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Abstract

Motivation: Sequencing technologies allow the sequencing of microbial communities directly from the
environment without prior culturing. Because assembly typically produces only genome fragments, also known as
contigs, it is crucial to group them into putative species for further taxonomic profiling and down-streaming
functional analysis. Taxonomic analysis of microbial communities requires contig clustering, a process referred to as
binning, that is still one of the most challenging tasks when analyzing metagenomic data. The major problems are the
lack of taxonomically related genomes in existing reference databases, the uneven abundance ratio of species,
sequencing errors, and the limitations due to binning contig of different lengths.

Results: In this context we present MetaCon a novel tool for unsupervised metagenomic contig binning based on
probabilistic k-mers statistics and coverage. MetaCon uses a signature based on k-mers statistics that accounts for the
different probability of appearance of a k-mer in different species, also contigs of different length are clustered in two
separate phases. The effectiveness of MetaCon is demonstrated in both simulated and real datasets in comparison
with state-of-art binning approaches such as CONCOCT, MaxBin and MetaBAT.
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Introduction
Studies in microbial ecology commonly experience a bot-
tleneck effect due to difficulties in microbial isolation and
cultivation [1]. Due to the difficulty in culturing most
organisms in a laboratory, alternative methods to analyze
microbial diversity are commonly used to study commu-
nity structure and functionality.

One such method is the sequencing of the collective
genomes (metagenomics) of all microorganisms in an
environment [2]. Metagenomics is a study of the hetero-
geneous microbes samples (e.g. soil, water, human micro-
biome) directly extracted from the natural environment
with the primary goal of determining the taxonomical
identity of the microorganisms residing in the samples. It
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is an evolutionary revise, shifting focuses from the indi-
vidual microbe study to a complex microbial community.
As already mentioned in [3, 4], the classical genomic-
based approaches require the prior clone and culturing
for the further investigation. However, not all bacteria can
be cultured. The advent of metagenomics succeeded to
bypass this difficulty.

To further investigate the taxonomic structure of micro-
bial samples, assembled sequence fragments, also known
as contigs, need be grouped into bin that ultimately rep-
resent genomes. Contig binning serves as the key step
toward taxonomic profiling and downstream functional
analysis. Therefore, accurate binning of the contigs is an
essential problem in metagenomic studies.

Grouping contigs into bins of putative species is one
of the hurdles faced when analyzing metagenomic data.
Typically, one of a few issues are encountered includ-
ing: struggling to differentiate related microorganisms,
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repetitive sequence regions within or across genomes,
sequencing errors, and strain-level variation within the
same species, decreasing accuracy for contigs below a size
threshold, or excluding low coverage and low abundance
organisms [5, 6].

Despite extensive studies, accurate binning of contigs
remains challenging [7]. One category is reference-based
(supervised), that is, reference databases are needed for
the assignment from contigs or reads to meaningful tax-
ons. The classification is either based on homology, or
genomic signatures such as oligonucleotide composition
patterns and taxonomic clades. Among the most impor-
tant methods we can recall: Megan [8], Kraken [9], Clark
[10], SKraken [11], and MetaPhlan [12].

Reference-based methods require to index a database of
target genomes, e.g. the NCBI/RefSeq databases of bac-
terial genomes, that is used to classify. These methods
are usually very demanding, requiring computing capa-
bilities with large amounts of RAM and disk space. Yet,
query sequences originating from the genomes of most
microbes in an environmental sample lack taxonomically
related sequences in existing reference databases. Most
bacteria found in environmental samples are unknown
and cannot be cultured and separated in the labora-
tory [13]. For these reasons, when using reference-based
methods the number of unassigned contigs can be very
high [14, 15].

The other category of methods is reference-free (unsu-
pervised), where studies extract features from contigs to
infer bins based on sequence composition [16–18], abun-
dance [19], or hybrids of both sequence composition and
abundance [5, 20–22]. Therefore, these approaches can
be applied to bin contigs from incomplete or uncultivated
genomes. Some hybrid binning tools, such as CONCOCT
[5], MaxBin2.0 [20] and GroopM [21], are designed to bin
contigs based on multiple related metagenomic samples.
Among these methods, GroopM [21] is advantageous in
its visualized and interactive pipeline. On one hand, it is
flexible, allowing users to merge and split bins, on the
other hand, in the absence of expert intervention, the
automatic binning results of GroopM is not as satisfac-
tory as CONCOCT [5]. CONCOCT [5] makes use of
the Gaussian mixture model (GMM) to cluster contigs
into bins. MetaBAT [22] calculates integrated distance for
pairwise contigs and then clusters contigs iteratively by
modified K-medoids algorithm. MaxBin [20] compares
the distributions of distances between and within the
same genomes.

The composition of DNA, in terms of its constituent
k-mers, is known to be a feature of the genome. All the
above studies are based on the assumption that the k-mer
frequency distributions of long fragments or whole
genome sequences are unique to each genome. More
precisely, contig binning using k-mers composition

is based on the observation that relative sequence
compositions are similar across different regions
of the same genome, but differ between distinct
genomes.

In general, current tools, use the simple k-mers counts
as signature for a genome, and these counts are normal-
ized, for ease of comparison, in a global fashion. That is
all k-mers counts are normalized in the same way, irre-
spective of the contig/species they belong to. Moreover,
when the similarity of two contigs is evaluated as the dis-
tance of the corresponding k-mers counts vectors, not
all k-mers contributed uniformly to the distance. In fact,
because k-mers have different probability to appear, the
most probable k-mers can produce a bias in the distance.
In this study, we consider this important observation in
order to develop a signature based on k-mers statistics that
accounts for the different probability of appearance of a
k-mer in different species. In general, the pairwise com-
parison of two sequences, or sets of sequences, can be per-
formed with sophisticated similarity measures, based on
k-mers statistics, derived from research in alignment-free
statistics [23–28].

Another important aspect is that long contigs carry
more information than short contigs. For this reason long
contigs, being more representative, they can be effectively
grouped into clusters of candidate species, whereas short
contigs are often more noisy.

In this paper, we propose MetaCon a method for contig
binning based on a new self-standardized k-mers statis-
tics. The main contributions of MetaCon are the fol-
lowing: it learn the different k-mers distributions based
on the k-mers probabilities in each contig; it uses the
information carried by long contigs to guide the con-
struction of clusters; it can estimate the number of
species with a simple iterative procedure. A recent inde-
pendent benchmark [7] has reported as the best bin-
ning methods CONCOCT [5] and MetaBat [22]. We
tested MetaCon on simulated and real metagenomes
and compared the accuracy of binning with CON-
COCT [5], MetaBat [22] and MaxBin [20]. MetaCon
performs better in terms of precision, recall and esti-
mated number of species on both simulated and real
datasets. The results of this study find that Meta-
Con can generate high-quality genomes from metage-
nomics datasets via an automated process, which will
enhance our ability to understand complex microbial
communities.

Materials and methods
In this section we present MetaCon and our contribu-
tion to the problem of metagenomic contig binning. As
we have already observed, most binning tools are based
on similarity measures between contigs that are built over
k-mers frequency distributions.
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However, when dealing with a similarity measure based
on k-mers counts there are two major issues. The first is
that k-mers might have a different probability to appear
in different genomic sequences. The second is that longer
contigs carry more information than short contigs, and
the direct comparison of the two can be challenging.

The first problem has been extensively studied in the
field of alignment-free measures. The latter, suggest that
short contigs should be treated differently. MetaCon
addresses these problems by proposing a two-phases bin-
ning structure in which each phase process one portion of
the input dataset, Fig. 1 shows the processing pipeline of
MetaCon. We will describe the main steps of the method,
giving a brief explanation of the reasons why they were
undertaken. In the following subsections each step will be
described in details.

Contigs representation
Let us assume that we have N contigs in input that we
need to group into bins. First, we construct the feature
matrix, using the same notation as [5], where every row
corresponds to a single contig that is represented by a
(M + V ) feature vector where M is the number of fea-
tures for the coverage and V is the number of features
for the composition matrix. This feature matrix has size
Nx(M+V), and the two sets of features can be computed
independently as follows. Similar to CONCOCT [5], the
coverage matrix Y represents the average coverage of con-
tigs in every data sample. More precisely, Y is a NxM
matrix where Ycm indicates the coverage of the c-th contig
in the m-th sample. The composition matrix Z of size NxV
represents the frequency of every k-mers and its reverse
complement for the input contigs.

To avoid zero values, a pseudo value is added. For the
composition matrix, we add one to it (a relative small
number since this matrix counts k-mers frequencies), e.g.,
Z′

ij = Zij +1, while for the coverage matrix we modified as
Y ′

ij = Yij+0.01 (a negligible quantity in terms of coverage).
In order to normalize the coverage matrix, we re-scale it

into different ways. Firstly, across the contigs:

Y
′′
cm = Y ′

cm
∑N

c=1 Y ′
cm

And it is followed by a normalization across samples,
within every contig. The coverage profile matrix after this
operation is indicated by Q:

Qcm = Y ′′
cm

∑M
m=1 Ycm′′

Each contig xc is represented by the M coverage features
Qcm, with 1 ≤ m ≤ M and 1 ≤ c ≤ N . These normal-
izations of the coverage matrix have been already used in
CONCOCT [5], and other methods.

In this paper we are interested in building a better fea-
ture vector for the k-mer signature, which serves for the
following procedure. We observe that the length of con-
tigs plays an important role with respect to the quality of
the k-mer signature. Indeed, short contigs may not be a
good representer for the genome as they do not carry too
much information about the genome, they may not cap-
ture the different distributions of k-mers as well as long
contigs. Furthermore, since the clustering method (e.g.,
k-medoids) starts from random contigs as centroids, if
it happens to be the short contigs, the clustering perfor-
mance will somewhat degrade. We try to address this issue
by splitting the whole dataset into two parts, based on
contig lengths. Long contigs will be clustered in the first
phase, whereas short contigs will be treated in the second
phase.

Phase 1: self-standardized k-mers statistics
Inspired by the recent developments in the field of
alignment-free statistics we propose here a novel similar-
ity measure based on probabilistic k-mers statistics for
the comparison of two contigs. The idea is to account for
the different distribution of k-mers counts, in different
contigs, and to remove the bias generated by contigs of
different length in a probabilistic framework with a self-
standardized k-mers statistics. Note that this only applies
on the long contigs, whereas we do nothing for the short
contigs.

Let’s define contig xc, as a sequence of characters from
the alphabet � = {A, C, G, T}. Let’s say Xcw is the fre-
quency of the k-mer w in the contig xc. Given that contigs
are sequenced from both strands of a genome, Xcw also
includes the contribution of the reversed complement of
w. If k is smaller than the logarithm of the length of con-
tigs, k < log|xc|, we can consider the variables Xcw as
Binomial, in line with other studies [29, 30]. Similarly to
other methods [22], MetaCon will use k = 4, as described
in result section, thus this approximation holds.

To account for the different probability of appearance
of k-mers, we standardize the variables Xcw in the follow-
ing way. For the sequence xc, let pj

c(a) be the probability
of the symbol a in position j in xc. If we assume that the
symbols at different positions are independent and iden-
tically distributed, we can simplify pj

c and denote it by pc.
This i.i.d. model has been widely used in field of pattern
statistics [31, 32]. Based on this assumption, we define the
probability of a k-mer w = w1w2...wk to occur at a given
position in the contig xc as Pcw = ∏k

i=1 pc(wi), that again
is independent of the position of xc.

Now, we recall that Xcw is a Binomial and that the k-mer
w has probability to occur Pcw, thus can compute mean
and variance of Xcw as:

E[ Xcw] = μcw = PcwL(xc) (1)
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Var(Xcw) = (σcw)2 = Pcw(1 − Pcw)L(xc) (2)

where L(xc) is the length of the contig xc. Thus, the k-mers
counts Xcw can be standardized, as a z-score, as follows:

X̃cw = Xcw − μcw
σcw

(3)

As already observed the frequency of k-mers in dif-
ferent genomes can greatly vary. Similarly, it is difficult
to estimate the probability Pcw, as it does not follow
the same model for different genomes. Thus we need
to estimate Pcw directly from the contig. We define
nc(a), with a ∈ {G, T , A, C}, as the number of occur-
rences of the nucleotide a in the contig xc. Then, we can
estimate the probability of the symbol a in the contig
xc as,

pc(a) = nc(a)

L(xc)

To summarize, we start from the raw k-mers counts
directly obtained from matrix Z′ , for each contig we can
compute the probabilities Pcw and build a probabilistic k-
mers statistics X̃cw by using formula (3). Similar to the
normalization applied to the coverage features, the prob-
abilistic k-mers statistics X̃cw is column-wise normalized
(normalization across contigs), as H:

Hcw = X̃cw
∑

c X̃cw

Finally, the feature matrix F of long contigs is assembled
as F =[ QH], as the combination of the coverage profile
Q and probabilistic k-mers profile H. Then, the related-
ness of a pair of contigs can be evaluated by L2 distance of
the corresponding feature vectors. Here we use k-medoids

Fig. 1 Overview of the MetaCon pipeline
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Table 1 Estimated number of clusters for different methods
(best results are in bold)

Dataset Real value CONCOCT MaxBin MetaCon

Strain dataset 20 21 17 21

Species dataset 101 84 114 106

Sharon dataset 7 8 5 6

clustering method ([33]), a variant of k-means with the
feature matrix F as input.

Phase 2: dealing with short contigs
In the first phase we filter short contigs, and we build clus-
ters with the k-medoids algorithm by using the feature
matrix F mentioned above. We process only long contigs
in the first phase, because they are more informative in
terms of k-mers statistics. We believe that the underlying
structure of every species can be well unveiled in the first
stage when we get rid of the short contigs from the dataset.
In fact, the clusters produced in the first phase will have
high precision (see result section), because they are more
distinguishable and less noisy. These clusters will be used
as a basis for the assignment of short contigs in the second
phase.

The second subset contains the short contigs, and we
decided to assign them to the already classified clusters
(output after the first phase) according to the short-
est L1 distance. The profile matrix is the union of the
composition and coverage matrices of the short contigs.
Note that the composition matrix for short contigs is
not normalized. L1 distance is an alternative method to
measure the similarities between two multi-dimensional
data by computing the absolute distance. In our case, we

observed that L1 works better than L2 (Euclidean dis-
tance) in the second stage. We think that the L1 distance
may somewhat amplify the differences better than L2 in
the second-phase where short contigs are less representa-
tive.

An overview of MetaCon is presented in Fig. 1. Here we
summarize the overall procedure.

1 Compute the composition and coverage matrices.
2 Normalize the coverage matrix.
3 Estimate the number of clusters: C.
4 Split the dataset into two subsets: long and short

contigs.
5 First-phase: Compute the probabilistic k-mers

signature and normalize the composition matrix of
long contigs.

6 Clustering long contigs by k-medoids

(a) Initialization: randomly select C contigs as the
medoids.

(b) Assignment step: Associate each contig to the
closest medoid.

(c) Update step: For each medoid m and each
contig c associated to m swap m and c and
compute the total cost of the new
configuration, based on the average
dissimilarity of c to all contigs associated to
m. Select the medoid c with the lowest
configuration cost.

(d) Repeat steps b and c until there is no change
in the assignments.

7 Second-phase: Assign the short contigs to the closest
centroid by L1 distance.

Fig. 2 Comparison of precision and recall for Strain dataset
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Fig. 3 Comparison of precision and recall for Species dataset

Estimating the number of species
As we know, estimating the real number of clusters is one
of the most challenging problem. The difficulty primarily
attributes to the absence of prior knowledge of the data,
in the case of metagenomics the real number of species
in the dataset is not known. Moreover, there is no gen-
eral criteria that may well assess the clusters when we
encounter different datasets, in particular, when the num-
ber of clusters is big and the data has high-dimensional.
Despite some methods that are tailored for the datasets
with known distribution, here instead we use an easy and
intuitive method to estimate the number of species. We
exhaustively iterate the k-means by starting from a small
number of clusters and gradually increase it until some

criteria is met. This procedure stops when the non-empty
clusters are less than 80% of the candidate number of
cluster in the corresponding iteration. This iterative pro-
cedure might be computationally demanding, to speed up
the computation in this paper we use an efficient library
implementation [34].

Results and discussion
In order to validate our contribution, we compare it
with the commonly known methods CONCOCT, MaxBin
2.0 and MetaBat. In particular, CONCOCT [5] and
MetaBat [22] have been reported to be the best per-
forming methods in a recent independent benchmark
[7]. All of these tools use as input the composition and

Fig. 4 Comparison of precision and recall for Sharon dataset
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coverage matrices, as MetaCon does. MaxBin 2.0 [20] esti-
mates the probability that a contig belongs to a bin based
on expectation-maximization (EM). MetaBat [22] starts
from one bin, and gradually assigns the contigs to that
bin until the centroid does not change, repeatedly for sev-
eral bins until no contigs are left. CONCOCT [5] applies
PCA (principal component analysis) to the feature matrix
(composed by coverage and composition matrices) for
the sake of dimension reduction and afterward it uses a
Gaussian mixture model.

Synthetic and real datasets
Before the discussion of the results, here we give a
brief introduction of the datasets. In this paper, we test

the methods on both synthetic and real metagenomic
datasets. A complete description of the dataset con-
struction can be found in [5], here for completeness we
report a brief summary. In CONCOCT [5], the authors
simulate two mocked communities of microbiomes in
order to test the performance, called ’Strain’ and ’Species’
datasets. Both of these synthetic datasets are built on
16S rRNA samples involved in the Human Microbiome
Project (HMP, [35]). The samples have gone through
denoise operation and the OTUs were generated by the
standard that 3% sequence differences to approximated
species exist. The contigs were assembled from the reads
in samples and the reads were subsequently mapped back
onto contigs to get the coverage information.

Fig. 5 The quality of bins generated by different methods. a After filtering out the bins, whose precision is lower than 80%, we compare the recall
located in different range for different methods. The array marked in white indicates the number of bins in the corresponding recall. The thin stripes
represent absence of bins. b After filtering out the bins, whose recall is lower than 80%, we compare the precision located in different range for
different methods. The array marked in white indicates the number of bins in the corresponding precision. The thin stripes represent absence of bins
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For simulated and real data, a co-assembly of reads from
all samples was performed using Ray [36]. Ray was used
to generate the co-assembled contigs because it is able to
handle large metagenomic dataset. Contigs were cut up
into non-overlapping fragments of 10 kilobases in order
mitigate the effect of local assembly errors (Additional
file 1: Figure S1 in supplementary material reports the
contig length distribution).

Specifically, the ’Strain’ dataset contains 9417 contigs,
which are co-assembled from 64 samples, and it contains
totally 20 organisms. The simulated ’Strain’ community
is composed by five different Escherichia coli strains, five
different Bacteroides species, five different gut bacteria
and the rest from Clostridium.

The ’Species’ dataset has 101 different species, includ-
ing 37628 contigs, co-assembled from 96 samples. For
the ’Species’ dataset, OTUs are removed when its total
count is less then 20 across samples. This dataset aims
at testing the ability to discriminate at species-level. The
complete information for the datasets can be found in the
supplementary material.

’Sharon’ [37] is a real dataset, and it is generated from
the microbiome samples of the premature infants. It con-
tains 18 data samples, and due to the fact that we do not
know the true species labels, we used TAXAassign [38] to
annotate the contigs. It ended up with 7 species, 2599 con-
tigs, after we filtered the contigs with ambiguous labels at
species level.

Evaluation criteria
Precision and recall are commonly used to compare the
performance of the binning algorithms under assessment.
Precision measures the ability of the approach to build
clusters composed by contigs from the same species. On
the other hand, recall measures the ability of gathering
all the contigs of a given species. Namely, the precision

tests the correctness, and the recall tests the complete-
ness. Therefore, when evaluating the performance of a
binning method one should take into account both aspects
in order to obtain a comprehensive evaluation.

Let n be the number of species in a metagenomic
dataset, and C be the number of clusters returned by the
algorithm. Let Aij be the number of contigs from species j
assigned to cluster i. Following the definitions in [39], for
the precision we find the species with the maximum num-
ber of contigs in every cluster and sum them up, divided
by the total number of contigs. As for the recall, we select
the cluster with the maximal number of contigs from a
given species, and again accumulate them, divided by the
total number of contigs.

Precision =
∑C

i=1 maxjAij
∑C

i=1
∑n

j=1 Aij

Recall =
∑n

j=1 maxiAij
∑C

i=1
∑n

j=1 Aij

Results on Synthetic and Real Datasets
In the first experiment, we assess the ability of MetaCon
to predict the number of clusters. The average result is
reported in (Table 1). CONCOCT needs a maximal num-
ber of cluster in input, the other methods do not. In this
first experiment, MetaCon outperforms the other meth-
ods by estimating the number of clusters close to the real
number of species.

In next series of tests we evaluated the performance of
MetaCon on the datasets against the other tools. Meta-
Con outperforms all other methods in terms of precision
and recall, as shown in Figs. 2, 3 and 4. The precision
and recall are above 95% for both simulated data and
real data. For the ’Strain’ dataset (Fig. 2), the precision

Fig. 6 MetaCon precision for different datasets by varying k-mers size
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Fig. 7 MetaCon recall for different datasets by varying k-mers size

by MetaCon is about 97.5%, that is better than the other
three methods; the recall is 95.8% , higher than MaxBin
and MetaBat, almost identical with CONCOCT. For the
’Species’ dataset, shown in Fig. 3, it is challenging to bin
the contigs since the number of species is large, Meta-
Con reaches 99.3% in terms of precision and 94.6% for the
recall. Again, the comparison with other tools reveals an
outcome similar to the dataset ’Strain’. For the real dataset
’Sharon’, Fig. 4, the results are in line with those of the syn-
thetic datasets. MetaCon achieves higher precision and
recall with respect to the other tools. The only notable dif-
ference is that on this datasets MetaBat has a precision
similar to MetaCon but again a lower recall.

Additionally, we evaluate the quality of bins generated
by different methods for Strain dataset. In order to eval-
uate the contamination and completeness of the bins, we
filtered out the bins whose precision is less than 80%,
reported in Fig. 5a, where the different shades of gray indi-
cates the different level of recall. In Fig. 5b, we report
the opposite procedure where we assess the precision of
bins after filtering out bins with recall lower than 80%.
For example, in Fig. 5a the number of clusters with pre-
cision greater than 80% and recall greater than 95% is
16 for MetaCon, for CONCOCT 11 and for MaxBin 4.
MetaCon outperforms the other methods, firstly Meta-
Con has more bins left after screening in both Fig. 5a
and b. Secondly, the bins produced by MetaCon mostly
resides in the high-level range of precision and recall. We
think that the primary reason for the good performance

Table 2 Precision of MetaCon after the different phases,
compared with the precision considering all contigs at once

Dataset First-phase Second-phase All contigs

Strain 98.70% 97.46% 93.79%

Species 99.88% 99.56% 97.23%

of MetaCon is that the first-stage builds high-quality clus-
ters, they may better represent the relative species and
capture the different traits of species. In addition, the k-
medoids may relieve the negative influence caused by the
outliers since it considers the median value instead of
the mean during the clustering process, and probably it
further consolidates the structures of clusters.

Parameters: k-mers size
In this section, we want to discuss how to choose
the parameters k for MetaCon and show the results
under different conditions. The selection of the k-
mers size is critical when we build our probabilistic
k-mers signature, if k is too small (k=2), it will result
a less representative and informative feature matrix as
only 16 features of composition matrix generated, that
is not sufficient to differentiate between contigs from
diverse species, specially, when some of them are closely
related.

With this series of experiments we want to evaluate the
influence of k-mers size for MetaCon over the different
datasets. The results of precision and recall are reported
in Figs. 6 and 7. Note that the results are obtained with
the correct number of clusters used as input since here
we want to compare the various choice for the size of
k-mers. For the ’Strain’ dataset, the precision increases
from 93% to 97% when k varies from 2 to 6, and the
precision is identical when k equal to 4 and 6, when k
equal to 8 the precision decreases. The recall of ’Strain’

Table 3 Recall of MetaCon after the different phases, compared
with the recall considering all contigs at once

Dataset First-phase Second-phase All contigs

Strain 75.05% 95.78% 95.23%

Species 80.86% 95.04% 90.95%
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Fig. 8 Comparison of L1 and L2 distance in the second-phase of MetaCon

dataset follows the similar trend of the precision. As for
the ’Species’ dataset, the precision changes from 95% to
99% when k increases from 2 to 6, and it achieves 99%
when k equal to 6, slightly better than with k equal to 4.
The ’Sharon’ dataset keeps the precision and recall con-
stant when we modify k as the number of species is small,
probably less information is required in order to clus-
ter the contigs with respect to the other two datasets
that contain more species. Generally speaking, k equal
to 4 could be a good choice, considering precision, recall
and computing time. A similar value was used also in
MetaBat [22].

The importance of contig length distribution
Another factor we want to address here is the importance
of the length of contigs. Recall that in the first phase of
MetaCon, we process only long contigs, and in the second
phase we assign the short contigs. We want to evaluate
the impact of this approach by showing how precision
and recall varies in the two phases and to compare the
results when we use all the contigs at once. The results of
these experiments are reported in Tables 2 and 3. If we
do not process the long and short contigs separately in
two-phases we can observed that the precision obtained
by MetaCon is respectively 93.79% and 97.23% for the two
datasets ’Strain’ and ’Species’. We can notice that the preci-
sion can be improved by separately processing the contigs:
for the ’Strain’ dataset, it increases from 93.79% to 97.46%,
and for ’Species’ it improves from 97.23% to 99.56%. A
similar behavior is observed for the recall. For the ’Strain’
dataset the recall increases slightly from 95.23% to 95.78%,
and for the ’Species’ dataset it improves from 90.95% to
95.04%.

In order to choose a good threshold to split short
and long contigs, we experimented with different val-
ues (see Additional file 1: Figure S2 in supplementary
material). Empirically we found that a good choice is to
have about 20% of the contigs to be labelled as short.
Based on these results we selected 2000bp as a good
compromise.

Assignment of short contig: L1 vs L2 distance
In the second phase short contigs are assigned to the clos-
est centroid by L1 distance. Here, we evaluate the effect
of L1 distance in comparison with L2 distance. Figure 8
reports the precision of MetaCon for all datasets indi-
vidually by L1 and L2 distance in the second phase. For
this stage, the L1 distance outperforms L2 for all of the
datasets. In particular, in the ’Strain’ dataset L1 boosts the
performance from 89.56% to 97.46%, for ’Sharon’ dataset,
the precision increases from 79.11% to 97.38% by using
L1. We think, when it comes to assign the short contigs
to the closest cluster centroid, L1 reveals its strength by
amplifying the differences between contigs.

Conclusion
Binning metagenomic contigs remains a crucial step in
metagenomic analysis. In this work we presented Meta-
Con, an unsupervised approach for metagenomic binning
based on probabilistic k-mers statistics and coverage. Our
approach instead of processing the whole dataset at once
as most methods, it splits the input and process them into
two separate phases of MetaCon. We compared the bin-
ning performance over synthetic and real metagenomic
datasets against other state-of-art binning algorithms,
showing that MetaCon achieves good performances in
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terms of precision, recall and estimating the number of
species.
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