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Introduction
Malocclusion is the misalignment or improper spatial relationship between the teeth 
of the two dental arches [1]. It is among the most prevalent dental disorders world-
wide. The World Health Organization estimates that 60–75% of the global population 
is afflicted by various types of malocclusion (crowded teeth, overbite, underbite, cross-
bite, diastemas, etc.) [2]. Timely orthodontic treatment is crucial to correct malocclusion 
and prevent associated complications. An essential component of treatment is the use 
of orthodontic materials, such as auxiliary devices and fixed and removable appliances. 
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Nanotechnology has contributed important innovations to medicine and dentistry, 
and has also offered various applications to the field of orthodontics. Intraoral appli-
ances must function in a complex environment that includes digestive enzymes, 
a diverse microbiome, mechanical stress, and fluctuations of pH and temperature. 
Nanotechnology can improve the performance of orthodontic brackets and arch-
wires by reducing friction, inhibiting bacterial growth and biofilm formation, opti-
mizing tooth remineralization, improving corrosion resistance and biocompatibility 
of metal substrates, and accelerating or decelerating orthodontic tooth movement 
through the application of novel nanocoatings, nanoelectromechanical systems, 
and nanorobots. This comprehensive review systematically explores the orthodontic 
applications of nanotechnology, particularly its impacts on tooth movement, antibac-
terial activity, friction reduction, and corrosion resistance. A search across PubMed, 
the Web of Science Core Collection, and Google Scholar yielded 261 papers, of which 
28 met our inclusion criteria. These selected studies highlight the significant ben-
efits of nanotechnology in orthodontic devices. Recent clinical trials demonstrate 
that advancements brought by nanotechnology may facilitate the future delivery 
of more effective and comfortable orthodontic care.
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However, the oral environment is complex, and the potential complications of the use 
of these materials remain unresolved (Fig. 1). Orthodontic practice is beset by numer-
ous challenges. Novel solutions are required to facilitate the efficient movement of teeth; 
improve alveolar bone remodeling and prevent black triangles; reduce biofilm formation 
on instruments and auxiliary equipment; decrease tooth surface demineralization and 
cariogenesis; and avoid metal corrosion in traditional fixed orthodontic devices.

Nanotechnology encompasses the use of minute machinery that can manipulate mat-
ter on an extremely small scale. Nanotechnology has been widely used for biomedical 
purposes that range from diagnosis and treatment to the modification of medical devices 
and the facilitation of personalized health care [3–5]. Nanomaterials, which have dimen-
sions between 1 and 100 nm, have generated interest in the field of regenerative medi-
cine because of their distinctive optical, mechanical, magnetic, electrical, and catalytic 
properties [6]; which also account for their excellent immunological evasion, permeabil-
ity, and tunability. As such, they offer great promise for tissue engineering [7], antimicro-
bial therapy [8], drug delivery [9], and functional imaging (MRI and CT) [10].

Nanodentistry is the application of such technology to dental care [11, 12]. Den-
tal professionals and researchers have already made significant progress that has been 
facilitated by advances in nanomaterials, nanorobots, and nanoengineering [13, 14]. 
Nanotechnology is used in a plethora of newly developed dental products ranging from 
implants to mouthwashes, and its integration into orthodontics is already underway.

This review focuses on the use of nanotechnology to control orthodontic tooth move-
ment (OTM) and improve alveolar bone repair, as well as to prevent biofilm formation 
and demineralized lesions of the enamel, referred to as white spot lesions (WSLs) (also 
known as the scars of orthodontic treatment). Nanocoating of wires and brackets is 
performed to increase the effectiveness of brackets and decrease friction on archwires 
used in traditional orthodontic treatment, and to increase safety and biocompatibility by 
resisting corrosion and minimizing the precipitation of hazardous materials. Addition-
ally, this review explores potential future orthodontic applications of nanotechnology 
(Fig. 2).

Methods
Literature search strategy

Databases such as PubMed, Web of Science Core Collection, and Google Scholar were 
used for the literature search in December 2023. Search terms were: ((‘nanotechnol-
ogy’ OR ‘nanomaterial’ OR ‘nanoparticle’ OR ‘nanostructure’) AND (‘orthodontics’ OR 
‘dentistry’)) AND ((‘tooth movement’ OR ‘orthodontic movement’) OR ‘antibacterial’ 
OR ‘friction reduction’ OR (‘corrosion resistance’ OR ‘anticorrosion’)) NOT review. The 
search process also included manual searching. Subsequently, studies were evaluated for 
their eligibility.

Literature screening and selection criteria

The study selection and qualitative analysis were performed independently by two 
reviewers (LWH and SML) using the Preferred Reporting Items for Systematic Reviews 
and Meta-Analyses (PRISMA) guidelines. The titles and abstracts of the publications 
identified by the databases were screened, and the reference lists of critical articles were 



Page 3 of 21He et al. BioMedical Engineering OnLine           (2024) 23:72 	

Fi
g.

 1
 a

 C
om

pl
ex

 o
ra

l e
nv

iro
nm

en
t; 

b 
ch

al
le

ng
es

 fa
ce

d 
du

rin
g 

tr
ad

iti
on

al
 fi

xe
d 

or
th

od
on

tic
 th

er
ap

y 
in

cl
ud

e 
pl

aq
ue

 a
cc

um
ul

at
io

n,
 g

in
gi

vi
tis

, a
pp

lia
nc

e 
co

rr
os

io
n,

 a
nd

 m
et

al
 io

n 
pr

ec
ip

ita
tio

n



Page 4 of 21He et al. BioMedical Engineering OnLine           (2024) 23:72 

Fi
g.

 2
 S

ch
em

at
ic

 s
um

m
ar

y 
of

 th
e 

cu
rr

en
t r

ev
ie

w
 w

or
k



Page 5 of 21He et al. BioMedical Engineering OnLine           (2024) 23:72 	

hand-searched for relevant articles. The full texts were examined during the second 
stage to determine whether the articles met the selection criteria.

Inclusion criteria were: (1) application of nanomaterials to enhance OTM, antibacte-
rial activity, corrosion resistance, or friction reduction, thereby improving the efficiency 
of tooth movement; (2) eligible studies could include physicochemical research and also 
biomedical studies testing nanomaterials in cellular and/or animal models.

Exclusion criteria were: (1) studies of non-nanomaterials; (2) applications of nano-
materials not designed to enhance tooth movement, antibacterial properties, corrosion 
resistance, or friction reduction, but for other dental disciplines such as periodontology 
or implantology; (3) non-SCI (Science Citation Index) papers were not considered.

Results
The results obtained by adhering to PRISMA guidelines are depicted in Fig. 3. System-
atic and manual searches yielded 261 studies. After screening, 28 studies met eligibility 
criteria and were included in this study.

Fig. 3  Representation of selection of articles through PRISMA framework
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Discussion
Controlled orthodontic tooth movement (OTM)

The durations of current orthodontic regimens are prolonged. A typical treatment 
course requires roughly 2 to 3 years, which ultimately jeopardizes patient compliance. 
Long-term orthodontic therapy predisposes patients to iatrogenic complications 
such as WSLs [15], caries, gingivitis [16], and root resorption. The enormous demand 
for shorter orthodontic treatment durations has led to a general interest in research 
focused on abbreviating the time spans required for OTM. By accelerating bone 
remodeling, the duration of orthodontic treatment could be significantly reduced. A 
great deal of research has been focused on hastening OTM by investigating surgical 
and nonsurgical interventions such as corticotomy [17], distraction osteogenesis [18], 
and the new research hotspot of nanotechnology [2, 19].

Furthermore, in some circumstances, slower rather than more rapid rates of OTM 
may be preferred to prevent unintended anchoring loss and post-treatment relapses. 
An alternative to all of these techniques is the development of novel biomaterials and 
innovative systems for the delivery of bioactive molecules such as growth factors and 
hormones that have been administered locally to paradental tissues in animal models 
to stimulate or inhibit the rate of OTM [20, 21] Advances in nanotechnology have 
generated interest in the application of nanomaterials to accelerate or decelerate 
OTM.

Nanoparticles

OTM is attributed to mechanical stimulation and subsequent proliferation of alveolar 
bone and periodontal ligament (PDL). The regulation of OTM involves alterations of 
tissue perfusion and levels of inflammatory cytokines [20]; growth factors [22]; neu-
rotransmitters and growth of bioreactive substances of PDL; acid stimulating factors; 
and arachidonic acid products [23]. Because of their minute size and high surface 
area-to-volume ratio, nanoparticles (NPs) have the potential to regulate the physiol-
ogy of cells involved in bone formation and absorption, thereby potentially accelerat-
ing or decelerating the rate of OTM. The acceleration of bone remodeling and OTM is 
induced by the promotion of osteoclastogenesis and angiogenesis through the stimu-
lation of bone marrow mesenchymal stem cells (BMSCs) by reduced graphene oxide 
(GO) NPs. Furthermore, an analysis of mechanisms of action revealed the significant 
regulatory function of the PERK pathway in this particular process [24].

The long-term effects of nitric oxide (NO) on OTM were investigated in a rat model. 
NO-releasing silica NPs were injected locally. NO released from S-nitrosothiol-con-
taining NPs inhibited tooth movement for 1  week post-injection. The inhibition of 
tooth movement by NO-releasing nanoparticles may be due to increased perfusion 
and consequent tissue oxygenation. This effect reduces local hypoxia induced dur-
ing orthodontic tooth movement, thus reducing downstream signal induction and 
decreasing orthodontic tooth movement [25]. A possible explanation for NP-medi-
ated acceleration or deceleration of OTM is that they promote non-mineralized 
reactions that can also increase or decrease osteogenesis or PDL remodeling. These 
reactions involve neovascularization and reorganization of nerve fibers in PDL.
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Nano‑bionic scaffold development

Tooth crowding, one of the most prevalent issues in orthodontics, is often treated by 
extractions to create more room in dental arches. Post-extraction ridge resorption and 
gingival ingrowth might encumber OTM because adequate bone volume is necessary to 
provide the intended outcome [26]; consequently, ridge augmentation may be indicated 
prior to tooth implant placement into the affected site. Ridge augmentation is also indi-
cated for the treatment of other disorders including cleft palate and periodontal disease. 
Because of its osteogenic properties and biocompatibility, autogenous bone is the pre-
ferred graft material for repairing bony defects [26]. Materials containing calcium phos-
phate are frequently employed in bone tissue engineering and clinical medicine because 
their chemical compositions and biological characteristics are remarkably comparable 
to those of inorganic components of the human body [27, 28]. Calcium phosphate poly-
mer-induced liquid precursors may be utilized for the biomineralization of craniofacial 
bone [29]. Nanoscale hydroxyapatite platelets, with a thickness of 2–4 nm, penetrate and 
enshrine type-I collagen fibrils, providing bones the necessary rigidity and strength to 
endure varying mechanical stresses. Calcium phosphate improves the efficacy of ortho-
dontic treatment by extending the durability of regenerated bone surrounding shifted 
teeth and prolonging the viability of repaired periodontal tissues. Biomimetic growth 
factor-loaded triphasic scaffolds (GFSs) may closely resemble the natural structures of 
cementum, PDL and alveolar bone. GFSs exhibit minimal in  vitro cytotoxicity, excel-
lent biocompatibility, and good mechanical qualities. In periodontal ligament stem cells, 
each compartment of the structure containing indicator GFSs can stimulate the expres-
sion of genes linked to osteogenesis, growth of the periodontal ligament, and cementa-
tion. By enhancing the development of healthy periodontal tissue, biomimetic scaffolds 
loaded with GFSs also facilitated the repair of periodontal defects in a rat model [30].

Nanoelectromechanical systems (NEMS)

The basic structure of nanoelectromechanical systems (NEMS) typically comprises 
nanoscale mechanical sensing elements such as nanobeams, nanofilms, and nanotubes, 
coupled with electronic components such as electrodes, amplification circuits, and sig-
nal processing circuits [31]. The mechanical components respond to external physical 
quantities such as force, pressure, mass, and displacement by deforming. These deforma-
tions are then converted into measurable electrical signals by the electronic components. 
NEMS combine mechanical and electrical functions at the nanoscale [31]. Compared 
with traditional microelectromechanical systems, NEMS offer higher sensitivity and 
resolution. OTM may benefit from the use of microfabricated biocatalytic fuel cells, 
also known as enzyme batteries, to produce electricity [32]. Glucose and other organic 
substances are mostly used by this process. An enzymatic micro-battery applied to the 
gingiva in close proximity to alveolar bone could provide an electrical power source to 
accelerate OTM [33]. Nanostructures can maximize enzymatic reactions because of 
their enormous surface areas [34]. These devices have the potential to enhance OTM by 
utilizing electricity to supplement mechanical forces [35–37]. NEMS-based systems may 
offer the best solutions to improve soft tissue biocompatibility and reduce the impact of 
food with variable temperatures and pH levels on the functionality of a microfabricated 
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protein battery [32, 38]. In vivo studies revealed that 15–20 microamperes of low direct 
current delivered to the alveolar bone by bioelectric potential modification elevated the 
concentrations of the second messengers cAMP and cGMP in osteoblasts and periodon-
tal ligament cells. These results demonstrated that electrical stimulation can increase 
cellular enzyme phosphorylation and trigger secretory and synthetic processes linked 
to faster bone remodeling, which can expedite the shifting of teeth into orthodontic 
alignment [39, 40]. Many nanostructured materials, including mesoporous media, NPs, 
nanofibers, and nanotubes, are effective hosts of enzyme immobilization. Orthodon-
tic researchers are exploring the use of NEMS sensors to precisely measure orthodon-
tic forces. This innovation aims to enable real-time monitoring and feedback control of 
these forces. The goal is to develop a smart orthodontic device that seamlessly integrates 
the application and monitoring of orthodontic forces through advanced miniaturization 
designs. However, the concept is primarily in the design and simulation phase and has 
not yet progressed to mature device development or clinical validation.

Low‑intensity pulsed ultrasound (LIPUS)

Low-intensity pulsed ultrasound (LIPUS) improves cellular metabolism. It has attained 
regulatory approvals due to its proven efficacy in promoting bone regeneration and 
facilitating the healing of fractures. LIPUS significantly enhanced the distance of OTM 
and upregulated BMP-2 signaling in a rat model by activating the HGF/Runx2/BMP-2 
signaling pathway and RANKL expression, thereby accelerating alveolar bone remode-
ling [41]. Starting from day 5, LIPUS significantly accelerated OTM and the activation of 
related signaling pathways, showing a clear difference compared with the control group 
[41]. LIPUS can also reorganize the cytoskeleton and affect fiber distribution [42]. In 
addition, LIPUS promotes osteoblast–osteoclast interaction through EphrinB2/EphB4 
signaling, activating the EphB4 receptor on the osteoblast membrane. This transduces 
LIPUS-related mechanical signals into the cell, subsequently influencing the nuclear 
translocation of Yes-associated protein in the Hippo signaling pathway, thereby regulat-
ing cell migration and osteogenic differentiation [43]. The use of functionalized micro-
bubbles in conjunction with ultrasound can augment the benefits of LIPUS by causing 
controlled mechanical stress and localized shear forces on cells. Nanobubbles, or lipid 
bubbles on a nanoscale, are very stable and biosafe. Cyclic arginine-glycine-aspartic 
acid-modified nanobubbles with particle sizes of ~ 500 nm may enhance LIPUS-induced 
osteogenic activity of BMSCs by acting as nanomechanical force generators through 
integrin receptors, the actin cytoskeleton, and intracellular calcium oscillations [44]. 
The addition of LIPUS to Invisalign SmartTrack® transparent aligners resulted in a 49% 
reduction of treatment duration and a roughly 66% increase in patient compliance [45]. 
In a prospective clinical trial, LIPUS increased the rate of OTM by an average of 29% 
and also conferred a statistically significant decrease in orthodontic root resorption 
(0.0092 ± 0.022 mm/week compared to 0.0223 ± 0.022 mm/week on the control side) 
[46].

Nanorobots

Nanorobotics is the field of designing and constructing nanorobots, whose components 
are at or near the nanometer scale. Nanorobots have been used to accelerate OTM 
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through the application of NEMS and nano-LIPUS devices [47]. Nanorobots facilitate 
rapid and painless tooth movement within a few hours by directly manipulating the peri-
odontium, including alveolar bone and the periodontal ligament. Additionally, nanoro-
botic toothpastes are administered once daily to cleanse both supra- and subgingival 
dental surfaces effectively, removing any debris and associated substances, while detect-
ing biofilm-associated cariogenic bacteria [48]. OTM can be expedited by the application 
of electrical current or ultrasonic waves that stimulate cellular enzymatic phosphoryla-
tion and fibroblast growth factor release from a macrophage-like cell line (U937) [49]. 
Furthermore, these techniques offer the potential for tailoring wear time recommenda-
tions for patients with removable appliances, leading to a more effective, expedited, and 
comfortable orthodontic treatment [50–52].

In summary, although nanorobots present a promising tool for accelerating or deceler-
ating OTM, more research and clinical trials are needed to fully understand their poten-
tial and to ensure their safety and efficacy in dental and orthodontic applications.

Anti‑microbial activity and tooth remineralization

Permanent colonization and increased plaque formation on orthodontic instruments 
and auxiliary devices constitute significant sequelae of orthodontic treatment, and pre-
dispose patients to complications, such as gingivitis and periodontitis. Additionally, the 
prolonged retention of dental plaque and adhesion of biofilms on these appliances dis-
rupt the delicate equilibrium between demineralization and remineralization, resulting 
in WSLs.

Multiple reports have indicated that NPs possess commendable antibacterial proper-
ties [53]. The antibacterial efficacy of these nanostructured agents is ascribed to their 
substantial surface area that facilitates increased atom exposure on adjacent surfaces and 
thereby maximizes activity [54, 55], and their localization in close proximity to bacte-
rial membranes. Additionally, their diminutive size facilitates their penetration across 
bacterial cell membranes [56, 57]. Consequently, the addition of antimicrobial NPs to 
orthodontic appliances is considered one of the most potentially effective strategies to 
improve patient outcomes [58, 59].

Metal/metal oxide nanomaterials

NPs that contain metals and metal oxides such as silver (Ag) [60, 61], zinc oxide (ZnO) 
[62], copper (Cu) [63], copper oxide (CuO) [64], magnesium oxide (MgO), and titanium 
dioxide (TiO2) [65] have been evaluated for their abilities to reduce bacterial coloniza-
tion and dental plaque formation around orthodontic appliances. Electrostatic interac-
tions play a crucial role in antibacterial activity by attracting positively charged metallic 
NPs to negatively charged bacterial cell membranes. Furthermore, their nanoscale size 
promotes the release of metal ions [56], which exert bactericidal activity by interacting 
with thiol groups of proteins and with DNA, thereby denaturing proteins, disrupting 
DNA unwinding, dysregulating metabolism, and inhibiting cell membrane synthesis, 
leading to perforation of bacterial cell membranes and cell death [8, 66, 67].

Metal/metal oxide NPs can produce reactive oxygen species (ROS) [68] such as 
hydroxyl radicals, hydrogen peroxide, and superoxide anions. ROS can damage cel-
lular components such as DNA, proteins, and lipids, leading to bacterial cell death. 
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Ag-generated free radical production has been demonstrated through electron spin res-
onance (ESR) analysis of Ag NPs [69, 70]. This confirms the relationship between the 
bactericidal activity of Ag NPs, free radical formation, and membrane damage induced 
by these radicals. Similarly, TiO2 NPs can generate potent bactericidal hydroxyl radicals 
[71].

Metal/metal oxide NPs may also exert bactericidal activity through non-oxidative 
mechanisms. A study demonstrated that the activity of three types of MgO NPs against 
Escherichia coli [72] was independent of oxidative stress, and proposed several mecha-
nisms to support their findings. Firstly, the presence of pores in bacterial cell membranes 
suggested MgO NP-induced perforation. Notably, neither MgO NPs nor magnesium 
ions were observed within the bacteria. Secondly, intracellular ROS levels were low fol-
lowing MgO NP exposure. Thirdly, MgO NP exposure did not induce lipid peroxidation. 
Finally, levels of intracellular protein related to ROS were unaffected; however, metal/
metal oxide NPs may impede several protein-associated metabolic pathways including 
amino acid, nucleotide, and carbohydrate metabolism [72].

Additionally, the disruption of bacterial metabolism by metal/metal oxide NPs 
impedes biofilm formation, which is a critical etiologic factor of dental disease. NPs 
adhere to and permeate biofilms, thereby affecting ion channels that facilitate long-
distance interbacterial electrical signaling within the biofilm. This disruption influences 
membrane potentials, thereby promoting lipid peroxidation and DNA binding. Conse-
quently, bacterial metabolism is dysregulated, leading to a reduction of biofilm synthesis 
[73–75]. Moreover, metal/metal oxide NPs may alter the surfaces of dental materials, 
making them less conducive for biofilm adhesion [76]. Orthodontic brackets coated with 
nanosilver exhibited smoother surfaces that displayed decreased adherence of Strepto-
coccus mutans and Streptococcus sobrinus [67].

Mesoporous bioactive glass

Bioactive glasses release calcium and phosphorus ions and act as a source of various 
ions (SiO2, CaO, Na2O, and P2O5). The ions released earlier from bioactive glasses act 
as buffers, which increase the pH of the dissolution medium and prevent deminerali-
zation of the enamel. They also promote remineralization by facilitating hydroxyapatite 
formation. In particular, mesoporous bioactive glass NPs may load other biomolecules, 
and demonstrate potent bioactivity and antibacterial properties [77, 78]. GO with a bio-
active glass mixture was added to orthodontic adhesive in different ratios, and showed 
potent antibacterial and anti-demineralization effects. GO exerts its antibacterial activ-
ity via two main mechanisms: deposition on the bacterial membrane, which introduces 
mechanical stress and isolates the bacterial cell surface from the environment, thus 
blocking membrane activity sites; and by generating oxidative stress [79, 80].

Calcium phosphate, as one of the important components of enamel, can be utilized 
in remineralizing agents to repair demineralization that may occur during orthodontic 
treatment [81, 82]. Remineralizing agents act in plaque and on tooth surfaces as reser-
voirs of Ca and P ions that can be released during an acidic cariogenic challenge to pre-
vent demineralization and facilitate remineralization [83]. Fluoride-doped amorphous 
calcium phosphate NPs may carry materials with enhanced anti-cariogenic and remin-
eralizing properties [84].
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Moreover, mesoporous bioactive glass can synergize with metal NPs to improve per-
formance [85, 86]. A sealant containing mesoporous glass-Ag NPs featuring a high spe-
cific surface area promoted remineralization by facilitating the penetration of dentinal 
tubules by hydroxyapatite crystals and achieved an excellent occlusion rate. Further-
more, the addition of YAG laser treatment inhibited the growth of S. mutans [87].

Notably, advanced nanotechnology was used to simulate the natural biomineraliza-
tion process and synthesize dental enamel. Hydroxyapatite nanorods were synthesized 
and modified by adding surfactant monolayers that enabled self-assembly into enamel 
prism-like structures [88].

In summary, the use of nanotechnology to inhibit bacterial growth and biofilm forma-
tion and to facilitate dental remineralization offers a promising approach to enhance the 
care of patients receiving orthodontic therapy. However, the safety and potential toxic-
ity of NPs are of crucial importance, especially because they are used in the oral cavity. 
Ongoing research and strict regulatory oversight are essential to ensure their safe use in 
dental and orthodontic applications.

Nanotechnology reduces friction along archwires

Orthodontic treatment involves the sliding of a tooth along an archwire. This process 
generates a frictional force between the archwire and bracket, which is opposed to the 
movement itself [89]. Consequently, orthodontic force must exceed this resistance. More 
than 60% of orthodontic force applied to obtain OTM may be lost to friction, reducing 
the force employed by the fixed appliance. Friction reduction would allow the applica-
tion of a lower orthodontic force and bring significant benefits, ranging from a lower 
risk of root resorption to optimal anchorage control and reduction of treatment dura-
tion [90].

Nanocoatings

Archwires can be coated with NPs or nanocomposite materials. These coatings are 
designed to be ultra-smooth and durable to significantly reduce the friction between the 
wire and the brackets. Materials such as titanium dioxide [91], silicon dioxide [92], gra-
phene sheets [93, 94], and carbon nanotubes [95] are often used for these coatings. In 
addition to reducing WSL and caries, ZnO-NPs also reduce the friction coefficient of 
NiTi wires [96]. Moreover, some nanocoatings are self-lubricating. They release lubri-
cant molecules gradually, maintaining a low-friction interface between the wire and the 
brackets over time. Lubricant polymers containing mineral NPs of boron nitride [95], 
inorganic fullerene-like tungsten disulfide [97], molybdenum disulfide [98], or certain 
ceramics [99] can be applied as thin films onto archwire surfaces. The NPs act as micro-
scopic ball bearings to reduce friction between the sliding surfaces.

Nanostructured surfaces

Nanotechnology enables the creation of new alloys at the nanoscale level, which can be 
optimized for reduced friction and improved mechanical performance. A fractal struc-
ture featuring micro-domains with identical nanometer-sized grooves was assembled on 
the surfaces of orthodontic wires by using an oxygen plasma and acid corrosion [100]. 
The concave groove surfaces were dominated by titanium and convex segments were 
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made of the same material as the bulk wires. The micro-nano fractal structure generated 
a hydrophobic surface with the largest contact angle to water being about 157°. The tita-
nium-dominated nanolayer and the hydrophobicity of the surface vastly improved the 
corrosion resistance of orthodontic wire. The fractal structures of the wires self-assem-
bled when they were immersed in acidic environment; the self-protection of the oxy-
gen plasma-treated orthodontic wires in an acidic environment indicates their suitability 
for orthodontic applications. Nanotechnology can enhance the flexibility and strength 
of the archwires, enabling the application of gentler and consistent force. This reduces 
the stress and wear on both the wire and the brackets, indirectly contributing to lower 
friction. Using processes such as ion beam-assisted deposition, orthodontic archwires 
themselves can be textured with nanoscale patterns or columns to minimize binding and 
to reduce friction with bracket materials.

In summary, nanomaterials may enhance sliding mechanics between archwire and 
bracket interfaces through several mechanisms—improved surface smoothness, lubrica-
tion, altered textures, and precision manufacturing—that ultimately reduce binding and 
friction. Improved sliding facilitates better OTM. Advancements in nanocoatings and 
nanocomposite materials have been pivotal in achieving these improvements, although 
ongoing research is essential to further enhance these technologies and ensure their 
safety and efficacy.

NPs enhanced corrosion resistance and improved biocompatibility

The corrosion of intraoral devices is a serious clinical concern. Indeed, numerous stud-
ies have documented the release of toxic ions from orthodontic appliances. New con-
ventional stainless steel, recycled, and even nickel-free orthodontic brackets can release 
nickel [101] and chromium ions [102]. Likewise, an in situ evaluation revealed that silver 
solder used in orthodontics can lead to the release of copper ions [102]. Furthermore, 
the release of chromium from new stainless steel, recycled, and nickel-free orthodontic 
brackets has also been well-established in the literature [103]. Always associated with 
metallic ion release into the oral cavity, corrosion can be intensified by dental plaque 
accumulation and/or mechanical factors such as friction and fatigue stress. Several 
important consequences of this undesirable degradation may arise, namely enamel dis-
coloration and demineralization, hypersensitivity, inflammation, local pain, device fail-
ure, and, in more severe cases, toxicity [104].

The need to modify orthodontic alloys is a currently recognized high-priority require-
ment. Research directions aim to (i) adjust the alloy bulk composition by using new 
and advanced manufacturing processes; or (ii) develop surface modifications that take 
advantage of the excellent mechanical properties of the bulk composition. The compo-
sition and microstructure of the surface can be altered by using chemical or physical 
methods, either by treatment or coating deposition. Surface modification and coating 
are attracting increasing attention, because it does not change the original properties of 
the substrate while conferring corrosion resistance.

Nanomaterials can be used to create protective coatings on orthodontic appliances 
such as braces and wires. These coatings are much thinner and more uniform than tra-
ditional coatings, and provide a more effective barrier against corrosive elements such 
as saliva and food. By enhancing the surface characteristics of orthodontic appliances 
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with NPs, the biocompatibility of these materials can be improved. This, in turn, reduces 
the risk of adverse reactions, for example, by reducing inflammation in patients with 
metal allergies or sensitivities [104], improving biocompatibility, and enhancing patient 
comfort.

Metal/metal oxide nanomaterial coatings

The favorable physiochemical properties of TiO2 coatings should improve corrosion 
resistance [105]. TiO2 thin films exhibit ceramic-based structures, which have low elec-
trical conductivity and lower charge transport, thus improving electrochemical barrier 
properties. Therefore, lowering the electron conductivity can impede electrochemical 
processes and thus improve the corrosion resistance of TiO2-coated devices. In gen-
eral, coating materials should completely separate base materials from corrosive media 
to confer protection and robust corrosion resistance. Electrochemical reactions do not 
occur at the coating/substrate interface. TiO2 NP thin films were prepared by magnetron 
sputtering. The resultant coating surface was flat and compact and demonstrated good 
sealing performance, which can prevent contact between corrosive media and substrate 
materials. N-TiO2 coating can improve corrosion resistance more effectively than pure 
TiO2 coating [106, 107].

ZrO2 NPs occluded gaps in acrylic coatings through which corrosive ions and mole-
cules could have penetrated, and hence delayed steel corrosion [108]. A relatively denser 
pore structure with uniform distribution morphologies of ZrO2/ZnO/TiO2 nanocom-
posite coating hindered the penetration of simulated body fluid and artificial saliva 
through the coating layer on a stainless steel substrate. The high durability and compact-
ness of ZrO2/ZnO/TiO2 nanocomposite coating on stainless steel have conferred excel-
lent corrosion protection in simulated body fluid and artificial saliva [109].

Among metal/metal oxide nanomaterials, ZnO-NPs possess a significant advantage 
in conferring corrosion resistance. The addition of a porous manganese-substituted 
hydroxyapatite coating to a ZnO-NP-coated 316L stainless steel alloy improved corro-
sion resistance, mechanical strength, and biological properties [110]. ZnO-NPs prepared 
on Ni–Ti wires not only inhibited S. mutans, but also lowered friction and improved the 
corrosion resistance of the substrate [96].

Graphene‑based coatings

NiTi alloy substrates coated with either GO or GO/Ag nanocomposites exhibited 
enhanced corrosion resistance, reduced corrosion rates, and increased protection effi-
ciency compared to uncoated NiTi alloy. The biocompatibility of the coated NiTi alloy 
was confirmed through the use of human pulp fibroblasts, which expressed elevated lev-
els of IL-6 and IL-8 [111].

The application of various concentrations of GO coatings decreased the corrosion sus-
ceptibility of NiTi alloy in synthetic saliva, and also improved lubricity and S. mutans 
inhibition. Insufficient corrosion and friction resistances were observed in the coating 
when the concentrations of GO were either low or excessively high [112, 113].

The application of a small-sized GO/Ag NP coating to a NiTi alloy lowered the 
coefficient of friction to 0.1, conferred a tenfold decrease in corrosion current den-
sity, and reduced the presence of corrosive ions. However, a coating containing 



Page 14 of 21He et al. BioMedical Engineering OnLine           (2024) 23:72 

large-sized GO/Ag NPs brought only limited improvements of friction and corro-
sion resistance [114]. Both coatings were biocompatible with L929 cells, attributed 
primarily to the coating materials’ high biocompatibility at low concentrations. 
Additionally, corrosion resistance conferred by coatings prevents the precipitation 
of toxic ions, thereby enhancing biocompatibility.

A series of self-assembling polydopamine (PDA)-GO nanocoatings were applied 
to representative NiTi archwires. Coating morphology, chemical structure, and mul-
tifunctional performance were adaptable by changing the PDA/GO ratio. The opti-
mized PDA–GO coating featured uniform and dense characteristics that increased 
the diffusion path of corrosive media and inhibited the dissolution of Ni in NiTi 
alloy. Furthermore, the surface structure and inherent characteristics of PDA–GO 
conferred antibacterial activity against Streptococcus mutans [115].

Polymeric coatings

Epoxy resin coatings significantly increased corrosion resistance [116, 117] and 
decreased nickel ion release [117] of NiTi archwire in artificial saliva. Additionally, a 
double-blind randomized clinical trial revealed that an epoxy coating reduced nickel 
ion discharge [118]. PTFE conferred a higher corrosion resistance than epoxy resin 
[117]. PTFE-coated NiTi archwires corroded ten times less quickly than untreated 
NiTi substrates [119]. On the other hand, PFTE-coated wire induced cytotoxicity 
in 36% of fibroblasts in an in  vitro assay, which corresponded to slight cytotoxic-
ity [120]. Therefore, selecting this material requires great thought. Epoxy resins are 
usually a preferable option if a high degree of biocompatibility is needed. A study 
recently used a mussel-inspired technique to encapsulate PTFE NPs in a sol–gel 
matrix and dip-coat them onto 316L stainless steel before the deposition of Ag NPs. 
Because of its potent antibacterial and anticorrosion qualities, the Ag NP/PTFE 
coating produced in this manner may be suitable for application to metal implant 
surfaces [121]. Clinical trials must be conducted on this coating as it has not yet 
been used in orthodontics.

Nanocoatings on orthodontic devices have the potential to mitigate the issue of 
ion release commonly associated with conventional metal braces. This is of utmost 
importance due to the potential consequences of metal ion release, such as toxicity, 
hypersensitivity reactions, tissue discoloration, and other adverse reactions. Con-
sequently, thorough biocompatibility testing of modified materials is imperative to 
ensure safety and to rule out adverse reactions. Furthermore, corrosion resistance 
testing of nanomodified materials in simulated oral environments is essential. Such 
testing should address the corrosive effects of salivary pH fluctuations, bacterial 
colonization, and other environmental stressors. In the pursuit of enhancing corro-
sion resistance, the preservation of mechanical properties, antibacterial activity, and 
biocompatibility is imperative. The incorporation of NPs has the potential to modify 
the mechanical characteristics, including ductility and hardness, of orthodontic steel 
wires and brackets. Therefore, it is crucial to strike a suitable equilibrium that con-
fers adequate corrosion resistance while preserving the mechanical properties nec-
essary to accommodate the necessary orthodontic forces.
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Strengths and limitations

This study addressed clinically relevant questions with significant implications for ortho-
dontic treatment outcomes. Strengths include a methodology that references PRISMA 
guidelines. However, this review has limitations that must be acknowledged. Variability 
in study methods and potential biases among the 28 selected articles may have impacted 
our conclusions. Moreover, inconsistencies in measurement methods and definitions 
may have impeded data synthesis. Despite an extensive literature search, relevant studies 
may have been overlooked. Publication bias could lead to an overestimation of the bene-
fits of nanotechnology. Future research should aim to standardize methods and broaden 
outcome measures to improve reliability and comparability. Despite these limitations, 
this review provides crucial insights into the potential of nanotechnology to advance 
orthodontic practice.

Conclusion and future prospects
Nanotechnology offers considerable potential for the advancement of orthodontic treat-
ment, presenting advantages such as improved materials, expedited tooth displacement, 
and enhanced oral health. As the field of nanotechnology progresses, it has the poten-
tial to significantly enhance the efficiency, efficacy, and patient experience of orthodontic 
care. Nevertheless, continued research and clinical trials are imperative to address safety 
concerns and to fully comprehend the ramifications of the application of nanotechnol-
ogy to orthodontics. In the future, intelligent biocompatible materials and brackets will 
likely become integral components of the orthodontic armamentarium. Prominent areas 
of future research in biomedical engineering include the utilization of nanotechnology 
for device fabrication, the ongoing advancement of nanostructured and biomimetic 
materials, and the application of tissue engineering principles for both hard and soft tis-
sues [122].

However, the transition of nanotechnology and nanomaterials from the laboratory to 
the clinic is hindered by significant challenges. Specifically, the long-term biocompatibil-
ity and safety of nanomaterials in the oral environment must be thoroughly investigated 
before their adoption can be considered. Despite the potential benefits of incorporating 
NPs, such as enhanced corrosion resistance, protection of moisture-sensitive compo-
nents, and prevention of nickel release, it is crucial to evaluate the safety of the long-
term intraoral retention of these materials. The oral cavity encompasses a complex 
milieu of digestive enzymes, fluctuating pH levels, a diverse microbiome, and mechani-
cal stresses. Consequently, NPs may interact with oral tissues in unforeseen manners 
and may accumulate over time, potentially leading to toxic levels. To fully comprehend 
any previously unidentified adverse effects, long-term clinical trials and systemic studies 
are imperative. The evaluation of issues such as hypersensitivity, DNA damage, the accu-
mulation of histopathologic changes, bacterial binding, and disruption of cell physiology 
is necessary. It should be noted that safety data for short-term usage may not adequately 
predict long-term outcomes.

Additionally, the utilization of nanotechnology in orthodontics may lead to increased 
treatment costs, thereby affecting accessibility. Although nanostructured materials may 
enhance the properties of components such as orthodontic brackets and wires, the 
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associated manufacturing techniques significantly raise production expenses. Given the 
already considerable expense of orthodontic hardware, the incorporation of nanoinfused 
enhancements will inevitably contribute to cost increases. The biodegradation of nano-
materials poses a significant challenge due to the intricate control required. The phar-
macokinetics of nanomaterials are heavily influenced by factors such as their size, shape, 
and surface chemistry. Achieving a consistent and uniform production of nanomaterials 
remains a formidable obstacle.
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