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Abstract 

This study aims to develop a super-resolution (SR) algorithm tailored specifically 
for enhancing the image quality and resolution of early cervical cancer (CC) magnetic 
resonance imaging (MRI) images. The proposed method is subjected to both qualita-
tive and quantitative analyses, thoroughly investigating its performance across vari-
ous upscaling factors and assessing its impact on medical image segmentation tasks. 
The innovative SR algorithm employed for reconstructing early CC MRI images inte-
grates complex architectures and deep convolutional kernels. Training is conducted 
on matched pairs of input images through a multi-input model. The research findings 
highlight the significant advantages of the proposed SR method on two distinct data-
sets at different upscaling factors. Specifically, at a 2× upscaling factor, the sagittal test 
set outperforms the state-of-the-art methods in the PSNR index evaluation, second 
only to the hybrid attention transformer, while the axial test set outperforms the state-
of-the-art methods in both PSNR and SSIM index evaluation. At a 4× upscaling factor, 
both the sagittal test set and the axial test set achieve the best results in the evaluation 
of PNSR and SSIM indicators. This method not only effectively enhances image quality, 
but also exhibits superior performance in medical segmentation tasks, thereby provid-
ing a more reliable foundation for clinical diagnosis and image analysis.

Keywords: Computer-aided diagnosis, Deep learning, Magnetic resonance imaging, 
Uterine cavity line

Introduction
Cervical cancer (CC) is the second most common cancer in Chinese women and ranks 
fourth for both incidence and mortality in women worldwide, and its morbidity and 
mortality have revealed an upward inclination in recent years [1]. This increase is attrib-
uted, in part, to the improvement in people’s living standards, resulting in a year-by-year 
rise in the incidence of CC, affecting an increasing number of young women. Among 
human cancers, CC uniquely stands as the only curable cancer, underscoring the critical 
importance of timely interventions for its successful management [2].

Various imaging modalities, including lymphography, ultrasonography, computed 
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography 
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(PET), PET–CT, and MRI–PET, offer valuable information for both diagnosing and 
prognosis of CC. Among these, MRI stands out as a crucial tool frequently employed by 
physicians to comprehend the morphology of the primary CC tumor, assess the extent 
of parametrial infiltration, and determine the number and location of lymph nodes 
and metastases [3]. In the development of clinical treatment, surgery and radiotherapy 
emerge as the preferred modalities for addressing CC. Particularly in radiotherapy, the 
accurate depiction of the tumor through medical imaging plays a central role. This pre-
cise visualization guides pre-operative preparations and post-operative treatments, sig-
nificantly enhancing the overall detection capability for CC.

Often more than one imaging modality is involved in clinical decision-making, as dif-
ferent modalities often provide complementary insights [4]. Single modalities often fail 
or are inadequate because they do not adequately subdivide the tumor in the region of 
interest, and the use of different MRI modalities can effectively compensate for these 
weaknesses [5]. Diffusion-weighted imaging (DWI) measurements are typically fast, 
require no administration of exogenous contrast medium, and can be appended to exist-
ing imaging protocols without a significant increase in examination time [6]. It can pro-
vide both qualitative and quantitative information, with diffusion anisotropy aiding in 
the identification of tumor infiltration into adjacent structures, thereby proving invalu-
able in tumor assessment [7]. However, DWI imaging also presents notable drawbacks, 
such as poor signal-to-noise ratio, more noise, and greater susceptibility to pulsatile 
and susceptibility artifacts. T2-weighted images (T2WI) are acquired using long rep-
etition time and long signal recovery time, presenting high-intensity signals for tissues 
with long T2 relaxation time, thus providing distinct contrast and revealing fine ana-
tomical details, particularly useful for inflammation and tumor diagnosis [8]. However, 
the acquisition time is prolonged, and it requires operators with extensive experience 
to adjust instrument parameters according to different circumstances, resulting in vari-
able quality of acquired T2WI images [9]. While MRI facilitates comparative observa-
tions of various tissue structures from different angles, enhancing the early detection 
and diagnosis of numerous diseases, its use comes with challenges. Compared to other 
imaging modalities, MRI acquisitions present significant challenges and are difficult to 
maintain for long periods of prohibition in enclosed spaces [10]. To enhance acquisi-
tion efficiency and alleviate patient discomfort, faster scanning speeds are often required 
to avoid motion artifacts [11]. It is worth noting that, despite the benefits of expedited 
scans, this type of acquisition tends to yield low-resolution (LR) images, which may lack 
the sensitivity required for accurate disease extent determination.

Recent advancements have illustrated the capacity of super-resolution (SR) technology 
to enhance image quality by algorithms without necessitating any hardware upgrades 
[12]. The widespread adoption of deep learning has positioned it as a predominant 
approach for SR imaging, leading to the development of various network-based SR mod-
els [12]. To achieve excellent texture information in image super-resolution, the Genera-
tive Adversarial Network (GAN) is a key approach. While incorporating GANs produces 
rich details, it also generates artifacts that can negatively affect the visual experience. 
Liang et  al. [13]. proposed a local discriminant learning method to distinguish arti-
facts generated by GANs from real details. During model training, this method explic-
itly penalizes artifacts without sacrificing real details through discriminant learning. 
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Although it does not completely eliminate artifacts, their work represents a significant 
step forward. Generally, the larger the pixel range utilized, the better the reconstruction 
effect tends to be. Dong et al. [14]. designed a hybrid attention transformer (HAT) that 
combines self-attention, channel attention, and overlapping cross-attention to activate 
more pixels for better reconstruction. This method has achieved very good results in 
super-resolution tasks. Transformer-based methods perform well in image super-resolu-
tion tasks, surpassing traditional neural networks. However, previous work typically lim-
its self-attention calculations to non-overlapping windows to save computational costs, 
restricting the input information that Transformer-based networks can utilize from a 
limited spatial range. Chu et  al. [15]. Proposed a Hybrid Multi-Axis Aggregation net-
work (HMA) to better utilize feature latent information. HMA consists of Hybrid Trans-
former Blocks (RHTB) and Grid Attention Blocks (GAB). RHTB combines attention 
mechanisms to enhance non-local feature fusion, while GAB is used for cross-domain 
information interaction and jointly modeling similar features. The combination of these 
two modules allows the utilization of more features, leading to better results.

Not only for natural domain images, but nowadays SR is also increasingly used in the 
field of medical images. Zhou et  al. [16] conducted a comprehensive exploration and 
evaluation of the magnetic resonance imaging-based SR generative adversarial network 
for brain tumors (MRBT-SR-GAN), showcasing its potential in enhancing the resolu-
tion of magnetic resonance imaging for brain tumors. MRBT-SR-GAN contains only 
one modality, without including other modalities such as T2WI and T1WI in the study. 
Qiu et al. [17] developed an efficient deep learning-based medical image SR method for 
assisting in the examination of knee osteoarthritis. The method uses an efficient sub-
pixel convolutional neural network (ESPCN) with three layers of super-resolution con-
volutional neural network (SRCNN) and one sub-pixel convolutional layer. The efficient 
sub-pixel convolutional layer is added to the hidden layer and replaced with a small net-
work composed of cascaded convolutions to process low-resolution images. However, 
the edge reconstruction effect is still different from the original image, and the recon-
struction speed is slow. Oktay et al. [18] introduced a method utilizing multiple input 
data from diverse viewing planes to enhance SR image reconstruction. Experimental 
results showed its superiority over existing SR methods in image quality and computa-
tional efficiency. However, motion-induced inter-slice and stack spatial misalignments 
pose a challenge, reducing accuracy. Rousseau et al. proposed a method for image super-
resolution by utilizing anatomical intermodality priors extracted from a reference image. 
This method is particularly useful in MRI applications, where it enhances the resolution 
of T2WI stacks using isotropic HR T1-weighted stacks as a basis [19]. A limitation of 
this method is its complexity, as it requires balancing the performance of the observa-
tion model and the driving reconstruction model. Additionally, it has only been com-
pared to standard interpolation algorithms, which may not fully reflect its performance 
against more advanced techniques. Yurt et al. [20] proposed a multi-contrast MRI super-
resolution method that can simultaneously deblur images of different contrasts. This 
method relies on a generative adversarial network. GANs can lead to a lack of fidelity 
in reconstructed images. Cukur et  al. [21] noted that the limited prior information of 
a single-contrast MRI image restricts reconstruction performance. They suggested that 
using multi-contrast MRI as input data can enhance reconstruction performance and 
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employ a GAN for image reconstruction. Their work is similar to the previous ones and 
also fails to address the lack of fidelity of GAN reconstruction. Bhadra et al. [22] intro-
duced an image-adaptive GAN reconstruction method (IAGAN) based on the genera-
tive adversarial network, effectively addressing the fidelity issue between reconstructed 
images and observed data typically caused by using GANs. IAGAN also performs well 
in noisy image scenarios. However, this study lacks quantitative evaluation. A et al. [23] 
proposed an adaptive diffusion prior model, AdaDiff. It leverages an efficient diffusion 
prior trained via adversarial mapping over extensive reverse diffusion steps. It shows 
strong performance in MRI reconstruction and is suitable for both intra-domain and 
cross-domain scenarios. However, its adaptive process increases running time, and the 
memory load during inference is substantial, hindering practical application. Korkmaz 
et al. [24] proposed a novel unsupervised MRI reconstruction method based on Zero-
Shot Learned Adversarial Transformers (SLATER). SLATER uses cross-attention 
transformers to better capture contextual image features, addressing the challenge con-
volutional architectures face in capturing long-range relationships. This model achieved 
good results in MRI image reconstruction. It is worth noting that SLATER demonstrates 
excellent results for both within-domain and across-domain tasks, primarily due to its 
high-quality MR prior. The prior is combined with the imaging operator during infer-
ence, and the learned prior is used to reconstruct the undersampled acquisition through 
unsupervised model adaptation. The high-quality MR prior can be flexibly adapted 
to the test domain, and while the model adaptation procedure in SLATER helps limit 
potential performance loss, it is very time-consuming.

To address the issues associated with incomplete information caused by single-modal-
ity input, the lack of fidelity caused by GAN-based reconstruction, the high complexity 
of models, and time-consuming inference processes, this paper proposes a multi-input 
image super-resolution (SR) method to improve the quality of multi-modalities MRI 
images. The proposed approach uses DWI and T2WI as inputs, leveraging the comple-
mentary information provided by these two modalities. A deep convolutional neural 
network is employed for feature extraction, effectively mitigating image artifacts caused 
by different imaging angles without significantly increasing computational complexity. 
Additionally, the study performs a semantic segmentation task on the reconstructed 
high-resolution images to demonstrate their potential application value in clinical 
diagnosis.

Results
To test the performance of the proposed networks, deep learning networks LDL [13], 
HAT[14], HMA [15], ESPCN [25], RDN [26], SRGAN [27] and SwinIR [28] are used as 
baseline networks for comparison. The two datasets are trained on different methods 
and LR images obtained by image preprocessing of HR images are used as test images. 
The results of the quantitative evaluation of each method on two datasets (sagittal and 
axial) are shown in Table  1. The proposed method outperforms the other methods 
overall. From Table 1, it can be seen that all the methods achieved better results at an 
upscale factor of 2 than at an upscale factor of 4. Among all the models, ESPCN, RDN, 
and SRGAN perform well at 2×, while there is a significant drop at 4×, and the chal-
lenges remain on SR tasks with large upscale factors. SwinIR, LDL, HAT, HMA, and the 
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proposed method maintain high PSNR and SSIM at 2× and 4× sampling factors. At the 
2× sampling factor, HAT slightly outperforms our method on the sagittal plane test set. 
HAT introduces channel attention into the transformer to utilize more input informa-
tion, activating more pixels for better reconstruction. At the 2× sampling factor, the pro-
posed method outperforms other methods because the network adopts a more complex 
architecture and employs deeper convolutional kernels, which help to learn more com-
plex features and improve the model’s ability to perceive details.

The reconstruction performance of each method was analyzed from a subjective 
perspective, and the reconstructed images of each method were randomly selected 
from the sagittal and cross-sectional images for comparison. As can be seen from 
Fig  1, the image reconstructed by the ESPCN method is still relatively blurry and 
the enhancement effect is not good; the image reconstructed by the RDN method is 
significantly improved compared with ESPCN at 2×, but there is a phenomenon of 
overlapping contour edge shadows; the image reconstructed by the SRGAN method 
performs well at 2×, and is oversharpened at 4×, which may be due to the fact that 
the generative adversarial network makes it more difficult for the generator to dis-
tinguish between real images and generated images during training, thereby increas-
ing the difficulty of the discriminator, which may cause the generated image to be 
oversharpened at 4×. In addition, SRGAN usually uses perceptual loss, which may 
focus too much on high-frequency details and lead to poor subjective perception 
of the reconstructed image. The clarity of the images reconstructed by HMA, HAT, 
LDL, SwinIR and the proposed method is greatly improved, the contours are clearer, 
and closer to HR images. However, compared with the proposed method, the texture 
details of HMA, HAT, LDL, and SwinIR are weakened at 4×. The proposed method is 

Table 1 Quantitative evaluation of the proposed method with state-of-the-art SR algorithms for 2× 
and 4× on the MRI CC dataset. ↑ means that the larger score is better

The best results are highlighted in bold

Upscale 
factors

Sagittal (mean±Std) Axial (mean±Std)

SSIM↑ PSNR↑ SSIM↑ PSNR↑

ESPCN 2× 0.87 ± 0.03 33.28 ± 1.52 0.88 ± 0.04 34.30 ± 1.08

4× 0.81 ± 0.02 30.16 ± 0.34 0.84 ± 0.02 31.97 ± 0.40

RDN 2× 0.89 ± 0.01 33.61 ± 1.12 0.86 ± 0.02 34.80 ± 1.57

4× 0.82 ± 0.02 31.46 ± 1.23 0.81± 0.06 32.18 ± 1.32

SRGAN 2× 0.94 ± 0.01 32.63 ± 1.74 0.92 ± 0.03 31.18 ± 0.26

4× 0.86 ± 0.01 24.56 ± 1.50 0.77 ± 0.01 26.47 ± 0.94

SwinIR 2× 0.90 ± 0.02 42.35 ± 1.34 0.97 ± 0.01 43.38 ± 0.45

4× 0.86 ± 0.05 34.35 ± 1.76 0.92 ± 0.05 33.03 ± 1.09

HAT 2× 0.97 ± 0.02 44.58 ± 0.76 0.96 ± 0.02 43.02 ± 0.89

4× 0.91 ± 0.01 34.56 ± 0.85 0.91 ± 0.04 35.98 ± 0.71

HAM 2× 0.95 ± 0.03 41.29 ± 0.40 0.97 ± 0.02 43.22 ± 0.57

4× 0.89 ± 0.03 35.47 ± 0.74 0.91 ± 0.01 35.94 ± 0.64

LDL 2× 0.98 ± 0.07 43.65 ± 1.32 0.97 ± 0.01 43.29 ± 1.54

4× 0.91 ± 0.01 34.97 ± 0.73 0.92 ± 0.05 35.97 ± 1.78

Ours 2× 0.98 ± 0.01 43.77 ± 0.99 0.98 ± 0.05 43.67 ± 0.62
4× 0.92±0.01 36.8±0.32 0.93±0.01 38.18±0.74
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comparable to or even better than the SOTA methods in terms of image quality, espe-
cially at 4×. This is attributed to the integration of multiple advanced deep learning 
techniques, which are trained on a large amount of high-quality data to better under-
stand LR images and convert them into HR images. Compared with other SR meth-
ods, the proposed method can generate more natural and smoother images without 
obvious artifacts or distortion, thereby effectively improving image quality and meet-
ing the demand for high-definition images in various fields.

With the continuous advancement of HR MRI and signal processing techniques, 
histogram analysis in cancer MRI is increasingly gaining prominence [29]. Given that 
MRI images present grey-scale characteristics, we chose to employ histograms in this 
study as a means of quantitative assessment to objectively evaluate the differences 
between the outputs of different models and the HR images for a more comprehen-
sive assessment of model performance. By comparing the histograms of the images 
generated by each method as shown in Fig 2, we can clearly observe that the histo-
grams of SwinIR and the proposed method are much closer to each other with respect 
to those of the HR images. Zooming in further on the details of the histograms, we 
can observe more intuitively the high degree of overlap between the histograms of 
the images generated by the proposed method and those of the HR images at the 
higher grey levels, presenting finer and more consistent features. This indicates that 
the proposed method achieves a significant advantage in preserving image details and 
contrast when performing SR reconstruction of MRI images, and better mimics the 
grey-scale distribution of HR images. This histogram similarity not only emphasizes 
the realism of the model-generated image, but also highlights its better preservation 
of the fine features of the original image during the reconstruction process. Such an 
objective assessment method helps to provide a deeper understanding of the perfor-
mance of different models in medical image SR studies.

Fig. 1 Comparison of the super-resolution (SR) methods used when upsampling by factors of two and four 
in example images
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The image histograms generated by the proposed method highly overlap with those 
of HR images at high grey levels, showing finer and more consistent features. This 
similarity emphasizes the significant advantage of the proposed method in preserving 
the details and contrast of MRI images. The histograms of the method better simulate 
the grey-scale distribution of HR images, suggesting that it is more effective in SR 
reconstruction tasks. This objective evaluation method not only provides an intuitive 
visual observation, but also provides us with an in-depth understanding of the model 
performance. Through histogram analysis, we can quantitatively verify the similarity 
between the model-generated images and the HR images, and the highly overlapping 
histogram features further demonstrate the superiority of the proposed method in 
maintaining the features of the MRI images.

The study added eight types of noise to the input images to test the robustness of 
the proposed method against source image defects caused by the measurement sys-
tem and calculated the percentage of model performance retention as the robustness 
score[30]. Fig 3 shows examples of common MRI corruptions, and Table 2 presents 
the robustness results of our method. The proposed method is generally robust and 
can maintain performance above 70% even when the image content does not match 
spatially.

To analyze the performance of the proposed method in task transfer scenarios 
between training and test data, we conducted an ablation experiment where the 
model was trained with a 2× upscaling factor and tested with a 4× upscaling factor. 
Fig  4(a) illustrates the data preprocessing process, where padding is used to ensure 
the image reaches the target size. Fig 4(b) provides a visualization of the results. The 
reconstructed image shows significant improvements in the regions of interest, dem-
onstrating that the proposed method performs well in task transfer scenarios.

Fig. 2 Histograms of SR images by different methods
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Discussion
In order to verify the validity of the proposed model, ablation experiments were con-
ducted in this study and the results are shown in Table 3. Based on the results of the 
ablation experiments, it is evident that using a single input leads to the poorest PSNR 
and SSIM. However, it is worth noting that with only one input, the computational com-
plexity of the model remains relatively low, with parameters totaling only 16.1 M. This 
suggests that while the performance may be suboptimal with a single input, the compu-
tational burden on the model is minimal. We performed statistical analysis of the results 
using SPSS (version 26.0, SPSS Inc.). The p values were obtained through t-tests, and our 
model showed p values less than 0.05 when compared with the NAFNet and NAFSSR 

Fig. 3 Examples of corrupted MRI images. a Inhomogeneity artifacts, b Gaussian noise, c ghosting artifacts, d 
Gaussian blur, e truncation artifacts, f ring artifacts, g stretch, h RF interference, I reference

Table 2 Robustness scores on MRI image corruptions

Corruptions Score (%) Corruptions Score (%)

Inhomogeneity artifacts 83.53 Truncation artifacts 74.09

Gaussian noise 74.57 Ring artifacts 82.08

Ghosting artifacts 71.70 Stretch 70.82

Gaussian blur 87.16 RF interference 90.79
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models. This indicates a significant difference between our model and the other two 
models, demonstrating that our model has better reconstruction ability.

On the other hand, when multiple input images are utilized, there is a notable improve-
ment in overall performance. This enhancement underscores the importance of leverag-
ing multiple sources of information for better reconstruction quality. Furthermore, the 
incorporation of deep convolutional layers into our model has yielded the highest PSNR 
and SSIM without a significant increase in computational complexity. This indicates that 

Fig. 4 Performance testing in a task shifting scenario. The model is trained at a 2× upscaling factor and 
tested at a 4× upscaling factor. a Image resizing: the study applied padding to the images to ensure that the 
4× upscaled images can fit the target size. b Visualization of the results: the green and red boxes indicate the 
regions of interest in the 4× upscaling factor and reconstructed images, respectively

Table 3 Comparative analysis of ablation experiments and model parameter quantities

Multi-input DepthConv PSNR SSIM Pararms(M) p value

NAFNET 33.88 0.886 16.1 < 0.05

NAFSSR ✔ 43.24 0.973 23.8 < 0.05

Ours ✔ ✔ 44.99 0.987 23.8
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the additional depth in the model architecture contributes to improved reconstruction 
quality without imposing a heavier computational burden.

The study of image SR aims to improve the visual quality of medical images and pro-
vide doctors with more detailed information to facilitate accurate diagnosis and treat-
ment of diseases. As for U-Net [31], it is a convolutional neural network architecture 
commonly used for semantic segmentation tasks, particularly in medical image analysis. 
This study further examines the segmentation results of SR images generated by differ-
ent SR methods on different organs using the U-Net network and shows the comparison 
results through Fig 5. This segmentation analysis helps to assess the effectiveness of SR 
methods in restoring different tissue structures and is directly related to the accurate 
identification of organs and lesions in clinical medicine.

In the segmentation task, this study employs commonly used segmentation evaluation 
metrics, including Pixel Accuracy (PA) Dice Similarity Coefficient (DSC) and Hausdorff 
distance (HD) to assess the segmentation results, as shown in Table 4. When comparing 
the segmentation results of different organs, we observed that the uterus had the most 
segmented portion, followed by the tumor, while the vagina was the least segmented. 
This discrepancy may be due to the morphological differences and different contrasts 
between organs. ESPCN and RDN are almost impossible to segment correctly or obtain 
segmentation results at all, which suggests that they have large limitations in recon-
structing organ structures. In contrast, HAT, LDL, HMA, SwinIR, and the proposed 
method performed better in the segmentation of most organs; however, the segmenta-
tion results of SwinIR had problems of incompleteness and discontinuity. HAT, LDL, and 
HMA had incomplete segmentation of the vagina. The proposed method, on the other 
hand, is able to perform the organ segmentation task with relative accuracy, further vali-
dating the potential advantages of the method in practical medical image analysis.

This improved segmentation result is of great significance for doctors to study tumors 
and the relationship between tissues on MRI images. The proposed method not only 
achieved significant improvement in image quality, but also demonstrated better per-
formance in real medical image segmentation tasks, providing potentially useful support 
for clinical practice in the field of medical imaging. This further highlights the poten-
tial for practical applications of image SR studies to provide more accurate and reliable 
tools for medical image analysis. It is reported that using multi-contrast MRI images 
(T1, T2, PD) as input for super-resolution reconstruction yields better results than using 

Fig. 5 The results of segmentation of SR images generated by different SR reconstruction methods on 
different organs using the U-Net network
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a single image[20]. However, this approach employs GAN for super-resolution recon-
struction, which makes it challenging to effectively utilize all feature information. Addi-
tionally, GAN is prone to artifacts and often lacks fidelity to real data. [21] is similar to 
the work of [20], and neither has addressed the defects associated with using GAN. In 
contrast, the method presented in this paper employs a deep convolutional neural net-
work to extract features from input images. The input images use two modalities, DWI 
and T2WI, which provide complementary information, allowing deep convolutional 
networks to effectively utilize all available medical information. While conditional GAN-
based image-to-image translation methods also use source images as input, the pro-
posed approach leverages the strengths of deep convolutional networks to more robustly 
capture and integrate feature information from real images, minimizing artifacts and 
improving fidelity. In addition, the adversarial training process of GANs can lead to 
issues such as gradient vanishing and collapse mode. By comparison, deep convolutional 
neural network training is relatively stable and typically faster because it involves opti-
mizing only one network. GANs require the simultaneous optimization of both the gen-
erator and discriminator networks, making parameter adjustments more complex and 
demanding more computing resources.

Although the proposed SR reconstruction method demonstrates significant advan-
tages in this study, there are still some limitations. While deep separable convolution 
learns feature representations more efficiently and outperforms standard convolution 
in terms of parameter efficiency, it still requires learning two sets of convolution ker-
nel parameters: the respective convolution kernels for the deep convolution stage and 
the point-by-point convolution stage. Therefore, although the size of each convolution 
kernel is typically smaller than standard convolution, deep separable convolution may 
result in an increase in the overall number of parameters due to the need for two sets 
of convolution kernels. In resource-constrained application scenarios, the relationship 
between computational cost and performance may need to be weighed to ensure that 
the method can still operate efficiently in real-world deployments. The performance of 
our method is highly dependent on the quality and diversity of the training data. In cases 
of insufficient data or poor data quality, the model’s performance may be limited. Specif-
ically, when the image content is shifted, our method may perform poorly in restoration. 
If artifacts appear during the migration process, they can generate unnatural textures 
that are inconsistent with the statistical properties of the real image. These inconsistent 
textures not only affect the visual quality of the image, but also pose challenges for sub-
sequent processing and analysis.

In addition, the proposed model is a multi-input model with high matching require-
ments for input images. When there exists a missing set of images, model training or 
inference will not be effective, which may lead to data wastage. This strict matching 
requirement may introduce additional data management and acquisition challenges in 
practical applications, increasing the complexity of the system. Future research can be 
carried out in various aspects. First, to address the computational complexity and model 
size issues of the model, the computational burden and storage requirements of the 
model can be reduced by modifying the backbone network, adopting a more lightweight 
network structure, and applying model compression techniques or neural network 
quantization methods to improve the efficiency and feasibility of the model in practical 
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applications. Second, when facing the challenge of insufficient data usage, an innovative 
approach is to introduce an image generation model for generating missing data pairs, 
which are then used as part of the training set to make full use of all the available image 
information, thus improving the generalization ability and robustness of the model. In 
addition, future research could also extend the method to other types of cancer diag-
nosis. Since the diagnosis of most diseases often requires the integration of information 
from multiple imaging techniques, the combination of multiple imaging techniques can 
be explored to utilize multi-modal data for joint analysis, leading to a more comprehen-
sive and accurate disease diagnosis. This integrated analysis approach is expected to lead 
to new breakthroughs and advances in cancer diagnosis and other disease diagnosis in 
the future.

Therefore, when promoting and applying the method, we need to consider the com-
putational cost, the feasibility of data management, and the actual usage scenarios of 
the system. For some specific scenarios, some aspects of the model may need to be tar-
geted and optimized or adjusted to meet the actual requirements and better balance the 
relationship between performance and resource consumption. Such a comprehensive 
consideration will help to better understand the applicability and limitations of the pro-
posed approach in different application scenarios.

Conclusions
In this study, an SR algorithm for early CC MRI images is proposed. The results show 
that the proposed SR method outperforms the four current widely used SR methods 
under different magnification factors both from the perspective of qualitative and quan-
titative analyses. The method is able to show the morphology and boundaries of different 
tissues in early stage CC MRI images more clearly and effectively reduce the appear-
ance of artifacts. Notably, the images after SR present better performance on the seg-
mentation task, further validating the positive impact of the method on medical image 
analysis.

Materials and methods
Patients and data preparation

The Institutional Review Board (IRB) of Fujian Maternity and Child Health Hospital in 
China (FMCHH) approved the retrospective study, and the requirement for informed 
consent was waived. 198 patients who underwent pelvic MRI examination in FMCHH 
during the period from November 29, 2013, to December 17, 2020, were included in this 
study after being pathologically diagnosed with early-stage EC. Patients were identified 
by using information from the hospital’s picture archiving and communication system 
(PACS). The exclusion criteria were as follows: (1) without a final pathologic diagnostic 
statement; (2) missing MRI data (no corresponding DWI or T2WI sequence). The total 
number of patients in the study was 99. Subsequently, all the multi-modal sequences 
selected were chosen with the following exclusion criteria: (1) presence of artifacts; (2) 
mismatch between DWI slice and T2WI. Finally, the experimental data are 2398 MRI 
slices. A flow diagram of the cohort selection is presented in Fig 6. Datasets were divided 
by patients which are shown in Fig 6.
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MRI image dataset

In this study, DWI sequences and T2WI sequences of CC patients were used as 
research objects. Because the DWI image and the T2WI image of the same patients 
have correspondence, we regarded images of the same layer of slices in different 
sequences as a pair. One T2 image and one DWI image were guaranteed for each 
group. The original images were interpolated using bicubic interpolation to generate 
corresponding LR images with randomly added Gaussian noise. Data were required 
with a 1.5-T MRI scanner (Optima MRI360, GE Healthcare). Prior to the examina-
tion, the completion of bowel preparation (fasting on the morning of the examina-
tion) as well as bladder preparation (holding urine appropriately to keep the bladder 
full) is required. During the examination, the patient is asked to remain as still as 
possible to avoid motion artifacts, and in special cases, a restraint band may be used 
to maintain immobilization. Two commonly used MRI modalities (DWI and T2WI) 
were used in this experiment, and the detailed MR acquisition parameters are shown 
in Table 5.

Overall framework

Figure  7 shows an overview of the proposed multi-input SR network (ENAFSSR) 
based on NAFSSR [32]. This network employs a dual-network architecture, where 
the upper and lower networks are identical and share weights. The network takes LR 
paired images as input and extracts features of T2WI images ILR

L
 and DWI images 

I
LR

R
 through a stack of NAFBlocks and a 3x3 convolutional layer. NAFBlock, an effi-

cient module from NAFNet, simplifies channel attention (SCA) by removing non-
linear activation functions and replacing CA/GELU with SimpleGate, maintaining 
image denoising performance while introducing significant gains in image deblurring. 
To facilitate interaction between features extracted from different modality images, 

Fig. 6 The flow diagram of the cohort selection. N is the number of patients
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the SCAM (Stereo Cross-Attention Module) is applied after each NAFBlock. Finally, 
the features are upsampled using 3 × 3 depthwise convolutions and pixel shuffle layers 
according to the scaling factor s . In contrast to the original NAFSSR (Non-Adaptive 
Feature-based Single Image SR), depthwise convolutions are used here instead of reg-
ular convolutions, and global residual learning is not employed. Depthwise convo-
lution improves feature representation while reducing computational cost compared 
to traditional convolution. Instead, a semi-residual learning approach with additional 
convolution layers is utilized. This approach differs from traditional residual learning, 
which only predicts the residual between bilinearly upsampled LR images and ground 
truth HR images. Instead, it combines the predicted residual and the LR image in a 
convolutional layer.

Evaluation

Two common quantitative metrics, structural similarity index measure (SSIM), and peak 
signal-to-noise ratio (PSNR) are used to evaluate the SR performance of the ENAFSSR.

PSNR is the most common and widely used objective evaluation index, which is based 
on the error between corresponding pixels of two images, and does not take into account 
the human visual characteristics:

where n, MAX(I) represents the number of all data and the theoretical maximum of the 
pixel value in image I. Using the mean square error loss as loss function:

(1)MSE =
1

n

n
∑

i=1

(yi − ŷi)
2,

(2)PSNR =10 log10

(

MAX(I)2

MSE

)

,

Table 5 Details of parameters for MRI protocols

Parameter Acquisition 
plane

Repetition / echo 
time (ms)

Sequence Bandwidth 
(Hz)

Thickness 
(mm)

Flip angle 
(degrees)

T2WI Sagittal/axial 3800−5000/40−80 Spin echo 142 5 160

DWI Sagittal/axial 4500/76 Echo-planar 
imaging,
Spin echo

1953 5 90

Fig. 7 An overview of the proposed multi-input SR network based on NAFSSR. SCAM (Stereo Cross-Attention 
Module) fuses the features of the T2WI and DWI views
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The loss is calculated by the mean squared error between the pixels of the HR images 
and the original images restored by the model, where n represents the number of data, 
F represents the network mapping, and Xi and Yi represent the corresponding original 
images and HR images, respectively.

SSIM attempts to explain the texture change between two images by calculating the 
similarity from the aspects of luminance, contrast, and structure. In the actual computa-
tion of the structural similarity indices of two images, we specify some localized win-
dows, typically small blocks of N Ã— N, and compute the structural similarity indices of 
the signals within the windows. The window is then shifted one pixel at a time until the 
localized structural similarity index is computed for each position of the whole image:

where l, c, and s are functions of luminance, contrast, and structure, respectively. They 
are given as follows:

Loss function and implementation details

This experiment is implemented using the Pytorch deep learning framework and adopts 
a mean square error loss function (MSE Loss) as the loss function for this model. The 
primary objective of this loss function is to quantify the disparity between the network-
generated output and the actual target, aiming to minimize this difference. The MSE 
Loss measures the extent of the difference by calculating the squares of the difference 
between the network-generated image and the HR target image for each pixel value, 
and then averaging these squared differences to measure the degree of difference. This 
means that network outputs that are more similar to the target image will have lower 
MSE Loss values, while outputs that are less similar will result in higher Loss values. This 
loss function is easy to compute and optimize and encourages the network to generate 
images as close as possible to the target during training. An Adam optimizer with an 
initial learning rate of 0.003 was chosen and decreased to 1x10-7 by a cosine anneal-
ing strategy. The Adam optimizer uses two momentum variables to compute the adap-
tive learning rate. We set the exponential decay rate of the first momentum to β1 = 0.9, 
and the exponential decay rate of the second momentum to β2 = 0.9. The network was 

(3)LMSE =
1

n

n
∑

i=1

�F(Xi : θ)− Yi�
2.

(4)SSIM(ISR ,ILR) = l(ISR ,ILR) · c(ISR ,ILR) · s(ISR ,ILR),

(5)l(ISR, ILR) =
2µISRµILR + (K1L)

2

µ2
ISR

+ µ2
ILR

+ (K1L)2
,

(6)c(ISR, ILR) =
2σ ISRσ ILR + (K2L)

2

σ 2
ISR

+ σ 2
ILR

+ (K2L)2
,

(7)s(ISR, ILR) =
σ ISRILR + (K2L)

2/2

σISRσILR + (K2L)2/2
.
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trained on upscale factors of 2× and 4× using machines equipped with an NVIDIA RTX 
3090Ti-24 G.
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