papers (peer reviewed):

1. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. Mapping RDF Databases to
Property Graphs. In IEEE Access, Vol. 8, 2020. DOI: 10.1109/ACCESS.2020.2993117

2. Dominik Tomaszuk, Renzo Angles, and Harsh Thakkar. PGO: Describing Property
Graphs in RDF. In IEEE Access, Vol. 8, 2020. DOI: 10.1109/ACCESS.2020.3002018

Conference Papers (peer reviewed):

3. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, and Jens Lehmann.
Let’s build Bridges, not Walls: SPARQL Querying of TinkerPop Graph Databases with
Sparql-Gremlin. In Proceedings of the IEEE 14th International Conference on Semantic
Computing (ICSC), pp. 408-415, San Diego, USA, 2020. DOI: 10.1109/ICSC.2020.00080
[Best Paper Award]

4. Harsh Thakkar, Dharmen Punjani, Sören Auer, and Maria-Esther Vidal. Towards an
Integrated Graph Algebra for Graph Pattern Matching with Gremlin. In Proceedings of
the 28th International Conference on Database and Expert Systems Applications (DEXA
2017), Lyon, France, pp. 81-91. Springer, 2017. DOI: 10.1007/978-3-319-64468-4_6

5. Harsh Thakkar, Yashwant Keswani, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
Trying Not to Die Benchmarking – Orchestrating RDF and Graph Data Management
Solution Benchmarks using LITMUS. In Proceedings of the 13th International Conference
on Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederland, pages 120-127. ACM,
2017. [Best Paper Award] DOI: 10.1145/3132218.3132232

1 Both peer reviewed [34, 35, 38–40, 42, 43, 45–48, 104, 106, 190, 208, 213, 217–221] (such as conference, workshop,
journal, poster & demo papers) and not peer reviewed [37, 41, 104, 105, 201, 222, 223] (such as ArXiv and
technical reports [Apache TinkerPop [18] sparql-gremlin documentation]

185

10.1109/ACCESS.2020.2993117
10.1109/ACCESS.2020.3002018
10.1109/ICSC.2020.00080
10.1007/978-3-319-64468-4_6
10.1145/3132218.3132232


Appendix B Complete List of Publications

6. Kemele M Endris, Josè M. Gim̀enez-Garc̀ia, Harsh Thakkar, Elena Demidova, Antoine
Zimmermann, Christoph Lange, and Elena Simperl. Dataset Reuse: An Analysis of
References in Community Discussions, Publications and Data. DOI: 10.1145/3148011.
3154461

7. Harsh Thakkar. Towards an Open Extensible Framework for Empirical Benchmarking
of Data Management Solutions: LITMUS. In Proceedings of the 14th Extended Semantic
Web Conferences (ESWC 2017), 2017. DOI: 10.1007/978-3-319-58451-5_20

8. Harsh Thakkar, Kemele M. Endris, Josè M. Gim̀enez-Garc̀ia, Jeremy Debattista, Chris-
toph Lange, and Sóren Auer. Are Linked Datasets Fit for Open-domain Question Answer-
ing? A Quality Assessment. In Proceedings of the 6th International Conference on Web
Intelligence, Mining and Semantics (WIMS 2016), Nîmes, France, June 13-15, pages 1-12,
2016. DOI: 10.1145/2912845.2912857

Workshop Papers (peer reviewed):

9. Harsh Thakkar, Maria-Esther Vidal, Sóren Auer. Formalizing Gremlin Pattern Matching
Traversals in an Integrated Graph Algebra (extended version). In Proceedings of the 2nd
International Semantic Web Conference (ISWC) Workshop on Contextualised Knowledge
Graphs (CKG), New Zealand, 2019. URL: http://ceur-ws.org/Vol-2599/CKG2019_
paper_2.pdf

10. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. RDF and Property Graphs
Interoperability: Status and Issues. In Proceedings of the 13th Alberto Mendelzon Interna-
tional Workshop on Foundations of Data Management, Asunción (AMW 2019), Paraguay,
June 3-7, 2019. URL: http://ceur-ws.org/Vol-2369/paper01.pdf

11. Vinh Nguyen, Hong Yung Yip, Harsh Thakkar, Qingliang Li, Evan Bolton, and Olivier
Bodenreider. Singleton property graph: Adding a semantic web abstraction layer to graph
databases. In Proceedings of the 2nd International Semantic Web Conference (ISWC)
Workshop on Contextualised Knowledge Graphs (CKG), New Zealand, 2019. URL:
http://ceur-ws.org/Vol-2599/CKG2019_paper_4.pdf

12. Felipe Quécole, Romao Martines, Josè M. Gim̀enez-Garc̀ia, andHarsh Thakkar. Towards
Capturing Contextual Semantic Information about Statements in Web Tables. In Joint
Proceedings of the International Workshops on Contextualized Knowledge Graphs, and Se-
mantic Statistics (CKGSemStats) co-located with 17th International Semantic Web Confer-
ence (ISWC 2018), USA, 2018. URL: http://ceur-ws.org/Vol-2317/article-09.pdf

13. Kuldeep Singh, Ioanna Lytra, Maria-Esther Vidal, Dharmen Punjani, Harsh Thakkar,
Christoph Lange, and Sóren Auer. Qaestro - Semantic-based Composition of Question
Answering Pipelines. In 28th International Conference on Database and Expert Systems
Applications (DEXA 2017), France, 2017. DOI: 10.1007/978-3-319-64468-4_2

14. Saeedeh Shekarpour, Kemele M Endris, Ashwini Jaya Kumar, Denis Lukovnikov, Kuldeep
Singh, Harsh Thakkar, and Christoph Lange. Question Answering on Linked Data:
Challenges and Future Directions. In Companion Proceedings of the 25th International

186

10.1145/3148011.3154461
10.1145/3148011.3154461
10.1007/978-3-319-58451-5_20
10.1145/2912845.2912857
http://ceur-ws.org/Vol-2599/CKG2019_paper_2.pdf
http://ceur-ws.org/Vol-2599/CKG2019_paper_2.pdf
http://ceur-ws.org/Vol-2369/paper01.pdf
http://ceur-ws.org/Vol-2599/CKG2019_paper_4.pdf
http://ceur-ws.org/Vol-2317/article-09.pdf
10.1007/978-3-319-64468-4_2


Conference Companion on World Wide Web (WWW), pages 693-698. 2016. DOI:
10.1145/2872518.2890571

15. Josè M. Gim̀enez-Garc̀iıa, Harsh Thakkar, and Antoine Zimmermann. Assessing Trust
with Pagerank in the Web of Data. In Proceedings of the 3rd International Workshop on
Dataset PROFIling and fEderated Search for Linked Data (PROFILES ’16) co-located
with the 13th ESWC 2016 Conference, Greece, 2016. [Best Paper Award] DOI: 10.
1007/978-3-319-47602-5_45

Poster & Demo Papers (peer reviewed):

16. Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sörenen Auer. Two for one:
Querying Property Graph Databases using SPARQL via GREMLINATOR. In Proceedings
of the 1st ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and NetworkData Analytics (NDA), page 12, ACM,
USA, 2018. DOI: 10.1145/3210259.3210271

17. Yashwant Keswani, Harsh Thakkar, Mohnish Dubey, Jens Lehmann, and Sóren Auer.
The LITMUS Test: Benchmarking RDF and Graph Data Management Systems. In
Proceedings of the CEUR-WS (Poster & Demo), SEMANTiCS 2017, Nederland, 2017.

Pre-prints (not peer reviewed):

18. Harsh Thakkar, Renzo Angles, Dominik Tomaszuk, and Jens Lehmann. Direct Mappings
between RDF and Property Graph Databases. Pre-print arXiv preprint arXiv:1912.02127,
2019. URL: http://arxiv.org/abs/1912.02127

19. Mohamed Nadjib Mami, Damien Graux, Harsh Thakkar, Simon Scerri, Sören Auer, and
Jens Lehmann. The Query Translation Landscape: A Survey. Pre-print arXiv:1910.03118,
pp. 1-25, 2019. URL: http://arxiv.org/abs/1910.03118

20. Harsh Thakkar, Dharmen Punjani, Yashwant Keswani, Jens Lehmann, and Sóren Auer.
A Stitch in Time Saves Nine – SPARQL Querying of Property Graphs using Gremlin
Traversals. Pre-print arXiv:1801.02911, pp. 1-24, 2018. URL: http://arxiv.org/abs/
1801.02911

21. Harsh Thakkar, Dharmen Punjani, Jens Lehmann, and Sörenen Auer. Killing Two
Birds with One Stone - Querying Property Graphs using SPARQL via GREMLINATOR.
Pre-print arXiv:1801.09556. URL: http://arxiv.org/abs/1801.09556

22. Harsh Thakkar, Mohnish Dubey, Gezim Sejdiu, Axel-Cyrille Ngonga Ngomo, Jeremy
Debattista, Christoph Lange, Jens Lehmann, Sórenn Auer, and Maria-Esther Vidal.
LITMUS: An Open Extensible Framework for Benchmarking RDF Data Management
Solutions. Pre-print arXiv:1608.02800, 2016. URL: http://arxiv.org/abs/1608.02800

23. Harsh Thakkar, Maria-Esther Vidal, Sóren Auer. Towards an Integrated Graph Algebra
for Graph Pattern Matching with Gremlin (Extended Version). Pre-print arXiv:1908.06265.
URL: http://arxiv.org/abs/1908.06265

187

10.1145/2872518.2890571
10.1007/978-3-319-47602-5_45
10.1007/978-3-319-47602-5_45
10.1145/3210259.3210271
http://arxiv.org/abs/1912.02127
http://arxiv.org/abs/1910.03118
http://arxiv.org/abs/1801.02911
http://arxiv.org/abs/1801.02911
http://arxiv.org/abs/1801.09556
http://arxiv.org/abs/1608.02800
http://arxiv.org/abs/1908.06265


Appendix B Complete List of Publications

Edited Volumes & Online Resources:

24. Reza Samavi, Mariano P. Consens, Shahan Khatchadourian, Vinh Nguyen, Amit P. Sheth,
José M. Giménez-García, and Harsh Thakkar. Proceedings of the Blockchain enabled Se-
mantic Web Workshop (BlockSW) and Contextualized Knowledge Graphs (CKG) Workshop
co-located with the 18th International Semantic Web Conference, BlockSW/CKG@ISWC,
Auckland, New Zealand, 2019. URN: urn:nbn:de:0074-2599-1

25. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Stephen Mallette, Dharmen Punjani,
Jens Lehmann, Sören Auer. "Gremlinator (sparql-gremlin) Resources." available online at
https://doi.org/10.6084/m9.figshare.8187110.v3, 2019.

26. Renzo Angles, Harsh Thakkar, and Dominik Tomaszuk. "RDF2PG Experimental
Datasets." available online at https://doi.org/10.6084/m9.figshare.12021156.v10,
2020.

Working Papers:

27. Harsh Thakkar, Renzo Angles, Marko Rodriguez, Sóren Auer. GREMLINATOR:
SPARQL Querying of Property Graph Databases using Gremlin Traversals. IEEE Access
submission, 2020. (in progress)

28. Harsh Thakkar, Renzo Angles, and Dominik Tomaszuk. RDF2PG: Automatic Trans-
formation of RDF to Property Graphs. Demo paper, Venue TBD, 2020. (in progress)

188

urn:nbn:de:0074-2599-1
https://doi.org/10.6084/m9.figshare.8187110.v3
https://doi.org/10.6084/m9.figshare.12021156.v10


APPENDIX C

Best Paper Awards

Following is the list of the Best Paper Awards that were conferred to a part of the contributions
made during the term of this dissertation (07-2015 to 04-2020).

Figure C.1: Best Paper Award at the 3rd International Workshop on Dataset PROFIling and fEderated
Search for Linked Data (PROFILES ’16) at the 13th ESWC 2016 Conference, Greece, 2016.

189



Appendix C Best Paper Awards

Figure C.2: Best Paper Award – Research & Innovation Track at the 13th International Conference on
Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederlands, 2017.

190



Figure C.3: Best Paper Award – Resource Track at the the IEEE 14th International Conference on
Semantic Computing (ICSC 2020) San Diego, USA, 2020.

191





List of Figures

1.1 Layered Cake Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 General Framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 Research Questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Data Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Query Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Automated Benchmarking RDF and Property graph Databases. . . . . . . . . . . 14

2.1 Five Star Linked Open Data Principle . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Example of an RDF graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3 The evaluation of a SPARQL SELECT query . . . . . . . . . . . . . . . . . . . . 27
2.4 Ranked list of various RDF Triplestores . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Ranked list of various Graph databases . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 Example of a Property graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 The Apache TinkerPop stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8 The TinkerPop-enabled graph systems. . . . . . . . . . . . . . . . . . . . . . . . . 37
2.9 The adoption of Knowledge Graphs. . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 The most value creating companies using Knowledge Graphs. . . . . . . . . . . . 42

3.1 The data interoperability State-of-the-Art diagram . . . . . . . . . . . . . . . . . 49
3.2 The query interoperability State-of-the-Art diagram . . . . . . . . . . . . . . . . . 54

4.1 A graphical illustration of an RDF graph describing information about Elon Musk
and Tesla Incorporation. We use abbreviated IRIs throughout this chapter. . . . 66

4.2 The Schema of the RDF graph shown in Figure 4.1. . . . . . . . . . . . . . . . . 70
4.3 A graphical representation of a Property Graph. . . . . . . . . . . . . . . . . . . 72
4.4 The Schema of the Property Graph as shown in Fig. 4.3. . . . . . . . . . . . . . . 74
4.5 Property graph obtained after applying the instance mapping IM1 to the RDF

graph shown in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 A generic Property graph schema. . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Property graph obtained after applying the instance mapping IM2 to the RDF

graph shown in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.8 Property graph obtained after applying the instance mapping IM3 to the RDF

graph shown in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.9 Scalability of the database mappings with respect to the size of the input data.

The X-axis has graph sizes and the Y-axis has runtimes (in log scale). The “Base”
line indicates the sizes of the input graphs in the log scale. . . . . . . . . . . . . . 94

4.10 Scalability of the simple database mapping with respect to the hardware. The
X-axis has virtual machines and the Y-axis has runtimes (in log scale). . . . . . . 95

193



List of Figures

4.11 Scalability of the generic database mapping with respect to the hardware. The
X-axis has virtual machines and the Y-axis has runtimes (in log scale). . . . . . . 96

4.12 Scalability of the complete database mapping with respect to the hardware. The
X-axis has virtual machines and the Y-axis has runtimes (in log scale). . . . . . . 97

4.13 Graphical representation of the property graph produced by applying the simple
database mapping over the RDF graph G2. . . . . . . . . . . . . . . . . . . . . . 98

5.1 An example of a Property graph from the Apache TinkerPop project network. . . 107
5.2 Graphical illlustration of BGPs on PGs . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Conceptual architecture for formalizing a Gremlin traversal using graph relation

algebra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Transformation Example 1. Illustration of the transformation of an input

SPARQL query (Q) to the corresponding Gremlin pattern matching traversal (Ψ).115
5.5 Transformation Example 2. Illustration of the transformation of an input

SPARQL query (Q) to the corresponding Gremlin pattern matching traversal (Ψ).116
5.6 The GREMLINATOR (sparql-gremlin) query translation pipeline. . . . . . . . . 118
5.7 Performance comparison of SPARQL queries vs the translated Gremlin traversals

for BSBM dataset with respect to RDF and Graph DMSs in different configuration
settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Performance comparison of SPARQL queries vs the translated Gremlin tra-
versals for Northwind dataset with respect to RDF and Graph DMSs in different
configuration settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 The architectural overview of the LITMUS Benchmark Suite. . . . . . . . . . 137
6.2 The component driven architecture of the first working prototype of LITMUS

Benchmark Suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 The graphical user interface of the LITMUS Benchmark Suite. . . . . . . . . 139
6.4 CPU Migrations for Query 20 in warm cache. . . . . . . . . . . . . . . . . . . . . 151
6.5 CPU Migrations for Query 20 in cold cache. . . . . . . . . . . . . . . . . . . . . . 151
6.6 Page Faults - loading the Northwind dataset. . . . . . . . . . . . . . . . . . . . . 152
6.7 Instructions - loading the Northwind dataset. . . . . . . . . . . . . . . . . . . . . 152

7.1 The three sub-research questions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

C.1 Best Paper Award at the 3rd International Workshop on Dataset PROFIling
and fEderated Search for Linked Data (PROFILES ’16) at the 13th ESWC 2016
Conference, Greece, 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

C.2 Best Paper Award – Research & Innovation Track at the 13th International
Conference on Semantic Systems (SEMANTiCS 2017), Amsterdam, Nederlands,
2017. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

C.3 Best Paper Award – Resource Track at the the IEEE 14th International Conference
on Semantic Computing (ICSC 2020) San Diego, USA, 2020. . . . . . . . . . . . 191

194



List of Tables

3.1 A consolidated summary of related work supporting data interoperability between
RDF and Property graphs. Here, B.N. refers to whether the approach supports
Blank Nodes, Reif. refers to whether the approach supports RDF reification, I.P.
refers to whether the approach is Information Preserving, and the “-” refers to
the lack of evidence in the respective work. The type of the arrow in the column
“Target” represents whether the proposed transformation is omni-directional or
bi-directional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 A consolidated summary of the SPARQL language features supported in various
SPARQL ↔ X query translation approaches. Here, " refers to features that are
supported,% implies features that are not supported, and ? implies features that
have not been (clearly) mentioned in the respective study. The Others column
reports the features provided only by individual works. . . . . . . . . . . . . . . . 56

3.3 A consolidated summary of the State-of-the-Art in benchmarking frameworks for
Relational, RDF and Graph Data Management Systems. . . . . . . . . . . . . . . 59

4.1 Datasets used in the experimental evaluation. . . . . . . . . . . . . . . . . . . . . 90
4.2 RDF Graphs used in the experimental evaluation. . . . . . . . . . . . . . . . . . 90
4.3 Virtual Machines (Google Cloud Platform) used in the experimental evaluation. . 91
4.4 RDF Schemas used in the experimental evaluation. This table shows the number

of resource classes, property classes, and datatype definitions. . . . . . . . . . . . 91
4.5 Runtimes (in milliseconds) for the simple data mapping. Undefined runtimes

are represented with “?”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Runtimes (in milliseconds) for the generic data mapping. Undefined runtimes

are represented with “?”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.7 Runtimes (in milliseconds) for the complete data mapping. Undefined runtimes

are represented with “?”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.8 Size (in bytes) of the output files produced during the experimental evaluation of

the database mappings (SDM, GDM and CDM). PG and PGS mean property
graph and property graph schema respectively. . . . . . . . . . . . . . . . . . . . 93

5.1 A consolidated list of graph relational algebra operators with their corresponding
instruction steps in the Gremlin traversal language. . . . . . . . . . . . . . . . . . 105

5.2 Correspondence between the SPARQL triple patterns and single step traversals
(SSTs) from the Gremlin instruction library. Each of the SPARQL triple pattern
can be mapped to a particular Gremlin single step traversal. . . . . . . . . . . . . 113

5.3 A consolidated summary of the SPARQL constructs and keywords along with
their corresponding Gremlin constructs and instruction steps. . . . . . . . . . . . 115

195



List of Tables

5.4 Northwind RDF and Property graph dataset statistics . . . . . . . . . . . . . . . 121
5.5 BSBM RDF and Property graph dataset statistics . . . . . . . . . . . . . . . . . 122
5.6 A description of the feature compositions in each of the query dataset. . . . . . . 123
5.7 Comparison of results of a subset of SPARQL queries and their corresponding

Gremlin traversals for the BSBM dataset. . . . . . . . . . . . . . . . . . . . . . . 125

6.1 Feature distribution in preset queries provided with the LITMUS Benchmark
Suite. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Linked Open Data quality assessment dimensions and metrics relevant to open
domain Question Answering systems. . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.3 The loading time (in seconds) performance comparison for Northwind (respective
versions) in all the DMSs. The highest and lowest values for mean are shown
using the bold and italic fonts respectively. . . . . . . . . . . . . . . . . . . . . . 148

6.4 The warm cache execution time (in seconds) performance comparison for running
Query 14 (C1) (respective version) on all DMSs. The highest and lowest values
for mean are shown using the bold and italic fonts respectively. . . . . . . . . . . 149

6.5 The cold cache execution time (in seconds) performance comparison for running
Query 14 (C1) (respective version) on all DMSs. The highest and lowest values
for mean are shown using the bold and italic fonts respectively. . . . . . . . . . . 149

A.1 Performance comparison of SPARQL queries vs the translated Gremlin traversals
in both cold and warm caches for the BSBM dataset. . . . . . . . . . . . . . . . . 182

A.2 Performance comparison of SPARQL queries vs the translated Gremlin traversals
in both cold and warm caches for the Northwind dataset. . . . . . . . . . . . . . 183

196



List of Algorithms

1 GREMLINATOR SPARQL-to-Gremlin query mapping algorithm . . . . . . . . . . 118

197





Listings

2.1 An Example of SPARQL SELECT query . . . . . . . . . . . . . . . . . . . . . . 26
2.2 An Example of SPARQL ASK query . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Gremlin query (imperative) for the question “Elon Musk is the CEO of which

organisation?” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Gremlin query (declarative) for the question “Elon Musk is the CEO of which

organisation?” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5 A snippet of the triples describing the city of Bonn (http://dbpedia.org/

resource/Bonn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Return the age of the oldest person marko knows . . . . . . . . . . . . . . . . . . 106
5.2 Gremlin traversal for "What is created by Marko?". . . . . . . . . . . . . . . . . . 107
5.3 This traversal returns the names of people who created a project named ’lop’ that

was also created by someone who is 30 years old. . . . . . . . . . . . . . . . . . . 108
5.4 This traversal returns the list all the persons in the ascending order of the age. . 111
5.5 This traversal returns the list of all the people who have collaboratively created a

software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Query 14 (C1) in SPARQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.2 Query 14 (C1) in Gremlin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
6.3 Query 20 (Gc2) in SPARQL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.4 Query 20 (Gc2) in Gremlin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

199

http://dbpedia.org/resource/Bonn
http://dbpedia.org/resource/Bonn

	Introduction
	Motivation, Problem Statement and Challenges
	Challenge 1: Data Interoperability
	Challenge 2: Query Interoperability
	Challenge 3: RDF vs pgDatabase Benchmarking
	Methodology and Approach

	Research Questions
	Thesis Overview
	Contributions
	Publications

	Thesis Outline

	Background and Preliminaries
	Semantic Web & Linked Data
	RDF Data Model and OWL
	SPARQL Query Language
	RDF Databases

	Graph Databases
	Property Graph Data Model
	Gremlin Traversal Language and Machine
	Apache TinkerPop Graph Computing Framework

	Knowledge Graphs
	Summary

	Related Work
	Data Interoperability between Databases
	Syntactic Interoperability
	Semantic Interoperability
	Other Approaches for Data Interoperability

	Query Interoperability between Databases
	Graph-based  Relational
	Graph-based  Document-based
	Graph-based  Hierarchical
	Other Intermediate Graph-based Approaches
	Commercial Database Approaches

	Benchmarking Frameworks for RDF and pgDatabases
	Summary

	Directly Mapping RDF Databases to pgDatabases
	RDF Database (as an edge-labeled graph)
	RDF Graph
	RDF Graph Schema
	Valid RDF Graph

	Property Graph Database
	Property Graph
	Property Graph Schema
	Valid Property Graph

	Direct Mappings for Data Transformation
	Simple Database Mapping (SDM)
	Generic Database Mapping (GDM)
	Complete Database Mapping (CDM)

	Experimental Evaluation
	Implementation
	Methodology and Experimental Setup
	Experimental Results
	Interoperability in Practice
	Limitations

	Summary

	GREMLINATOR: Querying Property graph Databases using SPARQL
	Graph Relational Operators of Gremlin Traversal Language
	Defining Gremlin Operators
	Graph Pattern Matching via Traversing
	Mapping Gremlin traversals to Graph Algebra

	GREMLINATOR Approach
	Mapping SPARQL BGPs to Gremlin SSTs
	Mapping SPARQL Queries to Gremlin Traversals
	Explanation of the Transformation

	Implementation
	Encoding Prefixes
	GREMLINATOR (sparql-gremlin) Architecture
	SPARQL Coverage and Limitations

	Experimental Evaluation
	Evaluation Methodology
	Evaluation Metrics
	Datasets
	Queries
	System Setup

	Results and Discussion
	Q1 - Query Preservation
	Q2 - Translation Validity
	Q3 - Performance Analysis
	Discussion

	Gremlinator as a Reusable Resource
	Technical Quality
	Availability
	Reusability and Maintenance

	Community Adoption (Use Cases)
	IBM Research AI use case
	SANSA Stack use case
	Contextualised Knowledge Graph use case
	Open Research Knowledge Graph use case

	Summary

	Automatic Benchmarking of RDF and Graph Databases
	LITMUS Framework Architecture
	Data Facet
	Query Facet
	System Facet (DMS Facet)
	Benchmarking Core

	The LITMUS Environment
	Integrated Datasets
	Integrated DMSs
	Supported Queries
	Execution Environment

	Performance Evaluation
	Selected Parameters
	Selected Metrics and KPIs
	Data Visualisation

	Experimental Evaluation
	System Setup
	Results and Discussion
	Limitations

	Summary

	Conclusion and Future Directions
	The Interoperability Story in a Nutshell
	Limitations and Future Work
	Outlook and Closing Remarks

	Bibliography
	Full Results of the SPARQL - Gremlin Performance Comparison
	Complete List of Publications
	Best Paper Awards
	List of Figures
	List of Tables
	Listings

