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Abstract 

Background:  Transcranial sonography (TCS) plays a crucial role in diagnosing Par-
kinson’s disease. However, the intricate nature of TCS pathological features, the lack 
of consistent diagnostic criteria, and the dependence on physicians’ expertise can hin-
der accurate diagnosis. Current TCS-based diagnostic methods, which rely on machine 
learning, often involve complex feature engineering and may struggle to capture 
deep image features. While deep learning offers advantages in image processing, it 
has not been tailored to address specific TCS and movement disorder considerations. 
Consequently, there is a scarcity of research on deep learning algorithms for TCS-based 
PD diagnosis.

Methods:  This study introduces a deep learning residual network model, augmented 
with attention mechanisms and multi-scale feature extraction, termed AMSNet, 
to assist in accurate diagnosis. Initially, a multi-scale feature extraction module is imple-
mented to robustly handle the irregular morphological features and significant area 
information present in TCS images. This module effectively mitigates the effects 
of artifacts and noise. When combined with a convolutional attention module, it 
enhances the model’s ability to learn features of lesion areas. Subsequently, a residual 
network architecture, integrated with channel attention, is utilized to capture hierar-
chical and detailed textures within the images, further enhancing the model’s feature 
representation capabilities.

Results:  The study compiled TCS images and personal data from 1109 participants. 
Experiments conducted on this dataset demonstrated that AMSNet achieved remark-
able classification accuracy (92.79%), precision (95.42%), and specificity (93.1%). It sur-
passed the performance of previously employed machine learning algorithms in this 
domain, as well as current general-purpose deep learning models.

Conclusion:  The AMSNet proposed in this study deviates from traditional machine 
learning approaches that necessitate intricate feature engineering. It is capable of auto-
matically extracting and learning deep pathological features, and has the capacity 
to comprehend and articulate complex data. This underscores the substantial potential 
of deep learning methods in the application of TCS images for the diagnosis of move-
ment disorders.
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Graphical Abstract

Introduction
Parkinson’s disease (PD) is a common neurodegenerative disease that currently affects 
over six million individuals [1]. With the improvement in medical diagnosis and treat-
ment levels and the progressive population ageing, the number of patients with PD is 
increasing, displaying an epidemic trend [2, 3]. The reduction in the labor force imposes 
a significant load on families and the society, severely affects the patients’ social func-
tion and quality of life. Additionally, PD’s clinical manifestations vary substantially, with 
numerous motor and non-motor symptoms. The clinical diagnosis of PD remains chal-
lenging [4]. Accurate diagnosis is crucial for effective PD treatment.

Transcranial sonography (TCS) is real-time, cost-effective, and non-invasive, widely 
used in clinical practice [5, 6]. TCS provides new information on brain morphology, aid-
ing in diagnosing various movement disorders. Evaluation variations in the brainstem 
and subcortical structures offers a basis for diagnosing and differentiating movement 
disorders. Compared with other imaging methods, TCS equipment is relatively inexpen-
sive, convenient to operate, and non-invasive. Since the first demonstration of the effec-
tiveness of TCS for diagnosing PD, many scholars have focused on diagnosing movement 
disorders using TCS. In 1995, Becker first described the relationship between substantia 
nigra (SN) hyperechogenicity and PD [7]. Studies have shown that TCS can distinguish 
PD from essential tremors [8], atypical parkinsonism syndrome [9, 10]. Recently, Wang 
et al. [11] indicated that lens-shaped hyperechoic regions may help distinguish PD from 
essential tremors, multiple system atrophy, and progressive supranuclear palsy. Despite 
its wide application value, relevant computer-aided methods have not been extensively 
studied.

Pauly et al. [12] were the first to explore 3D imaging technology in TCS to assist in 
diagnosing PD, pioneering an automatic 3D SN hyperechogenicity detection method 
based on random forests. Subsequently, Plate et  al. [13] proposed a TCS-based 
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Parkinson’s disease diagnosis method using support vector machines, focusing on the 
side with a large volume of SN hyperechogenicity. Despite high sensitivity and speci-
ficity in distinguishing PD from healthy subjects, these methods faced challenges in 
clinical applications due to their reliance on specialized equipment, resulting in small 
datasets and immature research methods. Sakalauskas et  al. [14] introduced a semi-
automatic segmentation method for the midbrain region in TCS images, combining sta-
tistical shape models with intensity amplitude invariant edge detectors. The team further 
explored the application of TCS in early PD, proposing an image analysis system incor-
porating a segmentation algorithm and a decision support subsystem [15]. Fei et al. [16] 
evaluated different regions of interest in feature extraction for TCS-assisted PD. Thi-
rusangu et al. [17] proposed a deep convolutional neural network based on the U-Net 
architecture for automated SN, combining a weighted binary cross-entropy loss function 
for semantic segmentation in TCS images.

In TCS diagnostic classification tasks, various manual feature extraction methods 
based on machine learning have been extensively explored. Chen et al. [18] presented 
a local image analysis method using a support vector machine classifier to extract local 
features from detected spots and watershed regions of half the midbrain. Gong and Shi 
[19] proposed a deep neural mapping large margin distribution machine algorithm for 
PD diagnosis, utilizing a deep neural network for kernel mapping and a joint training 
strategy. Xue et  al. [20] introduced a single-modal cKRVFL + (cascaded Kernel-based 
Random Vector Functional Link network plus) algorithm based on TCS images, which 
is an improved RVFL + algorithm (Random Vector Functional Link network plus). Shen 
et al. [21] proposed a PD diagnosis method using a deep polynomial network, employing 
a network pruning strategy to address overfitting. Shi et al. [22] integrated multimodal 
data from TCS images and transcranial Doppler ultrasound, proposing a computer-
aided diagnosis method based on multi-kernel learning. Ding et al. [23] established the 
foundation for applying deep learning methods in diagnosing PD using TCS images, 
focusing on evaluating the performance of the ResNet and DenseNet models.

While 3D TCS image-based research methods can address issues related to poor 
sound transmission, their development is limited due to immature imaging technol-
ogy, reliability concerns, and stringent data requirements. Traditional manual feature 
extraction methods have achieved successes in TCS image analysis, but rely on complex 
processes and extensive preliminary annotation work, limiting their practical applica-
tions. Manual annotation of regions of interest depends on doctors’ expertise, increasing 
subjectivity and uncertainty. Machine learning methods lack the ability to automatically 
extract deep features, making noise handling challenging and resulting in insufficient 
diagnostic performance. In contrast, deep learning methods can automatically learn and 
extract features from raw images, avoiding cumbersome manual processes [24]. They 
also possess stronger generalization capabilities, facilitating data expansion and being 
less affected by different ultrasound machine models [25]. Therefore, exploring deep 
learning methods in TCS image classification and diagnostic tasks is crucial, promising 
reliable and efficient technical support for early detection and precise treatment of PD.

This paper proposes an Attention-Integrated Multi-Scale Residual Network (AMSNet) 
model combining an attention mechanism and multi-scale feature extraction structure 
for PD diagnosis. The model utilizes both original TCS images and gamma-corrected 
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images as multimodal inputs, incorporating convolutional attention for fusion and 
dimensionality reduction. By contrasting and fusing information across different scales, 
the model reduces noise impact, enabling precise capture of brightness information 
related to the diagnostic target and enhancing lesion area feature extraction. The resid-
ual network structure embedded with lightweight channel attention captures hierarchi-
cal and detailed texture features in TCS images while reducing parameters count and 
avoiding gradient issues. AMSNet employs a multi-scale feature extraction module for 
robust lesion area processing.

This study utilized the second-largest dataset in the field of TCS PD diagnosis. 
Although not the largest, the data’s considerable scale ensured sufficient sample size for 
training and validating deep learning models. Leveraging this dataset, this study com-
prehensively extracted key information from TCS images through deep learning meth-
ods, providing new ideas for PD diagnosis.

The contributions of this study are as follows:

	 I.	 It proposed an Attention-Integrated Multi-Scale Residual Network (AMSNet) 
model for PD detection in TCS images. AMSNet, tailored to the unique character-
istics of TCS images, enhances the accuracy of assisted diagnostic algorithms for 
PD utilizing TCS images.

	II.	 It combined the dilated convolution pyramid and channel-spatial attention mech-
anism to establish an attention-dilated convolution pyramid module to extract 
multi-scale information in the image and expand the receptive field.

	III.	 It used second-largest image database currently in in the field of TCS Parkinson’s 
disease diagnosis to make the experimental results more reliable methods.

Results
Dataset

This study investigated 1109 subjects who visited the neurology clinic and ward of 
Xiangya Hospital of Central South University between December 2020 and October 
2023. They comprised 675 patients with PD and 434 healthy controls. All the subjects 
were from mainland China, conscious, and cooperative. They provided informed con-
sent before participating in the TCS examination. The TCS images used in the data-
base, including those in the normal (healthy controls) and abnormal categories (PD), 
were randomly divided into training, validation, and test sets in the ratio 6:2:2. All the 
images were resized to 224 × 224 pixel using bilinear interpolation. For the training set, 
use random horizontal flips, random rotations, random blurring, and random scaling 
operations to achieve fivefold data augmentation. The settings of the dataset are listed in 
Table 1. 

Experimental setting

This paper implements the proposed AMSNet using the PyTorch framework. The rel-
evant software and hardware experimental environment are listed in Table  2. Dur-
ing network training, a batch size of 4 is used, along with the AdamW optimizer. The 
initial learning rate is set to 1 × 10−4, and an adaptive algorithm based on training loss 
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dynamically adjusts the learning rate. Weighted cross-entropy loss, which has been 
proven to have a good performance in the classification algorithm [26], was used to opti-
mize the model parameters during the training process. Each model was trained for at 
least 50 epochs. After the loss had no obvious decrease, we stopped training, and the 
best model, with the highest accuracy on the validation dataset, was saved.

Results and analysis

First, experiments were conducted on TCS image data to evaluate the effectiveness of 
the AMSNet method in detecting PD. Then, ablation experiments were performed on 
the three important modules applied in the model (MVGGC, ADCP, and SE block) to 
demonstrate its effectiveness. Finally, the results of this method were compared with 
those of previous studies. The performance indicators used for the evaluation were the 
sensitivity (Se.), specificity (Sp.), precision (Pre.), F-score (F1), and overall accuracy 
(Acc.) of the experimental results.

Model evaluation

The AMSNet model was evaluated on the validation and test sets. The confusion matrix 
is shown in Fig.  1. For the validation set, 4 abnormal category images and 14 normal 
category images were misclassified. For the test set, 10 abnormal category images and 6 
normal category images were misclassified. The evaluation index results of the experi-
ments are listed in Table 3.

The AMSNet model achieved Pre., Se., Sp. and F1 of 94.81% , 83.91%, 97.04%, and 
89.02%, respectively, in the normal category of the validation set, and 90.34%, 97.04%, 
83.91%, and 93.57%, respectively, in the abnormal category of the validation set. The 
overall accuracy was 91.89%. The AMSNet model achieved Pre., Se., Sp. and F1 of 
89.01%, 93.1%, 92.59%, and 91.01%, respectively, in the normal category of the test 
set, and 95.42%, 92.59%, 93.1%, and 93.98%, respectively, in the abnormal category 
of the test set. The overall accuracy was 92.79%. The difference in Acc. between the 

Table 1  Data setting of TCS for training, validation, and test sets

Image type Training Validation Test

Abnormal 2025 135 135

Normal 1300 87 87

Sum 3325 222 222

Table 2  Software and hardware experimental environment

Setting Item Configuration

Hardware CPU Xeon(R) silver 4214R

GPU RTX 3080 Ti

GPU memory 24 GB

Software Programming language Python 3.9.7

DL architecture Pytorch 1.10.1
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validation and test sets did not exceed 1%. This indicated that the model exhibited 
good robustness.

Ablation experiments

We verified the effectiveness of the MVGGC layer, SE block, and ADCP layer in the 
AMSNet model. The results of the ablation experiments are listed in Table 4. In these 
experiments, we examined the performance of the model in the abnormal class, which 
was the PD class. In the first three experiments, the MVGGC layer, SE block, and 
ADCP layer were added to the backbone. In the fourth experiment, the ADCP layer 
was replaced with max pooling. In the fifth experiment, the SE block was replaced 
with a basic block in Resnet. In the sixth experiment, the MVGGC layer in AMSNet 
was deleted.

In ablation experiments, the model was trained on the training set and validation 
set, and tested on the test set. In Table  4, the first row shows the evaluation met-
rics of the basic Resnet model with an Acc. of 88.29%. When the MVGGC layer was 
added to the base model, Acc. increased to 88.74%. Similar results were obtained 
by adding the SE block and ADCP layer to the base model. The combined applica-
tion of the SE block and ADCP layer yielded the largest improvement in the model, 
with Acc. increasing by 3.6%. Figure 2 mainly shows the result analysis of removing 
the MVGGC layer, SE block, and ADCP layer from AMSNet. Removing the ADCP 
layer from AMSNet resulted in a 2.25% decrease in the Acc. of the model. To a cer-
tain extent, it was demonstrated that the extraction and combination of multi-scale 

Fig. 1  Confusion matrix for the result of AMSNet on validation and test sets

Table 3  Performance analysis of AMSNet on validation set and test set [In%]

Dataset Category Pre Se Sp F1 Acc.

Validation set Normal 94.81 83.91 97.04 89.02 91.89

Abnormal 90.34 97.04 83.91 93.57

Test set Normal 89.01 93.1 92.59 91.01 92.79

Abnormal 95.42 92.59 93.1 93.98
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features are of high significance for PD detection in TCS. The failure of the MVGGC 
layer and SE block also impacted the model. The impact of the MVGGC layer was 
less than those of the other two modules. This is likely to be a result of the fact that 
the MVGGC layer should be combined with the SE block to obtain better results. 
AMSNet combines the three modules and achieves good results.

Comparison with other deep learning models

To verify the performance of the AMSNet model in the TCS-based Parkinson’s diag-
nosis task, we compared seven basic deep learning models: MaxViT [27], RepViT [28], 
BotNet [29], CrossViT [30], Swin-T [31], Inception-V3 [32], DenseNet [33] and MedViT 
[34]. The comparative experimental results on the test set for the AMSNet framework 
and other deep learning models are summarized in Table 5.

Among the conventional deep learning models, MedViT exhibited superior per-
formance, achieving the highest accuracy of 90.99% and notable Se., and F1 scores of 
96.3% and 92.86%, respectively. Several models stood out in different evaluation metrics. 
SwinT topped in Pre. And Sp. with 93.63% and 90.8% and MaxViT, RepViT and MedViT 
performed better than our model in Sens. However, our proposed AMSNet model sur-
passed the performance of these conventional models in multiple metrics. The AMSNet 
model recorded remarkable Pre., Sp. and F1 scores of 95.42%, 93.1%, and 93.98%, respec-
tively, surpassing the corresponding scores of the conventional deep learning models.

Table 4  Results of the ablation experiments on the three modules of AMSNet [In%]

Modules Pre Se Sp F1 Acc

MVGGC​ SE ADCP

90.37 90.37 85.06 90.37 88.29

√ 92.97 88.15 89.66 90.49 88.74

√ 93.75 88.89 90.8 91.25 89.64

√ 94.49 88.89 91.95 91.95 90.09

√ √ 91.91 92.59 87.36 92.25 90.54

√ √ 95.28 89.63 93.1 92.37 90.99

√ √ 94.66 91.85 91.95 93.23 91.89

√ √ √ 95.42 92.59 93.1 93.98 92.79

Fig. 2  Performance analysis of ablation experiment on test set. a Displays the performance analysis 
for determining whether to add the MVGGC layer in AMSNet. b Displays the performance analysis for 
determining whether to use the ADCP layer in AMSNet. c Displays the performance analysis for determining 
whether to use SE in AMSNet
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These experimental results clearly demonstrate that, in the TCS diagnosis PD task, 
the AMSNet model proposed in this study exhibits significantly superior performance 
compared to conventional deep learning models. The AMSNet model’s balanced perfor-
mance across various metrics underscores its effectiveness and robustness in addressing 
the TCS-based Parkinson’s diagnosis task.

Based on the information provided in Table 6, CrossViT exhibits the shortest runtime of 
578.29 ms, while RepViT has the lowest parameter count of 2.167 M, albeit with relatively 
inferior performance. Although MedViT achieves good performance, its parameter count 
and runtime are relatively high. In contrast, AMSNet achieves high accuracy while balanc-
ing computational costs, making it highly practical for real-world applications.

Comparison with previous studies

The performance of AMSNet was compared with that of previous PD studies using TCS 
images. It is important to note that owing to the differences in datasets, methods, and vali-
dation techniques, the comparison of the results was biased. The results of the compari-
son are presented in Table 7. Most previous studies were based on 73-D feature extraction 
information from images to classify TCS. Moreover, the amount of data was small. For the 
AMSNet method, with the support of a large amount of data, deep learning can be used 
directly to extract multi-scale depth features from TCS images. As evident from Table 7, 
the AMSNet method surpassed the other methods in achieving an outstanding overall 
accuracy score. This underscores the significance and efficacy of extracting multi-type deep 
features, and the targeted improvements made in this paper with regard to image and path-
ological features are both effective and indispensable.

Conclusion
This paper introduces the AMSNet method, a novel approach for diagnosing PD using 
TCS images, aiming to assist clinicians in making more precise diagnostic decisions. 
The key advantages of the AMSNet method lie in its utilization of deep learning tech-
niques, rendering the model highly generalizable and scalable. Furthermore, the method 
effectively extracts multi-scale deep features from TCS images and employs an atten-
tion mechanism to modulate complex feature maps. The AMSNet method surpasses 

Table 5  Performance analysis of the proposed AMSNet in conjunction with the other deep learning 
models on the test set [In%]

The italicized results are the results of the comparison experiment that performed better

Model/framework Pre Se Sp F1 Acc

MaxViT 90.00 93.33 83.91 91.64 89.64

RepViT 82.89 93.33 70.11 87.8 84.23

BOTNet 88.98 83.70 83.91 86.26 83.78

CrossViT 90.23 88.89 85.06 89.55 87.38

SwinT 93.63 87.41 90.8 90.42 88.74

Inception_V3 88.15 88.15 81.61 88.15 85.59

DenseNet 91.54 88.15 87.36 89.81 87.84

MedViT 89.66 96.3 82.76 92.86 90.99

AMSNet 95.42 92.59 93.1 93.98 92.79
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previous machine learning algorithms and current general-purpose deep learning mod-
els in diagnosing PD using TCS images. Ablation studies demonstrate the efficacy of the 
three introduced modules. Compared to previous methods, our approach exhibits supe-
riority in terms of overall accuracy scores, offering new perspectives for future medical 
image-based diagnostic methods.

Discussion
PD, a prevalent movement disorder, necessitates precise diagnosis for effective treat-
ment and rehabilitation. TCS diagnostic information has demonstrated unique value in 
diagnosing Parkinson’s disease. However, due to the complexity of pathological features 
in TCS, inconsistent criteria for pathological manifestations, and the traditional analysis 
methods’ heavy reliance on doctors’ prior knowledge and operational experience, it is 
particularly urgent to provide objective and accurate decision support for the diagno-
sis of Parkinson’s disease in TCS. Existing Parkinson’s disease diagnostic aids based on 

Table 6  Comparison of runtime and parameter quantity among different methods

Model/framework Running time Parameter quantity

MaxViT 2128.04 ms 24.445 M

RepViT 594.25 ms 2.167 M

BOTNet 479.42 ms 18.802 M

CrossViT 578.29 ms 6.650 M

SwinT 1494.10 ms 27.498 M

Inception_V3 975.44 ms 41.146 M

DenseNet 829.97 ms 6.956 M

MedViT 1358.65 ms 31.138 M

AMSNet 1000.46 ms 22.273 M

Table 7  Comparison of the proposed AMSNet with the models in the previous studies

Dataset Input Acc. (%)

 Shen et al. [21] 76 PD patients and 77 normal controls 73-D feature vector (for more details 
about statistical features

86.95

 Xiaoyan et al.[16] 76 PD patients and 77 normal controls 73-D feature vector (for more details 
about statistical features

76.43

Shi et al. [22] 15 PD patients and 18 normal controls 73-D feature vector (for more details 
about statistical features

84.85

Shi et al. [20] 76 PD patients and 77 normal controls 73-D feature vector (for more details 
about statistical features

81.74

Ding et al. [23] 854 PD patients and 775 normal 
controls

Image 88.04

Ours 675 PD patients and 434 normal 
controls

Image 92.79
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TCS images predominantly rely on machine learning techniques. These methods often 
require tedious manual annotation by doctors and manual extraction of statistical and 
textural features. This approach not only relies on complex feature engineering, but also 
often fails to effectively capture deep features in images, resulting in insufficient diagnos-
tic accuracy and limited automation and generalization performance. In contrast, deep 
learning possesses the ability to automatically extract deep image features without com-
plex feature engineering, thus exhibiting significant advantages in the field of image pro-
cessing. However, existing universal deep learning methods do not consider the specific 
image characteristics in TCS and the pathological manifestations of movement disor-
ders. Currently, there is insufficient research on the application of deep learning algo-
rithms in the field of Parkinson’s disease diagnosis based on TCS images.

In light of this, the present study explores the application of deep learning methods 
in the analysis of TCS images. By analyzing the key points and challenges in diagnos-
ing Parkinson’s disease using TCS images, we propose the Attention-integrated Multi-
Scale Network (AMSNet), a residual network model combining attention mechanisms 
and multi-scale feature extraction. AMSNet incorporates both the original TCS images 
and gamma-corrected images as multimodal inputs, enabling a better capture of bright-
ness information relevant to the diagnostic target. To address the challenge of irregular 
feature regions in TCS and the importance of area information, AMSNet introduces a 
multi-scale feature extraction module that robustly handles the morphological features 
of lesion areas. Furthermore, the integration of channel-spatial attention for fusion 
and dimensionality reduction, along with contrastive fusion across different scales, can 
mitigate the impact of noise in ultrasound images while focusing more on lesion areas. 
AMSNet employs a residual network structure with lightweight channel attention. The 
residual structure allows the model to stack deep networks to fully capture hierarchi-
cal and detailed textures in TCS images, while avoiding gradient vanishing or explosion 
issues. Meanwhile, the lightweight channel attention module optimizes these features 
while preventing overfitting due to excessive parameters. Experimental validation dem-
onstrates that AMSNet exhibits superior performance in diagnosing Parkinson’s disease 
using TCS images, outperforming traditional methods. Each module demonstrates its 
necessity, providing doctors with a more automatic and accurate diagnostic aid and pro-
viding strong technical support for precise treatment of Parkinson’s disease.

In practical applications, AMSNet can assist doctors in initial screening and diag-
nosis by rapidly analyzing key information in patients’ TCS images and providing 
diagnostic suggestions. This improves diagnostic accuracy and efficiency, reduces doc-
tors’ workload, and enables timely treatment. Additionally, AMSNet can be used dur-
ing PD treatment to monitor image changes, in assessing treatment effects, and adjust 
plans accordingly. AMSNet algorithm offers valuable references for other TCS-related 
research, potentially aiding in diagnosing other neurological diseases.

Although AMSNet demonstrates exceptional performance in diagnosing Parkinson’s 
disease using TCS images, it still faces some limitations:

1.	  Data dependency: The model’s performance depends on the quality and quantity of 
training data. The current dataset’s small size may limit generalization, especially for 
new or special cases.
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2.	  Interpretability: Deep learning models often lack intuitive explanations, affecting 
doctors’ trust in diagnosis.

3.	  Computational resources: AMSNet requires high computational resources for train-
ing and inference, limiting its application in resource-constrained medical institu-
tions.

4.	  Technological updates: Continuous development in deep learning means AMSNet 
may be replaced by more advanced models. Maintaining technological updates is 
crucial for sustainable development.

Future research could explore more data sources and enhancement methods to 
improve AMSNet’s generalization. Introducing interpretability techniques could 
improve doctors’ trust. Optimizing the model structure and reducing computational 
resource demands could make AMSNet more suitable for various medical institu-
tions. Staying updated with emerging technologies and integrating novel findings into 
AMSNet’s refinement is essential.

Method
Overall architecture

The entire process of AMSNet framework is illustrated in Fig. 3.

Step 1	In Fig. 3a, the ultrasound parameter annotation, skull, and other noise informa-
tion in the image are segmented and removed through preprocessing.

Fig. 3  The entire process of the AMSNet framework. a displays the image preprocessing stage. The dataset 
is then divided in b. In c, the training set data are expanded. In d, the weight of the epoch with the best 
performance in the validation set during the training phase is saved. In e, the performance of the model is 
evaluated in the test set
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Step 2	In Fig. 3b, all the images are divided into training set, validation set, and test set.
Step 3	In Fig. 3c, the images of the training set are augmented.
Step 4	In Fig. 3d, AMSNet is trained on the established dataset, and the weights of the 

model in the epoch with the best performance in the validation set are stored.
Step 5	In Fig. 3e, the model parameters with the best performance in the validation set 

are used to test the test set images, and the final classification results are obtained. 
The network architecture of AMSNet, depicted in Fig. 4, is designed with the pur-
pose of thoroughly capturing intricate hierarchical information and delicate texture 
details in TCS images for precise assisted diagnosis of PD. The model incorporates a 
residual network structure, which enables the stacking of deeper layers, thereby facil-
itating a deeper exploration of crucial image information. Through residual connec-
tions, the model effectively mitigates the issues of gradient vanishing or exploding, 
thereby enhancing stability and accuracy during the training process.

To address the pervasive issue of noise interference in TCS data, AMSNet specifi-
cally incorporates a Multi-View Generation layer via Gamma Correction (MVGGC). 
This layer generates images with varying brightness characteristics by applying 
gamma correction to the original TCS images and subsequently concatenates them 
into a multi-channel input for the model. This approach not only enhances the mod-
el’s ability to capture fine-grained details, but also effectively mitigates the impact of 
noise, thereby improving the model’s robustness. Furthermore, considering the multi-
scale nature of TCS data, AMSNet incorporates an Attentional Dilated Convolutional 
Pyramid (ADCP) module. This module constructs feature maps at multiple scales and 
utilizes a channel-spatial attention mechanism to dynamically adjust the weights of 
these feature maps. This enables the extraction and fusion of multi-scale features, 
allowing the model to comprehensively understand the morphological and structural 

Fig. 4  The structure of the proposed AMSNet framework. a Displays the simplified structure of AMSNet. b 
Describes the structure of the squeeze-and-excitation (SE) block in detail



Page 13 of 20Chen et al. BioMedical Engineering OnLine           (2024) 23:76 	

characteristics of the lesion area. This, in turn, provides more accurate and compre-
hensive information for subsequent diagnostic analysis. To further enhance the mod-
el’s feature representation capabilities, AMSNet employs a Squeeze-and-Excitation 
(SE) module. This module learns the interdependencies between feature maps and 
adaptively recalibrates the weights of individual channels. This allows the model to 
emphasize features that are crucial for the diagnosis of PD, thereby facilitating the 
identification of key information in complex TCS data. Consequently, the accuracy 
and reliability of diagnosis are improved.

This section comprises the following parts: the multi-view generation module is 
described in ″Multi-View Generation by Gamma Correction (MVGGC)″ section. 
The establishment of the attention-dilated convolution pyramid module is detailed in 
″Attentional dilated convolutional pyramid (ADCP)″ section. The multi-channel atten-
tion mechanism is explained in ″Channel attention module″ section.

Multi‑view generation by gamma correction (MVGGC)

In general, the positivity rate of the hyperechoic region in the substantia nigra, the 
rate of lenticular hyperechogenicity of the nucleus, and the width of the third ventri-
cle are deemed crucial features in diagnosing movement disorders. In particular, for PD 
diagnosis, the shape information, area size, and distribution of the hyperechoic region 
in the substantia nigra are essential for accurately interpreting TCS images. However, 
due to the varying quality of images, especially in low-quality ultrasound images, the 
identification of pathological features is often limited. Therefore, enhancing image con-
trast and clarity, thus rendering the boundaries between hyperechoic regions and back-
ground information more distinct, is of significant importance for improving diagnostic 
accuracy.

Gamma correction, an effective image enhancement technique, is widely used to 
adjust the brightness and contrast of images. By precisely tuning the gamma value, it 
enables precise control over different tone ranges in an image, thereby enhancing its vis-
ual effect and making the differences between dark and bright areas more prominent. 
Additionally, gamma correction ensures that darker regions of the image do not become 
completely black, preserving image details and providing more comprehensive and 
accurate data for subsequent feature extraction and analysis.

Therefore, this paper introduces a Multi-View Generation by Gamma Correction 
(MVGGC) module [35]. This module generates multiple images with varying bright-
ness characteristics using gamma correction and concatenates them into a multi-chan-
nel input, as depicted in Fig. 5. This approach not only enriches the input information 
for the model, but also helps improve the overall image quality and information reten-
tion. Consequently, by extracting and analyzing features from these multi-view images, 
the model’s diagnostic capabilities for movement disorders such as PD can be further 
enhanced. The formula for gamma correction is as follows:

(1)X̂i = fGA(X , γ ) = C ·

(
X + ε

C

)γ

,
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where X is the image to be adjusted, X̂i is the image generated by the gamma correction, 
γ is the encoded or decoded gamma value, ε is a constant multiplier, and C is a constant 
matrix.

Different gamma correction coefficients have different effects on the image. According 
to the characteristics of the gamma curve, when the gamma correction coefficient is less 
than 1, the brightness of the filtered ultrasound image is higher than that of the original 
image, the dynamic range of the dark part of the image is extended, and the dynamic 
range of the bright part is compressed. When the gamma correction coefficient is higher 
than 1, the brightness of the filtered ultrasound image is reduced compared with that of 
the original image, the dynamic range of the dark part of the ultrasound image is com-
pressed, and the dynamic range of the bright part is extended. Therefore, performing 
two gamma corrections on the original image can yield different information from the 
image and form an input of multiple views that can represent more abundant informa-
tion in the ultrasound image. For each TCS image, the following three images (as shown 
in Fig. 5) are used: (1) the cropped original TCS image, (2) the gamma correction value 
of the TCS image is 1/2.2 , and (3) the gamma value is 2.2 . The output of the MVGGC 
layer is expressed as follows:

where cat represents the contact operation, fGA is the gamma correction function and γ 
is the encoded or decoded gamma value.

To obtain more feature information, a multi-view generation layer was added to the 
model. This method combines three gamma-corrected TCS images and incorporates the 
features of the TCS image. Compared with the method that uses only one view as the 
input, the MVGGC layer integrates different gamma-corrected images. It retains the fea-
tures of the original TCS images while extracting additional potential features from each 
view.

(2)X̂ =

(
n
cat
i=1

fGA(X , γi)

)
,

Fig. 5  The structure of the MVGGC layer. In this layer, the original image is gamma corrected to generate 
multi-view information
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Attentional dilated convolutional pyramid (ADCP)

TCS data possess inherent multi-scale characteristics, which refer to the varying sizes, 
shapes, and levels of detail exhibited by pathological regions, such as hyperechoic 
regions in the substantia nigra, in medical images during TCS examination. These fea-
tures differ with changes in the observation or analysis scale. Accurate identification and 
characterization of pathological regions require the ability of auxiliary diagnostic anal-
ysis models to capture and understand these subtle differences across multiple scales, 
posing a significant challenge in TCS image analysis. In deep learning, the ability to han-
dle such multi-scale features is particularly crucial [36].

Atrous Spatial Pyramid Pooling (ASPP) [37], as a method of increasing the recep-
tive field, effectively addresses the contradiction between receptive field expansion and 
resolution loss during image feature extraction. It enables the model to maintain a high 
resolution while acquiring broader contextual information, thus comprehending image 
content more comprehensively. The atrous spatial pyramid pooling structure further 
extends the application of atrous convolution by combining atrous convolution opera-
tions at different scales, effectively capturing multi-scale information in images [38–41]. 
This structure overcomes the limitations of single-scale feature extraction.

To better accommodate the complex demands of TCS image diagnostic analysis, this 
paper combines the atrous spatial pyramid pooling (ASPP) structure with the convo-
lutional block attention module (CBAM) [42] and proposes the attention-dilated con-
volutional pyramid module (ADCP). The structure of the ADCP is illustrated in Fig. 6. 
This module employs a dual mechanism to capture multi-scale features and enhance 
the weights of regions of interest. On one hand, leveraging the characteristics of ASPP, 
ADCP is capable of capturing and fusing multi-scale features in images, obtaining 
richer and more comprehensive pathological information. On the other hand, with the 
aid of CBAM, the module can adjust the weights of feature maps precisely. By combin-
ing channel attention and spatial attention mechanisms, it generates channel attention 
feature maps and spatial attention feature maps, thereby achieving precise localization 
and information enhancement of regions of interest. Through the construction of the 

Fig. 6  The structure of the ADCP layer. a Uses the dilated convolution pyramid to process multi-view 
information. b Combines the output in a with the attention mechanism
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attention-dilated convolutional pyramid module, AMSNet can simultaneously extract 
multi-scale pathological features and enhance the weights of regions of interest, result-
ing in more accurate feature extraction from TCS images.

(1) Dilated spatial pyramid structure
We created convolutional layers with rates of [6, 12, 18]. Additionally, we added a 

branch that directly pools without a dilated convolution to construct a pyramid struc-
ture to expand the receptive field for features at different scales. The structure of the 
module is illustrated in Fig.  6a. Multiscale feature extraction is performed for X̂  to 
generate MSF. The computational process is expressed as follows:

where cat denotes the contact operation, fDC is the dilated convolution operation, r rep-
resents the expansion rate, and fp is the pooling operation.

(2) Channel spatial joint attention
To calculate the channel attention features more efficiently, it is necessary to com-

press the spatial dimension of the feature map and use maximum pooling and average 
pooling comprehensively. Icavg and Icmax represent the average and maximum pooling 
features, respectively. The generated features are fed into a shared multi-layer percep-
tron (MLP) to produce a final channel attention feature map. To reduce the parameter 
overhead, the output of the hidden layer is W1 ∈ R

c
r . Here, r is the scaling rate. Finally, 

the channel attention weight is outputted using the element-by-element summation 
method. The calculation process of the channel attention feature map is shown in 
Eq. (4):

where I is the input feature, fAp and fMp refer to average and max pooling, respectively, 
MLP stands for multi-layer perceptron,  σ is a sigmoid function,W1 , W2 represent the 
two layers of weights in the MLP.

(3) Spatial attention
We use the spatial relationships between features to generate spatial attention maps to 

complement channel attention, which pays more attention to which location in the data 
is more effective. In the spatial attention module, average and maximum pooling are 
performed in the channel dimension. Icavg and Icmax represent the average and maximum 
pooling features, respectively. The resulting features are concatenated using convolution 
operations to produce a spatial attention feature map. Finally, the feature map output 
is obtained by the spatial attention module through a sigmoid function, which can be 
expressed as Eq. (5):

(3)MSF = cat

(
n
cat
i=1

(
fDC

(
X̂ , ri

))
, fp

(
X̂
))

,

(4)
Attc(I) = σ

(
MLP

(
fAp(I)

)
+MLP

(
fMp(I)

))

= σ

(
W1

(
W0

(
Icavg

))
+W1

(
W0

(
Icmax

)))

(5)
Atts(I) = σ

(
C7×7Cat

(
fAp(I); fMp(I)

))

= σ

(
C7×7

(
I savg; I

s
max

))
,
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where I is the input feature, cat represents the contact operation, fAp and fMp refer to 
average and max pooling, respectively, σ is a sigmoid function, C7×7 is a convolution 
operation with a convolution kernel size of 7.

(4) The convolutional block attention module
CBAM is a module that combines channel attention and spatial attention. Its structure 

is shown in Fig. 6b. The CBAM module adjusts the attention weights of the multi-scale 
feature map to generate an enhanced feature map. The specific calculation formulas are 
shown in Eq. (6) and Eq. (7):

where MSF′ is the multi-scale feature map, MSF″ is the attention multi-scale feature 
map after adjusting the weights, Attc and Atts are the channel attention map and spatial 
attention map, respectively, and · represents element-by-element multiplication.

The ADCP layer proposed in this study aims to optimize the feature extraction process. 
The ADCP layer first uses ASPP to extract multi-scale features from the feature map, which 
helps the model capture pathological details at different scales. Subsequently, the CBAM 
module combines these features through channel and spatial joint attention mechanisms, 
allowing the model to adaptively focus on important features. Finally, dimensionality reduc-
tion and fusion are performed through a convolutional layer, which not only reduces the 
computational complexity but also retains key information. This design can more effectively 
capture multi-scale information in images, thereby improving the accuracy of pathological 
feature extraction. Although this method does not directly enhance the resolution or pixel 
accuracy of the image, it significantly improves the quality of the processing results in the 
early stages of feature processing, providing a more reliable auxiliary tool for medical image 
analysis. At the same time, it also provides a solution with reference value for other medical 
impact and image processing research with the same application scenarios.

Channel attention module

ResNet is a series of CNN models. This network structure hinders the conveyance of global 
information regarding the input data to the end of the model. The loss of this part of global 
information affects the performance of the model. In AMSNet, the SE block with a good 
channel weight distribution is selected to strengthen the importance between the channel 
features. The structure of the SE block is shown in Fig. 4b. The SE block comprises two 
operations: squeezing and excitation. The squeeze operation encodes the entire spatial fea-
ture into a global feature using global average pooling to generate the channel statistics. 
An excitation operation is used to obtain the channel importance of two fully connected 
layers, a dimensionality reduction layer, and an increasing layer. The final channel weights 
are obtained by the sigmoid activation function. An increase in the number of param-
eters of the SE block results in a minimal increase in the amount of computation, using 
low time and computational consumption to assign weights to the importance of the chan-
nel information for each feature map. Because convolution operates only in a local space, 
it is difficult to obtain sufficient information to extract the relationship between channels. 

(6)MSF′ = Attc(MSF) · MSF,

(7)MSF′′ = Atts
(
MSF′

)
·MSF,′
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Moreover, its impact on the previous layers in the network is more severe. An SE block was 
used to extract the channel weights to improve the features. The squeeze operation encodes 
the entire spatial feature of a channel into a global feature. It is implemented using global 
average pooling. Global average pooling can be defined as: 

where k ∈ 1,2, 3 represents different channels, F  is the input data, and SQ is generated by 
global average pooling.

The SE module in the excitation phase processes these global eigenvalues through a 
bottleneck structure consisting of two fully connected layers. First, the first fully con-
nected layer reduces the number of channels to reduce computational complexity and 
the number of parameters. Subsequently, the introduction of the ReLU activation func-
tion provides the model with nonlinear characteristics, enabling it to learn complex 
interactions between channels. Next, the second fully connected layer restores the num-
ber of channels to the original dimension. The weights are normalized using the sigmoid 
activation function to reflect the importance of different channels for the final feature 
representation. The calculation process of the excitation phase is shown in Eq. (9):

where σ is a sigmoid function, W1 , and W2 are the weights of the two fully connected 
layers.

Finally, the learned activation value weight of each channel was multiplied by the origi-
nal feature to complete the recalibration of the original feature in the channel dimension.

In the basic block structure of Resnet, this study adopts a method combined with the 
SE module. After the two convolutional layers of the Resnet basic block, the feature map 
is recalibrated through the SE module, and finally the processed feature map is added to 
the input of the residual connection to obtain the final output result. The operation of 
the final output result RSE can be expressed as:

where F(n− 1) is the output of the (n− 1)th layer and F̃(n) is the output of the SE mod-
ule of the nth layer.

The method of combining ResNet and SE block was adopted in our study. This helped 
the network understand and weigh the characteristic responses of each channel bet-
ter. By combining these two architectures, dual advantages can be obtained in feature 
extraction: retaining features through the deep structure of ResNet and improving the 
quality of features through the attention mechanism of the SE block. This combination 
achieves significant performance improvements in image-processing tasks. It is particu-
larly effective for processing complex visual data.
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