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Abstract 

Background: Timely prevention of major adverse cardiovascular events (MACEs) 
is imperative for reducing cardiovascular diseases-related mortality. Perivascular 
adipose tissue (PVAT), the adipose tissue surrounding coronary arteries, has attracted 
increased amounts of attention. Developing a model for predicting the incidence 
of MACE utilizing machine learning (ML) integrating clinical and PVAT features may 
facilitate targeted preventive interventions and improve patient outcomes.

Methods: From January 2017 to December 2019, we analyzed a cohort of 1077 
individuals who underwent coronary CT scanning at our facility. Clinical features were 
collected alongside imaging features, such as coronary artery calcium (CAC) scores 
and perivascular adipose tissue (PVAT) characteristics. Logistic regression (LR), Framing-
ham Risk Score, and ML algorithms were employed for MACE prediction.

Results: We screened seven critical features to improve the practicability of the model. 
MACE patients tended to be older, smokers, and hypertensive. Imaging biomarkers 
such as CAC scores and PVAT characteristics differed significantly between patients 
with and without a 3-year MACE risk in a population that did not exhibit disparities 
in laboratory results. The ensemble model, which leverages multiple ML algorithms, 
demonstrated superior predictive performance compared with the other models. 
Finally, the ensemble model was used for risk stratification prediction to explore its 
clinical application value.

Conclusions: The developed ensemble model effectively predicted MACE incidence 
based on clinical and imaging features, highlighting the potential of ML algorithms 
in cardiovascular risk prediction and personalized medicine. Early identification of high-
risk patients may facilitate targeted preventive interventions and improve patient 
outcomes.
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Introduction
Cardiovascular diseases (CVDs), including myocardial infarction, acute coronary syndrome 
and stroke, are the primary contributors to mortality on a global scale. Early prevention 
and treatment of major adverse cardiovascular events (MACEs) are crucial for reducing the 
morbidity and mortality associated with CVDs [1]. Computed tomography angiography 
(CTA) has emerged as a noninvasive tool for screening major cardiovascular events, pro-
viding valuable insights into atherosclerosis and risk prediction [2].

Machine learning (ML), a branch of computer science, incorporates numerous variables 
using algorithms to identify their nonlinear relationships and complex interactions [3]. ML 
algorithms have been explored for their ability to predict heart failure [4], arrhythmia [5], 
postsurgical mortality [6], and composite CVD risk [7]. A prior investigation demonstrated 
that the ML exhibited superior performance compared to the logistic regression (LR), a 
traditional statistical technique, in forecasting patient outcomes [8]. The reason may stem 
from the inherent limitations of LR, which is known to be susceptible to multicollinearity. 
While some ML models, such as Linear Discriminant Analysis (LDA) and linear Support 
Vector Machine (SVM), are limited in capturing nonlinear relationships, others like Adap-
tive Boosting (AdaBoost) and ensemble methods are effective in modeling complex interac-
tions among features. Additionally, multicollinearity, which poses challenges for traditional 
models like LR and LDA, is better managed by advanced ML models.

In the field of MACE prediction, the use of ML could improve CVD risk prediction by 
agnostically discovering new predictors of risk and learning about their complex interac-
tions [9]. Previous studies have integrated myocardial perfusion imaging into the predic-
tion of MACEs using ML techniques, demonstrating a moderate level of accuracy with 
area under the curve (AUC) values ranging from 0.73 to 0.79 [10, 11]. However, the clinical 
utilization of myocardial perfusion imaging remains limited. Recently, perivascular adipose 
tissue (PVAT), the adipose tissue surrounding the coronary artery, has attracted increased 
amounts of attention due to its hypothetical role in the pathogenesis of CVDs [12]. Using 
CTA images, PVAT characteristics can potentially be evaluated to determine if individu-
als are at increased risk of adverse cardiovascular outcomes [13, 14]. In addition, ensemble 
learning has been proposed because it is more effective and has a better generalization abil-
ity than single algorithms [15]. Coupling PVAT imaging features with the ML algorithm 
may hold promise for improving cardiovascular prevention by enhancing early detection 
capabilities [16]. However, the effectiveness of ensemble machine learning algorithms uti-
lizing PVAT features in predicting patients at risk of MACEs remains uncertain.

Hence, we developed a novel ensemble model to predict MACE incidence utilizing ML 
algorithms. Through the utilization of stacking algorithms, our ensemble model incor-
porating both clinical and imaging features was established. The ability of the prediction 
model for MACE risk stratification may facilitate optimal preventive treatment interven-
tion in future.

Methods
Participants and data collection

From January 2017 to December 2019, we analyzed a cohort of 1077 individuals who 
underwent coronary CT scanning at our facility. Exclusion criteria included the follow-
ing: (1) coronary artery stenosis greater than 20% in at least one coronary major vessel; 
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(2) history of stroke, serious heart disease or tumor; (3) incomplete clinical and imag-
ing data; and (4) loss to follow-up. After exclusion, 228 subjects were included. Figure 1 
illustrates the flowchart of the subject selection.

The baseline features of the subjects, including age and sex, were collected. Risk fac-
tors, including hypertension, smoking history, alcohol consumption, diabetes, body 
mass index (BMI) and laboratory findings. The BMI was obtained using the equation 
weight (kg) divided by squared height  (m2). A TyG index was calculated by integrating 
fasting triglyceride (TG) by fasting blood glucose (FBG). The definition of hypertension 
was to have a systolic blood pressure (SBP) higher than 140 mmHg or a diastolic blood 
pressure (DPB) higher than 90 mmHg on two separate occasions or to be receiving anti-
hypertensive medication. The definition of diabetes was to have an FBG ≥ 126 mg/dL or 
to be receiving any antidiabetic medication.

Follow‑up and end points

Follow-ups through clinical visits were conducted for up to three years. The endpoint 
was the occurrence of MACEs [17], such as myocardial infarction, unstable angina, 
or stroke, which were confirmed through clinical presentation, imaging data, or other 

Fig. 1 Patients selection flowchart
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pertinent data collected during each follow-up session and diagnosed by specialized car-
diology physicians or neurologists.

CTA multiparameter analysis

The CTA scan was performed on the Siemens SOMATOM Definition AS (Siemens 
Medical Systems, Erlangen, Germany). The acquired images were postprocessed by 
Deepwise Coronary Artery Analysis Software (Deepwise Inc., Beijing, China). The coro-
nary artery calcium (CAC) scores were calculated based on a sequence within the CTA 
examination. Prior to the injection of the contrast agent, a sequence was scanned dur-
ing diastole using prospective gated acquisition. This non-contrast sequence was used 
to extract the CAC scores, which were automatically calculated by the software and con-
firmed manually.

The segmentation of PVAT was performed by manual adjustment on the basis of auto-
matic segmentation. Specifically, if non-adipose tissues surrounding the coronary artery 
were encompassed as the region of interest during the automatic segmentation proce-
dure, the radiologist will remove these tissues manually to ensure that only PVAT was 
included.

For the analysis of PVAT, the region of interests (ROIs) were automatically tracked by 
the software based on the fat threshold (from − 190 to − 30 HU). The ROI extends from 
10 to 40 mm proximal to the coronary artery, with the radial distance of the ROI equiva-
lent to the diameter of the coronary artery. Two experienced radiologists confirmed the 
results of the segmentation. Then, the fat attenuation index (FAI) and fat volume (FV) of 
PCAT could be automatically generated by the software. CAC scores, PCAT-FAI, and 
PCAT-FV were recorded as coronary artery imaging features. PVAT is visualized with 
an adipose tissue Hounsfield unit color table.

Model development

Feature selection

The features screened for model development included both clinical features and coro-
nary artery imaging features. First, samples with 80% or above of missing values were 
excluded, among which were 186 subjects with a high percentage of missing values and 
24 subjects with missing critical images. Afterwards, the remaining missing values were 
imputed by multiple imputation. After normalizing the continuous variables using z 
score normalization, 23 features were considered for selection. The least absolute shrink-
age and selection operator (LASSO) regression was employed for feature selection in 
order to automatically remove redundant and irrelevant collinear features. The correla-
tion between the selected features was determined by Spearman’s correlation coefficient. 
Finally, the most predictive features were confirmed for further model development.

ML algorithm

We employed five ML algorithms to predict MACEs in our study based on the selected 
features. In addition to four commonly used models, namely, AdaBoost, GNB, LDA, and 
SVM models [18], we introduced a stacking ensemble model. The ensemble model was 
built by stacking the classification probabilities of the outputs of the other four machine 
learning models. Compared with other ML models, this approach can enhance the 
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prediction accuracy by combining diverse models, reducing the possibility of overfitting, 
and improving the model stability and generalizability [19]. Besides, the traditional LR 
model was also developed. Significant variables identified in the univariate analysis were 
incorporated into the multivariable LR analysis.

Model fitting

A fivefold cross-validation method was used to assign the training and validation cohorts 
using the same random seed across all splits to ensure consistency in groupings. Herein, 
based on the occurrence of MACEs within the first three years of initial examination, 
the MACE prediction task was conceptualized as a binary classification problem, with 
all machine learning models generating a normalized risk probability within the range 
of 0 to 1. The combination of hyperparameters that yielded the best average AUC was 
selected for model fitting.

Model evaluation

Model performance was evaluated using the receiver operating characteristic (ROC) 
curves. Calibration curves were employed for qualitative evaluation of model calibra-
tion, while decision curve analysis (DCA) was utilized to assess the utility of the models 
across various threshold probabilities. Confusion matrices were employed for compara-
tive analysis of model performances. Furthermore, model efficiency metrics were com-
puted to quantitatively assess the predictive capabilities of each model.

Additionally, in order to further validate the model’s clinical applicability, model with 
the best performance was used to predict 3-year MACE incidence using Kaplan‒Meier 
survival curves. By applying the cut-off values determinate by the X-tile software [20], 
the subjects were divided into high, middle, and low ML risk groups. The overall log-
rank test was applied to compare the differences between Kaplan–Meier survival curves. 
Figure 2 shows the study flowchart.

Statistical analysis

SPSS (version 26.0), R software (version 4.0.2), X-tile (version 3.6.1), and MedCalc (ver-
sion 19.5.6) used to analyze the data. A comparison of variables between patients with 
and without MACE was carried out based on the results of the follow-up. A normal dis-
tribution was determined by the Kolmogorov–Smirnov test. A continuous variable is 
expressed as the mean + standard deviation in normal distributions and median in non-
normal distributions. A categorical variable is expressed as frequency counts and per-
centages. T test and a Chi-square test were used to analyze differences between groups. 
The AUCs of the different models were compared using DeLong tests. The significance 
of a study is determined by P values that have two tails no greater than 0.05. We set 
the P-value threshold at 0.05 because it is a widely accepted standard in many scientific 
fields and balances statistical rigor with the practical significance of our findings.

Results
Clinical features

Out of the initial dataset of 1077 patients, 210 patients were excluded due to a 
high missing values or missing critical images for the analysis. A bias analysis was 
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conducted to examine the demographic characteristics of patients with complete 
data in comparison to those with missing data. The results indicated no significant 
differences between the two, suggesting that the missing data were likely random 
and did not introduce systematic biases (Supplementary materials, Table S1).

In our analysis, 228 participants were involved with an average age of 
(62.58 ± 11.63) years and 146 men (64.0%). Regarding factors associated with arte-
riosclerosis, 56.6% of patients had hypertension, 25.9% were current smokers, 27.2% 
currently consumed alcohol, and 28.9% had diabetes.

Patients who experienced MACEs were older (68.13 ± 10.23 vs. 60.26 ± 11.42 years, 
P < 0.001) compared to those who did not experience MACEs. Besides, there was a 
higher proportion of males (74.6% vs. 59.6%, P = 0.032) among patients who expe-
rienced MACEs compared to those who did not. Furthermore, individuals in the 
MACE group were more inclined to engage in unhealthy lifestyle behaviors (smok-
ing and alcohol use, 35.8% vs. 21.7%, P = 0.027 and 38.8% vs. 22.4%, P = 0.011, 
respectively), and the prevalence of hypertension was notably higher in the MACE 
group compared to the non-MACE group (76.1% vs. 48.4%, P < 0.001). The clinical 
characteristics of the patients are outlined in Table  1, and are in line with known 
literature [17].

Fig. 2 Schematic of the workflow of the study
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Coronary artery imaging features

As presented in Table 2, compared with patients without MACE, those with MACE out-
comes had a much greater CAC score (78.76 [5.43–371.10] vs. 0 [0–47.38], P < 0.001). 
With regard to PVAT features, the median PVAT-FAI was greater in the MACE group 
compared to the non-MACE group (−  71.56 [−  76.87–66.51] vs. −  80.58 [−  87.34–
75.05] HU for the RCA, − 65.25 [− 71.70–61.38] vs. − 71.94 [− 76.87–66.67] HU for the 
LCX, and − 67.68 [− 72.59–63.09] vs.  76.17 [− 81.37–71.31] HU for the LAD, respec-
tively, all P < 0.001). In addition, the PVAT volume was smaller in the MACE group (2.13 
[1.62–2.94]  mm3 for the RCA, 1.27 [0.95–1.65]  mm3 for the LCX, and 1.65 [1.32–2.34] 
 mm3 for the LAD) than in the non-MACE group (2.84 [2.38–3.37]  mm3 for the RCA, 
1.59 [1.19–1.94]  mm3 for the LCX, and 2.24 [1.86–2.82]  mm3 for the LAD, all P < 0.001). 
Figure 3 shows the typical CTA images obtained during the analysis.

Development and performance of models

By using LASSO, irrelevant or redundant features were eliminated. Finally, seven fea-
tures were chosen for ML model development, including 3 clinical features (age, hyper-
tension status, and smoking status) and 4 coronary artery imaging features (CAC scores, 
PCAT-FAIRCA , PCAT-FAILAD, and PCAT-FVRCA ). Feature importance was determined 
using LASSO regression (Supplementary materials, Figure S1). The reason to use 
LASSO for all the ML models was driven by the need for a model-agnostic feature selec-
tion process that could be consistently applied across different ML algorithms, ensur-
ing a fair comparison. Correlations among the selected features were evaluated using 

Table 1 Clinical features of the study participants

Data are presented as number (%), median (P25–P75) or means ± SD

MACE major adverse cardiovascular event, TyG triglyceride–glucose index, BMI body mass index, SBP systolic blood pressure, 
DBP diastolic blood pressure, HDL high density lipoprotein, LDL low density lipoprotein, hs-CRP high sensitivity C-reactive 
protein, FBG fasting blood glucose
* Significant difference (P < 0.05)
** Extremely significant difference (P < 0.001)

Variables Overall (n = 228) Non‑MACE group 
(n = 161)

MACE group (n = 67) P value

Age, years 62.58 ± 11.63 60.26 ± 11.42 68.13 ± 10.23  < 0.001**

Men, n (%) 146 (64.0) 96 (59.6) 50 (74.6) 0.032*

Hypertension, n (%) 129 (56.6) 78 (48.4) 51 (76.1)  < 0.001**

Smoker, n (%) 59 (25.9) 35 (21.7) 24 (35.8) 0.027*

Alcohol use, n (%) 62 (27.2) 36 (22.4) 26 (38.8) 0.011*

Diabetics, n (%) 66 (28.9) 42 (26.1) 24 (35.8) 0.140

TyG index, value 4.74 (4.58–4.92) 4.74 (4.57–4.92) 4.75 (4.59–4.95) 0.820

BMI, kg/m2 24.30 (22.50–26.53) 24.20 (22.40–26.50) 24.90 (22.90–26.75) 0.102

SBP, mmHg 136.48 ± 19.92 134.83 ± 19.87 140.43 ± 19.60 0.053

DBP, mmHg 80.37 ± 11.14 80.77 ± 11.18 79.40 ± 11.05 0.400

Total cholesterol, mmol/L 4.49 (3.76–5.44) 4.46 (3.82–5.40) 4.55 (3.65–5.49) 0.649

Triglyceride, mmol/L 1.48 (1.11–1.96) 1.47 (1.07–1.98) 1.49 (1.19–1.95) 0.909

HDL, mmol/L 1.09 (0.89–1.28) 1.08 (0.89–1.27) 1.09 (0.90–1.30) 0.912

LDL, mmol/L 2.90 (2.38–3.61) 2.89 (2.43–3.54) 2.91 (2.34–3.85) 0.882

Hs-CRP, mg/L 0.90 (0.50–1.80) 1.00 (0.50–2.40) 0.90 (0.50–1.70) 0.472

FBG, mmol/L 5.25 (4.78–6.18) 5.23 (4.82–6.05) 5.37 (4.70–6.35) 0.892
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Spearman’s correlation coefficients (Supplementary materials, Figure S2). Additionally, 
in LR analysis, variables that exhibited statistical significance in the univariate analysis 
were subsequently incorporated into the multivariate logistic regression analysis, which 
is a common approach to develop a classical LR model. Age, hypertension, CAC scores, 
PCAT-FAILAD, and PCAT-FAIRCA  were independent risk factors for MACE prediction 
(Supplementary materials, Table S2).

As Adaboost inherently calculates feature importance during its training process, a 
supplementary analysis was conducted using AdaBoost for the feature selection. There 
was no significant difference of the AUCs between LASSO and AdaBoost selections 
(Supplementary materials, Table S3). Besides, a supplementary analysis using LASSO for 
the LR feature selection was also conducted. No significant difference of the AUCs was 
found between LASSO and univariate-multivariate analysis (Supplementary materials, 
Table S4).

We compared the performance of the ML models to classical LR and a well-established 
model, the Framingham Risk Score [21]. Table 3 summarizes commonly used metrics for 
the model evaluation. Upon evaluation of LR, Framingham Risk Score, AdaBoost, GNB, 
LDA, SVM, and an ensemble algorithm, it was determined that the ensemble algorithm 
exhibited superior predictive performance metrics. Specifically, the ensemble algorithm 
demonstrated an AUC of 0.94, accuracy of 0.87, precision of 0.74, recall of 0.87, F1-score 
of 0.80, sensitivity of 0.87, specificity of 0.88, PPV of 0.74, and NPV of 0.94 in the train-
ing cohort. In the validation cohort, the ensemble algorithm maintained strong perfor-
mance with an AUC of 0.93, accuracy of 0.88, precision of 0.77, recall of 0.85, F1-score 
of 0.81, sensitivity of 0.85, specificity of 0.89, PPV of 0.77, and NPV of 0.94. (Fig. 4 and 
Figure S3). The model parameters and settings were provided in detail in Supplemen-
tary Appendix S1. The formulas of the ensemble model are available in Supplementary 
Appendix S2.

As an additional demonstration of the effectiveness of the models, the ROC curves are 
plotted in Fig. 5A. Although the AUC of the ensemble model did not exhibit the most 
substantial advantage in the training cohort when compared with all the other models, 

Table 2 Coronary artery imaging features of the study participants

Data are presented as median (P25–P75)

MACE major adverse cardiovascular event, CAC  coronary artery calcium, FAI fat attenuation index, FV fat volume, HU 
Hounsfield unit, PVAT perivascular adipose tissue, RCA  right coronary artery, LAD left anterior descending artery, LCX left 
circumflex artery
** extremely significant difference (P < 0.001)

Variables Overall (n = 228) Non‑MACE group (n = 161) MACE group (n = 67) P value

CAC Score 4.79 (0–125.88) 0 (0–47.38) 78.76 (5.43–371.10)  < 0.001**

PVAT-FAI, HU

RCA − 77.89 (− 84.83–71.47) − 80.58 (− 87.34–75.05) − 71.56 (− 76.87–66.51)  < 0.001**

LCX − 70.45 (− 76.11–64.56) − 71.94 (− 76.87–66.67) − 65.25 (− 71.70–61.38)  < 0.001**

LAD − 73.978 (− 79.13–68.28) − 76.17 (− 81.37–71.31) − 67.68 (− 72.59–63.09)  < 0.001**

PVAT-FV,  cm3

RCA 2.76 (2.17–3.25) 2.84 (2.38–3.37) 2.13 (1.62–2.94)  < 0.001**

LCX 1.48 (1.11–1.88) 1.59 (1.19–1.94) 1.27 (0.95–1.65)  < 0.001**

LAD 2.17 (1.63–2.74) 2.24 (1.86–2.82) 1.65 (1.32–2.34)  < 0.001**
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it demonstrated superior performance in the validation cohort (Table 4). The ensemble 
model’s predicted probability was close to the actual probability according to calibra-
tion curves, which describe how well the prediction agrees with reality (Supplementary 
materials online, Figure S4). The clinical net benefit can be calculated using DCA to 
determine whether using a model is beneficial. In our study, the ensemble model dem-
onstrated superior decision-making capabilities when compared to the other four algo-
rithms, as illustrated in Fig.  5. Consequently, the ensemble algorithm was chosen for 
further model development.

Subsequently, the ensemble model was utilized for risk stratification prediction in 
order to investigate its potential clinical utility. Patients were categorized into low-risk, 
intermediate-risk, and high-risk cohorts for the prediction of MACE. Cut-off values of 

Fig. 3 PVAT analysis of the RCA. A Longitudinal view of RCA PVAT measurements. B Cross-sectional view of 
RCA PVAT measurements. C Curved multiplane review of RCA PVAT measurements. An adipose tissue HU 
color table is shown with a color bar to visualize PVAT. Based on the fat threshold (from − 190 to − 30 HU), 
the ROI was automatically tracked using the software. The length of the ROI is 10–40 mm proximal to the 
coronary artery. The radial distance of the ROI is equal to the diameter of the coronary artery. The PVAT-FAI 
was − 109 HU. The PVAT volume was the total volume of adipose voxels within the ROI. RCA, right coronary 
artery; PVAT, perivascular adipose tissue; HU, Hounsfield unit; ROI, region of interest; FAI, fat attenuation index
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the three risk groups were 0.14 and 0.92. As presented in Fig. 6, the risk probability dif-
fered significantly among the three groups (P < 0.0001). The 3-year MACE risk for the 
middle-risk group was found to be 10.05 times (95% CI 8.46–23.33) higher compared 
to the low-risk group. Similarly, the 3 year MACE risk for the high-risk group was 51.21 
times higher (95% CI 22.15–118.42) than that of the low-risk group. These findings sug-
gest that the ensemble model could offer more valuable information and thus be more 
applicable in clinical settings.

Discussion
Our study developed an ensemble model based on clinical and imaging features to pre-
dict MACEs accurately. Older age, current smoker, and a higher incidence of hyper-
tension were identified as significant risk factors for MACEs, consistent with previous 
research. Additionally, patients with MACEs exhibited significantly higher CAC scores 
and median PVAT values, suggesting these imaging biomarkers may play a role in risk 
stratification and prognosis assessment. As compared to the other algorithms, the 
ensemble model performed the best in terms of prediction accuracy.

Seven common features were utilized in constructing the predictive ML models in 
our study. The features can be classified into three categories: general information of 
patients (age); lifestyle habits (hypertension and smoking); and CTA imaging data (CAC 
scores, PCAT-FAIRCA , PCAT-FAILAD, and PCAT-FVRCA ). For comparison, a LR model 
was limited to only five features using univariate and multivariate regression analysis. As 
presented in our study, the inclusion of additional features has the potential to enhance 
prediction accuracy by capturing more complex relationships and interactions within 
the data. Furthermore, the incorporation of more features may enhance the model’s 
resilience to data fluctuations and enhance its applicability to novel datasets, thereby 

Table 3 Performance comparisons of logistic regression model and machine learning models

AUC , area under the curve, ACC , accuracy, CI confidence interval, PRE precision, SENS sensitivity, SPEC specificity, REC recall, 
PPV positive prediction value, NPV negative prediction value, AdaBoost adaptive boosting, GNB Gaussian naive Bayes, LDA 
linear discriminant analysis, SVM linear support vector machine, LR logistic regression, FS Framingham Score

AUC 95% CI ACC PRE REC F1‑score SENS SPEC PPV NPV

Training cohort

LR 0.89 0.84–0.93 0.81 0.63 0.82 0.71 0.82 0.80 0.63 0.91

FS 0.62 0.54–0.70 0.55 0.35 0.66 0.46 0.67 0.50 0.35 0.78

AdaBoost 0.95 0.92–0.98 0.87 0.87 0.67 0.76 0.67 0.96 0.87 0.88

GNB 0.88 0.83–0.93 0.83 0.75 0.63 0.68 0.63 0.91 0.75 0.85

LDA 0.90 0.85–0.94 0.84 0.78 0.63 0.69 0.63 0.93 0.78 0.86

SVM 0.93 0.89–0.97 0.90 0.87 0.78 0.82 0.78 0.95 0.87 0.91

Ensemble 0.94 0.91–0.97 0.87 0.74 0.87 0.80 0.87 0.88 0.74 0.94

Validation cohort

LR 0.84 0.79–0.90 0.75 0.56 0.73 0.63 0.73 0.76 0.57 0.87

FS 0.61 0.53–0.69 0.55 0.35 0.66 0.46 0.67 0.50 0.35 0.78

AdaBoost 0.82 0.76–0.88 0.78 0.68 0.48 0.56 0.48 0.91 0.68 0.81

GNB 0.86 0.80–0.91 0.82 0.76 0.58 0.66 0.58 0.93 0.76 0.84

LDA 0.85 0.79–0.90 0.81 0.72 0.57 0.63 0.57 0.91 0.72 0.83

SVM 0.80 0.93–0.87 0.79 0.68 0.57 0.62 0.57 0.89 0.68 0.83

Ensemble 0.93 0.90–0.97 0.88 0.77 0.85 0.81 0.85 0.89 0.77 0.94
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mitigating the risk of overfitting. Additionally, it was observed that the laboratory results 
were not incorporated into the models, potentially attributable to the early stage of the 
disease that leads to lack of significant variations in the laboratory findings. It highlights 
a strength of our ML-based approach to dimensionality reduction. By preserving fea-
tures that remain unaffected by laboratory findings, our model demonstrates robustness 
and relevance, even at early stages of the disease when laboratory variations are mini-
mal. The clinical features observed in our study align with established risk factors for 
cardiovascular events. Older age and smoker have long been recognized as significant 
contributors to cardiovascular morbidity and mortality [22, 23]. Moreover, the increase 
in the incidence of hypertension among patients with MACE highlights the continued 
importance of blood pressure management in mitigating cardiovascular risk [24]. Our 
findings reinforce the need for targeted interventions aimed at addressing modifiable 
risk factors like smoking and drinking alcohol, to reduce the burden of MACE in high-
risk populations [25, 26].

Fig. 4 Heatmap comparing the performance of different ML algorithm models in the training cohort (A) and 
validation cohort (B). AUC, area under the curve; AdaBoost, adaptive boosting; GNB, Gaussian naive Bayes; 
LDA, linear discriminant analysis; SVM, linear support vector machine; PPV, positive prediction value; NPV, 
negative prediction value
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Fig. 5 Performances of different ML algorithm models. Plots showing the ROC curves of different models in 
the training cohort (A) and validation cohort (B). Decision curve analysis of different models in the training 
cohort (C) and validation cohort (D). The X-axis represents the threshold probability; the Y-axis represents the 
net benefit. AUC, area under the curve; AdaBoost, adaptive boosting; GNB, Gaussian naive Bayes; LDA, linear 
discriminant analysis; SVM, linear support vector machine

Table 4 DeLong tests to compare the AUCs of logistic regression model and machine learning 
models

AUC  area under the curve, AdaBoost adaptive boosting, GNB Gaussian naive Bayes, LDA linear discriminant analysis, SVM 
linear support vector machine, LR logistic regression, FS Framingham Score
* significant difference (P < 0.05)
** extremely significant difference (P < 0.001)

Comparison Training cohort Validation cohort

AUC P value AUC P value

Ensemble vs LR 0.94  < 0.0001** 0.93  < 0.0001**

0.89 0.84

Ensemble vs FS 0.94  < 0.0001** 0.93  < 0.0001**

0.62 0.61

Ensemble vs AdaBoost 0.94 0.03944* 0.93  < 0.0001**

0.95 0.82

Ensemble vs GNB 0.94 0.0001** 0.93  < 0.0001**

0.88 0.86

Ensemble vs LDA 0.94 0.0004** 0.93  < 0.0001**

0.90 0.85

Ensemble vs SVM 0.94 0.2118 0.93  < 0.0001**

0.93 0.80
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Coronary artery imagines, particularrly CTA, can contribute significantly to risk 
stratification and prognosis. Our analysis revealed distinct patterns in CAC scores and 
PVAT characteristics between patients with and without a 3-year MACE risk in a popu-
lation that did not exhibit disparities in laboratory results. The heightened CAC burden 
observed in the MACE group signifies advanced atherosclerotic processes and plaque 
vulnerability, consistent with previous studies linking CAC scores to adverse cardio-
vascular outcomes [27, 28]. Additionally, alterations in PVAT composition, as reflected 
in our findings, underscores PVAT’s emerging role as a marker of metabolic disorders 
and inflammation [29, 30]. It has been reported that an increased LAD and RCA PVAT 
attenuation is associated with an increased CVD risk [31]. In our research, we substanti-
ated the additional predictive significance of PCAT-FAIRCA , PCAT-FAILAD, and PCAT-
FVRCA  in patients experiencing MACEs. The comparative analysis of our models with 
the Framingham Risk Score highlights the added value of incorporating CTA character-
istics into cardiovascular risk prediction models. The attenuation of PVAT and altera-
tions in intracellular lipid deposition are attributed to early and persistent inflammation 
[32]. Thus, PVAT features may provide important complementary information about 
coronary artery disease [33].

The development of a predictive model integrating clinical and imaging features 
represents a significant advancement in personalized risk assessment. Recently, ML 
algorithms have been used to develop regression and classification models for clinical 
prediction [34, 35]. In this study, we compare LR, a classical statistical method, with ML 
algorithms including ensemble methods (AdaBoost), probabilistic models (Gaussian 
Naive Bayes), and linear classifiers (LDA and SVM). ML algorithms, particularly those 
using ensemble techniques, are generally less affected by multicollinearity due to their 

Fig. 6 Survival curves by risk group for the validation cohort stratified into low-risk, middle-risk and high-risk 
groups according to the optimal cut-off points



Page 14 of 17He et al. BioMedical Engineering OnLine           (2024) 23:77 

ability to combine multiple models and their inherent design to handle high-dimen-
sional data. While the traditional LR model proved to be effective in predicting MACEs, 
the utilization of ML model, specifically the ensemble model, showcases the potential of 
data-driven approaches in health care decision support systems. Clinical data are inher-
ently diverse and often suffer from imbalances among classes or outcomes. Although 
the cross-validation in our study attempts to mitigate this issue by partitioning data into 
multiple folds, the results in each fold may still not adequately representing the full spec-
trum of clinical scenarios. That’s the reason why the four commonly used ML models 
seem to perform worse in the validation cohort in our study [36]. The ensemble model, 
on the other hand, could mitigate this issue by amalgamating multiple base models to 
enhance overall performance. In our study, multiple base classifiers were employed as 
level-0 models. The predictions of these base classifiers were then used as input features 
for a level-1 metamodel, which generated the final prediction. By aggregating predic-
tions from multiple models, the ensemble model effectively smooths out noise and leads 
to consistent performance across both training and validation cohorts [37]. The model’s 
high accuracy, precision, and sensitivity underscore its potential clinical utility in guid-
ing risk management strategies and optimizing patient outcomes [19, 38].

In our study, we utilized fivefold cross-validation to evaluate the efficacy and reliabil-
ity of our predictive model. Cross-validation involves splitting the dataset into multi-
ple subsets and using each fold as both training and validation data. In each iteration, 
the model was trained on four folds and validated on onefold. The scores from the five 
validation folds were averaged to obtain a single representative score, which was used for 
final model prediction. Afterwards, the performance metrics are derived from the final 
model. This approach enables more efficient utilization of the available data.

In light of MACEs’ high mortality risk, early detection of MACEs may facilitate risk 
stratification, clinical decisions, and improved patient outcomes. For instance, imple-
menting stringent lifestyle management practices, such as controlling blood pressure 
and cessation of smoking, adhering to a nutritious and well-rounded diet, engaging in 
regular physical activity to decrease overall body fat, and utilizing appropriate medica-
tion therapies (such as GLP-1 agonists) that focus on lipid metabolism and diminish 
fat build-up, may be efficaciously employed in the prevention of MACEs in patients at 
high risk. GLP-1 agonists, traditionally used for glycemic control in type 2 diabetes, have 
shown significant cardiovascular benefits. Combining the pharmacological advance-
ments with stringent lifestyle interventions may offer a synergistic approach to signifi-
cantly mitigate the risk of MACEs in high-risk patients.

Our study exhibits certain limitations. First, since the individuals under study were 
exclusively sourced from a single medical facility, there exists a potential for bias in the 
evaluation of predictive efficacy. To reduce the likelihood of overfitting and providing 
robust estimates of predictive accuracy, we utilized cross-validation to evaluate the effi-
cacy and reliability of our predictive model. Second, directly comparing the ensemble 
ML model to individual variables can be challenging due to its inherent complexity and 
nonlinear relationships. The ensemble model combines the predictions of multiple base 
ML models, which obfuscates the contribution of each individual variable to the over-
all model performance. Third, the performance/validation metrics for the automatic 
segmentation tool of PVAT were not calculated. However, in our study the automatic 
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segmentation is based on well-established rules of PVAT segmentation [39]. Given that 
the segmentation is rule-based, there was no need to independently verify its accuracy. 
Besides, in our research process, there were no instances requiring manual adjustments, 
which further attests to its robustness and reliability. Finally, although the ensemble 
model demonstrated promising performance in risk stratification, the translation of the 
model’s predictions into meaningful clinical decisions and interventions needs to be fur-
ther explored.

Conclusion
Our study established an ensemble model for the prediction of the occurrence of 
MACEs using clinical and PVAT features. By integrating clinical data, advanced imaging 
modalities such as CTA, and machine learning techniques, we advance towards a more 
nuanced understanding of cardiovascular risk prediction. These findings may improve 
patient outcomes through early disease prevention and therapeutic interventions.
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