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Abstract 

Predicting curve progression during the initial visit is pivotal in the disease manage-
ment of patients with adolescent idiopathic scoliosis (AIS)—identifying patients at high 
risk of progression is essential for timely and proactive interventions. Both radiological 
and clinical factors have been investigated as predictors of curve progression. With 
the evolution of machine learning technologies, the integration of multidimensional 
information now enables precise predictions of curve progression. This review focuses 
on the application of machine learning methods to predict AIS curve progression, 
analyzing 15 selected studies that utilize various machine learning models and the risk 
factors employed for predictions. Key findings indicate that machine learning models 
can provide higher precision in predictions compared to traditional methods, and their 
implementation could lead to more personalized patient management. However, due 
to the model interpretability and data complexity, more comprehensive and multi-
center studies are needed to transition from research to clinical practice.
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Introduction
Adolescent idiopathic scoliosis (AIS) manifests as a three-dimensional spinal deform-
ity in adolescence [1]. It is widely accepted that scoliotic curvature progression in AIS 
patients results from the interplay between genetic predispositions and biomechani-
cal factors. The initial spinal curvature—whose origins are not fully understood—leads 
to asymmetric loading on the vertebral growth plates, resulting in varied growth rates 
through endochondral ossification. This exacerbates lateral spinal deformity and triggers 
axial vertebral rotation, aligning with the Hueter–Volkmann law, which suggests that 
scoliosis progression is cyclical [2].

Clinically, AIS management includes regular monitoring for curves less than 25 
degrees in patients with a Risser grade of 0 to 2, bracing for curves of 25 to 40 degrees, 
and surgical evaluation for curves exceeding 45 or 50 degrees [3]. Despite these 
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guidelines, clinicians must develop interventions for each patient’s unique conditions. 
In addition, based on individual variations among patients, doctors also need to predict 
whether patients will experience rapid progression of scoliosis in the future, necessitat-
ing more frequent clinical observation.

The progression of scoliosis is not determined by a single factor but results from the 
interaction of multiple factors, such as age, sex, skeletal maturity and spine curve mor-
phology. A multifactorial analysis system can enhance the accuracy of predictions [4]. 
Recent studies have utilized advanced computational methods to predict the progres-
sion of AIS and assess the effectiveness of treatment strategies. In the field of AIS man-
agement, the integration of machine learning technologies has become a pivotal trend.

The purpose of this study was to conduct a systematic review of the literature on the 
application of AI methods for multiple risk factors to aid clinicians in the management 
of patients with AIS.

Methods
Search strategy

The literature search was conducted on studies published between January 1, 2016, and 
January 25, 2024. The initial search was carried out on January 31, 2024, with a subse-
quent search performed on February 28, 2024. The objective of this systematic investiga-
tion was to analyze the impact of various risk factors on spinal curvature in patients with 
AIS. The PubMed, Web of Science, and Google Scholar databases were utilized for the 
literature search. The keywords used in the search were “adolescent idiopathic scoliosis”, 
“predict*”, “deep learning” and “machine learning” in either the title or the abstract of the 
publications. Additionally, we supplemented the literature information not covered by 
the search by reading the references cited in the articles. The highlights of the analyzed 
studies are presented in Table 1.

Eligibility criteria

Two reviewers independently selected the literature, resolving discrepancies by consen-
sus. The included studies were published in English, peer-reviewed, pertained to pre-
dictive factors in AIS, and focused on nongenetic scoliosis types. The exclusion criteria 
included reviews, animal studies, correspondences, and editorials.

Data analysis

The analysis involved extracting data on study design, publication year, author names, 
patient demographics, machine learning models, definitions of scoliosis progression, 
identified risk factors and prediction results. This review primarily analyzes the follow-
ing factors: 1. the machine learning models used were as follows: 2. the input risk factors. 
We focused exclusively on curve prediction for nonsurgical patients with AIS, excluding 
articles predicting the outcomes of AIS surgeries.

Results
The preliminary search across two databases yielded 417 publications potentially meet-
ing the inclusion criteria. Subsequent screening of titles and abstracts narrowed the 
field to 93 studies for detailed analysis. After the full-text examination, 15 papers were 
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included in the study, 14 of which were retrospective and 1 of which was prospective. 
The sample size ranged widely, from 38 to 1780. The papers included a total of 11,376 
patients, with female patients accounting for 66.46%. Most of these patients underwent 
X-ray examinations, but some received radiation-free imaging or basic physical exami-
nations. The definition of scoliosis progression primarily involves an increase in the 
Cobb angle between two consecutive follow-up visits, but the extent of progression var-
ies slightly across different studies (5°–10°).

The process of using machine learning to predict AIS progression involves several 
steps: collecting and preprocessing a comprehensive dataset that includes radiographic 
images, clinical parameters, and patient demographics; extracting relevant features 
such as geometric data from radiographs and clinical measurements; selecting suitable 
machine learning models; training the chosen models with the preprocessed data; vali-
dating and testing the models on separate datasets to ensure they generalize well; and 
finally, using the trained models to predict scoliosis progression in new patients, provid-
ing insights and recommendations for clinical management (Fig. 1).

Types of systems and models referenced

Random Forest

The Random Forest (RF) algorithm has emerged as a cornerstone ensemble learn-
ing technique [5] used for addressing a broad spectrum of classification and regression 
tasks. By arranging the collective power of numerous decision trees, RFs construct a 
model distinguished by its superior accuracy and resilience. Each tree within the forest is 
cultivated from unique random subsets and features of the dataset, effectively mitigating 
the risk of overfitting. RF is equally proficient in dealing with discrete and continuous 
data types, eliminating the need for dataset normalization, and can generate a proxim-
ity matrix that sheds light on sample similarities. However, RF may incur heightened 
computational complexity and cost, proportional to the number of trees and their depth.

RF models were constructed by constructing numerous decision trees during training 
and amalgamating the predictions of these trees to forecast the final major Cobb angle in 
AIS patients [6]. The Sequential Backward Floating Selection (SBFS) method was utilized 
to pinpoint the most predictive features for curve progression, streamline model com-
plexity and eliminate less significant features. Another study [7] leveraged independent 
component analysis (ICA) to distill independent components (ICs) representing primary 
shape variations in 3D spine models, which served as inputs to train the RF model. The 
predictive modeling approach involved using the RF model to estimate future changes in 
the spine’s shape based on its initial condition. It adopts a chain of predictor strategies in 
which the outcome of one prediction feeds into the next, thereby chronologically simu-
lating scoliosis progression. This innovative technique of using sequential predictors to 
mirror time-evolving progression underscored the model’s ability to depict the spine’s 
morphological changes over successive time frames, capturing the dynamic features of 
scoliosis development.

Diffusion‑convolutional neural networks (DCNNs)

Traditional Convolutional Neural Networks (CNNs) encounter substantial challenges 
when processing structured data. The pursuit of appropriate methods for representing 
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and exploring data structures is critical for enhancing prediction accuracy. Nonethe-
less, pinpointing these structures is often arduous, and incorporating them into models 
markedly escalates prediction complexity. The diffusion convolutional neural network 
(DCNN) addresses these issues by incorporating the diffusion-convolution operation 
within CNNs for use with graph-structured data (non-Euclidean space) [8], utilizing a 
universal framework that enhances predictive performance while reducing complex-
ity. DCNNs stand out for their ability to offer a dynamic representation of graph data, 
capturing node features, edge features, and structural nuances with minimal preproc-
essing. In the realm of spinal X-ray analysis [9], DCNNs have the potential to transform 
imaging feature extraction for AIS prediction, leveraging deep learning to identify pat-
terns associated with curve progression. However, the computational requirements for 
training and deploying DCNNs present considerable challenges, especially in resource-
constrained settings. The success of DCNNs also greatly depends on the quantity and 
quality of the training data, with the possibility of reduced performance in instances of 
limited or unusual data. Additionally, research [10] has suggested that omitting key clini-
cal parameters such as age, sex, growth rate, or markers of skeletal maturity could com-
promise the model’s accuracy in predicting AIS progression.

Capsule neural network (CapsNet)

CapsNets are good at extracting direction-related features from X-rays, such as verte-
bral rotation and rib asymmetry, in addition to capturing general spatial features [11]. 
CNN sensitivity to local features, such as slight rotations or translations, can substan-
tially influence the outputs. Furthermore, CNNs primarily concentrate on local features, 
potentially neglecting the integration of these features into coherent structures, thereby 
overcoming complex spatial hierarchies. In contrast, CapsNets excel in discerning com-
plex hierarchies and spatial relationships, which are essential for numerous applications. 
The fundamental units of CapsNets, known as capsules, are designed to detect and 
encode intricate patterns and hierarchical information. Unlike CNNs, capsules produce 
higher-dimensional outputs and possess more elaborate internal structures, enabling 
a nuanced and comprehensive representation of the input data. Each capsule acts as a 
miniature neural network that identifies specific visual patterns, encoding probabilities 
and pose parameters of their presence, thus preserving extensive spatial hierarchical 
information.

A pivotal feature of CapsNets is the introduction of “dynamic routing”, a sophisticated 
mechanism that facilitates information transfer among capsules. This process enhances 
the network’s grasp of objects’ internal structures and their relative spatial orientations. 
Compared to traditional CNN propagation techniques such as max pooling, dynamic 
routing offers enhanced flexibility and better information retention. Moreover, Cap-
sNets enhance their functionality by integrating attention mechanisms within capsule 
routing, effectively directing the model’s analysis toward the most relevant aspects of 
image data [9, 12]. This strategy is particularly beneficial for AIS prediction because it 
allows for the focused identification of features and spatial relationships crucial for indi-
cating curve progression, such as vertebral rotation and torsion, thereby enhancing the 
model’s accuracy and interpretability. CapsNets adeptly target the major curve apex of 
spinal radiographs, distinguishing curves as either progressive or nonprogressive based 
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on key progression indicators [9, 12]. However, the model’s primary reliance on vertebral 
rotation and torsion might not always guarantee reliable predictions of curve progres-
sion. An additional limitation arose from the model’s lack of comprehensive assessment 
of skeletal maturity, which focused solely on the Risser sign [12]. Expanding CapsNet’s 
utility, another study [13] successfully integrated 2D radiological images with 1D clinical 
data, combining spatial and clinical insights for a more encompassing prediction model.

Recurrent neural network (RNN) with LSTM cells

Recurrent neural networks (RNNs) enhance CNN designs to process data that unfold 
over time. They stand out for adding a "time dimension" to data analysis, enabling the 
model to pass information through time. This is achieved through hidden layers that 
store and update information based on new inputs, allowing the model to consider both 
new and historical data in its outputs. However, RNNs face challenges in maintaining 
information over long periods, a problem addressed by innovations like Long Short-
Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs) [14]. These tech-
nologies introduce controls within the network that help manage how information is 
kept or discarded, making it easier to learn from data over extended sequences.

LSTMs, in particular, are designed to solve the issue of “vanishing gradients”, enabling 
the network to learn from long-term data dependencies. They use a system of gates that 
carefully manage the flow of information, making them adept at following the develop-
ment of conditions such as scoliosis, which changes gradually over time. LSTMs are par-
ticularly good at remembering crucial early data, such as the initial Cobb angle or when 
puberty starts, and can be used to predict how the condition will progress. This feature 
is crucial for accurately tracking scoliosis over time. In research on the prediction of sco-
liosis progression [15], LSTMs have been used to analyze clinical and radiological data 
collected over time. This study developed two models using LSTMs: one classifies the 
severity of scoliosis as mild, moderate, or severe based on current clinical data, and the 
other predicts how the spinal curvature will change in the future by using changes in 
clinical indicators to estimate variations in the Cobb angle.

Convolutional neural networks with attention mechanisms

Traditional CNN models employ fixed-size filters to analyze input images, a technique 
that falls short when encountering objects or scenes varying in size. Moreover, these 
models may overlook the complex relationships between different parts of an image, 
potentially missing crucial information. To overcome these challenges, attention mecha-
nisms have become a critical advancement, allowing models to focus selectively on spe-
cific parts of the input data. This focus is achieved by adding extra parameters to the 
CNN architecture, which helps evaluate the importance of each data point and adjust 
the model’s attention and processing power accordingly [16].

Attention mechanisms greatly improve a model’s ability to identify and prioritize key 
details in images, enhancing both its performance and efficiency. The advantages of 
implementing attention mechanisms include a better understanding of the input data, 
increased effectiveness of the model, and improved efficiency. However, these benefits 
include heightened computational requirements and increased memory consumption. 
Within the realm of AIS analysis using smartphone photographs [17], CNNs enhanced 
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with attention mechanisms rigorously identify and analyze patterns and features, pin-
pointing indicators essential for determining scoliosis severity and curve types. Focusing 
on areas that show significant curvature or asymmetry on the patient’s back, attention 
mechanisms significantly improved the model’s accuracy and clarity.

Table 2 illustrates the stages of AIS progression and where machine learning interven-
tions can be applied to predict and manage the disease.

Types of factors referenced

In this retrospective article, the prediction models primarily incorporate two types of 
predictive factor inputs: 1D numerical and 2D imaging. The numerical category included 
patient demographic information such as sex, age, weight, sitting height, standing 
height, arm span, shoulder height difference, and bracing compliance, as well as param-
eters obtained through physical exams for AIS screening. These parameters included the 
thoracic rotation angle, the thoracolumbar rotation angle, the lumbar rotation angle, 
the scapular tilt, the shoulder height difference, the lumbar concavity, and the pelvic tilt. 
Additionally, parameters calculated from X-ray images, such as the Cobb angle, initial 
lumbar lordosis angle, initial thoracic kyphosis angle, Risser sign, distal radius, and ulna 
classification, are included. The imaging category involves using whole radiology images, 
such as biplanar X-rays and surface topography, as input for model training.

Types of evaluation parameters referenced

1. ROC curve: Also known as the “Receiver Operating Characteristic Curve” or “Iso-
Sensitivity Curve”, the ROC Curve is primarily used to assess the accuracy of predic-
tions. The area under the ROC curve is known as the AUC, which is used to measure 
the quality of a model. The value of this area usually ranges from 0.5 to 1, where 0.5 
indicates random judgment, and 1 represents a perfect model.

Table 2  Advantages and disadvantages of machine learning models

Model type Advantages Disadvantages Contexts of best 
performance

Random Forest High accuracy, robustness 
to overfitting, handles both 
numerical and categorical 
data

High computational cost, less 
interpretable

Works well with structured 
data and mixed types

DCNNs Effective with structured data, 
high predictive performance, 
good at recognizing spatial 
patterns

High computational require-
ments, needs large datasets

Suitable for image-based tasks

CapsNet Captures spatial hierarchies, 
robust to variations, dynamic 
routing for better feature 
selection

Complex architecture, diffi-
cult to train, high computa-
tional resources needed

Effective for image recognition 
with spatial relationships

RNNs with LSTM Handles sequential data, 
retains long-term dependen-
cies, effective for time-series 
data

Computationally intensive, 
requires large training data, 
difficult to interpret

Best for time-series predic-
tions and data with temporal 
dependencies

CNNs Excellent at feature extraction 
and image analysis, scalable, 
handles high-dimensional 
data well

Requires large datasets, 
susceptible to overfitting if 
not properly regularized

Ideal for image-based tasks 
and spatial data
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2. Root mean square error (RMSE): This is calculated by taking the square of the dif-
ference between the actual and predicted values, summing these squares, averaging 
them, and finally taking the square root. It is commonly used to evaluate the pre-
diction accuracy of regression models. A smaller prediction error results in a lower 
RMSE, indicating better model prediction performance.
3. Accuracy: This refers to the proportion of correctly predicted samples to the total 
number of samples in the test set.

Discussion
In the management of AIS, the most crucial aspect is predicting the progression of the 
curve during the initial visit. Most patients, when first diagnosed, are mild and do not 
reach the level requiring brace management. However, the ability to identify which AIS 
patients may significantly worsen during puberty is currently limited. Being able to pre-
dict this risk in advance would facilitate clinical decision-making. For patients at greater 
risk of progression, early intervention treatment can be initiated, while for those at 
lower risk, a longer follow-up visit can be arranged to avoid unnecessary ionizing radia-
tion. Most current analyses based on curve prediction are retrospective, categorizing 
patients into progressive and nonprogressive groups based on changes in the Cobb angle 
between two follow-ups, generally defined as 5 degrees [13, 18–20]. Some studies define 
an increase of 25 degrees in the Cobb angle from disease onset to skeletal maturity as the 
threshold for progression or nonprogression [9, 12].

Neural networks have made further technical improvements over traditional deep 
learning, capturing more features in images to enhance the accuracy of prediction mod-
els. Therefore, compared to considering one-dimensional numerical factors, machine 
learning methods that directly use two-dimensional images as inputs are more common 
[10, 12, 21]. In [21], Bayesian modeling of input priors was performed using a previously 
reconstructed 3D spinal set obtained from longitudinal assessments of P-type and NP-
type AIS patients, training a discriminative manifold that achieved a classification rate of 
81% between P and NP patients, with predicted main curve angle differences within 2.1°. 
In [7], independent component analysis (ICA) was used to extract 9 independent com-
ponents (ICs) representing the main directions of shape change from a dataset of 150 
AIS patients, with prediction results showing deviations of 1.83°, 5.18°, and 4.79° for the 
proximal thoracic, main thoracic, and thoracolumbar/lumbar segments from the actual 
spinal curvature, respectively. In spinal detection using X-rays, anatomical priors can 
be used to enhance the accuracy of machine learning models. These priors include the 
relative positions, orientations, and shapes of vertebrae, as well as their biomechanical 
interactions. Incorporating anatomical priors into machine learning models can improve 
their ability to detect and analyze spinal deformities [9, 22].

Considering the need for close clinical observation in AIS patients, excessive radia-
tion doses from imaging may pose a cancer risk [23]. Therefore, some studies have 
utilized radiation-free imaging methods for disease management, including direct 
methods such as ultrasound and magnetic resonance imaging (MRI), as well as indi-
rect methods like surface topography (ST). ST, a nonradiative back imaging tech-
nique, indirectly reflects the condition of the bones of the back, and its correlation 
with 2D radiology has been confirmed [24]. ST allows for real-time data collection, is 
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generally less expensive than other imaging alternatives, requires almost no expertise 
beyond marker placement, and has the potential to capture patients’ postures while 
walking. Progress in research based on the ST has evolved from basic determinations 
of progression/nonprogression (P/NP) to predicting Cobb angle progression in pro-
gressive patients. While the image acquisition methods may vary, the core goal is to 
obtain the images. The three surface topography image acquisition methods aim to 
capture detailed 3D images for clinical spine and torso assessment using advanced 
imaging technologies. The DIERS Formetric 4D system [25] employs light grid projec-
tion and body markers, requiring subjects to wear an apron and stand on a treadmill 
for image capture, focusing on analyzing a set of 85 formetric parameters. In contrast, 
the VIVID 910 3D laser scanner methods [18, 26] involve patients standing in a frame 
to ensure minimal movement, capturing images from all sides without the need for an 
apron or specific markers, with the data processed using Geomagic Control software 
to create a comprehensive 3D model.

The latest method involves using smartphones to take pictures of the back [20], which 
is the simplest of all collection methods. However, current analyses are mostly based 
on single ST images and very few clinical parameters. Additionally, since ST indirectly 
reflects skeletal conditions, factors such as BMI and muscle imbalance can also affect 
prediction results [18, 26], leading to a wide variation in accuracy rates for predicting 
spinal progression, ranging from 41 to 92%. This does not fully demonstrate the advan-
tages of multifactor integration with Deep Learning. Nonetheless, it is undeniable that 
ST provides a radiation-free follow-up method for patients, particularly in mild cases, 
potentially reducing the radiation dose by 31% [18] and 74% [19], respectively.

Studies [17, 27] based on large-scale population screening data for AIS have identi-
fied risk factors for AIS using different machine learning methods based on param-
eters obtained from basic physical exams. Common factors include the lumbar 
rotation angle, scapular tilt, shoulder height difference, lumbar concavity, and pelvic 
tilt. However, the machine learning models used vary, with one based on artificial 
neural networks and the other on logistic regression.

Traditional methods, such as the SOSORT guidelines and the Lonstein and Carlson 
method, have been the cornerstone of clinical practice due to their reliability and vali-
dation. The SOSORT guidelines provide a comprehensive approach to conservative 
management and prediction of scoliosis progression, incorporating clinical and radio-
logical assessments [28]. The Lonstein and Carlson method, developed in 1984, calcu-
lates the risk of curve progression during growth based on the initial Cobb angle and 
the patient’s Risser sign, among other factors [29]. This method has proven effective in 
clinical settings, allowing for timely interventions. However, with the advent of machine 
learning and AI, there is an opportunity to enhance these traditional methods by inte-
grating a wider array of data points and continuously updating prediction models with 
new patient data. AI-based prediction models offer several advantages over traditional 
methods. They can integrate multiple data types, including imaging and clinical param-
eters, leading to potentially higher precision in predictions [9]. AI models can also be 
continuously updated with new data, improving their accuracy over time [12, 21]. Fur-
thermore, AI can provide individualized predictions based on a comprehensive analysis 
of each patient’s unique characteristics [30]. However, the limitation cannot be ignored.
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Like many deep learning models, numerous models in this retrospective review 
exhibit “black box” characteristics, such as CapsuleNet [9, 12, 13], LSTM [14], and even 
RF [6, 7], posing challenges in interpreting predictions and potentially hindering their 
acceptance and use by medical professionals. However, this review also incorporates 
interpretable models, including Decision Tree models, k-nearest neighbor models [19] 
and Logistic Regression (LR) models [27]. Decision Trees [21] split data based on cer-
tain conditions or feature thresholds, with each node representing an easily interpretable 
decision rule (e.g., “Is the Cobb angle > 25 degrees?”). This made it straightforward to 
understand how the model achieved specific predictions. The customized k-NN algo-
rithm [19] excelled in handling unique characteristics of AIS progression and severity 
classification, utilizing specific features from surface morphology analysis, such as RMS 
and MaxDev. Integrating domain-specific knowledge into the model’s decision-making 
process and maintaining transparency through clear principles of neighbor selection 
and features used for classification enhanced performance for specific tasks. LR models 
[27] were used to identify influential factors for AIS and develop predictive models with 
various adjusted weights. LR allowed for a clear understanding of how predictive fac-
tors influence the model’s forecasts, offering insights into the relationships between vari-
ous physical indicators and the risk of AIS progression. Another study [20] avoided the 
“black box” issue by using techniques such as Score-CAM to provide visual heatmaps 
that highlight the areas of the image most influential in the model’s decision-making 
process.

The implementation of machine learning models, while promising, also encounters 
limitations related to data availability, model transparency, and interpretability. The 
effectiveness of these models depends on the quality and comprehensiveness of the data-
sets used for training, which may not always encompass the wide range of variability 
seen in clinical practice. Furthermore, the studies reviewed predominantly focused on 
specific subsets of the AIS population, such as those with curve types or stages of skeletal 
maturity. This focus may limit the extrapolation of findings to the broader AIS commu-
nity, necessitating further research across a wider spectrum of patient profiles. Finally, 
the current body of research underscores a significant gap in long-term outcome studies. 
The dynamic nature of AIS and its progression over time calls for extended follow-up 
periods to truly understand the impact of various treatment modalities on patient out-
comes and quality of life.

Conclusion
This systematic review demonstrates the potential of machine learning models in pre-
dicting the progression of AIS. By integrating clinical and radiological data, these models 
offer a promising tool for enhancing prediction accuracy and personalizing patient man-
agement. However, further research is needed to address data availability, model inter-
pretability, and integration into clinical workflows. With continuous advancements in 
machine learning, it is hopeful that these technologies will become integral to the clini-
cal management of AIS.
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