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Abstract 

Background:  Properly understanding the origin and progression of the thoracic aortic 
aneurysm (TAA) can help prevent its growth and rupture. For a better understanding 
of this pathogenesis, the aortic blood flow has to be studied and interpreted in great 
detail. We can obtain detailed aortic blood flow information using magnetic resonance 
imaging (MRI) based computational fluid dynamics (CFD) with a prescribed motion 
of the aortic wall.

Methods:  We performed two different types of simulations—static (rigid wall) 
and dynamic (moving wall) for healthy control and a patient with a TAA. For the latter, 
we have developed a novel morphing approach based on the radial basis function 
(RBF) interpolation of the segmented 4D-flow MRI geometries at different time instants. 
Additionally, we have applied reconstructed 4D-flow MRI velocity profiles at the inlet 
with an automatic registration protocol.

Results:  The simulated RBF-based movement of the aorta matched well with the orig-
inal 4D-flow MRI geometries. The wall movement was most dominant in the ascending 
aorta, accompanied by the highest variation of the blood flow patterns. The resulting 
data indicated significant differences between the dynamic and static simulations, 
with a relative difference for the patient of 7.47±14.18% in time-averaged wall shear 
stress and 15.97±43.32% in the oscillatory shear index (for the whole domain).

Conclusions:  In conclusion, the RBF-based morphing approach proved to be 
numerically accurate and computationally efficient in capturing complex kinematics 
of the aorta, as validated by 4D-flow MRI. We recommend this approach for future use 
in MRI-based CFD simulations in broad population studies. Performing these would 
bring a better understanding of the onset and growth of TAA.
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Background
Rupture of thoracic aortic aneurysm (TAA) is an acute medical condition, with a fatality 
rate of almost 95% [1]. Because of the high fatality, properly diagnosing and treating this 
dangerous condition is of utmost importance. However, the conventional guidelines that 
focus on the diameter and growth rate of TAA were shown to be inadequate in many 
cases [2, 3]. This emphasizes the need for new biomarkers that aim for patient-specific 
prediction of TAA rupture and look beyond the analysis based solely on the aorta geom-
etry [4]. The blood flow information must be assessed to establish new predicting bio-
markers. Such information can be obtained from 4D flow magnetic resonance imaging 
(MRI); however, its spatial and temporal resolution is limited [5]. In recent years, the 
clinical image-based computational fluid dynamics (CFD) [6] was successfully applied 
to provide the patient-specific blood flow features in great detail, for example, flow in 
aorta [7–9] and TAA [10] as well as in wider population studies [11, 12]. However, one 
important aspect of modeling the aorta or TAA is often omitted in the literature—the 
movement of the aorta (i.e., aorta kinematic). Because of the beating heart during the 
cardiac cycle, the aortic root moves downwards during systole and returns to its original 
position during diastole. This movement was reported to be approximately nine millim-
eters in the downward direction [13] with a clockwise twist up to 20° [14]. Furthermore, 
the aortic compliance causes the wall to expand and contract radially during the cardiac 
cycle due to the changing transmural pressure gradient over time [15]. It was reported 
that changes in the thoracic aorta diameter were in the 1.7 to 3.6 mm range [16]. These 
combined effects of the aortic wall kinetics can significantly affect the blood flow simula-
tions, and consequently, they should be included in the CFD simulation [17].

To model the blood vessel movement, two simulation strategies have been applied 
in previous studies in the literature: (i) the fully coupled fluid–structure interaction 
(FSI), and (ii) the predefined wall displacement. The FSI studies of aorta hemodynam-
ics were applied in [17–21]. However, the FSI method for patient-specific situations suf-
fers from numerous limitations. These include the lack of detailed information on the 
aortic wall properties (i.e., non-homogeneous thickness and elasticity), difficulties with 
the physiological boundary conditions (for example, pressure), as well as the quite inten-
sive computational costs (for example, iterative pre-stressing procedure, fluid/structure 
mechanics coupling). The estimation of the aorta motion was the focus of several studies 
in the literature [22–24]. A simplified method for the aortic wall motion was proposed in 
[24, 25]. The developed moving-boundary method (MBM) tuned with the non-invasive 
clinical images (2D cine-MRI) provided a good agreement with the FSI results [24] as 
well as with the measurements in terms of the luminal cross-sectional area [25]. The 
MBM method was also less computationally expensive. However, while the MBM meth-
ods show excellent agreement with the measurements in terms of the change of luminal 
radius throughout the cardiac cycle, they cannot capture the rotational and/or longitudi-
nal movement.

To overcome this, the mesh-morphing approach based on radial basis function (RBF) 
was proposed for mimicking the motion of biological tissue, utilizing one-way coupling. 
Unlike the previously discussed FSI and MBM, the present method directly enforces the 
movement based on imaging data and therefore has the potential to closely mimic the 
complete movement of the arterial wall, while also being numerically efficient. While the 
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choice of one-way coupling limits the method in the applications that consider the future 
progress of diseases, it can be an excellent tool for accurately simulating the present flow 
in arteries. RBF was successfully implemented in mimicking the motion of the aortic 
valve [26], left ventricle with mitral valve [27], and thoracic aorta [28, 29]. In the case of 
RBF application in the aorta, Capellini et al. [28, 29] presented an approach where only 
the ascending thoracic aorta (excluding root) was considered dynamic, and the rest of 
the domain was assumed to be rigid. Additionally, only a simplified inlet velocity bound-
ary condition was implemented. These assumptions bring considerable simplifications 
to the complexity of motion and flow in the aorta.

To bridge these simplifications, we propose a proof-of-concept approach for a 4D-flow 
MRI-based compliant model of the aorta. This approach will be evaluated for the healthy 
control subject and patient-specific aorta with a large root aneurysm. For both cases, 
the movement of the aorta and all inlet and outlet boundary conditions will be extracted 
from the corresponding 4D-flow MRI scans. The dynamic behavior of the aorta will be 
mimicked by a morphing approach utilizing the radial basis function (RBF) interpola-
tion based on Xu and Kenjereš [27]. We adapt the method to account for the motion of 
the whole thoracic aorta. To define the motion, we utilize 4D-flow MRI data at several 
points of the cardiac cycle. In addition, we present an automatic registration protocol of 
the 4D-flow MRI-derived velocity profile at the inlet for the moving aorta.

This article first introduces our main findings within the "Results" section, followed 
by the "Discussion" of these findings, and "Conclusions". Finally, the last section of our 
article focuses on a detailed explanation of the "Methods" that are utilized for this study.

Results
MRI‑based wall movement

First, we want to assess the quality of the prescribed movement. The image-based 
movement of the aortic wall for both studied subjects: the healthy control (HC) and 
the patient with a TAA (P), is shown in Fig. 1. To validate the results of the RBF-based 
interpolation, we compare geometries extracted from the 4D-flow MRI (blue isosur-
face) and RBF-based reconstruction (red isosurface)—both at the mid-acceleration time 
instant; Fig. 1a. Furthermore, we also compare characteristic circumferential wall pro-
files at various cross-sections: (1) proximal ascending aorta (pAscAo); (2) distal ascend-
ing aorta (dAscAo), (3) proximal descending aorta (pDescAo), and (4) distal descending 
aorta (dDescAo), respectively. As can be seen in Fig. 1a, the RBF surface matches well 
the original 4D-flow MRI surface in the majority of the planes, except in the proximity 
of the root. Here, we can observe more variation. Additionally, in Fig. 1b, we show the 
time-evolution of the RBF-based circumferential profiles in identical cross-sections (i.e., 
planes (1–4)) at the four key-frames (black—mid-acceleration, red—peak systole, blue—
mid-deceleration, green—early diastole). These circumferential profiles visualize local 
change in the area during the dynamic simulations, which is most pronounced close to 
the aortic root. Finally, the profiles in Fig. 1 give us only a qualitative understanding of 
local variation between RBF and 4D-flow MRI surfaces. Therefore, to see the variation 
for the whole surface, we have calculated the absolute Euclidean distance between each 
point of RBF-generated surfaces and the MRI segmentations. These data are shown for 
HC and P (at each key-frame) in Fig. 1c, and the median, mean, and standard deviation 
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of the whole domain are reported in Table 1. Fig. 1c again showcases that the agreement 
between RBF and MRI surfaces is overall good, except in the proximity of the root. In 
addition, we can also observe an increasing variation in the agreement further from the 
peak systole.

To quantify the level of the aorta movement, the normalized time-averaged aortic wall 
displacements (magnitude and corresponding coordinate directions) are shown in Fig. 2. 
The normalization was done using the radius of the inlet plane (i.e., rinHC = 1.49 · 10−2 
m, and rinP = 1.58 · 10−2 m). The simulated displacement is lower for healthy control in 

Fig. 1  Comparison of the geometry for healthy control (HC) and patient (P) at mid acceleration for MRI 
(blue) and RBF (red) (a) for the whole aorta and cross-sections at proximal ascending aorta (pAscAo—1), 
distal ascending aorta (dAscAo—2), proximal descending aorta (pDescAo—3), and distal descending aorta 
(dDescAo—4); the evolution of RBF-based cross-sections at the key-frames (mid-acceleration—black, peak 
systole—red, mid-deceleration—blue, and early diastole—green) for the four locations (b); and the Euclidean 
distance between the RBF and MRI surface vertices d(RBF-MRI) for HC and P at each key-frame c)

Table 1  Median, mean, and standard deviation (std) for the absolute difference between RBF and 
MRI surface vertices (based on Fig. 1c) for healthy control (HC) and patient (P) at four key-frames (KF): 
KF1—mid-acceleration, KF2—peak systole, KF3—mid-deceleration, and KF4—early diastole

KF 1 KF 2 KF 3 KF 4

HC Median [mm] 0.63 0.46 0.62 0.62

Mean 0.69 0.45 0.70 0.70

Std 0.35 0.18 0.41 0.43

P Median [mm] 0.57 0.46 0.59 0.63

Mean 0.63 0.46 0.70 0.85

Std 0.36 0.20 0.43 0.72
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comparison to the patient. In addition, we can observe a clear higher displacement in 
the ascending aorta for both studied cases.

Computational time

To compare the effect of the wall motion on the computational time for three simu-
lated cycles, we report the wall time for one of the cases (HC). Both static and dynamic 
simulations (for this comparison) were run on 16 processors of AMD Opteron 6234. 
The reported wall time for static simulation was 33:07:59 (in [h:min:s]), and for the 
dynamic simulations, 38:29:31. The main differences in the computational time were 

Fig. 2  The time-average displacement (magnitude, x-direction, y-direction, and z-direction) during the cycle
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related to the I/O intensive tasks (reading the prescribed mesh), rather than the simu-
lations themselves.

Effect of wall movement on blood flow

Contours of the velocity magnitude at the pre-selected cross-sections (dAscAo, pAscAo, 
and pDescAo) at four time instants of the cardiac cycle (mid-acceleration, peak systole, 
mid deceleration, and early diastole), for the healthy and patient-specific cases (both 
with static and dynamic simulations) are shown in Fig. 3. For MRI, the velocity field was 
reconstructed from 4D-flow MRI data extracted in planes in the flow direction. Note 
that for better visualization, used color maps are specifically adjusted for different cross-
sections and time steps. Overall, the computed profiles for HC resemble well the ones 
obtained by MRI, more differences can be observed for P, especially in planes 2 and 3. In 
addition, the results demonstrate a clear influence of movement on the calculated flow 
field, which is more significant for P.

Effect of wall movement on TAWSS and OSI  

Time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) are two 
important flow-derived quantities often mentioned in the literature as potential bio-
markers to evaluate the progression of aortic aneurysms. The contours of the TAWSS 
and OSI for the CFDstatic and CFDdynamic simulations are shown in Fig. 4. To make the 
comparison between the static and dynamic simulations easier, we also provided con-
tours of the percentage differences �TAWSS and �OSI . Note that for the dynamic 
simulation, contours of the TAWSS and OSI are shown for the peak-systole geometry. 

Fig. 3  Velocity magnitude [m/s] at the visualized cross-sections of interest (proximal ascending aorta 
(pAscAo—1), distal ascending aorta (dAscAo—2), proximal descending aorta (pDescAo—3)) based on 
MRI, static, and dynamic CFD for healthy control (HC—left) and patient (P—right) at mid-acceleration, peak 
systole, mid-deceleration, and early diastole; the scale of velocity magnitude is adjusted per plane/time-step
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As can be seen for both subjects, we can observe slight differences between static and 
dynamic simulations for TAWSS, especially close to the root. For P, the differences in 
TAWSS are more pronounced in the whole ascending aorta. Dynamic simulations show 
significantly more differences for OSI; in both cases the differences in this quantity are 
more pronounced over the whole surface.

Next, we have also calculated the mean values of the absolute difference over the 
whole aorta surface (without side branches) for TAWSS and OSI. The mean value of 
absolute �TAWSS for the healthy control was �TAWSSHC = 2.72± 4.93% Pa, and 
�TAWSSP = 7.47± 14.18% Pa for the patient-specific geometry. For the OSI difference, 
the mean value (of absolute �OSI ) was �OSIHC = 12.87± 43.92% for the former, and 
�OSIP = 15.97± 43.32% for the latter.

Finally, while we can understand the spatial distribution of �TAWSS and �OSI based 
on the surface plots, they are unable to show the locality of the highest differences 
between static and dynamic simulations with respect to the range of TAWSS and OSI . 
To overcome this, Fig. 5 shows the relationship between the dynamic TAWSS or OSI and 
the respective percentage difference ( �TAWSS or �OSI [%]) for HC and P. In addition, 
we have plotted the average value of �φ for each of the assessed quantities and a binned 
average for the OSI . In the case of the binned average, the data were grouped based on a 

Fig. 4  Time-averaged wall shear stress (TAWSS [Pa]) and oscillatory shear index (OSI [-]) based on static and 
dynamic simulations and the absolute percentage difference for the respective quantities between static and 
dynamic simulations for healthy control and patient
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specific range of OSI values (0.01) for the whole domain and average for the outliers with 
high OSI (i.e., when the number of points within a range of OSI was less than 100).

Discussion
In the present work, we proposed an image-based method for prescribing the motion 
of the aortic wall for CFD using RBF. The RBF method was chosen since it proved to be 
a viable approach to represent the complex motion of the aorta. By performing simula-
tions with the predefined motion of the blood vessels, we avoid the necessity of obtaining 
detailed information regarding the vessel wall (i.e., elasticity and thickness). This infor-
mation is usually not readily available, making the patient-specific studies challenging 
for the traditional FSI methods [18–20, 22–24]. Additionally, the computational time of 
simulations with prescribed motion is comparable with static simulations, as can be seen 
from our results. This is an important factor, especially considering the clinical applica-
tions with larger population studies. We have performed static and dynamic simulations 
for two geometries: the healthy-control (HC) and patient-specific case (P) with a large 
TAA located close to the aortic root.

The prescribed RBF-based motion of the thoracic aorta matched well with the 4D-flow 
MRI, as illustrated in Fig. 1a for mid-acceleration. Some differences could be observed 

Fig. 5  Scatter plots showcasing the time-averaged wall shear stress ( TAWSS [Pa]) and oscillatory shear index 
( OSI [-]), both extracted from the dynamic simulations, with the respective percentage differences between 
static and dynamic simulations ( �TAWSS or �OSI [%]) for TAWSS a) and OSI b) for the healthy control and 
TAWSS c) and OSI d) for the patient; we highlight the positive/negative average values of the differences 
(blue) and for OSI only, the binned average based on the OSI values (orange)
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in the proximity of the aortic root. Close to the aortic root, the displacement is also the 
largest, as visualized in Figs.  1b and 2. In this region (ascending aorta), the motion is 
rather complex and is a result of the superposition of the axial and radial displacements. 
The longitudinal displacement (in the feet–head (FH) direction) generated by the physi-
ological strain from the heart, makes an important contribution to the total displace-
ment, as previously reported in several studies on aortic kinematics [13, 14, 30, 31]. It 
is important to note that this FH-component of aortic motion is not included in the FSI 
studies of the aorta [18–21], nor in the studies that model the predefined aorta motion 
based on its wall compliance [22–24], which can have a significant impact on the final 
results. In contrast to the ascending aorta, the descending aorta is less susceptible to 
motion due to the presence of the spinal column, and its displacement is predominantly 
in the radial direction [31], which can be also found in our results; Fig. 2.

The discrepancies between RBF and MRI in the proximity of the aortic root can also 
be found for the other key-frame geometries; Fig. 1c. The agreement between the origi-
nal segmentation and RBF, in terms of distance between the surface vertices, is good for 
most of the investigated aortic domain (as seen in Table 1), except for the root. While 
this could (potentially) be avoided by locally increasing the density of the control points, 
the final moving geometry does not have to improve with respect to realistic aortic kin-
ematics. This is caused by the accuracy of the original segmentation, which decreases 
for key-frames further from the peak systole [32], (Fig. 1c). The segmentation variability 
can be high, especially close to the root, as shown previously for healthy aortas [33]. 
Additionally, a similar argument can also be made for including more key-frame geom-
etries. Currently, we only considered four geometries for the proof-of-concept study. 
This choice was motivated by the segmentation procedure being very time-consum-
ing (approximately four hours per subject), with many manual adjustments necessary. 
Hence, including more details in the RBF procedure can, on the contrary, increase the 
amount of uncertainty and degrade our simulations.

Although we have only segmented a limited number of geometries to prescribe the 
movement, the selected key-frames probably contain the most radial expansion dur-
ing the cycle. This allows us to capture most of the movement with the least amount of 
information required. Additionally, the ability of the proposed method to capture the 
movement based on only a limited number of segmentations is an important advantage 
for clinical use. In this case, the observer does not need to segment all the phases, saving 
valuable clinical practice time.

While the limitations behind segmentation of 4D-flow MRI are well-known [32–34], 
our choice to use this method was motivated by the direct availability of measured flow 
data. This allows us to obtain accurate inlet and outlet boundary conditions and an esti-
mation of the moving domain from a singular measurement. As shown previously by 
several studies [35–38] and in Appendix C, velocity profile from measurements should 
always be imposed as an inlet boundary condition, if available. Additionally, Gallo et al. 
[39] showed the importance of including as much patient-specific information as pos-
sible on all of the outlets of the studied domain to obtain accurate results. By utilizing 
4D-flow MRI to obtain all of these, we can create a well-informed, fully patient-specific 
model of the moving aorta without the necessity of additional measurements on the 
subjects.
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To validate the proposed model, we can directly utilize the 4D flow MRI. As can be 
seen in Fig. 3, the computed profiles resemble well the ones acquired by MRI, espe-
cially in plane 1. More differences can be observed for the other planes, especially for 
lower velocity values (i.e., further from peak systole). These discrepancies could origi-
nate from the computational model, e.g., inaccurate inlet plane for boundary condi-
tions [40] or the choice of outflow boundary conditions [41], which can have an effect 
up to 5Di upstream, what correlates to the locations of the examined planes. On the 
other hand, in 4D-flow MRI data, a higher noise-to-signal ratio is present due to the 
static VENC, for these phases. This can cause limited velocity field acquisition [42] 
for these phases. Finally, 4D-flow MRI flow has been shown to be consistently under-
predicted due to the temporal averaging of the data [43]. However, the simulations 
generally predict the blood flow behavior in the studied aortas.

Since an increasing number of studies are investigating the effect of aberrant 
blood flow on the development and rupture of aortic aneurysms, we highlight here 
the effects of the aorta motion on changes in blood flow patterns. Based on the pre-
sented results, certain differences in blood flow patterns were obtained with the static 
(a rigid wall assumption) and dynamic (predefined aorta motion) simulations; Fig. 3. 
The latter showed slightly better agreement, qualitatively, with the 4D-flow MRI 
measurements, especially during the decelerating part of the systole and early dias-
tole. For example, in plane 2 and plane 3 for HC, during mid-deceleration and early 
diastole, the dynamic simulations were more accurate in capturing the velocity profile 
measured with 4D flow MRI. On the other hand, the differences between dynamic 
and static simulations for P are more striking, especially for plane 2 and plane 3, and 
we cannot make similar conclusions for this case. While these observations are only 
qualitative, they clearly show the effect of the aortic movement on the flow and the 
need to examine these differences in a larger number of patients and volunteers.

The flow-derived variables such as the TAWSS and OSI are often used as poten-
tial biomarkers to indicate the onset and growth of aortic aneurysm [5]. Elevated 
regions of WSS were related to more rapid degradation of the extracellular matrix 
[44]. This causes weakening of the aortic wall (due to lack of elastin), and it was 
linked to the growth of the TAA [44]. On the other end of the spectrum, low TAWSS 
may lead to endothelial dysfunction, correlated with thickening of the aortic wall [9, 
45] Furthermore, high OSI affects the response of the endothelial cells, and it was 
connected to the onset of atherosclerosis [46], a condition with high prevalence in 
patients with aortic aneurysms [47]. Our simulations revealed significant differences 
between TAWSS and OSI calculated from the static and dynamic simulations for both 
geometries; Fig. 4. In static simulations, the mean TAWSS is slightly over-predicted, 
especially in the aortic arch of P; Fig. 4. Nevertheless, the general trends in TAWSS 
distribution are similar for both of the simulation methods in each studied case. On 
the other hand, we can observe significantly more differences in OSI, which is con-
sistently underpredicted by the static simulations, especially in the region of inter-
est—ascending aorta; Fig.  4. These observations, including the maximal differences, 
are in accordance with other studies in the literature that considered the aorta move-
ment—either by FSI [17] or by prescribed motion [24, 25, 29].
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Additionally, we observed that aortic wall movement has a considerable effect on the 
whole range of TAWSS and OSI; Fig. 5. For OSI, it can be seen that the error introduced 
by the simulations is highest in the regions with low OSI. On the other hand, for higher 
values of OSI, which are physiologically important [46], the difference between static 
and dynamic simulation is lower, yet, still as high as 21% for HC and 37% for P. In the 
case of TAWSS, for which both low and high TAWSS are physiologically important [9, 
44, 45], we could not observe such a clear correlation. Here, the difference between static 
and dynamic simulations is similarly dominant for the whole range of TAWSS (on aver-
age, up to 9% for HC and 15% for P, which are similar to other studies in literature [17, 
24]). These findings highlight the importance of including aortic wall motion in the sim-
ulations, to prevent misinterpretation of the results.

We also found that the differences between static and dynamic CFD for both TAWSS 
and OSI are correlated with the magnitude of displacement; Fig.  2. The differences in 
both variables were most significant in the proximity of the aortic root and the ascend-
ing part of the aorta, i.e., in the regions where displacement is most prominent. In the 
arch and descending aorta, the differences between static and dynamic simulations 
and resulting TAWSS and OSI were smaller. Capellini et al. [29] presented an approach 
where only a portion of the aorta (ascending thoracic aorta) is considered moving, and 
the rest of the domain is static. For this case, they showed that the differences down-
stream of the moving region are negligible. On the contrary, as shown in the presented 
study, the movement in the arch and descending aorta still affects the flow considerably 
and should not be omitted. In conclusion, the aspects of the movement of the whole 
aorta should be included in the new generation of CFD simulations for accurate mod-
eling of blood flow.

Finally, we need to contextualize our findings with respect to other possible sources of 
uncertainty in the simulations. As shown in our previous study, WSS is highly affected 
by the segmentation variability, with a local deviation of up to 50% (at peak systole) 
[33]. Similar or higher uncertainty as found for OSI and TAWSS in our results, was also 
reported due to inflow rates [48, 49], outflow boundary conditions [39], or inclusion 
of turbulence modeling [8, 50]. Nevertheless, due to a lack of data for dynamic simula-
tions, specifically for simulations with prescribed motion, it is not possible to generalize 
whether rigid assumption for the aorta is sufficient in terms of uncertainty, unlike for 
other parts of the cardiovascular system [51]. For this, a more thorough follow-up study 
is necessary, including a larger number of pathologies.

Next, we address several limitations of the present work. To demonstrate the proof-of-
concept of the adopted RBF-based morphing approach in mimicking the aortic motion, 
we have considered two geometries: the healthy control and the patient-specific TAA. 
Future studies can include significantly larger numbers of both subject and patient-spe-
cific cases. Moreover, the patient-specific cases should include additional aortic patholo-
gies such as dissection and coarctation [52]. Nevertheless, our work aimed to investigate 
the feasibility, accuracy, and numerical efficiency of the proposed method. Since we have 
selected an advanced stage of TAA as one of the test cases, it is expected that the method 
will also perform well for less-developed pathologies. We also assumed that there was no 
aortic movement during the diastole. This assumption was a consequence of the unat-
tainable segmentation of the 4D-flow MRI scans due to very low blood flow intensity 
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during this period of the cardiac cycle. However, this assumption is valid since the aortic 
motion during diastole is limited [16], and we do not expect significant deviations from 
our findings. Finally, the presented simulation method with aortic motion was coupled 
with the 4D-flow MRI clinical data; here, we need to address two points: (1) the 4D-flow 
MRI acquisition is affected by several acquisition parameters such as efficient respira-
tory motion compensation, VENC, and Sense factor that reflects the amount of paral-
lel imaging for acceleration. All of these can have an effect on the signal-to-noise ratio 
and hence the segmented data. (2) The current segmentation procedure requires signifi-
cant manual adjustments to properly capture the exact wall position at particular time 
instants of the cardiac cycle. We also addressed some of this segmentation variability 
on the calculated WSS in our previous study [33], where we observed significant vari-
ability in WSS due to the segmentation procedure. Since a similar protocol was also used 
in this study, this could also affect the prescribed wall movement. Additionally, using 
this technique hinders proper capturing of the aortic dilatation since the absolute differ-
ence between the root diameter of the systolic and diastolic phase can be lower than the 
resolution of 4D-flow MRI, as reported by De Heer et. al. [53]. However, here developed 
numerical simulation methodology can be directly integrated with other clinical imaging 
procedures as well (US, MRA, CT), which would improve the segmentation variability 
and the resolution to capture the motion properly.

Conclusions
In the present work, we showed how the aortic wall motion can be simulated by apply-
ing an efficient image-based geometry morphing approach based on the radial basis 
function (RBF) interpolation. The simulated aortic motion was in good agreement with 
the 4D-flow MRI extracted geometries. The developed method proved to be accurate 
and numerically robust for both considered cases: the healthy-control and the patient-
specific aorta with an aneurysm in the aortic root. The computational time for dynamic 
simulations (with moving aortic walls) was similar to their static (with rigid wall assump-
tion) counterparts, confirming the numerical efficiency of the proposed method. Effects 
of wall motion in the dynamic simulations were most prominent in the ascending aorta 
and this improved agreement with the 4D-flow MRI in comparison to the static simu-
lations. We also report on the largest differences between the calculated TAWSS and 
OSI for static and dynamic simulations in the ascending part of the aorta. This shows 
the importance and necessity to include aortic wall motion in the CFD simulations in 
obtaining more accurate flow and flow-derived biomarkers, such as the TAWSS and 
OSI. Based on here presented proof-of-concept study on two geometries and improved 
agreement with the 4D-flow MRI, we propose to apply the presented moving wall 
approach on larger cohorts of patient-specific cases with various aortic pathologies.

Methods
Studied cases

Two subjects were included in this study—a healthy control (HC) and a patient (P). The 
patient had a root aortic aneurysm with a diameter D = 50 mm and aortic valve regurgi-
tation of 33%. Additional characteristics for both subjects can be found in Table 2.
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MRI acquisition and data processing

For both subjects, 4D-flow MRI was performed on a 3T MRI system (Elition, Philips 
Healthcare, Best, The Netherlands) using a hemidiaphragm respiratory navigator with 
retrospective electrocardiogram gating without echo-planar imaging. Additional param-
eters in the MRI sequence can be found in Table 3.

The acquired 4D-flow MRI data sets were segmented using CAAS MR Solutions 
v5.2. (Pie Medical Imaging BV, Maastricht, The Netherlands). The protocol for seg-
mentation is identical for both studied subjects. The analysis is initialized by manually 
placing starting and ending points of the domain at peak systole. The starting point 
is placed in the aortic root, and the ending points are placed in all major branching 
arteries of the arch (brachiocephalic trunk, left common carotid artery, and left sub-
clavian artery) and in the abdominal aorta. Subsequently, a 3D volume at peak systole 
is automatically segmented and manually adjusted (if discrepancies are observed). The 
manual adjustments for the peak-systolic phase are mostly necessary for the regions 
with flow recirculation, i.e., in the proximity of the aortic root and downstream the 
aortic arch. After successful segmentation, the peak-systolic 3D volume is copied to 
the next phase of interest and manually adjusted for the movement. In this case, the 
manual interventions are more complex and time-consuming (up to three hours per 
phase) due to the arterial movement, both caused by the compliance of the aortic 
wall as well as the movement of the heart. This process is especially time-consuming 
in the ascending aorta due to its complex movement through the cardiac cycle. The 
segmentation procedure is then repeated for all of the phases of interest (in total, four 

Table 2  Characteristics of the healthy control and patient

Healthy control Patient

Gender Male Female

Age [yr] 43 26

Weight [kg] 85 67

Height [cm] 195 187

Blood pressure [mmHg] 115/67 83/46

Mean arterial pressure [mmHg] 85 63

Heart rate [bpm] 61 49

Table 3  Details of 4D-flow MRI sequence for healthy control and patient

Healthy control Patient

Velocity encoding [cm/s] 150 160

Reconstructed temporal resolution [ms] 30 38

Echo time [ms] 2.6 2.7

Repetition time [ms] 4.5 4.6

Flip angle [◦] 10 10

Acquired isotropic resolution [mm] 2.5 2.7

Field of view [mm3] 350 × 78 × 160 450 × 60 × 150

Turbo field echo factor [-] 2 2

Parallel imaging factor [-] 2.5 × 1.2 2.5 × 1.2
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instants of the cardiac cycle were extracted—mid-rising systole (point 3 for HC and 
2 for P), peak systole (point 6 for HC and 5 for P), mid-decreasing systole (point 9 for 
HC and 7 for P), and beginning of diastole (point 12 for HC and 10 for P)).

Geometry pre‑processing

The initial surface obtained via segmentation of 4D-flow MRI is not suitable for CFD 
due to the relative ’roughness’ of the surface mesh (i.e., variation of the normal vector 
direction of the segmented surface from its ideal form due to segmentation errors) 
and inconsistent boundary faces of inlets and outlets. To remove these imperfections, 
we performed pre-processing of the extracted surfaces using Vascular Modelling 
Toolkit (VMTK) [54]. The initial (4D-flow MRI) and final surface after pre-processing 
for peak systole are shown in Fig. 6; note that while the whole aorta was extracted for 
HC, only the thoracic part was considered for the further simulations and analysis.

To obtain the final surface, the following steps are executed: first, the surface inlet 
and outlets are cut perpendicular to the arterial centerline. Next, the smoothing 
step is performed. In this step, the most optimal smoothing should account for the 
regions with high variation of the normal vectors while preserving the total volume. 
We have utilized the Taubin smoothing, with pass-band 0.1 and 100 iterations. Com-
pared to other methods, the Taubin smoothing procedure ensures proper smoothing 
of regions with high variations in surface curvature and avoids extensive shrinkage of 
the surface [55]. Next, the surface mesh (triangular) is subdivided using the Butterfly 
method [56] to ensure better surface definition for the computational model. Finally, 
we added cylindrical extensions on the inlet and outlets in the normal direction of the 
respective planes. The diameter and the length of the extension are determined based 
on the diameter of the respective boundary ( Di ). The length was kept constant for all 
outlets ( 5 · Di ), and only a very short flow extension was created for the inlet ( 0.5 · Di ) 

Fig. 6  Initial surface obtained from 4D-flow MRI (white) and the geometry after the final step of 
pre-processing (red) for healthy control (left) and patient (right)
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to assure the reliability of the applied inlet velocity profile while ensuring the stability 
of the moving mesh implementation.

Computational model

The case-specific computational model was developed to take into account the 
detailed aorta geometry (and its movement), as well as the inlet and boundary con-
ditions (BC) from the 4D-flow MRI scans. The entire algorithm is illustrated in the 
flow-chart shown in Fig. 7. We have performed simulations with the rigid (static) and 
moving (dynamic) aortic wall for both subject- and patient-specific geometries. For 
the latter, additional algorithm details are given in Fig. 7b and will be discussed below.

Fig. 7  Schematic flow-chart showing the main CFD model inputs (mesh, outlet boundary conditions, and 
inlet boundary conditions) for the static simulations (a) and the details of the dynamic mesh-morphing of the 
aortic wall for the dynamic simulations (b)
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Fluid dynamics

In the present work, we adopt the ALE (Arbitrary Lagrangian–Eulerian) formulation 
for conservation of mass and momentum for a moving numerical mesh, for which the 
following governing equations are solved [57]:

where ρ is the fluid density, v is the fluid velocity, vg is the grid (or mesh) velocity, p is the 
pressure, and τ  is the viscous stress tensor 

(

τ = µ
(

∇v + ∇vT
))

 , with µ as the dynamic 
viscosity of the fluid. Note that for the static simulations (the rigid wall assumption), we 
have vg = 0 . Additionally, since we employed a moving grid approach for part of our 
simulations, we need to define the space conservation law as follows:

where dV/dt is the volume derivative of the arbitrary control volume V, ∂V  is the bound-
ary of the arbitrary control volume V, A is the face vector area, nf  is the number of faces 
j. Finally, the dot product on the right-hand side is calculated from

where δVj denotes the volume swept out by the control volume face j over each time step 
�t [58].

Finally, we did not employ any turbulence model and assumed the flow to be lami-
nar. This choice is justified since the mean Reynolds number (Re), was lower than the 
critical Re reported for aorta [59] for both of the cases ( ReHC = 1890 , ReP = 1480).

Boundary and initial conditions

The inlet plane boundary condition was specified as a velocity inlet where all three 
velocity components at particular instants of the cardiac cycle were extracted from 
the reconstructed 4D-flow MRI (similarly to other studies [35–38]). This was done 
using an in-house developed software tool for proper time registration and interpola-
tion of the clinical data. All steps of this procedure are shown in the flow-chart dia-
gram shown in Fig. 7a, and can be summarized as: 

1.	 Using an in-house developed tool for 4D-flow MRI data analysis, all three velocity 
components v

(

vx, vy, vz
)

 are extracted from the reconstructed 4D-flow MRI data at 
the inlet plane of the studied case for each acquired time step (n = 34 for the healthy 
control, and n = 32 for the patient-specific acquisitions, respectively).

(1)
∂ρ

∂t
+ ∇ ·

[

ρ
(

v − vg
)]

= 0 ,

(2)
∂(ρv)

∂t
+∇ ·

[

ρv
(

v − vg
)]

= −∇p+∇ · τ ,

(3)
dV

dt
=

∫

∂V
vg · A =

nf
∑

j

vg,j · Aj ,

(4)vg,j · Aj =
δVj

�t
,
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2.	 Velocity data are linearly interpolated for each (n) and (n+1) time step, where time-
step size ( �t ) is based on the requirements of CFD (in the present work, we have �t 
= 1 ms, for both cases).

3.	 Inlet (represented by the CFD mesh) is imported from the base mesh (at peak sys-
tole), and the interpolated velocity profile is registered on this mesh; for dynamic 
simulations, the inlet is imported for each time step from the generated moving 
mesh.

4.	 The velocity components are then interpreted in the CFD software as a Profile and 
interpolated and projected on the inlet mesh using inverse-distance interpolation.

An example of the inlet flow rate and the interpolated velocity profiles at peak systole for 
the HC and P cases can be seen in Fig. 8.

Outlet boundary conditions were treated as outflow with a predefined fraction of mass 
flow per outlet. The outflow boundary condition assumes zero-diffusive flux for all flow 
variables and a mass balance correction at the outlet. The flow fractions at each outlet ( wN ) 
were defined based on the 4D-flow MRI measurements. Since the 4D-flow data in the 
supra-aortic arteries are unreliable due to a low number of voxels, we have exported planes 
in the upstream and downstream proximity of each bifurcation and, by that, estimated the 
net flow leaving through each outlet. In addition, due to the presence of bovine arch in P, we 
have extracted additional planes directly located in the outlets, downstream the brachioce-
phalic trunk, to account for the flow repartition. Afterward, the fractions at each time step 
were calculated as follows:

(5)wn =
Qn

Qi
,

Fig. 8  Interpolated inlet velocity profile at peak systole based on 4D-flow MRI for healthy control (a) and 
patient (b) and the volumetric flow at the inlet for one cycle for healthy control (c) and patient (d)
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where wn and Qn are the flow fractions and the net flow of the respective outlets, Qi is the 
net flow at the inlet and m is the total number of outlets. Finally, each outlet flow frac-
tion is scaled by the sum of all of the fractions to satisfy 

∑m
n=1Qi · wN = Qi . Then, the 

scaled fraction at each outlet ( wN ) is defined as:

 Applying the measured data at each time-step proved to be more accurate in the defini-
tion of the patient-specific simulations, as shown previously by Gallo et al. [39].

The no-slip condition was applied at the wall for both static and dynamic simula-
tions. The definition of wall movement for the dynamic simulations is discussed in 
detail in the next section. The transient simulations were initialized using the steady-
state solution at the peak systole. In total, we have simulated three cardiac cycles to 
eliminate the influence of initial conditions. We have used only results from the last 
cardiac cycle for the final analysis.

Moving wall

In the present study, for dynamic simulations, we have adopted a predefined moving 
wall approach as shown in Fig. 7b. The wall motion was defined from four key-frame 
geometries extracted from the 4D-flow MRI (as previously described in MRI acquisi-
tion and segmentation section). The full process of the moving mesh generation over 
the entire cardiac cycle can be summarized as: 

1.	 The 4D-flow-based geometries at key-frames are pre-processed using VMTK (as 
described in Sec. ) yielding the initial surface of the aorta (in.stl format).

2.	 For the geometry at the peak systole, various cross-section markers (planes) are 
introduced to separate the static (branching arteries) and dynamic (the rest of the 
aorta) segments.

3.	 The numerical mesh is created for this aortic geometry (base mesh), with a refine-
ment close to the wall.

4.	 The control points are introduced for the peak systole and all key-frames by the fol-
lowing procedure: 

	 (i)	 Control points for the inlet and outlet are defined (circumferential equidistant 
distribution).

	 (ii)	 A finite number of the planes perpendicular to the flow direction with uniform 
longitudinal distances are selected; in each of these planes, the radial distances 
are defined similarly to (i);

	 (iii)	 Additional manually adjusted control points are introduced at locations in the 
proximity of the branching arteries.

	(iv)	 The final form of the structured control points matrices are established with i × j 
control points (i = number of planes, j = control points per plane), for HC = 
19 × 6 and P = 18 × 6.

(6)wN =
wn

∑m
n=1 wn

.
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5.	 The base mesh (generated in step 3) is morphed using Radial Basis Function (RBF) 
interpolation of the control points (defined in the previous step), resulting in the 
morphed surface geometries for all selected key-frames.

6.	 The key-frames surface geometries are then interpolated in time over the entire car-
diac cycle using spline interpolation with smoothing parameter p = 0.999 , resulting 
in a total of n = 1018 and 1212 frames. Note that we assumed no aortic movement 
during diastole.

7.	 The generated surface geometries at each time step alongside the base mesh are then 
used as input for the RBF-based mesh-morphing during the simulations.

Figure 9 depicts the surface points (both HC and P) for the reference phase (peak sys-
tole—red) and for one of the RBF-generated frames (mid acceleration—blue) together 
with the control points for the two respective phases.

Physical and solver setup

The blood rheology was accounted for by applying the Carreau–Yasuda model:

where µapp is the apparent viscosity, µ∞ the viscosity at infinite shear, µ0 the viscosity at 
zero shear, � the relaxation time, γ̇ the shear rate, α a shape parameter, and n the power-
law index. The values for these parameters are adopted from [60], and are µ∞ = 2.2 
mPa· s, µ0 = 22 mPa  s, � = 0.110 s, α = 0.644 , and n = 0.392 . The blood density was 
kept constant ( ρ = 1060 kg/m3).

The initial mesh was identical for static and dynamic simulations and consisted of 
tetrahedral elements with refinement close to the wall. We have performed a mesh 
dependency study for the peak-systolic flow conditions (all details shown in the Appen-
dix). Based on the mesh dependency study, the final mesh consisted of n = 1.58 · 106 

(7)µapp = µ∞ + (µ0 − µ∞)
[

1+ (�γ̇ )α
]
n−1
α ,

Fig. 9  Surface points and control points (big) at peak systole (red) and mid acceleration (blue) for healthy 
control (a) and patient (b)
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elements for the HC case and n = 1.47 · 106 elements for the P case. Specifically for the 
dynamic simulations, the smoothing and re-meshing of the 3D mesh were conducted if 
element skewness was higher than 0.9. We have used the spring-based smoothing with 
the spring constant factor of one and a maximum of 250 iterations allowed. For re-mesh-
ing, the minimal and maximal allowed cell size for the whole domain varied between 
1.76 ×10−4 m and 5.76 ×10−3 m.

The simulations were performed using Ansys Fluent 2019 R3 (Ansys, Canonsburg, 
Pennsylvania, USA). The main computational settings used in this study were: the 
pressure-based solver, PISO for pressure–velocity coupling, the second-order upwind 
scheme used for the discretization of convective terms, the second-order central differ-
encing scheme (CDS) used for the discretization of diffusive terms, the time integration 
was performed by the second-order fully implicit scheme, and the convergence criterion 
per time step of 10−5 was used for all quantities.

Post‑processing

The near-wall hemodynamic effects were studied by introducing several quantities aver-
aged over the entire cardiac cycle:

where TAWSS is the time-averaged wall shear stress, T is the length of a cardiac cycle, 
and −→τw is the wall shear stress,

where OSI is the oscillatory shear index. For the dynamic simulations, the values of 
TAWSS and OSI were projected and visualized on the surface geometry at the peak sys-
tole. Additionally, we have calculated the percentage difference ( �φ ) between CFDstatic 
and CFDdynamic for above-defined quantities as:

where φstat and φdyn are the TAWSS or OSI for the static and dynamic CFD simulations, 
respectively.

Appendix A: RBF interpolation—mathematical view
RBF interpolation is based on source points, i.e., the nodal points of the original geom-
etry, and target points which are the nodal points of the deformed geometry. It assumes 
an unknown smooth function f that is given via the set of source and target points. This 
function is then approximated by an interpolant s(x) of which the general form is defined 
as [61, 62]:

(8)TAWSS =
1

T

∫ T

0

∣

∣

−→τw
∣

∣ dt,

(9)OSI =
1

2



1−

�

�

�

� T
0
−→τwdt

�

�

�

� T
0

�

�

−→τw
�

�dt



,

(10)�φ =
φstat − φdyn

0.5(φstat + φdyn)
× 100 (in %),
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where s(x) is the approximating smooth function, N the source points, γi the weights 
of the radial basis, ϕ the radial basis function, xki = [xki , yki , zki ] the coordinates of the 
source points, and h(x) a polynomial part of which the degree depends on the type of 
radial basis function used. The polynomial part is added to guarantee the existence and 
uniqueness of the solution. The parameters γi and the polynomial coefficients are deter-
mined by solving a linear system of equations, with the order equal to N. This is defined 
by the passage- and orthogonality condition [61, 62]:

where gi are known discrete values of displacement of the source points xki , and q poly-
nomials with a degree less than or equal to the degree of polynomial h. The first criterion 
ensures that s(x) goes through the given values gki . Secondly, the summation of the prod-
uct of the weights and the polynomial at the source points xki equals zero, which satisfies 
the orthogonality condition. The values of γi and polynomial coefficients βi are found by 
solving [61, 62]

where Mki is the interpolation matrix containing the evaluation of the radial func-
tion based on the source points, and Hki the coordinate matrix in which the i-th row is 
[

1 xki yki zki
]

 . Finally, the displacement of the non-source points sm is calculated using 
[61, 62]:

where Mm is the evaluated matrix based on basis function Mmij = ϕ(||xmj − xki ||) , and 
Hm is the coordinate matrix with i-th row [1 xmi ymi zmi ].

We used the multi-quadratics method for the radial basis function, which is 
defined as:

where r is the euclidean distance between the source (x) and non-source ( xki ) points 
( ||x − xki || ) and c is the shape parameter. The shape parameter was estimated based on 
the mean distance between the source points and their farthest neighbor normalized by 
the distance to their nearest neighbor. The estimated shape parameters for this study 
were cHC = 3.2× 10−3 for HC and cP = 4.0× 10−3 for P.

(11)s(x) =

N
∑

i=1

γiϕ(||x − xki ||)+ h(x), x ∈ R
n,

(12)







s(xki) = gki 1 ≤ i ≤ N
N
�

i=1

γiq(xki) = 0,

(13)
[

Mki Hki

HT
ki

0

] [

γ

β

]

=

[

gki
0

]

,

(14)sm =
[

Mm Hm

]

[

γ

β

]

,

(15)ϕ(r) =
√

r2 + c2,
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Appendix B: Mesh dependency
To investigate the mesh dependency of the simulations, we created three different 
meshes for HC (coarse—0.58× 106 , medium—1.47× 106 , and fine—4.35× 106 con-
trol volumes) and performed simulations at the peak-systolic flow conditions. The 
mesh refinement ratio was r1,2 ≈ r2,3 ≈ 1.40 for the fine/medium and medium/coarse 
meshes, respectively. Figure  10 shows WSS for all three meshes and data extracted 
alongside a line following the aorta for all three meshes.

Fig. 10  Wall shear stress (WSS [Pa]) for healthy control as obtained for coarse, medium, and fine mesh with 
visualized extraction line (a) and the data extracted alongside the line with normalized line distance ( l/lmax ) 
starting from the root with the respective averaged data (b) (coarse—black, medium—orange, fine—grey)

Table 4  The total number of elements for mesh sizes coarse, medium, and fine are displayed

Furthermore, the average WSS over the whole surface is given. GCI is calculated based on the average WSS

Mesh Coarse Medium Fine

# cells [×10
6] 0.56 1.47 4.35

WSSmean [Pa] 7.12 7.66 7.77

GCI [%] N/A 2.16 0.41
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We have also estimated the Grid Convergence Index (GCI) [63]. The results of the 
GCI analysis are given in Table 4. Finally, the estimated theoretical value of WSS at 
zero grid spacing using the Richardson extrapolation to be fh=0 = 7.79 Pa.

Appendix C: Effect of inlet boundary conditions
To study the possible effects of various inlet boundary conditions (BC) on the flow and 
WSS distribution we have performed three simulations (for the static aortic wall) with 
the following velocity profiles in the inlet plane: the MRI-based, parabolic, and plug. The 
MRI-based inlet was defined using a reconstructed plane at the inlet from the 4D-flow 

Fig. 11  Comparison of wall shear stress (WSS in Pa) from CFD simulations with a varying inlet (MRI-based, 
parabolic, and plug) for healthy control (a) and patient (b) and the percentage difference between MRI-based 
and parabolic, MRI-based and plug, and parabolic and plug. Detailed information was also extracted 
alongside lines (A—ascending aorta, B—descending aorta)
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MRI data. The uniform (plug) and parabolic velocity profiles were reconstructed such that 
their averaged velocity profiles give the corresponding MRI-based inlet flow rate. Using 
these settings, we have performed simulations for both the healthy control (Fig. 11) and 
the patient-specific (Fig. 12) geometries and obtained WSS distributions (and differences 
between the inlet BCs) are shown in Figs. 11 and 12. To make an easier distinction, the 
range of the WSS contours and particular WSS differences (the color map values) were 
adjusted per the considered case. Additionally, we have extracted two characteristic profiles 
along the ascending (line A) and descending (line B) parts of the aortic wall, to analyze the 
results in detail (Figs. 11 and 12).
 

Fig. 12  Comparison of wall shear stress (WSS in Pa) from CFD simulations with a varying inlet (MRI-based, 
parabolic, and plug) for healthy control (a) and patient (b) and the absolute difference between MRI-based 
and parabolic, MRI-based and plug, and parabolic and plug. Detailed information was also extracted 
alongside lines (A—ascending aorta, B—descending aorta)
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Due to the complexity of the moving wall model, the inlet boundary conditions used in 
the literature are often simplified and defined as either plug or parabolic profiles. In the pre-
sent work, we have demonstrated that the effects of the various specifications of the inlet 
velocity profiles were significant in the ascending aorta. In contrast, in descending part of 
the aorta, the impact of the various inlet velocity profiles was much less significant. Addi-
tionally, the quality of the segmentation in the proximity of the aortic inlet can have a sig-
nificant impact on the calculated WSS distribution.
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