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Abstract

Background: In the last few years, 16S rRNA gene sequencing (16S rDNA-seq) has seen a surprisingly rapid increase
in election rate as a methodology to perform microbial community studies. Despite the considerable popularity of
this technique, an exiguous number of specific tools are currently available for proper 16S rDNA-seq count data
preprocessing and simulation. Indeed, the great majority of tools have been developed adapting methodologies
previously used for bulk RNA-seq data, with poor assessment of their applicability in the metagenomics field. For such
tools and the few ones specifically developed for 16S rDNA-seq data, performance assessment is challenging, mainly
due to the complex nature of the data and the lack of realistic simulation models. In fact, to the best of our
knowledge, no software thought for data simulation are available to directly obtain synthetic 16S rDNA-seq count
tables that properly model heavy sparsity and compositionality typical of these data.

Results: In this paper we present metaSPARSImM, a sparse count matrix simulator intended for usage in development
of 16S rDNA-seq metagenomic data processing pipelines. metaSPARSIim implements a new generative process that
models the sequencing process with a Multivariate Hypergeometric distribution in order to realistically simulate 16S
rDNA-seq count table, resembling real experimental data compositionality and sparsity. It provides ready-to-use count
matrices and comes with the possibility to reproduce different pre-coded scenarios and to estimate simulation
parameters from real experimental data. The tool is made available at http://sysbiobig.dei.unipd.it/?g=Software#
metaSPARSIm and https://gitlab.com/sysbiobig/metasparsim.

Conclusion: metaSPARSIm is able to generate count matrices resembling real 16S rDNA-seq data. The availability of
count data simulators is extremely valuable both for methods developers, for which a ground truth for tools validation
is needed, and for users who want to assess state of the art analysis tools for choosing the most accurate one. Thus,
we believe that metaSPARSIm is a valuable tool for researchers involved in developing, testing and using robust and
reliable data analysis methods in the context of 16S rRNA gene sequencing.
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Background

Next generation sequencing (NGS) has now become the
most widely used approach to perform microbial commu-
nity studies. In particular, the discovery of the 16S riboso-
mial RNA universal marker gene and the ever-decreasing
experimental costs of sequencing, made it the most
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adopted method for taxonomic studies [1-3]. Among all
NGS methodologies, targeted amplicon sequencing of the
16S ribosomial RNA (16S rRNA) gene, referred to as “16S
rDNA-seq” from here on, is currently one of the most
used strategies for the identification and quantification
of microbial population residing in a specific ecological
niche. The 16S rRNA gene was chosen as a target because
of its ubiquitous presence in prokaryotes and its natural
structure that is made from both highly conserved and
highly variable regions. The conserved regions are used as
amplification targets for polymerase chain reaction (PCR)
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universal primers to select one or more hypervariable
regions of the 16S rRNA gene [4-6]. The variable regions
are species-specific regions that demonstrate considerable
sequence diversity among different bacteria and conse-
quently allow for taxonomic classification and phyloge-
netic analysis. After targeted amplification, the obtained
fragments undergo the sequencing process from which
thousands of nucleotidic sequences, called “reads’, are
obtained. Then, reads are usually clustered according to
their sequence similarity into the so-called “operational
taxonomic units” (OTUs) or into Amplicon Sequence
Variants (ASVs). The number of reads corresponding to
each OTU/ASYV is used as a proxy of the abundance of that
feature in the original sample and results are summarized
in a matrix known as “OTU table”. In this table, OTUs are
organized by row and samples by column and each matrix
entry is filled with the number of reads belonging to each
OTU within each sample. Throughout the manuscript, we
will refer to these numbers as “counts” and we will use
the terms “taxon’, “OTU’”, “ASV’, “species” and “feature”
interchangeably to identify the rows of these matrices.
Additionally, many experimental conditions (also called
“groups” in this work) are usually present within the same
experiment; for example, samples from “treated” vs “con-
trol” individuals or samples from different body sites may
be present. Samples belonging to the same group are
referred to as biological replicates.

The analysis of 16S count data is usually performed
using either methods developed for RNA sequencing
or methods, when available, specifically developed for
16S count data. Benchmarking these different methods
against common gold standards would be a good practice
to identify the best analysis pipelines and to improve the
quality of data analysis methods.

However, 16S rDNA-seq data characteristics, such as
strong sparsity and variability levels, make their simula-
tion challenging, also due to the difficulty of choosing
the most appropriate generating model. In the following
sections, we first report a brief excursus of the models that
have been proposed in the literature for modelling count
data and then, we summarize 16S rDNA-seq data simula-
tion state-of-the-art. Finally, we introduce metaSPARSim,
a stand alone tool specifically proposed for 16S count data
simulation.

Modelling sequencing count data

In the past years, several models were proposed to
describe the nature of sequencing count data. A classical
approach for modelling count data is by using a Poisson
random variable, Y;;, whose parameter A represents the
mean expected count value for feature i in experimental
group k to which sample j belongs. The above model has
a well known main characteristic, that is the mean equals
the variance. This modellization is based on the fact that
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a DNA sample can be seen as a collection of fragments
taken from the species present within it and then DNA
sequencing can be compared to a random sampling of
the species, with the aim of estimating the relative abun-
dance of each species in the niche. If we think each DNA
fragment like having the same chance of being selected
for sequencing and the fragments being selected indepen-
dently, then the number of counts for a given feature in
repeated measurements could be described with a Pois-
son variation law. The consistency of this hypothesis has
been examined in Marioni et al. [7], in which the same
initial collection of RNA distributed across multiple lanes
of Genome Analyzer (Illumina) sequencer was used. In
this work, the Poisson model turned out to be a good
description of technical replicates for most of the fea-
tures. When biological replicates are also considered, the
count variance is observed to be higher then the mean
(the so-called over-dispersion phenomenon) due to the
fact that the number of fragments for the same species
among different samples is affected by biological variabil-
ity. Therefore, to describe the biological plus technical
variability, another well established approach based on the
Negative Binomial (NB) distribution has been adopted in
sequencing count data modellization [8, 9]. The NB arises
as a compound probability distribution where the distri-
bution of the Poisson rate Aj is described by a gamma
distribution, which is why the NB is also called Poisson-
gamma mixture distribution. Due to the extra-variation
introduced by the gamma component, the resulting
distribution then acts like an over-dispersed Poisson
model. Indeed, according to this model the total variance
of Yy is:

Var(Yy) = hix(1 + Lixdik)s (1)

where ¢ is known as the dispersion parameter. When
@ik goes to zero, the variance of Yj; equals its mean, thus
obtaining again the Poisson distribution.

Both the above modellizations come from bulk RNA
sequencing count data context and their translation in
16S rDNA-seq framework is not straightforward. In
fact, 16S rDNA-seq OTU tables share with RNA-seq
count data some main characteristics, such that of being
non-negative and over-dispersed, but they are typically
affected by a high number of zeros. The latter phe-
nomenon is known as “zero-inflation”. As recalled in Xu
et al. [10], one way to deal with such a big amount of
zeros in count data is to use zero-inflated (ZI) models
[11], which are basically mixtures of Poisson (ZIP) or
Negative Binomial (ZINB) models with a point mass at
zero. Another approach is to use a hurdle model [12],
a model formed by two parts, the first being modelled
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by a binomial distribution used to determine whether a
zero or non-zero outcome occurs, and the second being
a count data modelling truncated at zero to character-
ize positive counts. The main difference between the two
approaches lies in the fact that ZI models assume that the
zero observations have two different origins: “structural”
and “random”. The first zero values are real zeros that indi-
cate the absence of the feature in the sample; whereas,
random zeros are caused by insufficient sequencing depth
when performing sequencing, thus causing rare taxa to be
dropped from the sequenced population. On the contrary,
hurdle models do not make the distinction between struc-
tural and sampling zeros, assuming that all zero data are
from one unique structural source. The idea is that posi-
tive counts occur once a threshold is crossed, or a hurdle is
cleared. If the hurdle is not cleared, then we have a count
of 0.

It is noteworthy that the above models consider all
the features present in a sample as being indepen-
dent one from each other, thus ignoring the sum con-
straint imposed by the fact that sequencing platforms
can produce reads only up to their capacity (i.e. the
sequencing depth). Indeed, it is now well established
that sequencing data only carry relative information
[13, 14], i.e. count tables entries are not actually abso-
lute counts, but rather portions of a whole. This
characteristic, known in the compositional data analy-
sis framework as scale invariance [15], is in contrast
with the assumption of OTU independence and, conse-
quently, with the simulation of count tables modelling
single taxa separately [16]. To deal with this limita-
tion, Dirichlet-multinomial [17, 18] and logistic normal
multinomial models [19] have been proposed for mod-
elling all features simultaneously based on their relative
abundances.

Simulation of 16S rDNA-seq count tables in the literature
Most of the available tools in the literature intended for
16S rDNA-seq data simulation are focused on producing
synthetic reads [20, 21]. While such tools are very useful
for read-level tasks (e.g. read quality filtering, sequences
clustering, etc.), their main goal is generating realistic
nucleotide sequences, more than achieving realistic reads
abundances. In addition, simulated reads must be pro-
cessed to obtain the final OTU table, requiring additional
and computational intensive steps.

The availability of simulators for synthetic count
data generation is of pivotal importance for all those
researchers who deal with benchmarking or testing proce-
dures to assess the performance of available preprocessing
and analysis methods. To serve this function, a simu-
lator has to encompass some key characteristics. First,
its code has to be available for users in a direct way,
such that the simulating procedure is encoded and easily
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reproducible by anyone. Second, it should be accompa-
nied by a user guide in which the simulation procedure is
clearly explained so that misuses of the tool are avoided.
Third, input parameters should be provided either directly
or indirectly (e.g. by automatic estimation from a real
dataset) in order not to leave the user the full charge of
making assumptions and hypothesis on them. Lastly, but
very important, the simulator should have been tested
before the release and a sufficient evaluation of its per-
formance should be available before releasing it to the
scientific community. To the best of our knowledge, no
simulator with the above mentioned features is now avail-
able in the literature for a user-friendly simulation of 16S
rDNA-seq count tables. Indeed, the distributions used to
model 16S data were originally proposed as modelling
frameworks addressing data analysis issues (clustering,
classification, variable selection, etc.) [17-19] and not
with the aim of giving researchers a tool for synthetic
data generation. Therefore, no comprehensive assessment
of goodness of simulated data via comparison with real
experimental data was included in the original works.
Additionally, even though several benchmarking papers
are based on these modellizations ([22—24]), each of these
studies includes its own synthetic data simulation, and
no simulating tool with an appropriate guide for data
simulation has been released within these works. For
example, in Chen et al. work [25] a novel test for dif-
ferential distribution analysis of microbiome sequencing
data is proposed and the authors use the ZINB model to
simulate synthetic datasets for testing their method per-
formance. In Chen et al., only a part of the R scripts used
for simulation is freely accessible, mainly for illustrative
purpose. Another work, by Kurtz et al. [26], proposes a
statistical method for the inference of microbial ecolog-
ical networks from 16S rDNA-seq data accompanied by
computational tools able to generate OTU count data.
The simulation procedure is included within the ecologi-
cal networks inference tool package. However, the related
tutorial only shows how to launch a zero-inflated negative
binomial simulation with some specified parameters and
very little space was given in the paper to assess simulation
performance.

Rationale of our work

Our simulator is proposed as a stand-alone tool intended
for simulating synthetic 16S count tables to be used for
the assessment of tools for preprocessing and down-
stream analysis, such as count data normalization, zero-
values imputation, differential abundance testing and so
on. metaSPARSim is freely accessible and equipped with
a user guide where examples and applications to possi-
ble benchmarking frameworks are included to facilitate
scientists in the usage of its estimation and simulation
functionalities.
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In this article, the Multivariate hypergeometric (MHG)
distribution is exploited to accurately model 16S rDNA-
seq count data. The proposed modellization is included in
metaSPARSim, a novel 16S rDNA-seq count table simula-
tor implemented as an R package (see below). We model
16S gene sequencing as a sampling process with limited
number of extractions and not independent sampling,
i.e. under a multivariate framework. Contrarily to the
above mentioned multinomial models, our model consid-
ers sampling modellization of the sequencing procedure
without replacement; this reflects the fact that the prob-
ability that a read comes from a precise bacterial agent
is dependent on the abundance of that and the other
agents within the total population, but it is variable dur-
ing sequencing, because when a fragment is captured and
read, it is no longer available for other binding sites. That
is, one member of that bacterial class is no longer available
for the future drawings.

In the literature MHG distribution is approximated by
the Multinomial in many applications and sampling with
or without replacement are converging models when the
population size and the sampling size are sufficiently far
away one from each other so that different fragment
sampling probabilities can be considered as constants.
However, the shape of the population class abundance
vector distribution greatly influences the allowed magni-
tude of the gap between population and sampling size
for Multinomial-MHG convergence and therefore it does
not exist a unique and standard cut-off to numerically
guarantee the legitimacy and applicability of this approx-
imation. Indeed, the replacement effect on a uniformly
distributed and on a strongly-skewed distribution would
be very different. The proposed MHG modellization over-
comes the problem of verifying if the conditions for multi-
nomial approximation hold, providing a framework that
is theoretically more rigorous and realistic to model real
abundance inter-dependency.

To obtain typical overdispersion detected in 16S rRNA
data, the parameters defining internal classes subdivision
for the MHG distribution are modelled according to a
gamma distribution.

Methods

The model

metaSPARSim simulation is based on a two-steps gamma-
MHG model: first, species abundances varying between
biological replicates are modeled using a gamma dis-
tribution; second, the technical variability originated by
the sequencing process is modelled using a Multivariate
Hypergeometric model.

In particular, let C be the number of observed features
(OTUs) and Y; the vector of counts Y;; for feature i in
sample j belonging to experimental group k. Then we can
write:
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Y ~ MHG (I’lj, mj) s

1 (2)
mjj ~ Gamma <¢:¢ik ' Mik) .

ik

where

® n; is the library size of sample j

* m; = (myj, my, ..., mc) is the vector indicating the
number of fragments that are available in sample j for
OTU i before sequencing

® 1 is the “average” abundance level of OTU i in
group k, to which sample j belongs

® ¢ is a parameter describing the biological variability
in the abundance level of OTU i in group k, to which
sample j belongs.

The tool
metaSPARSIm is a tool written in R language with core
function implementation in C++ (C++ code was inte-
grated into the R script using Repp library). It generates
datasets with a number of experimental groups and bio-
logical replicates specified by the user in input. For each
sample group, the simulation takes as input a vector of
species abundances, together with a measure of biological
variability. These parameters can be specified by the user,
estimated from a real dataset or taken from a set of pre-
coded scenarios that are integrated into the simulator. For
each OTU, a gamma distribution with specified mean and
variance is used to generate species abundances in differ-
ent replicates. Then, the sequencing step is reproduced by
sampling the wanted sequencing depth from each biolog-
ical replicate accordingly to a MHG distribution, whose
internal probabilities are defined by sample-specific pro-
portional abundances.

In the following, metaSPARSim inputs, outputs and
available precoded datasets are presented.

Inputs

The simulation of 16S rDNA-seq data needs as input a
pair of vectors (u;x and ¢;) modelling abundance and bio-
logical variance for each group k and OTU i (see Eq. 2).
In addition, the library size for each simulated sample is
needed. To specify the above parameters, the user can
choose among three different input modes, as follows.

Case 1. Direct specification In the first modality, the
user can specify his/her own parameters. Once the
number of sample groups is fixed, the only compul-
sory parameters to give the simulator for each group
are:

® One vector of species abundances,
(/’le) RS /’LC/()
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e One vector of species abundance variability,
(@145 - - > D)

e One vector of desired library sizes, (1, ...
with 7 the total number of samples in
experimental group k.

1nnk),

Case 2. Estimation procedure from real datasets
metaSPARSiIm also allows for estimation of param-
eters from real count tables. Obviously, it is not
possible to reconstruct real absolute abundances of
OTUs from a real dataset. However, a raw estimate to
be used as input for the simulation is sufficient, since
our purpose here is to obtain from a known input a
count table which resembles the characteristics of a
real dataset.

Given a real count matrix, metaSPARSim inter-
nally estimates species abundances, species abun-
dance variabilities and library size vectors for
simulation by the use of built-in functions (see
Additional file 1). Additionally, also the hybrid
mode is available. For example, one may want to
take information about mean values from a real
experiment while using personally specified vec-
tors of species abundance variabilities or library
sizes.

Case 3. Available presets included in the simulator
The user can simulate his/her own 16S count matrix
by taking advantage of the pre-coded scenarios
present in the simulator (see Additional file 1: Table
S1). In fact, different sets of parameters taken from
real datasets or synthetically designed to describe
theoretical distributions of interest in microbiome
studies are available in our tool.

Outputs
metaSPARSIm outputs its results as a list composed by
two elements:

e A matrix containing simulated count data organized
with features (OTUs, ASVs, ...) on rows and samples
on columns. This has to be intended as the count
table coming from a simulated sequencing
experiment, i.e. a synthetic analogue of an OTU table
coming from a targeted microbiome sequencing run.

e A matrix with features (OTUs, ASVs, ...) on rows
and samples on columns containing sample relative
abundance values (m;/ Y_; m;) after the first
simulation step of biological variability using the
gamma distribution. Despite not being the main
result of the simulation procedure, this intermediate
output is a fundamental tool for users who want to
perform benchmarking on preprocessing/analysis
methods dealing with sequencing bias correction or
recognition, because it encloses the information
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about the simulated microbiomes composition before
the sequencing step simulation with MHG sampling.
This should be indeed intended as the ground truth
values to use as golden standard when comparing data
processed with, for example, different normalization,
zero-imputation or differential abundance tools.

Test datasets and evaluation criteria
The goodness of metaSPARSim simulations was assessed
using both publicly available datasets, such as Human
Microbiome Project (HMP) data [27, 28], and two propri-
etary datasets monitoring animal gut and raw milk cheese
microbial communities. The main characteristics of the
real datasets used for comparison are shown in Table 1
(additional details can be found in Additional file 1).
These datasets were chosen to obtain a wide range
of different scenarios, including experiments based
on different sequencing platforms and with different
group, sample and replicate numbers and sequencing
depths.

To explore metaSPARSim performance, a comparison
between real and simulated data was performed. In par-
ticular, we compared real and simulated data in terms of:

e Sparsity: the percentage of zero counts per row, per
column, and in total;

e Intensity: the normalized (scran R package [29] was
used) count value intensity averaged across replicates
within the same group;

e Variability: the variance and the relative variance of
normalized count values, calculated across replicates
within the same group.

A Mann-Whitney U test was performed to test for
group mean distribution differences between real exper-
imental count tables and simulated count tables for each
dataset. Additionally, the related effect size was calculated
and a bootstrap procedure (10000 extractions with 5% of
total feature number) paired with a Mann-Whitney U test
was performed to test for significance in subsamplings,
thus overcoming sampling size issue for significance (see
Additional file 1 for further details).

Table 1 Real datasets characteristics

Characteristic Animal gut Raw milk cheese HMP
Samples 110 118 40
Replicates 5 2-3 5

Groups 22 40 8

Features 3541 3109 758
Sequencing depth (range) 88692-832309 28536-349754 2798-24095
Count data sparsity 78.69% 97.12% 81.37%
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Results

Sparsity

The first examined metric was the level of sparsity of
the simulated matrix. The overall zero abundances were
very well reproduced in all the datasets, the real ones
being of 78.7%, 97.1% and 81.4% and the simulated ones
of 77.9%, 93.8% and 80% respectively for animal gut, raw
milk cheese and HMP data. For all the three datasets, in
Fig. 1 the true sparsity percentages calculated on group
submatrices is plotted against the simulated ones. As can
be seen, all the results confirm that the accuracy in recre-
ating datasets with realistic overall sparsity remains valid
when looking at intra-group sparsity. Additionally, zeros-
by-row (feature) and zeros-by-column (samples) distribu-
tions were calculated to check if the simulator was able to
reconstruct not only the true zero abundance but also the
true location of zero counts. As showed in Fig. 2, the zero
distributions per row and per column are well reproduced
in all the datasets.

Intensity

Count values in real and simulated data showed very sim-
ilar characteristics, as shown by RDI (Raw (data), Descrip-
tion and Inference) plots (Fig. 3a, c, e) and scatter plots
(Fig. 3b, d, f). The performances observed for whole count
data were maintained when looking at the intensity within
each group (Additional file 1: Figures S4—S12), assuring
that the overall good behaviour was the result of a good
performance in each single group.

Results of the statistical tests (shown in Additional
file 1: Tables S2—S4) confirmed real and simulated val-
ues came from the same distribution. In fact, although
many groups showed significant differences for the global
test, the related effect size was always found to be neg-
ligible and the percentage of bootstrap extractions in
which significance was found was null for all the groups,
thus confirming significance was strongly due to the huge
sample sizes (number of features).
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To further investigate the ability to reproduce real
experimental data structure and characteristics, the rela-
tion between the first two metrics (intensity and sparsity)
was studied. As reported in Fig. 4, the dependency
between mean intensity and sparsity was accurately
maintained from real to simulated datasets, for all the
three investigated cases.

Variability
For variability metric, results are shown in terms of both
variance and relative variance (RV, or variance-to-mean
ratio), i.e.

o2

RV = —. (3)
n

As for intensity, metaSPARSim was able to reproduce in
a realistic way data variability in HMP and animal gut
datasets, while for raw milk cheese data it was able to
capture the median values (Fig. 5 and Additional file 1:
Figures S14-S25). However, no statistical difference was
found between real and simulated data variance, the effect
sizes being always negligible and the bootstrap percentage
of significant tests always being under the 9% (Additional
file 1: Tables S5-S7).

Lastly, the goodness in recreating the dependency
between variance and intensity was investigated for all the
datasets. The results (Fig. 6) showed a very good adher-
ence to real experimental data characteristics, with animal
gut dataset being the one for which we obtained the
best results and raw milk cheese dataset being the most
problematic one.

Discussion

Despite a number of different models to simulate 16S
rDNA-seq count data were proposed during the last years,
no consensus on which one is the most appropriate to
use has been reached yet. Additionally, to the best of our
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Fig. 1 Group-specific sparsity in real and simulated data. Scatter plot of group-specific percentage of zeros in real and simulated datasets. From the
left, animal gut, raw milk cheese and HMP data results. R? values are also reported
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knowledge, no simulation tool that underwent adequate
validation procedure is currently available to produce syn-
thetic 16S sequencing datasets. Indeed, a lot of different
simulation procedures have been proposed in the vari-
ous banchmarking and new methods presentation papers.
However, none of these includes a well-documented,

freely accessible and easily usable 16S rDNA-seq count
data simulator.

In this work, we propose a gamma-MHG model in
which the sequencing process is modelled as a sam-
pling without replacement, i.e. with variable internal
probabilities, that follows the rationale of experimental
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Fig. 3 Count intensity in real and simulated data. Comparison of Log2 count mean intensity in real and simulated datasets, represented as RDI plot
(a, ¢, @) and scatter plot (b, d, f) for animal gut (first row), raw milk cheese (second row) and HMP (third row) data, excluding zero mean features

data production and captures directly the mechanisms of
structural and random zeros generation. Adopting this
modellization, it is possible to consider the compositional
nature of 16S rDNA-seq data and to produce sparsity and
variability in a natural and intrinsic way, avoiding artificial
and possibly imprecise zero count introduction. Indeed,
according to this modellization, zero count values rise nat-
urally from the sampling procedure, following the real

scenario in which rare OTUs result more frequently than
others in zero counts because they are the most probable
features not read (i.e. sampled) by the sequencer.

The metaSPARSim performance assessment was per-
formed by considering real OTU tables, estimating the
parameters for simulation from them and comparing the
resulting simulated count matrices with the real ones, as
also done by Zappia et al. in their work [30]. We tested
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our 16S rDNA-seq data simulator in three very different
conditions. This allowed to obtain a solid assessment of
performance in different situations.

In particular, the animal gut dataset was character-
ized by a good number of biological replicates per group
(5) and a high but not extreme sparsity level (78.7%).
metaSPARSim was able to reconstruct real experimental

data properties almost perfectly, in terms of all the three
features (sparsity, intensity and variability) considered.
In all three scenarios, intensity-sparsity and intensity-
variance dependencies, were faithfully reproduced.
Secondly, HMP dataset was chosen to add another chal-
lenging element to the testing framework, i.e. a very high
biological variability. The biological replicates present in
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these data were indeed constituted by samples collected  confirmed the robustness of the simulator even in this sce-
in the same body site, but from different individuals and, nario. In fact, simulated sparsity, intensity and variability
consequently, they presented a higher variability. The tests  correctly mimicked the real ones, proving the ability of
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metaSPARSim in producing realistic human-microbiome-
like synthetic dataset.

When the raw milk cheese data were used as metaSPAR-
Sim input, a worsening of the performance was observed.
We hypothesized that the reason was a poor estimate of
the input parameters due to the low number of replicates
per experimental group (2 or 3) and the high number of
zeros (97.1%). To test this hypothesis, we performed an
experiment artificially diminishing the number of repli-
cates and augmenting the number of zeros used in HMP
dataset to estimate the input parameters for the simula-
tion. Indeed, the performance of the simulator dropped
in terms of ability to reproduce the original dataset. Note
however that, in a simulation framework, the purpose is
not to create a copy of a real dataset, but rather to generate
a realistic count table from a known given input.

A possible limitation of this work is the lack of com-
parison with other simulation approaches proposed in the
literature. However, as said above, the availability of sim-
ulators for synthetic count data generation is limited to
papers that use simulators to benchmark new proposed
analysis methods or literature methods. Most of the times,
a software is not available, but only the R scripts used to
perform the simulations are released with poor guidelines
about how to use them. In addition, in order to compare
the resulting simulated count matrices with the real ones,
a simulator should accept as input real OTU tables and
estimate the parameters for the simulation from them.
For the above reasons, a direct comparison with other
software tools was not possible within this work.

Conclusions

The availability of count data simulators is extremely valu-
able for methods developers, which can exploit the ground
truth provided by simulated data to test and validate their
tools. In addition, simulated data are useful even for end
users who want to find the most accurate analysis meth-
ods fitting their dataset characteristics among the many
available in the literature. Indeed, the availability of sim-
ulated data allows to assess state of the art analysis tools
and to identify the more suitable one for the specific sce-
nario. Thus, we believe that metaSPARSIim could be a
valuable tool for researchers involved in developing, test-
ing and using robust and reliable data analysis methods in
the context of 16S rDNA-seq.
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