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Abstract

Predicting curve progression during the initial visit is pivotal in the disease manage-
ment of patients with adolescent idiopathic scoliosis (AlS)—identifying patients at high
risk of progression is essential for timely and proactive interventions. Both radiological
and clinical factors have been investigated as predictors of curve progression. With

the evolution of machine learning technologies, the integration of multidimensional
information now enables precise predictions of curve progression. This review focuses
on the application of machine learning methods to predict AIS curve progression,
analyzing 15 selected studies that utilize various machine learning models and the risk
factors employed for predictions. Key findings indicate that machine learning models
can provide higher precision in predictions compared to traditional methods, and their
implementation could lead to more personalized patient management. However, due
to the model interpretability and data complexity, more comprehensive and multi-
center studies are needed to transition from research to clinical practice.
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Introduction
Adolescent idiopathic scoliosis (AIS) manifests as a three-dimensional spinal deform-
ity in adolescence [1]. It is widely accepted that scoliotic curvature progression in AIS
patients results from the interplay between genetic predispositions and biomechani-
cal factors. The initial spinal curvature—whose origins are not fully understood—leads
to asymmetric loading on the vertebral growth plates, resulting in varied growth rates
through endochondral ossification. This exacerbates lateral spinal deformity and triggers
axial vertebral rotation, aligning with the Hueter—Volkmann law, which suggests that
scoliosis progression is cyclical [2].

Clinically, AIS management includes regular monitoring for curves less than 25
degrees in patients with a Risser grade of 0 to 2, bracing for curves of 25 to 40 degrees,
and surgical evaluation for curves exceeding 45 or 50 degrees [3]. Despite these
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guidelines, clinicians must develop interventions for each patient’s unique conditions.
In addition, based on individual variations among patients, doctors also need to predict
whether patients will experience rapid progression of scoliosis in the future, necessitat-
ing more frequent clinical observation.

The progression of scoliosis is not determined by a single factor but results from the
interaction of multiple factors, such as age, sex, skeletal maturity and spine curve mor-
phology. A multifactorial analysis system can enhance the accuracy of predictions [4].
Recent studies have utilized advanced computational methods to predict the progres-
sion of AIS and assess the effectiveness of treatment strategies. In the field of AIS man-
agement, the integration of machine learning technologies has become a pivotal trend.

The purpose of this study was to conduct a systematic review of the literature on the
application of AI methods for multiple risk factors to aid clinicians in the management
of patients with AIS.

Methods

Search strategy

The literature search was conducted on studies published between January 1, 2016, and
January 25, 2024. The initial search was carried out on January 31, 2024, with a subse-
quent search performed on February 28, 2024. The objective of this systematic investiga-
tion was to analyze the impact of various risk factors on spinal curvature in patients with
AIS. The PubMed, Web of Science, and Google Scholar databases were utilized for the
literature search. The keywords used in the search were “adolescent idiopathic scoliosis’,
“predict*; “deep learning” and “machine learning” in either the title or the abstract of the
publications. Additionally, we supplemented the literature information not covered by
the search by reading the references cited in the articles. The highlights of the analyzed
studies are presented in Table 1.

Eligibility criteria

Two reviewers independently selected the literature, resolving discrepancies by consen-
sus. The included studies were published in English, peer-reviewed, pertained to pre-
dictive factors in AIS, and focused on nongenetic scoliosis types. The exclusion criteria
included reviews, animal studies, correspondences, and editorials.

Data analysis

The analysis involved extracting data on study design, publication year, author names,
patient demographics, machine learning models, definitions of scoliosis progression,
identified risk factors and prediction results. This review primarily analyzes the follow-
ing factors: 1. the machine learning models used were as follows: 2. the input risk factors.
We focused exclusively on curve prediction for nonsurgical patients with AIS, excluding
articles predicting the outcomes of AIS surgeries.

Results

The preliminary search across two databases yielded 417 publications potentially meet-
ing the inclusion criteria. Subsequent screening of titles and abstracts narrowed the
field to 93 studies for detailed analysis. After the full-text examination, 15 papers were
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included in the study, 14 of which were retrospective and 1 of which was prospective.
The sample size ranged widely, from 38 to 1780. The papers included a total of 11,376
patients, with female patients accounting for 66.46%. Most of these patients underwent
X-ray examinations, but some received radiation-free imaging or basic physical exami-
nations. The definition of scoliosis progression primarily involves an increase in the
Cobb angle between two consecutive follow-up visits, but the extent of progression var-
ies slightly across different studies (5°-10°).

The process of using machine learning to predict AIS progression involves several
steps: collecting and preprocessing a comprehensive dataset that includes radiographic
images, clinical parameters, and patient demographics; extracting relevant features
such as geometric data from radiographs and clinical measurements; selecting suitable
machine learning models; training the chosen models with the preprocessed data; vali-
dating and testing the models on separate datasets to ensure they generalize well; and
finally, using the trained models to predict scoliosis progression in new patients, provid-
ing insights and recommendations for clinical management (Fig. 1).

Types of systems and models referenced
Random Forest
The Random Forest (RF) algorithm has emerged as a cornerstone ensemble learn-
ing technique [5] used for addressing a broad spectrum of classification and regression
tasks. By arranging the collective power of numerous decision trees, RFs construct a
model distinguished by its superior accuracy and resilience. Each tree within the forest is
cultivated from unique random subsets and features of the dataset, effectively mitigating
the risk of overfitting. RF is equally proficient in dealing with discrete and continuous
data types, eliminating the need for dataset normalization, and can generate a proxim-
ity matrix that sheds light on sample similarities. However, RF may incur heightened
computational complexity and cost, proportional to the number of trees and their depth.
RF models were constructed by constructing numerous decision trees during training
and amalgamating the predictions of these trees to forecast the final major Cobb angle in
AIS patients [6]. The Sequential Backward Floating Selection (SBFS) method was utilized
to pinpoint the most predictive features for curve progression, streamline model com-
plexity and eliminate less significant features. Another study [7] leveraged independent
component analysis (ICA) to distill independent components (ICs) representing primary
shape variations in 3D spine models, which served as inputs to train the RF model. The
predictive modeling approach involved using the RF model to estimate future changes in
the spine’s shape based on its initial condition. It adopts a chain of predictor strategies in
which the outcome of one prediction feeds into the next, thereby chronologically simu-
lating scoliosis progression. This innovative technique of using sequential predictors to
mirror time-evolving progression underscored the model’s ability to depict the spine’s
morphological changes over successive time frames, capturing the dynamic features of
scoliosis development.

Diffusion-convolutional neural networks (DCNN’s)
Traditional Convolutional Neural Networks (CNNs) encounter substantial challenges
when processing structured data. The pursuit of appropriate methods for representing
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and exploring data structures is critical for enhancing prediction accuracy. Nonethe-
less, pinpointing these structures is often arduous, and incorporating them into models
markedly escalates prediction complexity. The diffusion convolutional neural network
(DCNN) addresses these issues by incorporating the diffusion-convolution operation
within CNNs for use with graph-structured data (non-Euclidean space) [8], utilizing a
universal framework that enhances predictive performance while reducing complex-
ity. DCNNs stand out for their ability to offer a dynamic representation of graph data,
capturing node features, edge features, and structural nuances with minimal preproc-
essing. In the realm of spinal X-ray analysis [9], DCNNs have the potential to transform
imaging feature extraction for AIS prediction, leveraging deep learning to identify pat-
terns associated with curve progression. However, the computational requirements for
training and deploying DCNNs present considerable challenges, especially in resource-
constrained settings. The success of DCNNs also greatly depends on the quantity and
quality of the training data, with the possibility of reduced performance in instances of
limited or unusual data. Additionally, research [10] has suggested that omitting key clini-
cal parameters such as age, sex, growth rate, or markers of skeletal maturity could com-
promise the model’s accuracy in predicting AIS progression.

Capsule neural network (CapsNet)

CapsNets are good at extracting direction-related features from X-rays, such as verte-
bral rotation and rib asymmetry, in addition to capturing general spatial features [11].
CNN sensitivity to local features, such as slight rotations or translations, can substan-
tially influence the outputs. Furthermore, CNNs primarily concentrate on local features,
potentially neglecting the integration of these features into coherent structures, thereby
overcoming complex spatial hierarchies. In contrast, CapsNets excel in discerning com-
plex hierarchies and spatial relationships, which are essential for numerous applications.
The fundamental units of CapsNets, known as capsules, are designed to detect and
encode intricate patterns and hierarchical information. Unlike CNNSs, capsules produce
higher-dimensional outputs and possess more elaborate internal structures, enabling
a nuanced and comprehensive representation of the input data. Each capsule acts as a
miniature neural network that identifies specific visual patterns, encoding probabilities
and pose parameters of their presence, thus preserving extensive spatial hierarchical
information.

A pivotal feature of CapsNets is the introduction of “dynamic routing’; a sophisticated
mechanism that facilitates information transfer among capsules. This process enhances
the network’s grasp of objects’ internal structures and their relative spatial orientations.
Compared to traditional CNN propagation techniques such as max pooling, dynamic
routing offers enhanced flexibility and better information retention. Moreover, Cap-
sNets enhance their functionality by integrating attention mechanisms within capsule
routing, effectively directing the model’s analysis toward the most relevant aspects of
image data [9, 12]. This strategy is particularly beneficial for AIS prediction because it
allows for the focused identification of features and spatial relationships crucial for indi-
cating curve progression, such as vertebral rotation and torsion, thereby enhancing the
model’s accuracy and interpretability. CapsNets adeptly target the major curve apex of
spinal radiographs, distinguishing curves as either progressive or nonprogressive based
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on key progression indicators [9, 12]. However, the model’s primary reliance on vertebral
rotation and torsion might not always guarantee reliable predictions of curve progres-
sion. An additional limitation arose from the model’s lack of comprehensive assessment
of skeletal maturity, which focused solely on the Risser sign [12]. Expanding CapsNet’s
utility, another study [13] successfully integrated 2D radiological images with 1D clinical
data, combining spatial and clinical insights for a more encompassing prediction model.

Recurrent neural network (RNN) with LSTM cells

Recurrent neural networks (RNNs) enhance CNN designs to process data that unfold
over time. They stand out for adding a "time dimension" to data analysis, enabling the
model to pass information through time. This is achieved through hidden layers that
store and update information based on new inputs, allowing the model to consider both
new and historical data in its outputs. However, RNNs face challenges in maintaining
information over long periods, a problem addressed by innovations like Long Short-
Term Memory Networks (LSTMs) and Gated Recurrent Units (GRUs) [14]. These tech-
nologies introduce controls within the network that help manage how information is
kept or discarded, making it easier to learn from data over extended sequences.

LSTM:s, in particular, are designed to solve the issue of “vanishing gradients’, enabling
the network to learn from long-term data dependencies. They use a system of gates that
carefully manage the flow of information, making them adept at following the develop-
ment of conditions such as scoliosis, which changes gradually over time. LSTMs are par-
ticularly good at remembering crucial early data, such as the initial Cobb angle or when
puberty starts, and can be used to predict how the condition will progress. This feature
is crucial for accurately tracking scoliosis over time. In research on the prediction of sco-
liosis progression [15], LSTMs have been used to analyze clinical and radiological data
collected over time. This study developed two models using LSTMs: one classifies the
severity of scoliosis as mild, moderate, or severe based on current clinical data, and the
other predicts how the spinal curvature will change in the future by using changes in
clinical indicators to estimate variations in the Cobb angle.

Convolutional neural networks with attention mechanisms

Traditional CNN models employ fixed-size filters to analyze input images, a technique
that falls short when encountering objects or scenes varying in size. Moreover, these
models may overlook the complex relationships between different parts of an image,
potentially missing crucial information. To overcome these challenges, attention mecha-
nisms have become a critical advancement, allowing models to focus selectively on spe-
cific parts of the input data. This focus is achieved by adding extra parameters to the
CNN architecture, which helps evaluate the importance of each data point and adjust
the model’s attention and processing power accordingly [16].

Attention mechanisms greatly improve a model’s ability to identify and prioritize key
details in images, enhancing both its performance and efficiency. The advantages of
implementing attention mechanisms include a better understanding of the input data,
increased effectiveness of the model, and improved efficiency. However, these benefits
include heightened computational requirements and increased memory consumption.
Within the realm of AIS analysis using smartphone photographs [17], CNNs enhanced
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with attention mechanisms rigorously identify and analyze patterns and features, pin-
pointing indicators essential for determining scoliosis severity and curve types. Focusing
on areas that show significant curvature or asymmetry on the patient’s back, attention
mechanisms significantly improved the model’s accuracy and clarity.

Table 2 illustrates the stages of AIS progression and where machine learning interven-
tions can be applied to predict and manage the disease.

Types of factors referenced

In this retrospective article, the prediction models primarily incorporate two types of
predictive factor inputs: 1D numerical and 2D imaging. The numerical category included
patient demographic information such as sex, age, weight, sitting height, standing
height, arm span, shoulder height difference, and bracing compliance, as well as param-
eters obtained through physical exams for AIS screening. These parameters included the
thoracic rotation angle, the thoracolumbar rotation angle, the lumbar rotation angle,
the scapular tilt, the shoulder height difference, the lumbar concavity, and the pelvic tilt.
Additionally, parameters calculated from X-ray images, such as the Cobb angle, initial
lumbar lordosis angle, initial thoracic kyphosis angle, Risser sign, distal radius, and ulna
classification, are included. The imaging category involves using whole radiology images,
such as biplanar X-rays and surface topography, as input for model training.

Types of evaluation parameters referenced

1. ROC curve: Also known as the “Receiver Operating Characteristic Curve” or “Iso-
Sensitivity Curve’, the ROC Curve is primarily used to assess the accuracy of predic-
tions. The area under the ROC curve is known as the AUC, which is used to measure
the quality of a model. The value of this area usually ranges from 0.5 to 1, where 0.5
indicates random judgment, and 1 represents a perfect model.

Table 2 Advantages and disadvantages of machine learning models

Contexts of best
performance

Model type Advantages Disadvantages

Works well with structured
data and mixed types

Random Forest  High accuracy, robustness
to overfitting, handles both
numerical and categorical

data

High computational cost, less
interpretable

DCNNs Effective with structured data, High computational require-  Suitable for image-based tasks
high predictive performance, ments, needs large datasets
good at recognizing spatial
patterns

CapsNet Captures spatial hierarchies, ~ Complex architecture, diffi- Effective for image recognition

robust to variations, dynamic
routing for better feature
selection

cult to train, high computa-
tional resources needed

with spatial relationships

RNNs with LSTM  Handles sequential data,
retains long-term dependen-
cies, effective for time-series

data

Excellent at feature extraction
and image analysis, scalable,
handles high-dimensional
data well

CNNs

Computationally intensive,
requires large training data,
difficult to interpret

Requires large datasets,
susceptible to overfitting if
not properly regularized

Best for time-series predic-
tions and data with temporal
dependencies

|deal for image-based tasks
and spatial data
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2. Root mean square error (RMSE): This is calculated by taking the square of the dif-
ference between the actual and predicted values, summing these squares, averaging
them, and finally taking the square root. It is commonly used to evaluate the pre-
diction accuracy of regression models. A smaller prediction error results in a lower
RMSE, indicating better model prediction performance.

3. Accuracy: This refers to the proportion of correctly predicted samples to the total
number of samples in the test set.

Discussion

In the management of AIS, the most crucial aspect is predicting the progression of the
curve during the initial visit. Most patients, when first diagnosed, are mild and do not
reach the level requiring brace management. However, the ability to identify which AIS
patients may significantly worsen during puberty is currently limited. Being able to pre-
dict this risk in advance would facilitate clinical decision-making. For patients at greater
risk of progression, early intervention treatment can be initiated, while for those at
lower risk, a longer follow-up visit can be arranged to avoid unnecessary ionizing radia-
tion. Most current analyses based on curve prediction are retrospective, categorizing
patients into progressive and nonprogressive groups based on changes in the Cobb angle
between two follow-ups, generally defined as 5 degrees [13, 18—20]. Some studies define
an increase of 25 degrees in the Cobb angle from disease onset to skeletal maturity as the
threshold for progression or nonprogression [9, 12].

Neural networks have made further technical improvements over traditional deep
learning, capturing more features in images to enhance the accuracy of prediction mod-
els. Therefore, compared to considering one-dimensional numerical factors, machine
learning methods that directly use two-dimensional images as inputs are more common
(10, 12, 21]. In [21], Bayesian modeling of input priors was performed using a previously
reconstructed 3D spinal set obtained from longitudinal assessments of P-type and NP-
type AIS patients, training a discriminative manifold that achieved a classification rate of
81% between P and NP patients, with predicted main curve angle differences within 2.1°.
In [7], independent component analysis (ICA) was used to extract 9 independent com-
ponents (ICs) representing the main directions of shape change from a dataset of 150
AIS patients, with prediction results showing deviations of 1.83°, 5.18°, and 4.79° for the
proximal thoracic, main thoracic, and thoracolumbar/lumbar segments from the actual
spinal curvature, respectively. In spinal detection using X-rays, anatomical priors can
be used to enhance the accuracy of machine learning models. These priors include the
relative positions, orientations, and shapes of vertebrae, as well as their biomechanical
interactions. Incorporating anatomical priors into machine learning models can improve
their ability to detect and analyze spinal deformities [9, 22].

Considering the need for close clinical observation in AIS patients, excessive radia-
tion doses from imaging may pose a cancer risk [23]. Therefore, some studies have
utilized radiation-free imaging methods for disease management, including direct
methods such as ultrasound and magnetic resonance imaging (MRI), as well as indi-
rect methods like surface topography (ST). ST, a nonradiative back imaging tech-
nique, indirectly reflects the condition of the bones of the back, and its correlation
with 2D radiology has been confirmed [24]. ST allows for real-time data collection, is
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generally less expensive than other imaging alternatives, requires almost no expertise
beyond marker placement, and has the potential to capture patients’ postures while
walking. Progress in research based on the ST has evolved from basic determinations
of progression/nonprogression (P/NP) to predicting Cobb angle progression in pro-
gressive patients. While the image acquisition methods may vary, the core goal is to
obtain the images. The three surface topography image acquisition methods aim to
capture detailed 3D images for clinical spine and torso assessment using advanced
imaging technologies. The DIERS Formetric 4D system [25] employs light grid projec-
tion and body markers, requiring subjects to wear an apron and stand on a treadmill
for image capture, focusing on analyzing a set of 85 formetric parameters. In contrast,
the VIVID 910 3D laser scanner methods [18, 26] involve patients standing in a frame
to ensure minimal movement, capturing images from all sides without the need for an
apron or specific markers, with the data processed using Geomagic Control software
to create a comprehensive 3D model.

The latest method involves using smartphones to take pictures of the back [20], which
is the simplest of all collection methods. However, current analyses are mostly based
on single ST images and very few clinical parameters. Additionally, since ST indirectly
reflects skeletal conditions, factors such as BMI and muscle imbalance can also affect
prediction results [18, 26], leading to a wide variation in accuracy rates for predicting
spinal progression, ranging from 41 to 92%. This does not fully demonstrate the advan-
tages of multifactor integration with Deep Learning. Nonetheless, it is undeniable that
ST provides a radiation-free follow-up method for patients, particularly in mild cases,
potentially reducing the radiation dose by 31% [18] and 74% [19], respectively.

Studies [17, 27] based on large-scale population screening data for AIS have identi-
fied risk factors for AIS using different machine learning methods based on param-
eters obtained from basic physical exams. Common factors include the lumbar
rotation angle, scapular tilt, shoulder height difference, lumbar concavity, and pelvic
tilt. However, the machine learning models used vary, with one based on artificial
neural networks and the other on logistic regression.

Traditional methods, such as the SOSORT guidelines and the Lonstein and Carlson
method, have been the cornerstone of clinical practice due to their reliability and vali-
dation. The SOSORT guidelines provide a comprehensive approach to conservative
management and prediction of scoliosis progression, incorporating clinical and radio-
logical assessments [28]. The Lonstein and Carlson method, developed in 1984, calcu-
lates the risk of curve progression during growth based on the initial Cobb angle and
the patient’s Risser sign, among other factors [29]. This method has proven effective in
clinical settings, allowing for timely interventions. However, with the advent of machine
learning and Al, there is an opportunity to enhance these traditional methods by inte-
grating a wider array of data points and continuously updating prediction models with
new patient data. Al-based prediction models offer several advantages over traditional
methods. They can integrate multiple data types, including imaging and clinical param-
eters, leading to potentially higher precision in predictions [9]. Al models can also be
continuously updated with new data, improving their accuracy over time [12, 21]. Fur-
thermore, Al can provide individualized predictions based on a comprehensive analysis
of each patient’s unique characteristics [30]. However, the limitation cannot be ignored.
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Like many deep learning models, numerous models in this retrospective review
exhibit “black box” characteristics, such as CapsuleNet [9, 12, 13], LSTM [14], and even
RF [6, 7], posing challenges in interpreting predictions and potentially hindering their
acceptance and use by medical professionals. However, this review also incorporates
interpretable models, including Decision Tree models, k-nearest neighbor models [19]
and Logistic Regression (LR) models [27]. Decision Trees [21] split data based on cer-
tain conditions or feature thresholds, with each node representing an easily interpretable
decision rule (e.g., “Is the Cobb angle>25 degrees?”). This made it straightforward to
understand how the model achieved specific predictions. The customized k-NN algo-
rithm [19] excelled in handling unique characteristics of AIS progression and severity
classification, utilizing specific features from surface morphology analysis, such as RMS
and MaxDev. Integrating domain-specific knowledge into the model’s decision-making
process and maintaining transparency through clear principles of neighbor selection
and features used for classification enhanced performance for specific tasks. LR models
[27] were used to identify influential factors for AIS and develop predictive models with
various adjusted weights. LR allowed for a clear understanding of how predictive fac-
tors influence the model’s forecasts, offering insights into the relationships between vari-
ous physical indicators and the risk of AIS progression. Another study [20] avoided the
“black box” issue by using techniques such as Score-CAM to provide visual heatmaps
that highlight the areas of the image most influential in the model’s decision-making
process.

The implementation of machine learning models, while promising, also encounters
limitations related to data availability, model transparency, and interpretability. The
effectiveness of these models depends on the quality and comprehensiveness of the data-
sets used for training, which may not always encompass the wide range of variability
seen in clinical practice. Furthermore, the studies reviewed predominantly focused on
specific subsets of the AIS population, such as those with curve types or stages of skeletal
maturity. This focus may limit the extrapolation of findings to the broader AIS commu-
nity, necessitating further research across a wider spectrum of patient profiles. Finally,
the current body of research underscores a significant gap in long-term outcome studies.
The dynamic nature of AIS and its progression over time calls for extended follow-up
periods to truly understand the impact of various treatment modalities on patient out-

comes and quality of life.

Conclusion

This systematic review demonstrates the potential of machine learning models in pre-
dicting the progression of AIS. By integrating clinical and radiological data, these models
offer a promising tool for enhancing prediction accuracy and personalizing patient man-
agement. However, further research is needed to address data availability, model inter-
pretability, and integration into clinical workflows. With continuous advancements in
machine learning, it is hopeful that these technologies will become integral to the clini-

cal management of AIS.
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