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Abstract 

Medical imaging datasets for research are frequently collected from multiple imaging 
centers using different scanners, protocols, and settings. These variations affect data 
consistency and compatibility across different sources. Image harmonization is a criti-
cal step to mitigate the effects of factors like inherent differences between various 
vendors, hardware upgrades, protocol changes, and scanner calibration drift, as well 
as to ensure consistent data for medical image processing techniques. Given the criti-
cal importance and widespread relevance of this issue, a vast array of image harmoni-
zation methodologies have emerged, with deep learning-based approaches driving 
substantial advancements in recent times. The goal of this review paper is to examine 
the latest deep learning techniques employed for image harmonization by analyz-
ing cutting-edge architectural approaches in the field of medical image harmoniza-
tion, evaluating both their strengths and limitations. This paper begins by providing 
a comprehensive fundamental overview of image harmonization strategies, cover-
ing three critical aspects: established imaging datasets, commonly used evaluation 
metrics, and characteristics of different scanners. Subsequently, this paper analyzes 
recent structural MRI (Magnetic Resonance Imaging) harmonization techniques based 
on network architecture, network learning algorithm, network supervision strategy, 
and network output. The underlying architectures include U-Net, Generative Adver-
sarial Networks (GANs), Variational Autoencoders (VAEs), flow-based generative models, 
transformer-based approaches, as well as custom-designed network architectures. 
This paper investigates the effectiveness of Disentangled Representation Learning 
(DRL) as a pivotal learning algorithm in harmonization. Lastly, the review highlights 
the primary limitations in harmonization techniques, specifically the lack of compre-
hensive quantitative comparisons across different methods. The overall aim of this 
review is to serve as a guide for researchers and practitioners to select appropriate 
architectures based on their specific conditions and requirements. It also aims to foster 
discussions around ongoing challenges in the field and shed light on promising future 
research directions with the potential for significant advancements.
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Introduction
Neuroimaging techniques like magnetic resonance imaging (MRI), positron emission 
tomography (PET) and computerized tomography (CT) play a vital role in studying the 
brain’s structure and function [1–3]. These medical imaging modalities provide invalu-
able insight for diagnosing neurological disorders, understanding brain development, 
and investigating neurodegenerative processes. In comparison to other neuroimaging 
modalities, MRI is known for its ability to generate excellent soft tissue contrast, mak-
ing it instrumental for studying subtle tissue details including the brain or spinal cord 
[4]. Additionally, it is vital for many differential diagnoses of neurological disorders, 
including tumors [5], inflammatory conditions [6], and degenerative disorders [7]. MRI 
utilizes various imaging options and pulse sequences according to clinical needs. These 
sequences generate images with different contrasts, such as T1-weighted, T2-weighted, 
and PD-weighted (Fig. 1).

Variations in scanner hardware, imaging parameters, and acquisition protocols can 
lead to systematic differences in the appearance and quantitative measures derived from 
neuroimages. These divergences, if unaddressed, can reduce the statistical power of neu-
roimaging studies, limit the generalizability of findings across sites, and impede efforts 
to pool and analyze multi-site datasets. Consequently, there is an increasing demand 
for harmonizing neuroimaging data to mitigate unwanted inter-site and inter-scanner 
effects.

In recent years, data-driven harmonization techniques leveraging machine learn-
ing have gained significant traction. Deep learning models have demonstrated remark-
able ability to capture complex data representations and transformations, making them 
well-suited for tackling neuroimaging harmonization challenges. By learning from data 
acquired across multiple sites and scanners, these models can disentangle biologically 
relevant signals from technical artifacts, enabling the generation of harmonized neuro-
images or derived measures. However, compared to other neuroimaging harmonization 
efforts, one of the factors that make MRI harmonization more complex is that grayscale-
based signal intensity in MRI lacks a standardized measure, unlike semi-quantitative 
measures such as standardized uptake value (SUV) of PET or quantitative measures such 
as Hounsfield units (HU) of CT [3]. This accentuates the variability in MRI, resulting in 

-weighted -weighted PD-weighted
Repetition time = 9.813

Echo time = 4.603
Number of Phase Encoding Steps = 192

Echo Train Length = 0
Reconstruction Diameter = 240

Flip Angle = 8

Repetition time = 8178.34
Echo time = 100

Number of Phase Encoding Steps = 187
Echo Train Length = 16

Reconstruction Diameter = 240
Flip Angle = 90

Repetition time = 8178.34
Echo time = 8

Number of Phase Encoding Steps = 187
Echo Train Length = 16

Reconstruction Diameter = 240
Flip Angle = 90

Fig. 1 Example images acquired from Guy’s Hospital using a Philips 1.5T system, sourced from the IXI dataset 
[8]
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differences in contrast-to-noise ratio, temporal resolution, and spatial resolution. These 
variations have been found to affect the reliability of radiomic analysis [9].

With larger and more varied datasets available in open-source databases, research-
ers can conduct more in-depth analyses and leverage subtle details within the data. By 
involving more participants and tracking them over an extended period, researchers 
gain deeper insights into how the study impacts the subjects, such as the effects of a 
disease or the aging process [10]. This longitudinal approach also enables a better under-
standing of the underlying causes of certain diseases, ultimately helping identify opti-
mal treatments, diagnostic methods, and care plans. While larger datasets lead to more 
accurate results, they also introduce increased variability in how the data are acquired. 
This acquisition variability issue is almost always present for various reasons. Even at a 
single site using one scanner, patients may require repeat scans on different MRI scan-
ners if they need additional medical care. Furthermore, the imaging environment itself is 
prone to changes due to scanner upgrades or replacements occurring over the course of 
a study [11]. When dealing with images from multiple sites, the inconsistency becomes 
more pronounced and can lead to domain shift problems.

In the realm of medical imaging, addressing domain shift is crucial for ensuring the 
reliability and consistency of AI models across different imaging sites and scanners. 
Domain adaptation (DA) involves fine-tuning a model to perform well on data from a 
specific target domain, thereby enhancing its accuracy and applicability within that 
domain. On the other hand, domain generalization (DG) aims to develop models that 
generalize effectively to unseen domains, without specific access to target domain data 
during training [12]. An emerging technique, image harmonization, focuses on reducing 
inter-site variation to facilitate meaningful comparisons and analyses of images across 
diverse imaging environments.

Domain adaptation enhances model accuracy by injecting domain-specific knowledge 
into a general AI model. This process typically requires access to target domain data dur-
ing training, allowing the model to better capture domain-specific features and nuances. 
However, challenges include the need for additional training data [13], inter-modality 
heterogeneity [14], and rigorous model evaluation. Despite these challenges, domain 
adaptation significantly improves model performance within specific domains.

In contrast, domain generalization tackles the broader challenge of developing models 
that can generalize well across unseen domains. This approach is particularly beneficial 
in scenarios where acquiring labeled data from every possible domain is impractical. By 
learning from multiple related domains during training without direct exposure to the 
target domain, domain generalization reduces the need for extensive labeling efforts and 
enhances the model’s adaptability to new tasks. However, the lack of direct access to tar-
get domain data makes domain generalization more challenging than domain adaptation 
in practical applications [15].

Image harmonization focuses on minimizing inter-site variation in medical imaging, 
enabling consistent analysis and comparison across different imaging sites and scanners 
[16]. This technique has shown promising results in standardizing imaging data, thereby 
improving the reliability of downstream analysis and clinical decision-making. Unlike 
domain adaptation and generalization, which primarily focus on model training strate-
gies, harmonization directly addresses data variability at the preprocessing stage. This 
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approach simplifies model deployment across diverse clinical settings but may require 
specialized algorithms tailored to specific imaging modalities.

In the context of MRI harmonization, a "traveling subject" refers to a person or phan-
tom (an object designed to mimic certain properties of human tissues) that is scanned 
on multiple MRI scanners at different sites. The traveling subject provides a common 
reference point when being scanned on MRI scanners located at different sites or institu-
tions, which may have different scanner models, field strengths, or acquisition protocols. 
The data from scanning the traveling subject across sites are used to characterize and 
correct for scanner-specific variations in the MRI data. The use of traveling subjects is a 
crucial step in many MRI harmonization pipelines, especially for large multi-site neuro-
imaging studies, as it provides a way to quantify and mitigate scanner-related effects that 
could otherwise confound the analysis and interpretation of the pooled dataset.

On a related note, in some cases paired MRI data are used for image harmonization. 
While the two concepts are related, they are fundamentally different in their applica-
tion. The purpose of the traveling subject is to directly measure and characterize the 
scanner-specific variations that need to be harmonized. Paired MRI data, however, refer 
to having two sets of MRI scans acquired from the same subject, which can be done 
either within a single scanner (intra-site) or across different scanners (inter-site). Intra-
site paired data typically include different imaging modalities (e.g., T1-weighted and 
T2-weighted images) acquired from the same subject on the same scanner. This intra-
site pairing facilitates training by providing complementary information from different 
modalities. Inter-site paired data, which involve scanning the same subject on both a 
"source" and a "target" scanner, help in harmonizing data between different scanners by 
offering corresponding data points under different scanner conditions.

While a traveling subject provides a common reference scanned across all scanners, 
paired data have separate source and target scans. Also, while traveling subjects are 
fewer in number but scanned widely across different sites, paired data can involve the 
full set of study subjects scanned at two sites. Lastly, while traveling subjects directly 
measure scanner effects, paired data rely on the corresponding subject scans to estimate 
the scanner-specific transformations required for harmonization. Therefore, while a 
traveling subject provides a direct measurement of scanner effects, paired data provide a 
way to estimate and apply those effects to each subject’s data during the harmonization 
process. To provide an example of image harmonization, Fig. 2 demonstrates the trave-
ling subject from six different scanners of the SRPBS Multi-disorder MRI Dataset [17]. 
As observed, the image contrast varies across scanners, which is known to affect down-
stream tasks such as tissue segmentation and disease classification.

In 2022, a comprehensive overview was presented on the various approaches for 
radiomics harmonization [18]. This review study classified these methods into two cat-
egories: image-based harmonization and feature-based harmonization. Image-based 
harmonization techniques are applied directly to the images before extracting radiomics 
features, while feature-based harmonization aims to reduce the differences between the 
extracted features themselves. The choice of these techniques can be constrained by the 
number of samples available for analysis. The review concluded that, up to that point, 
none of these harmonization methods had been definitively established as the most 
effective approach within the analysis process.
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Statistical methods have been used for feature-based harmonization [19]. These meth-
ods offer fine-grained adjustments, enabling researchers to target specific features for 
precise correction while maintaining interpretability [20]. The primary advantages of 
statistical methods include the following:

• Interpretability: Researchers can understand which specific features are being 
adjusted.

• Targeted Adjustments: Precise correction of predefined features is possible, making 
these methods ideal for datasets with well-understood relevant features.

However, these methods also have notable limitations:

• Dependence on Predefined Features: They rely on predefined features for correction, 
potentially limiting their effectiveness in complex datasets where relevant features 
are poorly defined [21].

• Potential for Overfitting: In scenarios with high variability and noise, statistical meth-
ods might overfit to the training data.

Fig. 2 Traveling subject from different scanners of the SRPBS Multi-disorder MRI Dataset [12] with detailed 
acquisition parameters. The contrast has been changed across scanners
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Image-based approaches particularly leverage deep learning models for accurate 
mapping between source and target MRI images [21]. Deep learning has revolu-
tionized the field of medical imaging by enabling automated analysis, diagnosis, and 
prognosis through the extraction of meaningful features from medical images. Image 
classification, segmentation [22], image reconstruction [23], and image registration 
[24] are just a few successful applications of deep learning in medicine. Along these 
lines, recent development of various neural network architectures that have been pro-
posed specifically for the task of medical image harmonization serve as the primary 
focus of this review article. The main advantages of image-based approaches are as 
follows:

• Automation and Scalability: They can automatically learn complex mappings 
without requiring predefined features.

• Handling Complex Variability: They excel in scenarios with complex and high-
dimensional data, effectively capturing intricate patterns and relationships.

However, these methods also face challenges:

• Black-Box Nature: Deep learning models are often criticized for their lack of inter-
pretability, making it difficult to understand how corrections are being made.

• Data Requirements: They typically require large amounts of training data and 
computational resources, which may not be available in all settings.

These methods can be selected according to the specific characteristics of their 
datasets and research goals. Statistical methods are preferable when interpretability 
and targeted feature correction are paramount, especially in well-understood data-
sets. In contrast, image-based approaches are better suited for complex datasets with 
poorly defined features and where automated, scalable solutions are needed.

Combining statistical and image-based approaches could potentially yield bet-
ter performance by leveraging the strengths of both methods. For instance, a hybrid 
model could use statistical methods to correct well-defined features while employ-
ing deep learning to handle more complex, undefined variability. This combina-
tion could enhance both the accuracy and interpretability of harmonization efforts. 
Future research could explore integrated frameworks that synergistically use both 
approaches, potentially leading to more robust and generalizable harmonization 
techniques.

Wen et al. provided an examination of image harmonization methods for brain MRI 
data, with a particular focus on machine learning (ML)-based approaches used in 
both explicit and implicit ways [25]. They reported that a uniform imaging dataset 
can be achieved by implementing explicit methods that harmonize intensity values 
and image-derived metrics, or by using implicit methods to improve the performance 
of a downstream task. They also noted that traveling subject datasets are crucial for 
the effective implementation of explicit harmonization, as these enable the machine 
learning models to avoid learning biased information from the population. However, 
contemporary traveling subject datasets have limitations in terms of size and issues 
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related to scan–rescan reliability, which can hinder the performance of the ML mod-
els. In contrast, implicit methods do not require a traveling subject dataset. Research-
ers only need to determine the source and reference domains to develop the machine 
learning algorithm for harmonizing the MRI scans.

Different harmonization solutions, including the image domain and feature domain, 
have been discussed in another survey [26]. The image domain harmonization encom-
passes acquisition protocols and data augmentation, while the feature domain category 
includes statistical normalization, Combat [27], and deep learning. GAN, Neural Style 
Transfer (NST), and their combination were discussed as deep learning-based harmoni-
zation techniques.

Hu et  al. investigated both statistical and deep learning methods for harmonization 
[20]. The study noted that statistical techniques could provide robustness and effective-
ness, especially in scenarios with smaller sample sizes or when dealing with confounding 
factors. Conversely, deep learning models may be better suited to handle the complex 
nature of image-level data, which poses significant challenges for conventional statistical 
approaches. A recent book chapter by Zuo et al. [28] reviewed disentangled representa-
tion learning methods for MR image harmonization, demonstrating how disentangled 
representations can be learned through both supervised and unsupervised image-to-
image translation techniques.

• Literature search

To narrow down our primary focus, we conducted a comprehensive literature search 
that met specific inclusion criteria including applying harmonization technique on 
structural MRI, employing deep learning methods, and in some papers harmonizing 
images for downstream tasks. The search was organized across the PubMed database 
using the terms "MRI harmonization" AND "deep learning," "MRI harmonization" AND 
"structural MRI," and "MRI harmonization" AND "deep learning" AND "structural MRI" 
through February 2024. This search returned 285 papers and the duplicate papers were 
excluded in the first phase. The same keywords "disentanglement representation learn-
ing for MRI" and "MRI harmonization using transformers" were used for searches on 
Google Scholar. Studies that were excluded encompass those that (1) were applied on 
the PET, fMRI, dMRI, or anything other than structural MRI, (2) did not employ a deep 
learning architecture, and (3) did not belong to the aim and scope of this review accord-
ing to titles and abstracts. After applying criteria to the literature search and conducting 
screening, we incorporated a total of 38 papers into our study.

All the papers included in this study were published between 2019 and 2024, with 
approximately 26% from 2022 and 34% from 2023. The identified studies were ana-
lyzed in terms of their network architecture, learning algorithm, network framework, 
and network output. Based on the deep network architecture, the approaches can 
be classified into U-Net, GANs, VAEs, flow-based generative models, transformers, 
and custom Networks. Some networks learn via disentangled representation learn-
ing, which involves extracting and separating meaningful features or factors from 
the MRI data associated with different imaging characteristics. Among the studies, 
29% utilized custom networks with or without disentanglement representation, 24% 
employed GANs, 13% used U-Net, and 13% were based on VAEs. Additionally, two of 



Page 8 of 42Abbasi et al. BioMedical Engineering OnLine           (2024) 23:90 

them relied on transformers, and three utilized flow-based generative models, while 
the rest employed a combination of two networks.

The majority of articles, about 74%, relied on publicly available datasets; however, 
26% used local datasets. In addition to that about 53% of the articles proposed a 3D 
model or worked with 3D images. It is noteworthy that 66% of the papers employed 
harmonization solely on T1-weighted images, while the rest also utilized other con-
trasts. Furthermore, 63% of the studies conducted tests on the harmonized images for 
downstream tasks, whereas the remainder focused merely on image harmonization. 
Additionally, 15 of the articles have publicly available source code.

• Motivations

Based on the survey of prior efforts, the motivation behind this review is outlined 
as follows:

1) A thorough, wide-ranging evaluation of deep learning-based methods for harmo-
nizing structural MRI data across various benchmarks is lacking. Such a compre-
hensive investigation could shed light on the advantages and limitations of existing 
approaches in this domain.

2) While previous review articles have examined various harmonization techniques, 
they have not covered harmonization strategies that leverage transformers, flow-
based generative models, or custom-designed neural network architectures.

3) A comprehensive comparison of large-scale brain imaging datasets for training and 
evaluating harmonization methods has not been conducted.

4) There has been a lack of detailed discussion surrounding the evaluation metrics used 
for assessing MRI harmonization methods, including considerations for scenarios 
with or without the presence of traveling subject data.

Driven by the aforementioned motivations, the primary goals of this study are to 
address existing gaps, elucidate the current limitations for a comprehensive compar-
ison of harmonization techniques, and analyze the pros and cons of deep learning 
architectures for MRI harmonization. As such, our focus is solely on deep learning-
based harmonization techniques. The design of networks for MRI harmonization can 
draw inspiration from networks used for domain adaptation [29] and image-to-image 
translation [30] in various computer vision applications. However, due to the com-
plex structure of the brain and the intensity levels of MRI images, MRI harmonization 
networks have fundamental differences from networks in other applications. MRI 
harmonization aims to preserve the anatomical (content) information of the source 
image while transforming the contrast (style) to the target domain.

• Contributions

SA performed literature search and wrote first draft of the manuscript. BV reviewed 
the first draft and conceived the project. SA, HA, JC, NSB, GP, and BV reviewed all 
subsequent drafts and approved the final manuscript.

1. This study provides a categorization of state-of-the-art deep learning-based MRI 
harmonization techniques based on their architectural design (e.g., GAN, U-Net, 
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VAE), learning algorithms, network frameworks, and network outputs. This system-
atic classification offers valuable insights into the appropriate design considerations 
for developing effective harmonization networks.

2. This study conducts a comprehensive comparison of well-established large-scale 
datasets based on their fundamental characteristics, such as the number of partici-
pants, age range, target challenges, scanner types, and image modalities. Addition-
ally, it discusses the lack of a dedicated harmonization dataset that addresses specific 
challenges faced by the medical imaging community.

3. This study examines the commonly used evaluation metrics in explicit image har-
monization techniques, such as the Peak Signal-to-Noise Ratio (PSNR) and Struc-
tural Similarity Index (SSIM). It highlights the limitations of these evaluation criteria, 
pointing out their potential shortcomings in enabling accurate comparisons across 
different harmonization methods.

The rest of the paper is structured as follows. Sect. "The Overview of Harmonization" 
introduces harmonization. Sect. "Deep Learning-based Harmonization Taxonomy" cat-
egorizes different harmonization techniques. While acknowledging that certain papers 
may fit into more than one category, they are classified based on their predominant 
focus. Sect. "Applicability and Limitations of Harmonization" discusses the applicability 
and limitations of harmonization in MRI neuroimaging in a general context. Sect. "Dis-
cussion" analyzes the strengths and weaknesses of the various image harmonization 
methods. Sect. "Conclusion and Future Direction" provides concluding remarks.

The overview of harmonization
The MRI harmonization is formulated as a transformation that maps images from a 
source domain Xs to a target domain Xt . Let xs denote an MRI image within the source 
domain, and xt signify its counterpart within the target domain. The objective of MRI 
harmonization is to learn a mapping function f  :

The function f  should preserve the anatomical content of the source image while 
aligning its contrast to match that of the target domain. This can be expressed math-
ematically as follows:

where ǫ represents the residual error introduced during the harmonization process. To 
learn the mapping function f  , a deep learning model using adversarial and auxiliary loss 
functions can be employed to minimize the discrepancy between the distribution of syn-
thesized images   xt and real images from the target domain Xt.

There are several key factors to consider when evaluating image harmonization tech-
niques. This section will discuss these factors, including the types of datasets used for 
training, the scanners employed for image acquisition (if relevant), and the metrics used 
to assess the success of harmonization approaches. Each of these aspects can influence 
the effectiveness and suitability of a particular method and can present unique chal-
lenges (Fig. 3).

(1)f : Xs → Xt .

(2)xt = f (xs)+ ∈
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Datasets

Pooling MRI data from diverse sources is crucial for high-powered and large-scale brain 
imaging studies. These sources include different sites, scanners, and acquisition pro-
tocols. Fortunately, several large neuroimaging datasets already exist, such as the UK 
Biobank [31], ABIDE [32], and ADNI [33]. Apart from heterogeneities in data due to 
scanners and modalities, the following complexities further complicate the harmoniza-
tion process:

• Disease complexity:  While some harmonization methods use healthy brain scans, 
brain diseases pose additional challenges. Subtle changes in diseased brains are cru-
cial for studies like Alzheimer’s disease progression, and harmonization techniques 
must not obscure this information.

• Segmentation and classification complexity:  When diverse images from different 
scanners are harmonized, it must allow for precise and accurate segmentation (iden-
tification of specific brain structures) and classification (grouping images based on 
disease state).

Biological covariate balance complexity: Ensuring a balanced distribution of biological 
covariates such as gender and age in training datasets remains important. This is critical 
if the sample size of the training data is limited. A balanced representation of biological 
covariates and accounting for their difference helps achieve more generalizable and real-
istic results.

While Table 1 provides an overview of common datasets used in harmonization research, 
these datasets present challenges due to their inherent diversity. These large-scale datasets 
are often collected from multiple sites across different countries, and harmonization studies 
frequently utilize only a subset of the data or even employ entirely different datasets. This 
variation in data origin and usage hinders standardization and makes direct statistical com-
parisons between studies difficult.

Neuroimaging 
Data 

Harmonization

Datasets
•OASIS
•ADNI
•ABCD
•AIBL

•UK Biobank
•...

Metrics
•PSNR
•SSIM
•MAE

•... Scanners
•Manufacturer
•Field strength
•Acquisition 

settings
• ...

Fig. 3 Overview of Harmonization
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Scanners

The global estimation for the number of MRI machines was around 36,000 with 2500 
machines being manufactured annually [39]. While MRI is a vital tool in medical diag-
nosis, their inherent limitations can affect image quality and accuracy. These limitations 
arise from two main sources:

Natural effects

The MRI process itself and the equipment involved are susceptible to natural phenom-
ena that can cause issues. Examples include magnetic field inhomogeneity, gradient non-
linearities, and variations in radiofrequency (RF) coil sensitivity. These effects manifest 
as variations in image intensity, distortions, and artifacts, ultimately impacting image 
quality and potentially leading to misdiagnosis. Fortunately, manufacturers are con-
stantly working on mitigating these natural effects to improve the reliability and quality 
of MRI systems.

Acquisition settings

The specific settings used during an MRI scan significantly impact the resulting images. 
Factors like pulse sequence type, repetition time (TR), echo time (TE), and flip angle 
contribute to the appearance and accuracy of the scan. Table 2 provides a detailed break-
down of these factors. Selecting and optimizing these settings is crucial to minimize 
inherent limitations like noise, artifacts, and inconsistencies in image quality. By tailor-
ing these settings to specific diagnostic needs, healthcare professionals can ensure high-
quality imaging outcomes.

Metrics

Accurately assessing the effectiveness of harmonization algorithms is critical. This sub-
section delves into several essential metrics used for this purpose:

Peak signal‑to‑noise ratio (PSNR)

This metric measures the ratio between the maximum possible signal (image intensity) 
and the corrupting noise that affects image quality. Higher PSNR values generally indi-
cate better harmonization and is essential for accurate diagnosis and assessment in clini-
cal settings [46]. Improved PSNR aims to preserve important anatomical details, aiding 
radiologists in making precise evaluations. Thus, the PSNR ratio is a highly effective 
quality indicator in evaluating the effectiveness of harmonization architecture.

This ratio is derived from the difference between the original image and the harmo-
nized version. The PSNR is calculated using the following equation:

where R demonstrates the maximum fluctuation in the input image data type.

Mean absolute error (MAE)

MAE calculates the average of the absolute differences in pixel intensity values between the 
original and harmonized images. Lower MAE values indicate that the harmonized image 

(3)PSNR = 10 log10

(

R2

MSE

)

,
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Table 2 Technical factors that can affect the image quality of MRI scan

Factors Descriptions

Field strengths Magnetic field strength, measured in Tesla (T), is a key characteristic of MRI scanners. 
Higher field strengths translate to stronger magnetic fields, offering several advantages:
• Improved signal-to-noise ratio: This translates to clearer images with less interference
• MR spectroscopy capability: Enables the study of chemical composition within tissues
• Faster scan times: Reducing patient discomfort and improving workflow
• High-resolution images: Providing greater detail for accurate diagnosis
However, despite these benefits, the high cost of high-field MRI scanners remains a signifi-
cant barrier to their widespread adoption[40]

Field of view The field of view (FOV) in MRI refers to the specific region of the patient’s body captured 
during the scan. It essentially determines the size of the resulting image and the anatomi-
cal structures included. FOV is typically measured in centimeters (cm) [41]
Choosing the right FOV:
• Larger FOV: Provides a broader view of the anatomy, which can be helpful for initial 
examinations or when looking at larger structures. However, this may come at the expense 
of:
o Lower spatial resolution: This means the image may appear less detailed, potentially 
making it harder to see fine structures
• Smaller FOV: Offers higher spatial resolution, resulting in a more detailed image. This is 
preferable when examining smaller structures or needing a magnified view of a specific 
area. However, it may not capture the entire region of interest
Finding the optimal FOV involves balancing the desired level of detail with the need to 
image the entire area of interest

Slice thickness Slice thickness refers to the depth of each individual image layer acquired during an MRI 
scan. It directly impacts the image resolution along the z-axis, which represents depth 
within the body [42]
The impact of slice thickness:
• Thinner slices:
o Advantages: Offer greater detail and improved visualization of small structures
o Disadvantages: May require longer scan times due to the increased number of slices 
needed to cover the same region. They can also lead to a larger overall data volume, which 
might require additional storage space
• Thicker slices:
o Advantages: Enable faster scan times by capturing a larger area with fewer slices. They 
also result in a smaller data volume
o Disadvantages: May lead to lower image resolution, potentially obscuring fine details

Echo time Echo time (TE) is a critical parameter in MRI, measured in milliseconds (ms). It represents 
the time interval between the application of the initial radiofrequency (RF) pulse and the 
peak of the echo signal received by the scanner [43]. TE plays a significant role in determin-
ing the image contrast, which highlights differences in tissue properties
The impact of TE:
• Short TE values:
o Result in images with a predominantly T1-weighted contrast. This means the contrast 
between tissues is primarily influenced by their longitudinal relaxation time (T1). Tissues 
with shorter T1 values tend to appear brighter in these images
o Short TE values are often used to highlight anatomical details with high T1 values, such 
as fat and blood vessels

Repetition time Repetition time (TR) is another crucial parameter in MRI, measured in milliseconds (ms). 
It represents the time interval between the application of consecutive radiofrequency 
(RF) pulses in a single pulse sequence. TR plays a significant role in determining the signal 
strength and image contrast

Inversion Time Inversion time (TI) is a parameter specific to certain MRI pulse sequences, particularly 
those utilizing inversion recovery. It is measured in milliseconds (ms) and refers to the time 
interval between the application of a special radiofrequency (RF) pulse called an inversion 
pulse and the subsequent start of data acquisition.[44]

Gradient strength Magnetic field gradients are controlled variations in the strength of the main magnetic 
field used in MRI scanners. These gradients are not uniform and are applied along specific 
directions within the scanner

Gradient orientation Magnetic field gradients in MRI modulate the strength of the main magnetic field, but 
they do not have a single direction. Instead, these gradients create controlled variations in 
intensity along specific axes (e.g., X, Y, Z) within the scanner. This allows for spatial encod-
ing of the signal, which essentially translates to determining the origin of the signal within 
the patient
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closely resembles the original, preserving essential diagnostic information. This accuracy 
in intensity values is crucial for tasks in image harmonization, where the goal is to closely 
approximate the original data. This fidelity is important for various applications, includ-
ing diagnostic assessments and other clinical evaluations where accurate representation is 
paramount.

where M and N represent the row and column of the input image, respectively.
PSNR and MAE both quantify the difference between the original and harmonized 

images, but they do so in different ways. PSNR is a logarithmic measure that emphasizes 
larger differences, making it useful for detecting significant deviations in image qual-
ity. MAE, on the other hand, provides a linear measure of average differences, offering a 
straightforward assessment of overall image fidelity. Together, these metrics provide a com-
prehensive view of image quality by highlighting both large and small discrepancies.

Structural similarity index measure (SSIM)

SSIM goes beyond just measuring noise levels. It compares the overall structural similar-
ity between two images, considering luminance, contrast, and structure. Clinically, higher 
SSIM values suggest that the harmonized image retains the structural integrity of the origi-
nal, which is critical for identifying subtle anatomical changes [47]. This metric helps ensure 
that the harmonization process does not distort important clinical features, thereby sup-
porting accurate diagnosis and treatment planning.

The SSIM is based on illumination, contrast, and structural terms (Eqs. 6–8). In these 
equations, µ and σ are local mean and standard deviation, respectively.

(4)MAE =

∑

M,N |I1(m, n)− I2(m, n)|

M × N
,

(5)SSIM
(

x, y
)

=
[

l
(

x, y
)]α

.
[

c
(

x, y
)]β

.
[

s
(

x, y
)]γ

,

(6)l
(

x, y
)

=
2µxµy + C1

µ2
x + µ2

y + C1
,

Table 2 (continued)

Factors Descriptions

Flip angle The flip angle is a crucial parameter in MRI that governs the signal intensity in the resulting 
image. It is measured in degrees and reflects the angle at which the main magnetic field of 
the scanner nudges protons (tiny spinning particles within tissues) away from their equilib-
rium position. This nudge is achieved by applying brief radiofrequency (RF) pulses
Impact of flip angle:
• Larger flip angle:
o Increases the signal intensity: This translates to brighter images with a higher signal-to-
noise ratio, potentially offering greater detail
• Smaller flip angle:
o Decreases the signal intensity: This results in dimmer images but can improve contrast 
between tissues with different relaxation times
Choosing the optimal flip angle involves balancing the desired signal intensity with the 
need for specific types of contrast in the image [45]
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SSIM complements PSNR and MAE by focusing on structural information rather 
than just pixel-wise differences. While PSNR and MAE quantify numerical discrepan-
cies, SSIM evaluates how well the harmonized image preserves the structural integrity 
of the original, considering luminance, contrast, and structural similarity. This combi-
nation ensures that both numerical accuracy and structural fidelity are assessed.

In addition to these core metrics, evaluation techniques specific to generative mod-
els might also be employed for certain harmonization approaches.

Recent research [48] has highlighted a crucial disconnect between how well harmo-
nization algorithms perform according to traditional metrics and their actual impact 
on downstream applications. This suggests that common image similarity metrics 
like PSNR and SSIM might not fully capture the effectiveness of harmonization in 
improving compatibility across different datasets (cross-domain consistency). As a 
result, there is a growing need to re-evaluate current metrics to ensure they accu-
rately assess the success of harmonization techniques.

To address this limitation, new assessment methods have been proposed [49]. These 
methods focus on two key aspects of harmonization:

• Intensity Harmonization: The Wasserstein Distance (WD) is used to measure how 
well intensity levels are harmonized. It achieves this by calculating the movement 
of histograms between images, essentially quantifying how similar the intensity 
distributions become. Clinically, ensuring consistent intensity levels across images 
from different scanners or protocols can improve the reliability of quantitative 
measurements, such as volumetric analysis.

• Anatomy Preservation: To evaluate how well anatomical structures are preserved 
during harmonization, segmentation is performed on both the original and har-
monized images. The relative Absolute Volume Difference (rAVD) is then calcu-
lated to compare the segmentation results. This provides a measure of how closely 
the harmonized image retains the anatomical information from the original image. 
Accurate anatomical preservation ensures that clinical assessments, such as track-
ing disease progression or planning interventions, are based on reliable data.

Summarizing, WD measures the similarity of intensity distributions, ensuring that 
the overall intensity levels are harmonized across images. rAVD, on the other hand, 
evaluates how well anatomical structures are preserved during harmonization. By 
combining these metrics, we can assess both the consistency of intensity harmoniza-
tion and the preservation of anatomical details, offering a dual perspective on harmo-
nization effectiveness.

(7)c
(

x, y
)

=
2σxσy + C2

σ 2
x + σ 2

y + C2
,

(8)s
(

x, y
)

=
σxy + C3

σxσy + C3
.
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By incorporating these more specific metrics alongside traditional ones, researchers 
can gain a more comprehensive understanding of how different harmonization algo-
rithms perform and their suitability for real-world applications.

In many real-world applications, "ground truth" data, which represents the per-
fect or ideal outcome, may not be available. This is especially common in situations 
involving unpaired datasets, where there is no direct correspondence between ele-
ments. Image generation tasks frequently encounter this scenario.

To address this challenge, researchers have developed metrics that assess image 
quality without relying on ground truth. These metrics offer valuable insights for 
objectively evaluating model performance:

• Inception Score (IS):  A popular metric for assessing the quality and diversity of 
images generated by models like Generative Adversarial Networks (GANs) [50]. 
IS considers both the distinctiveness of individual images and the overall variety 
within the generated set.

• Fréchet Inception Distance (FID):  This metric compares the similarity between 
the distribution of real images and the distribution of generated images in a fea-
ture space extracted by a deep learning model [51] (often the Inception network). 
Lower FID values indicate better alignment between the real and generated data 
distributions.

• Kernel Inception Distance (KID):  Similar to FID, KID measures the discrepancy 
between the feature representations of real and generated images. However, KID 
utilizes kernel methods for the comparison. It is primarily used to assess the over-
all quality of generated images [52].

• Learned Perceptual Image Patch Similarity (LPIPS): This metric goes beyond basic 
image statistics and leverages a pre-trained deep learning model to assess the per-
ceptual similarity between images. LPIPS considers factors like human visual per-
ception and aims to quantify how similar two images appear to the human eye 
[53].

By employing these metrics alongside traditional methods, researchers gain a more 
comprehensive understanding of how models perform in scenarios lacking ground 
truth data.

While Inception Score (IS), Fréchet Inception Distance (FID), Kernel Inception 
Distance (KID), and Learned Perceptual Image Patch Similarity (LPIPS) are valuable 
tools for assessing the quality and diversity of generated images, they may not directly 
translate to evaluating image harmonization techniques because of the following:

• Differing Goals:  Image generation aims to create entirely new, realistic images, 
whereas harmonization focuses on aligning existing images while preserving their 
anatomical content. Metrics like IS and FID prioritize diversity and novelty, which 
might not be desirable in harmonization.

• Focus on Anatomy: Preserving anatomical accuracy is paramount in harmoniza-
tion. These metrics, however, do not explicitly assess how well anatomical struc-
tures are maintained during the process.
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However, there might be situations where these metrics could be incorporated 
into a broader evaluation framework for harmonization, for example, target domain 
matching. In this scenario, if the harmonization process involves generating syn-
thetic images to match a specific target domain (e.g., MRI scans from a particular 
scanner model), these metrics could be used to measure the discrepancy between real 
images from the target domain and the synthetic images produced during harmoni-
zation. This could provide insights into how well the harmonized images capture the 
characteristics of the target domain but would not necessarily address anatomical 
preservation.

In conclusion, while the mentioned metrics offer valuable insights for image gener-
ation, alternative methods are needed to comprehensively assess the success of image 
harmonization techniques, particularly regarding anatomical fidelity.

Lastly, LPIPS measures the distance between feature representations extracted from 
pre-trained deep neural networks, like VGG or ResNet. These feature representa-
tions capture high-level perceptual qualities of the images, such as textures, shapes, 
and structures. Unlike metrics like IS or FID, LPIPS considers these learned features, 
potentially making it a valuable tool for image harmonization. While LPIPS was not 
specifically designed for harmonization, it offers a unique advantage: assessing the 
perceptual quality and fidelity of harmonized images. Specifically, it reports on the 
similarity between the harmonized images and the images from the target domain in 
terms of human perception. Further research is needed to determine its full effective-
ness for harmonization evaluation in various contexts.

These metrics offer insights into the quality and diversity of harmonized images. 
Clinically, they can be useful in scenarios where harmonization involves generating 
synthetic images to match a target domain. For instance, when harmonizing images 
to a specific scanner’s characteristics, these metrics help ensure that the generated 
images align well with the clinical standards of the target domain, thus facilitating 
consistency in diagnostic practices. IS measures the quality and diversity of generated 
images, while FID and KID compare the distribution of real and generated images in 
a feature space. LPIPS evaluates perceptual similarity based on high-level features. 
When used in harmonization tasks, these metrics can help assess how well the har-
monized images match the target domain characteristics, particularly in terms of per-
ceptual and feature-level fidelity.

In addition to the mentioned metrics, it is crucial to evaluate not only the techni-
cal aspects of the harmonization process but also its practical utility in real-world 
applications. It is important to consider how well the harmonized MRI data perform 
in tasks such as disease classification, age estimation, and ROI segmentation. For 
instance, ImUnity model [54] assessed the classification ability to identify individuals 
with ASD (Autism Spectrum Disorder) within the ABIDE database, both before and 
after the harmonization process. In [55] the improvement of Alzheimer’s disease clas-
sification was reported after applying a harmonization strategy. In another study [56], 
the segmentation of the thalamus from various MR image modalities was performed, 
and the impact of harmonization on the segmentation algorithm was investigated.

Common metrics used to evaluate MRI harmonization methods for downstream tasks 
like segmentation and classification include Dice Similarity Coefficient, Jaccard Index, 



Page 18 of 42Abbasi et al. BioMedical Engineering OnLine           (2024) 23:90 

Accuracy, Precision, and Recall. Other metrics such as Hausdorff Distance, F1-score, 
AUC-ROC, and Sensitivity are also employed [57]. These metrics offer quantitative 
measures of the performance of harmonization methods in tasks like anatomical seg-
mentation and disease classification.

Deep learning‑based harmonization taxonomy
Designing a successful harmonization network hinges on four critical elements:

1. Data Availability: The type of data available for training, whether paired (correspond-
ing images from source and target domains) or unpaired (images from each domain 
without direct matches), significantly impacts the design choices 

2. Loss Functions: These functions mathematically quantify the errors made by the net-
work during training. The specific loss function chosen guides the network toward 
achieving the desired harmonization goals.

3. Backbone Architecture: The underlying architecture of the neural network serves as 
the foundation for learning image representations. Different architectures offer vary-
ing capabilities for feature extraction and image transformation.

4. Learning Procedure:  The optimization algorithm used to train the network plays 
a crucial role in its effectiveness. This includes techniques for adjusting network 
weights and parameters to minimize errors.

The following sections delve into a systematic categorization of deep learning-based 
harmonization methods. This categorization is based on these four key aspects:

• Network Architecture: The underlying structure of the neural network.
• Network Learning Algorithm: The specific optimization technique used for training.
• Network Supervision Strategy: The approach used to guide the training process of 

the neural network.
• Network Output: The form of the output generated by the network (e.g., harmonized 

image, segmentation map).

Figure 4 provides a visual representation of this proposed classification scheme, high-
lighting the different aspects considered.

Network architecture

The choice of network architecture is critical for MRI harmonization because it dic-
tates the model’s ability to learn and represent the complex relationships between 
images acquired from different sources or scanners. Different architectures offer vary-
ing degrees of complexity and flexibility, which ultimately influence their performance in 
harmonizing MRI data. Figure 5 provides a historical timeline illustrating the evolution 
of deep learning networks for MRI harmonization in recent years.

To better understand these methods, we can categorize them based on the underly-
ing network architecture they employ. Some of the commonly used architectures (Fig. 6) 
in MRI harmonization include U-Net, GANs, VAEs, Flow-based Generative Models, 
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Transformers, and Custom Networks (approaches are not exclusively in one category 
and are a combination of several networks).

U‑Net

The U-Net architecture has been shown to be successful in segmenting [58] and synthe-
sizing medical images [59]. The U-Net architecture has provided good results in deal-
ing with large and diverse datasets in medical imaging. Due to the skip connections, it 
effectively retains the finer details from the initial images and has demonstrated strong 
performance in image-to-image translation [60] (Fig.  6A). One notable advantage 
of employing U-Net is its ability to enhance data with elastic deformation. It also can 
extract a large number of feature channels in upsampling. However, an inherent limita-
tion is its comprehensive downsampling, which may result in the loss of spatial informa-
tion [61].

Deep Learning-based 
Harmonization 

Network 
Architecture

U-Net

GANs

VAEs

Flow-based 
generative models

Transformers

Custom Networks

Network Learning 
Algorithm

DLs 

Non-DLs 

Network Supervision 
Strategy

Supervised

Unsupervised

Semi-supervised

Self-supervised

Network Output

Direct

Indirect

Fig. 4 Taxonomy of deep learning-based MRI harmonization approaches

(2018) 
Developing 
U-Net based 

methods 

(2019) 
Developing GANs 

based methods

(2020) 
Developing 
VAEs based 

methods 

(2023) Developing 
Attention 

mechanism/ 
Transformers 

based methods

Fig. 5 Timeline of deep harmonization methods
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On the basis of U-Net architecture, a supervised contrast harmonization has been 
introduced which is called DeepHarmony [62]. An overlap cohort was provided through 
two different protocols in order to get training data. This technique transforms images 
from protocols to generate harmonized ones that imitate the contrast of the target pro-
tocol. DeepHarmony is trained in two ways: one-to-one and many-to-one. Both of them 
require four separate networks. The former uses a single contrast from the source proto-
col and produces an image with the corresponding contrast from the target protocol. The 
latter employs four of the input contrasts including T1-weighted, FLAIR, PD-weighted, 
and T2-weighted from the source protocol to generate an output contrast from the tar-
get protocol. According to the result, this approach improves the result compared with 
one-to-one, but it needs further parameters. This approach needs training data of paired 
traveling subjects. In large-scale studies, it is hard to acquire.

A. U-Net-based methods architecture B. GAN-based method architecture

C. CycleGAN-based method architecture D. VAE-based method architecture

E. Flow-based generative model F. Transformers based architecture
Fig. 6 General diagram for deep learning-based medical image harmonization. A U-Net-based methods 
architecture. B GAN-based method architecture. C CycleGAN-based method architecture. D VAE-based 
method architecture. E. Flow-based generative model. F Transformers-based architecture
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Bottani et al. [63] utilized three architectures based on 3D U-Net to synthesize T1w 
non-contrast enhancement (T1w-nce) from T1w contrast enhancement (T1w-ce). These 
modifications included a version with added residual connections referred to as Res-
U-Net, a version with incorporated attention mechanisms called Att-U-Net, and a ver-
sion incorporating both transformer and convolutional layers known as Trans-U-Net. 
These models were employed as standalone generators and also incorporated into a con-
ditional GAN setup, along with the addition of a patch-based discriminator. Although 
the models offered a degree of interpretability and provided promising results in brain 
image segmentation, there is a limitation to creating paired T1w-nce and T1w-ce due 
to the time and cost constraints. In another study [64], a U-Net model was developed 
to learn the non-linear transformation from the contrast of a source image to that of a 
target image across three MRI contrasts. The training and validation have been accom-
plished using 2D paired MR images.

The U-Net architecture synthesizes images at the pixel level using paired data, neces-
sitating precise image coregistration for effective model training. Consequently, inad-
equate alignment of paired MR images could result in the loss of certain brain structure 
information in the generated images.

Generative adversarial network (GAN)

Generative adversarial networks are an approach to generative modeling using deep 
learning methods. Such architecture can be considered as image-to-image translation, 
which generates an image in an unsupervised learning task. GANs have attracted enor-
mous interest in image translation, typically to generate new images from existing ones. 
The incorporation of a generator and a discriminator creates a GAN model (Fig. 6B).

A CycleGAN [65], which is widely used in MRI harmonization, stands as a robust 
deep learning framework facilitating image-to-image translation without the necessity 
of paired training data. It is made up of two GANs, including two discriminators and 
two generators (Fig. 6C). The objective of the model is to comprehend the attributes of 
the target domain and produce novel images from the source domain that exhibit these 
attributes. CycleGAN offers several key advantages over other image-to-image transla-
tion models. It excels in terms of accuracy by utilizing unpaired data, thus delivering 
superior results without the need for an extensive collection of paired training images. 
Its robustness to domain shifts in the data makes it versatile, allowing it to perform well 
with input images from various domains, enabling a wide range of translation tasks. 
Moreover, CycleGAN can generate high-quality images with smaller datasets, making 
it particularly valuable for tasks with limited training data, such as medical image-to-
image harmonization [66, 67].

In [68], an unsupervised image-to-image canonical mapping based on CycleGAN was 
learned from a diverse dataset to a reference domain. This approach was evaluated on 
brain age prediction and schizophrenia classification to show how can mitigate con-
founding data variation while retaining semantic information. A Maximum Classifier 
Discrepancy Generative Adversarial Network (MCD-GAN) was introduced [69], lever-
aging the benefits of both generative models and maximum discrepancy theory. Koman-
dur et  al. [66] employed a 3D CycleGAN to harmonize brain MRI data from diverse 
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sources. They concluded that GAN-harmonized data yield higher accuracy compared to 
raw data for the age prediction task.

Training the CycleGAN can be time consuming, especially when dealing with a large 
number of training images. Overfitting is a concern with CycleGAN, possibly resulting 
in inferior outcomes on unseen data. Interpretability can be a hurdle with CycleGAN, 
making it challenging to comprehend the rationale behind the model’s generated results. 
To address infant neuroimaging datasets harmonization, S2SGAN (Surface-to-Surface 
GAN) was introduced [70]. This method combines the spherical U-Net and the Cycle-
GAN. The presented cycle-consistent adversarial networks are based on a spherical cor-
tical surface for harmonizing cortical thickness maps between different scanners.

The majority of unsupervised approaches are unable to differentiate between variabil-
ity caused by image acquisition and that originating from population differences across 
different sites. As a result, these methods necessitate datasets to include subjects or 
patient groups with comparable clinical or demographic profiles. Deep learning frame-
works have shown success in dealing with image translation by breaking it down into 
basic content (e.g., line contours and orientation) and complex style (primarily color 
and texture) [71]. This framework is known by the “Disentangled Representation” term 
(more details are provided in part 3–2). All images with the same domain have the same 
content space but the style can vary. This allows the framework to make changes to the 
style while maintaining the original content. The aim is to maintain consistency in con-
tent but adjust the image style. This approach has been used to produce highly realistic 
translation results.

In [72], cross-site MRI image harmonization has been considered a style transfer 
problem instead of a domain transfer problem to overcome the need for the datasets 
to include patient groups or subjects with homogeneous demographic information. 
The proposed approach tries to overcome the limitation of the statistical method [73]. 
Some statistical methods need certain clinical or demographic characteristics of subjects 
within the dataset to control the acquisition-based variance. This method is capable of 
harmonizing MRI images without prior knowledge of their scan/site labels and harmo-
nized by infusing style information derived from a single reference image.

The StarGAN is a version of GAN that enables Image-to-Image GANs to perform 
mapping across more than two domains using a single generator and acquire shared fea-
tures applicable to all domains [74], whereas conventional models need multiple genera-
tors. However, it has limited ability to capture minor feature variations. The StarGAN v2 
was utilized to process various datasets using canonical mapping from different sites to a 
reference domain [75]. By doing so, they reduced the impact of site-based variance while 
preserving the meaning provided by the input data.

A 3D model named Image Generation with Unified Adversarial Networks (IGUANe) 
was introduced [76] that benefits domain translation and style transfer methods to har-
monize multicenter brain MR images. It extends the CycleGAN architecture by integrat-
ing multiple domains for training using a many-to-one approach.

Addressing hallucinations in GANs

Hallucinations refer to the generation of artificial structures in the output images that do 
not correspond to real anatomical features. This is particularly problematic in medical 
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applications, where the authenticity of every detail is crucial for accurate diagnosis and 
treatment planning.

The causes of hallucinations in GANs are multifaceted [77]. One primary cause is 
the imbalance between the generator and the discriminator during training, where the 
generator may learn to produce plausible but incorrect details to fool the discriminator. 
Another cause is the lack of sufficient and diverse training data, which can lead to over-
fitting and the generation of unrealistic artifacts. Additionally, the inherent randomness 
in GANs can introduce noise that manifests as hallucinations.

To mitigate hallucinations, several strategies have been suggested in the literature. One 
approach is to enhance the quality and quantity of training data [78]. Techniques such as 
data augmentation can also help in this regard. Another method is to improve the train-
ing process through techniques like progressive growing of GANs [79], where the model 
is trained on low-resolution images initially and progressively moves to higher resolu-
tions, allowing for more stable training and better-quality outputs.

Regularization techniques, such as spectral normalization and gradient penalty [80], 
can also help by stabilizing the training dynamics and reducing the likelihood of hal-
lucinations. Additionally, incorporating domain-specific knowledge through the use 
of hybrid models that combine GANs with traditional image processing techniques 
or other deep learning models can provide more reliable outputs. By integrating these 
strategies, future work can aim to reduce the incidence of hallucinations in GAN-gener-
ated images, thereby enhancing their clinical applicability and reliability.

Variational autoencoders (VAEs)

The GAN networks and VAE are two of the most popular AI image generators. The 
VAEs consist of two main architectures: encoders and decoders (Fig. 6D). The encoder 
learns and encodes the representation of input data and maps it to the latent space. The 
decoder converts the latent space to get back the original data [81]. According to the 
comparative study regarding anomaly segmentation on brain MRI images, GAN-based 
models are recognized for their ability to generate ultra-realistic and sharp images 
[82]. Meanwhile, AutoEncoders are known for their propensity to produce blurry 
reconstructions.

Torbati et al. proposed a multi-scanner harmonization framework [83]. This encoder–
decoder architecture maps the MRIs from multi-scanners to the latent space and then 
maps the latent embedding to the harmonized image space. It considers two training 
steps to preserving the anatomical structure: (1) the harmonized images and input image 
should be as similar as possible and the variance of embeddings across the scanners 
should be minimized; (2) ensuring that the output images remain similar across scan-
ners. This step helps maintain uniformity and consistency between various scans.

One-shot learning learns from limited data and has shown significant results in many 
tasks of medical imaging [84–86]. Based on VAEs, a one-shot learning method was pro-
posed for harmonization across imaging locations [49]. During testing, the architecture 
utilizes an image from a clinical site to create an image that aligns with the intensity 
scale of the cooperating sites. In another study, a zero-shot learning framework using 
style-blind autoencoders was introduced [87]. The network was trained to recognize 
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and extract essential content information exclusively. Consequently, the trained network 
demonstrated the capability for zero-shot harmonization by discarding unknown scan-
ner-dependent contrast information.

The architectures based on the combination of GAN networks and VAEs have been 
presented in multiple studies. Cackowski et al. introduced ImUnity [54]. To decrease the 
effect of the scanner or site identity on the training results, the generator (VAE) was 
equipped with a bias learning module connected to the bottleneck. Additionally, a bio-
logical preservation module was proposed to maintain pertinent biological information 
within the latent space representation.

Flow‑based generative model

A flow-based generative model is a type of generative model that transforms a simple 
input distribution into a more complex data distribution using a series of invertible 
transformations called flows (Fig.  6E). These models offer exact likelihood evaluation, 
making them suitable for tasks like density estimation. They are flexible, scalable, and 
can handle high-dimensional data, making them applicable to various tasks such as 
image generation and denoising.

Recently, BlindHarmony [88] was introduced as a solution for blind harmonization, 
where a flow-based blind MR image harmonization framework was developed. Blind-
Harmony utilized only the target domain dataset during training. The objective is to dis-
cover a harmonized image that retains the anatomical structure and contrast of the input 
source domain image while ensuring a high likelihood in the flow model, thus facilitating 
harmonization for the target domain by leveraging the invertibility of flow models. Bei-
zaee et al. proposed an unsupervised MR harmonization method based on normalizing 
flow [89]. Within this framework, a shallow harmonizer network was trained to restore 
images of the source domain from their augmented counterparts. Subsequently, a nor-
malizing flow network was trained to understand the distribution of the source domain. 
Ultimately, during testing, modifications were made to the harmonizer network so that 
the resulting images aligned with the distribution learned by the normalizing flow model 
of the source domain. In another study, a causal flow-based approach was proposed to 
address the issue of varying feature distributions in multi-site data utilized for Parkin-
son’s disease classification [90].

Flow-based models are inherently invertible, allowing for bidirectional mapping 
between domains without loss of information and the transformation process is inter-
pretable so facilitates a better understanding of the harmonization process. However, 
compared to other generative models, flow-based methods are relatively newer in the 
field of MRI harmonization, leading to fewer established techniques and benchmarks.

Transformers

Recently, transformers with attention mechanisms (Fig.  6F) have gained promising 
performance in medical image processing [91] and image-to-image translation [92]. 
Yao et  al. [93] employed two attention-based image-to-image translation frameworks, 
Morph-UGATIT and QS-Attn [94] for MRI harmonization. The effectiveness of these 
harmonization strategies was evaluated and compared to the conventional CycleGAN 
by performing a subcortical segmentation task on a heterogeneous dataset acquired at 
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1.5T and 3T. Among the frameworks assessed, QS-Attn stands out with the most opti-
mal performance. Morph-UGATIT shows comparable performance to QS-Attn and 
exhibits enhancements in most subcortical regions compared to the CycleGAN model. 
They concluded that attention-based harmonization techniques demonstrate notable 
improvements over the baseline frameworks, especially when combined with diverse 
downstream tasks like segmentation. In [95] two transformer encoders were introduced 
to extract both style and content information from MR images, and two decoders were 
utilized to generate harmonized image patches. Additionally, the impact of changes in 
image resolution on position encoding was addressed. To capture semantic information 
in images of varying scales, a content-aware positional encoding scheme method was 
employed, effectively accommodating images of different sizes.

Custom networks

The custom-designed networks are characterized by architectures that, while sharing 
similarities with U-Net, GANs, VAEs, flow-based generative models, and transformer-
based approaches, include distinct components and configurations tailored to address 
specific challenges in this research domain. These architectures utilize elements that 
diverge from typical implementations of the mentioned architectures. They incorporate 
unique configurations of convolutional layers, pooling layers, domain classifiers, and 
specially designed blocks that may not fit into these established categories.

Inspired by the adversarial framework and domain adaptation techniques, a harmo-
nization approach was introduced that can be effective for classification, regression, 
and segmentation tasks while employing two diverse network architectures [96]. Image 
harmonization can be considered a multi-source joint domain adaptation problem. This 
approach tries to produce shared feature representations that are invariant to the acqui-
sition scanner while still completing the main task of interest across scanners and acqui-
sition protocols with minimum performance compromise.

An attention-guided domain adaptation was introduced for multi-site MRI har-
monization and was applied to automated brain disorder identification [97]. In this 
framework, the attention discovery and domain transfer modules were defined to auto-
matically pinpoint discriminative dementia-related regions in each whole-brain MRI 
scan and facilitate knowledge transfer between the source and target domains, respec-
tively. Wolleb et al. [98] introduced a constraint in the latent space of an encoder–classi-
fier network to ignore scanner-related characteristics.

Network learning algorithm

The learning strategies for MRI harmonization has been categorized into two main 
groups: disentangled learning (DL) methods and non-disentangled learning methods 
(non-DLs).

1. Disentangled Learning (DL) Methods: Disentangled learning methods refer to 
approaches where the neural network or algorithm is explicitly designed to learn 
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separate and interpretable factors or features from the input data. In the context of 
MRI harmonization,

o DL methods aim to disentangle latent factors such as imaging artifacts, varia-
tions in acquisition protocols, tissue types, and other confounding factors that 
contribute to variability in MRI scans.

o These methods typically employ architectures such as VAEs, adversarial training 
techniques, or other models with explicit mechanisms to learn invariant repre-
sentations across different datasets.

o The goal of DL methods is to improve the robustness and generalization of MRI 
harmonization by separating out and modeling the underlying factors of vari-
ability.

2. Non-Disentangled Learning Methods (non-DLs): Non-disentangled learning meth-
ods, in contrast, do not prioritize the disentanglement of underlying factors in the 
input data:

o These methods may include traditional neural networks, regression-based mod-
els, or simpler machine learning algorithms.

o They focus on direct mapping from input (MRI scans with variability) to output 
(harmonized MRI scans) without explicitly modeling or separating out the dis-
tinct factors contributing to variability.

o While effective in certain scenarios, non-DL methods may be less robust to 
dataset variations and might not generalize as well across different MRI datasets 
with varying acquisition conditions.

Fig. 7 Disentanglement representation learning diagram
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Studies have shown that inverting the magnetic resonance imaging signal equation 
produces an encoded image with disentangled contrast data and contrast-invariant 
anatomical data. This means the image can be separated into two distinct parts that 
are denoted by β and θ for anatomical map and contrast, respectively. Figure 7 dem-
onstrates the disentanglement representation learning diagram which uses encoder–
decoder architecture.

Dewey et al. proposed an approach that includes two sub-networks [99]. The first 
one is the encoder and the second one is the decoder. These two sub-networks are 
connected by the latent space which contains disentangled contrast data and con-
trast-invariant anatomical data. This encoder and decoder are based on U-Net archi-
tecture. For training the network, the T1-weighted and T2-weighted images of the 
same anatomy using different scanning protocols. It is expected that the network will 
produce the same β value for the same anatomies and equal θ for images generated 
from scanners with the same protocol. This approach utilizes the multiple contrast 
magnetic resonance (MR) images acquired within each site. These intra-site paired 
data can be found in the same session. But, relying on this technique alone will not 
provide a globally disentangled latent space. Zuo et al. introduced a similar architec-
ture which is called CALAMITI [100] based on information bottleneck theory. The 
algorithm learns a global latent space of anatomical and contrast information and it 
can be adapted to a new testing site using only the data collected at the new site. This 
architecture requires paired images from the same site during training which might 
limit certain applications, especially in cases where obtaining multi-contrast images is 
not feasible. Zuo et al. introduced a method that uses a single MR modality [101]. The 
inputs of the encoder–decoder are two slices from different orientations of the same 
3D volume instead of paired images. Additionally, they defined a new information-
based metric for evaluating disentanglement.

According to the inspiration of advancements in multi-domain image translation, 
Multiple-site Unsupervised Representation Disentanglement (MURD) was intro-
duced [102]. The harmonized images were produced using combining the content of 
the original image with styles from a specific site or a generator. The style genera-
tor enables the generating of multiple appearances concerning natural style variations 
associated with each site. In [103], another work based on disentangled represen-
tation was introduced that disengaged the image into content and scanner-specific 
space. This method was evaluated on healthy controls and multiple sclerosis (MS) 
cohorts. Zhao et  al. developed a deep learning model to harmonize the multi-site 
cortical data using a surface-based autoencoder [104]. The encoded cortical features 
were subsequently decomposed into components related to site-specific characteris-
tics and those unrelated to site effects. An adversarial strategy was employed to pro-
mote the disentanglement of these components. Subsequently, the decoding of the 
site-unrelated features, combined with other site-related features, facilitates the gen-
eration of mappings across different sites.

A disentangled latent energy-based style translation (DLEST) framework was intro-
duced [105] in order to harmonize image-level structural MRI. The proposed model dis-
entangles site-specific style translation and site-invariant image generation through the 
utilization of an energy-based model and a latent autoencoder.
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Harmonization with Attention-based Contrast, Anatomy, and Artifact Awareness 
(HACA3) was suggested to overcome some drawbacks of synthetic-based disentangle-
ment [106]. The previous methods to harmonize MR images are limited by their reliance 
on assumptions that contrast images from the same subject share the same anatomy. 
These assumptions are doubtful as different contrasts are aimed at highlighting distinct 
anatomical features. Moreover, these methods require a fixed set of images for training, 
which is often limited to T1-weighted and T2-weighted data. Finally, the existing meth-
ods are sensitive to artifact images and other image artifacts, making them less useful in 
practical applications.

Utilizing DRL’s advantages, it becomes possible to learn and align independent factors 
within generation objectives with the latent representation through disentanglement. 
Consequently, this enables effective control over the generation process [107].

In contrast, non-disentangled representations encapsulate multiple factors of varia-
tion in a more intertwined manner, making it challenging to isolate individual factors 
and understand their influence on the harmonization process. While non-disentangled 
approaches may offer simplicity and computational efficiency, they often lack the inter-
pretability and robustness necessary for reliable MRI harmonization across diverse 
datasets.

Network supervision strategy

Broadly, harmonization techniques can be classified into major categories, including 
supervised, unsupervised, semi-supervised, and self-supervised approaches. Supervised 
harmonization methods [62, 108] are employed to harmonize images from different 
scanners/sites using a cross-domain dataset. These methods require a group of subjects 
to be scanned in both domains. This arrangement provides the training and validation 
data that the model requires. Due to the logistics and costs of acquiring data, gather-
ing cross-domain data is uncommon in practice. Additionally, cross-domain data are 
limited. Typically, data from multiple domains are available without cross-domain data. 
This necessitates an unsupervised harmonization method [66, 89, 109], which requires a 
training method without data from the same subjects from multiple domains.

Semi-supervised approaches [110], on the other hand, are trained using a dataset con-
taining under-sampled acquisitions of both source and target contrasts from MRI scans. 
In contrast, self-supervised approaches in the realm of harmonization enable models 
to learn from the inherent structure of the data itself, eliminating the need for external 
labels. However, it is important to note that many methods introduced in the field of 
harmonization are categorized under unsupervised techniques.

Network output

In MRI harmonization, methods can be categorized into two categories based on 
their network output: direct and indirect. In the direct network output category, 
methods focus on predicting the target image directly from the reference image. 
Deep learning models within this category are specifically trained for harmonizing 
data, allowing for straightforward evaluation by a radiologist. Conversely, methods in 
the indirect network output category involve training models on a downstream task, 
such as classification, registration, segmentation, or age prediction. In this category, 
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the harmonization process occurs implicitly through optimization during training, 
resulting in harmonized data that remain concealed from direct observation. Figure 8 
illustrates the general diagram of direct and indirect harmonization.

There are some papers in the literature that consider harmonization for downstream 
tasks. Grigorescu et  al. [111] explored two unsupervised domain adaptation tech-
niques, seeking the optimal solution for tissue segmentation maps using T2-weighted 
magnetic resonance imaging data from an unseen neonatal population born pre-
term. In [56], a 3D U-Net architecture was presented to segment the thalamus from 
multiple MR image modalities, and the effect of harmonization on the segmentation 
algorithm was investigated. Tor-Diez et  al. [112] used an unpaired image-to-image 
translation strategy based on adversarial networks and supervised segmentation for 
the anterior visual pathway. They concluded that harmonization can improve the 
segmentation results significantly. In another study, with the aim of boosting Alzhei-
mer’s disease classification, the Attention-Guided Generative Adversarial Network 
(AG-GAN) was used for data harmonization [55]. Komandur et  al. [66] proposed a 
CycleGAN-based harmonization for improving the results of age estimation. Accord-
ing to the assumption that neglecting downstream applications during harmoniza-
tion can hinder overall performance, the goal-specific harmonization framework was 
proposed [113]. This VAE-based architecture utilizes downstream application per-
formance to regulate the harmonization procedure. They concluded that while this 
approach enhances downstream performance, it may also limit generalization to new 
downstream applications, potentially necessitating repetition of the training proce-
dure for each one.

In indirect approaches, according to downstream tasks, different objective func-
tions for clustering, classification, or regression can be defined, so they need a 
diverse range of learning procedures, parameters, and optimization algorithms. 

Fig. 8 Classifying Harmonization according to Network Output
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Table 3 Details of harmonization techniques that were discussed in this review article. DRL 
indicates Disentanglement Representation Learning

Authors Year Network Data Number 
of patients

2D/3D Open-
Source

Image 
modality

Downstream 
Task

Dewey et al. 
[62]

2019 U-Net local dataset 12 2D & 3D – T1-weighted
FLAIR
PD-/
T2-weighted

No

Zhao et al. [70] 2019 U-Net and 
CycleGAN

BCP dataset 183 3D – T1-weighted
T2-weighted

Yes

Bashyam et al. 
[68]

2020 CycleGAN local dataset 9701 2D – T1-weighted Yes

Tor-Diez et al. 
[112]

2020 VAE and GAN Clinical Center 
(CNH, CHOP, 
CHC)

18 3D – T1-weighted Yes

Dewey et al. 
[99]

2020 Custom 
Network with 
DRL

IXI
Two private 
datasets

50 2D – T1-weighted
T2-weighted

No

Mengting Liu 
et al. [72]

2021 CycleGAN UKBB, PPMI, 
ADNI, ICBM

518 2D – T1-weighted No

Eshaghzadeh 
et al. [83]

2021 VAE local dataset 18 2D Code T1-weighted No

Dinsdale et al. 
[96]

2021 Custom 
Network

UK Biobank, 
OASIS, White-
hall II

8418 2D Code T1-weighted Yes

Guan et al. [97] 2021 Custom 
Network

ADNI 2572 3D – T1-weighted Yes

Zuo et al. [100] 2021 VAE OASIS3
IXI

120 2D Code T1-weighted
T2-weighted

No

Li et al. [103] 2021 Custom 
Network with 
DRL

local dataset 150 2D Code FLAIR Yes

Grigorescu 
et al. [111]

2021 U-Net dHCP
ePrime

403 3D Code T2-weighted Yes

Sinha et al. [55] 2021 GAN ADNI
AIBL OASIS

854 3D – T1-weighted Yes

Bottani et al. 
[63]

2022 U-Net local dataset 307 3D – T1-weighted No

Osman et al. 
[64]

2022 U-Net BRATS’2018 477 3D code T1-weighted
T2-weighted
FLAIR

No

Yan et al. [69] 2022 GAN Simulated 
data (Double 
moon)
ABCD

8087 3D – T1-weighted No

Fatania et al. 
[87]

2022 VAE CC359 public 
dataset

250 2D – T1-weighted No

Wolleb et al. 
[98]

2022 Custom 
Network

local dataset
ADNI

Not pro-
vided

3D Code T1-weighted Yes

Bashyam et al. 
[75]

2022 StarGAN local dataset 8876 2D – T1-weighted Yes

Zuo et al. [101] 2022 Custom 
Network with 
DRL

IXI 150 2D – T1-weighted
or T2-weighted

No

Chang et al. 
[109]

2022 Custom 
Network

local dataset 116 2D – T2-weighted Yes

Yurt et al. [110] 2022 GAN IXI
Vivo Brain 
Dataset

104 3D Code T1- / 
T2-weighted
T2- / PD-
weighted

No

Shao et al. [56] 2022 U-Net local dataset 22 3D – T1-weighted Yes

An et al. [113] 2022 VAE ADNI
AIBL
MACC 

2787 2D Code T1-weighted Yes



Page 31 of 42Abbasi et al. BioMedical Engineering OnLine           (2024) 23:90  

Therefore, when addressing a different task, the harmonization technique needs to 
be initiated anew.

The details regarding the papers’ information are presented in Table 3. Since the 
datasets and evaluation metrics are different the comprehensive comparison is 
limited. The variation in scanners and number of participants, healthy and patient 
cases, and the investigated contrasts can affect the result and applicability.

Table 3 (continued)

Authors Year Network Data Number 
of patients

2D/3D Open-
Source

Image 
modality

Downstream 
Task

Komandur 
et al. [66]

2023 CycleGAN UK Biobank
ADNI
AIBL
OASIS-1 
WHIMS

4941 3D – T1-weighted No

Liu et al. [73] 2023 GAN ADNI3
ICBM
PPMI
UK Biobank
ABCD

718 2D Code T1-weighted Yes

Jeong et al. 
[88]

2023 Flow-based 
generative 
model

OASIS3 20 2D Code T1-weighted Yes

Beizaee et al. 
[89]

2023 Flow-based 
generative 
model

ABIDE 79 2D Code T1-weighted Yes

Yao et al. [84] 2023 Transformers SegData
HarmoData

Not pro-
vided

3D – T1-weighted Yes

Han et al. [95] 2023 Transformers ADNI 391 2D – T1-weighted Yes

Parida et al. [49] 2023 VAE local dataset 180 3D – T1-weighted No

Cackowski 
et al. [54]

2023 GAN-VAE ABIDE
OASIS
SRPBS

1698 3D – T1-weighted No

Zhao et al. 
[104]

2023 Custom 
Network with 
DRL

public data-
set &
local dataset

2342 3D – T1-weighted
T2-weighted

Yes

Wu et al. [105] 2023 Custom 
Network with 
DRL

OpenBHB
SRPBS

4092 2D – T1-weighted Yes

Zuo et al. [106] 2023 Custom 
Network with 
DRL

public data-
set &
local dataset

210 3D Code T1-weighted
T2-weighted
FLAIR
PD-weighted

Yes

Roca et al. [76] 2024 CycleGAN ADNI
MCIC
PPMI
COBRE
ABIDE

676 3D Code T1-weighted Yes

Vigneshwaran 
et al. [90]

2024 Flow-based 
generative 
model

6 sites 415 2D – T1-weighted Yes

Liu et al. [102] 2024 Custom 
Networks with 
DRL

ABCD
ADNI
AIBL

 > 6000 2.5D Code T1-weighted
T2-weighted

Yes
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Applicability and limitations of harmonization
Harmonization techniques in MRI neuroimaging are essential for mitigating scanner-
related variability and site effects, allowing for more reliable and comparable results 
across different studies and cohorts. These methods enhance the statistical power of 
studies by increasing the effective sample size and facilitating meta-analyses and multi-
site collaborations. Harmonization is particularly beneficial in large-scale studies involv-
ing data collected from different scanners, protocols, and populations.

Despite its advantages, harmonization is not without limitations. One major concern 
is that harmonization algorithms may introduce bias if not properly validated across dif-
ferent datasets. The effectiveness of harmonization can vary depending on the specific 
characteristics of the datasets, including differences in scanner types, imaging protocols, 
and the populations being studied. Additionally, harmonization processes might inad-
vertently remove or obscure biologically relevant variations that are not related to scan-
ner differences.

Another limitation is the complexity and computational cost associated with advanced 
harmonization techniques. Implementing these methods often requires significant 
expertise and resources, which may not be readily available in all research settings. Fur-
thermore, the choice of harmonization method can impact the results, necessitating 
careful consideration and validation of the chosen approach.

Neuroimaging analysis should not always use harmonization, especially in scenarios 
where the primary goal is to investigate scanner-specific effects or when studying the 
inherent variability between different imaging systems. In such cases, harmonization 
could mask the very differences that are of interest. Additionally, in single-site stud-
ies with consistent imaging protocols, the need for harmonization may be minimal or 
unnecessary.

Harmonization might negatively impact results if applied inappropriately. For 
instance, over-harmonization can lead to the loss of important biological signals, result-
ing in reduced sensitivity to detect true effects. It is crucial to balance the removal of 
unwanted scanner-related variance with the preservation of genuine biological variabil-
ity. Researchers should perform extensive validation to ensure that harmonization does 
not distort the data in a way that affects the study outcomes.

Discussion
Inconsistent contrast across MRI scans presents a significant hurdle for modern medical 
image analysis techniques. This becomes particularly evident when using deep learning 
models trained on specific image types. For example, a segmentation model designed 
for CT scans might perform poorly on MR images due to the fundamental differences 
in how these imaging techniques capture the body. While research efforts like cross-
domain synthesis [114–117] have aimed to address these challenges, inconsistencies in 
contrast remain a persistent issue, even within the realm of MRI scans themselves [28].

It is important to distinguish between image harmonization and cross-domain syn-
thesis, although both techniques address challenges with image variability. While image 
harmonization aims to align images from different sources  (e.g., scanners) while  pre-
serving anatomical details and spatial relationships, cross-domain synthesis focuses on 
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generating images in a target domain based on images from a different source domain. 
While the former is particularly useful when combining datasets from different sources 
for analysis and it helps ensure consistency and reduces variability, enabling more reli-
able comparisons, the goal of the latter is to preserve key features like structures or tex-
tures, while also creating visually realistic images  in the target domain. This technique 
can be used for data augmentation, domain adaptation, and image enhancement. In 
essence, harmonization aims to make existing images from different sources more com-
patible, while cross-domain synthesis aims to create entirely new images within a spe-
cific domain. Given this distinction, and our focus on harmonization techniques, we 
have not explored cross-domain synthesis techniques within this paper.

While most harmonization techniques reviewed here leverage 2D images, there is 
growing recognition that 3D models offer significant advantages. 3D models hold greater 
potential for capturing the full complexity of medical image features, potentially leading 
to improved learning performance. However, 3D models come with significant computa-
tional limitations such as increased memory requirements to store and process 3D data 
and longer training times for deep learning models due to the larger amount of data. To 
address these challenges, some harmonization approaches employ a hybrid strategy for 
example, 2D Slices with Multi-Orientation. In this approach, models are trained using 
2D axial, coronal, and sagittal slices extracted from each 3D MR volume. Subsequently, 
these multi-directional 2D slices are then combined into a harmonized 3D volume [106].

A majority of current harmonization methods reported in the literature evaluate their 
performance primarily on T1-weighted MRI scans. While this is a common starting 
point, it is important to acknowledge the limitation of limited generalizability, i.e., these 
methods might not achieve the same level of success with other MRI contrasts, such as 
T2-weighted, PD-weighted, and T2-FLAIR images.

The preprocessing steps before harmonization approach can affect the harmonization 
outcome. In many cases, the harmonizing native MRI is an essential step. Subsequent 
investigation should clarify the influence of harmonization on native MRI and explore 
how the quality of harmonization can be conditional on the preprocessing procedure 
employed [73]. By understanding this interplay between preprocessing and harmoniza-
tion, researchers can develop more robust and effective pipelines for MRI data analysis.

Evaluating and comparing different harmonization techniques presents several 
obstacles. Firstly, there is a current lack of standardized and comprehensive datasets 
encompassing a wide variety of MRI contrasts, scanner types, and patient demo-
graphics (healthy vs. patient groups). Many studies rely on subsets of data, focusing 
on scanners with minimal differences or specific patient groups. Secondly, given the 
importance of harmonization in medical image processing, establishing a reference 
dataset would be highly beneficial. This dataset should ideally include multiple MRI 
contrasts, involve data from various patient cohorts, and encompass a diversity of 
challenges commonly encountered in real-world scenarios. Such a benchmark would 
facilitate more comprehensive evaluation and comparison of harmonization tech-
niques for downstream tasks. Thirdly, conventional image similarity metrics might 
not fully capture the effectiveness of harmonization. They may prioritize overall simi-
larity without adequately considering factors like cross-domain consistency (compat-
ibility between data from different sources) and preservation of crucial anatomical 
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details. Re-evaluating harmonization success requires metrics that comprehensively 
assess these key aspects.

While supervised learning approaches using U-Net convolutional neural networks 
have shown promise in MRI harmonization, they have limitations. Firstly, super-
vised methods require paired data, meaning the same patients need to be scanned 
on multiple scanners. This can be expensive and time consuming to acquire, limiting 
the applicability of these approaches. Secondly, supervised methods often work best 
for brain imaging due to the relative homogeneity of the MR signal and the feasibil-
ity of performing rigid image registration (aligning images based on anatomical land-
marks). Addressing these challenges will be crucial to advance the development and 
evaluation of effective harmonization techniques for broader applications in medical 
image analysis.

Accurately assessing the effectiveness of different image harmonization techniques 
remains a challenge due to two key limitations. Firstly, there is an absence of standard-
ized benchmark datasets encompassing a wide variety of factors hinders comprehensive 
evaluation and comparison. The current studies often rely on the following:

o Subsets of data: Some studies use a limited portion of a larger dataset, potentially 
missing valuable information.

o Homogeneous data: Some studies focus on data acquired from scanners with mini-
mal differences, limiting the generalizability of findings.

o Data from specific patient groups: Some datasets might be restricted to healthy or 
diseased individuals, neglecting the real-world scenario where datasets may include 
both.

Given the crucial role of harmonization in medical image processing, a robust refer-
ence dataset is urgently needed. This dataset should ideally include multiple MRI con-
trasts (T1-weighted, T2-weighted, etc.), data from diverse patient cohorts (healthy and 
diseased) and a variety of challenges commonly encountered in real-world settings (e.g., 
scanner variations, acquisition protocols). Such a comprehensive benchmark would 
enable researchers to thoroughly evaluate and compare harmonization techniques, ulti-
mately improving their performance in downstream tasks.

Conventional image similarity metrics (like PSNR or SSIM) primarily focus on over-
all image similarity. While important, they may not fully capture the cross-domain 
consistency, i.e., how well does the harmonized image align with data from a different 
source (e.g., another scanner)? They may not also fully provide anatomical preserva-
tion, i.e., does the harmonized image retain the crucial anatomical details present in 
the original image? To address these limitations, a re-evaluation of success metrics is 
necessary. New metrics should be developed, or existing ones adapted to comprehen-
sively assess these essential aspects of harmonization.

Addressing these limitations in datasets and evaluation methods represents a cru-
cial step toward the development and implementation of next-generation harmoniza-
tion techniques for broader use in medical image analysis.

While U-Net convolutional neural networks have shown promise in supervised learn-
ing approaches for MRI harmonization, they face some limitations such as paired data 
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dependency, applicability constraints such as MR signal homogeneity and rigid image 
registration. These limitations restrict the broader applicability of supervised U-Net-
based approaches for harmonization in medical image analysis.

Generative Adversarial Networks (GANs) have been employed to address harmoni-
zation by synthesizing images with a specified contrast, where the “content” from the 
input image is retained while adjusting the contrast to match that of a target scan-
ner. The CycleGAN utilizes unpaired training data and unsupervised learning, show-
ing promise in harmonization tasks and leading to developments in the prediction of 
brain age and classification. However, an inherent limitation of GANs is their inability to 
inherently distinguish content from contrast, potentially resulting in alterations to ana-
tomical details to align more with the target scanner dataset, causing “geometry shifts.” 
Preserving patient anatomy is crucial for precise diagnosis and treatment. In the absence 
of structural uniformity, the generated images might lack clinically significant specifics. 
Additionally, GANs are well known for producing artificial structures that are not pre-
sent in the initial training data, a phenomenon commonly referred to as “hallucination.”

Variational Autoencoders (VAEs) offer an alternative approach to MRI harmonization 
that addresses a key limitation of supervised learning: the need for paired data. VAEs 
can potentially harmonize data across multiple sites without requiring scans from the 
same subjects at each location. This is achieved by learning a latent representation of the 
data, which essentially captures the underlying characteristics of the images in a com-
pressed form. The VAE then transforms data from one site into another using this latent 
space. However, some of the limitations of VAEs blurry reconstructions and challeng-
ing latent space interpretability. While VAEs hold promise for multi-site harmonization 
without paired data, further research is needed to address these limitations and improve 
the accuracy and detail preservation in the harmonized images.

Disentangled representation learning aims to separate an image’s style (contrast) and 
content (anatomy) into distinct representations. This allows for modifications to the 
style while preserving the underlying anatomical details. However, in complex MRI data, 
factors like contrast and anatomical details can be intertwined and challenging to per-
fectly separate. This can lead to ambiguities in the disentanglement process, resulting 
in overlapping or mixed representations of the intended factors. Additionally, extend-
ing disentangled representation learning to 3D or higher dimensions presents additional 
challenges. The increased complexity of higher-dimensional spaces makes it more dif-
ficult to disentangle the features within them.

Vision Transformers (ViTs) have emerged as a powerful tool in computer vision, demon-
strating effectiveness across diverse tasks like segmentation, classification, and image-to-
image translation. This versatility stems from their core mechanism, self-attention. Unlike 
traditional convolutional neural networks, ViTs can directly analyze relationships between 
any two parts of an image, allowing them to capture long-range dependencies and gain a 
deeper understanding of the global context. However, ViTs also face some limitations due 
to need for high-resolution input images for optimal performance and substantial compu-
tational memory and processing power for training and inference. These factors can limit 
the applicability of ViTs in scenarios with limited computational resources or where pro-
cessing speed is critical.
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In reviewing the advancements in deep learning models for MRI harmonization, it is evi-
dent that even marginal improvements in image quality metrics can be of significant clini-
cal value. However, these improvements often appear minor when comparing new network 
architectures. The statistical analysis of these improvements is crucial to determine their 
true significance. For instance [118], highlights the importance of using rigorous statistical 
methods such as Analysis of Variance (ANOVA) and Mixed Effects Models (MEM).

Similarly [119], investigated three U-Nets (dense, robust, and anisotropic) for upscaling 
low-quality MRI images. Despite non-statistically significant differences in basic evaluation 
metrics, mixed effects statistics illustrated significant differences. This suggests that while 
the detailed architecture of these U-Nets may not drastically alter the outcomes, the use of 
robust statistical techniques can reveal critical differences and interactions. These findings 
underscore the importance of employing comprehensive statistical methods to fully under-
stand and validate the performance of different network configurations.

Furthermore, the application of robust statistical techniques, including cross-validation, 
paired t-tests [120], Wilcoxon signed-rank tests [121], and bootstrap methods, can enhance 
the reliability, generalizability, and rigor of findings in deep learning model evaluations. 
These approaches collectively provide a comprehensive framework for assessing model 
performance beyond subjective evaluation metrics alone. Thus, future research should pri-
oritize not only advancing novel architectures but also ensuring meticulous statistical vali-
dation of performance improvements to substantiate their clinical efficacy.

In parallel with these advancements, the integration of foundation models into the 
harmonization process holds the potential to further refine image quality and consist-
ency across diverse datasets. Foundation models, which are large-scale, pre-trained deep 
learning models, have recently attracted significant attention across various deep learning 
challenges. These models are trained on extensive datasets to enhance generalization, con-
textual reasoning, and adaptability across different modalities. They can be fine-tuned for 
new tasks using task-specific prompts without the need for extensive retraining or labeled 
data. The field of medical imaging is increasingly exploring these models to leverage their 
advanced capabilities and improve outcomes [122].

While the application of foundation models in image harmonization is still an emerging 
field, these models offer substantial potential for improving consistency and compatibility 
across diverse medical imaging datasets. Future research should focus on exploring and 
optimizing the use of these models, conducting comprehensive quantitative comparisons, 
and addressing the specific challenges associated with harmonization in medical imaging.

Conclusion and future direction
This review provides a comprehensive overview of state-of-the-art deep learning-based 
methods for harmonizing Magnetic Resonance Imaging (MRI) scans. We categorized har-
monization approaches based on their underlying network architecture, including U-Net, 
Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), flow-based 
models, and transformers. We surveyed current literature on MRI harmonization and 
report significant progress in harmonization techniques, with improvements observed in 
downstream tasks that rely on harmonized images.

Despite these advancements, several challenges remain:
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• Data Standardization: The wide variety of acquisition parameters across scanners, dis-
ease states, and patient demographics (e.g., gender) can affect brain size and pose chal-
lenges for harmonization robustness. Developing standardized datasets encompassing 
these diverse scenarios and incorporating comprehensive evaluations for each challenge 
would be valuable.

• Evaluation Metrics: Current metrics primarily focus on contrast similarity. Novel met-
rics are needed to assess how well harmonization techniques address the "shift prob-
lem" (differences in image intensity distributions) while preserving crucial anatomical 
information.

• Multi-Site Harmonization:  Current methods often focus on harmonization between 
two specific sites. Exploring techniques that can handle data from multiple sites would 
be beneficial.

• Architectural Innovation: Combining the strengths of different network architectures 
(e.g., U-Net for segmentation and GANs for image generation) could lead to more 
robust harmonization solutions. Additionally, computational efficiency should be con-
sidered, as faster models are more practical for real-world applications.

• Generalizability: Extending harmonization frameworks beyond specific MRI contrasts 
(T1-weighted, PD-weighted, T2-FLAIR) and even exploring other modalities like PET 
or CT could be a promising research direction.

By addressing these challenges and exploring new avenues, deep learning has the poten-
tial to further revolutionize MRI harmonization, ultimately leading to improved medical 
diagnosis and treatment planning.
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