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Background
Schizophrenia (SZ) is a chronic mental disorder characterized by delusions, hallu-
cinations, disorganized speech, and other psychosocial problems [1]. It has adverse 
effects on patients such as mentality, living skills, occupational and educational 

Abstract 

Background:  Schizophrenia (SZ), a psychiatric disorder for which there is no precise 
diagnosis, has had a serious impact on the quality of human life and social activities 
for many years. Therefore, an advanced approach for accurate treatment is required.

New method:  In this study, we provide a classification approach for SZ patients based 
on a spatial–temporal residual graph convolutional neural network (STRGCN). The 
model primarily collects spatial frequency features and temporal frequency features 
by spatial graph convolution and single-channel temporal convolution, respec-
tively, and blends them both for the classification learning, in contrast to traditional 
approaches that only evaluate temporal frequency information in EEG and disregard 
spatial frequency features across brain regions.

Results:  We conducted extensive experiments on the publicly available dataset 
Zenodo and our own collected dataset. The classification accuracy of the two datasets 
on our proposed method reached 96.32% and 85.44%, respectively. In the experiment, 
the dataset using delta has the best classification performance in the sub-bands.

Comparison with existing methods:  Other methods mainly rely on deep learning 
models dominated by convolutional neural networks and long and short time memory 
networks, lacking exploration of the functional connections between channels. In con-
trast, the present method can treat the EEG signal as a graph and integrate and analyze 
the temporal frequency and spatial frequency features in the EEG signal.

Conclusion:  We provide an approach to not only performs better than other classic 
machine learning and deep learning algorithms on the dataset we used in diagnos-
ing schizophrenia, but also understand the effects of schizophrenia on brain network 
features.
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performances [2]. Even though the initial symptomatic response is so mild that it 
can be easily controlled, the consequences of the disease can deteriorate rapidly and 
become irreversible over time. It is important to recognize the disease as early as pos-
sible and administer medication in a timely manner, as a result the approach to diag-
nose SZ more effectively and accurately is highly demanded.

Generally, the detection of SZ relies on conducting interviews and observing behav-
ioral signs such as hallucinations, functional decline, and disorganized speech [3–5]. 
However, these methods require a great deal of time and involve tedious steps on the 
part of a specialized psychiatrist. In the past, researchers devised several methods to 
assist physicians in diagnosing schizophrenic patients, including magnetic resonance 
imaging and computed tomography. However, these methods require expensive and 
bulky equipment and long hours of specialized training [2, 6–10]. Electroencepha-
lography (EEG) signals have been widely used in studies to interpret brain activity 
and diagnose psychiatric disorders such as depression [11], epileptic seizures [12, 13], 
autism [14], Parkinson’s disease [15], and Alzheimer’s disease [16], among others. In 
the field of studying psychiatric disorders, EEG has become the preferred method of 
detection for SZ due to the portability of the device, non-invasive acquisition, low 
cost and high temporal and spatial resolution of the acquired signals.

There are two main development areas for the detection of SZ based on EEG. 
Firstly, statistically topological brain function characteristics. To explain the under-
lying abnormalities in patients diagnosed with SZ, Shim et  al. used three groups of 
parameters which are 124 sensor-level parameters, 314 source-level parameters, and 
a combination of both [17]. Bougou et  al. focused on the delta and theta bands of 
EEG signals. They used an abundance of connectivity measures: cross correlation, 
quadratic magnitude coherence, imaginary part of quadratic magnitude coherence, 
phase-locked value, phase locked index, p-index, transfer entropy, mutual informa-
tion, granger causality, partial directed coherence, and directed transfer function 
[18]. Goshvarpour et al. used nonlinear features, including complexity, Higuchi frac-
tal dimension, and Lyapunov exponents to diagnose SZ subjects with a high preci-
sion [19]. Akbari et  al. relied on phase space dynamics (PSD) excavation graphical 
features in EEG signals [20]. Baygin et al. proposed a model for the automatic detec-
tion of SZ based on Collatz conjectures using EEG [21]. According to the study of the 
EEG classification task conducted by Wang Gang et al., Granger causality and SHAP 
are efficient approaches for measuring pertinent connections in SZ patients [22, 
23]. Secondly, data-driven machine learning or deep learning methods with various 
input features for classification. Some researchers have proven that support vector 
machine (SVM), linear discriminant analysis (LDA) and k-nearest neighbor (KNN) 
classification and artificial neural network can help demonstrate the validity of input 
topographic or dynamic patterns or features, such as Pearson correlation coefficient, 
relaxed local neighbor difference pattern, continues wavelet transform, discrete wave-
let transform, fast Fourier transform, moving averages, and phase lag index [3, 5, 
24–29].

Deep learning has been shown to perform exceptionally well among these machine 
learning techniques in terms of classification accuracy. Specifically, the convolu-
tional neural network (CNN) has emerged as a leading deep learning architecture for 
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processing data in Euclidean space, surpassing the aforementioned machine learning 
techniques in terms of classification accuracy.

Given the complexity of EEG signals in the spatial and temporal domain, it has 
been challenging to use deep learning techniques to extract abstract geometric char-
acteristics for improved generalization. The dataset is non-Euclidean because the 
channels in the structure–function connection network of the EEG are discrete and 
spatially discontinuous in space. Each EEG channel can be described as a node. The 
nodes communicate with one another across channels. The cross-channel topologi-
cally related EEG features can alternatively be learned using geometric graph-based 
deep learning techniques. By combining node-specific sequential features and cross-
nodes topologically associative features in the graph domain, graph convolutional 
neural networks (GCN) have been created specifically to handle highly multirela-
tional graph data under the framework of graph theory [30]. In recent years, GCNs 
have been applied in the diagnoses of various brain disorders, such as children autism 
spectrum disorder evaluation [31], detection of epileptic [32, 33], seizure prediction 
[34], epilepsy classification [35], and Alzheimer classification [36]. To the best of our 
knowledge, there are no SZ diagnostic approaches based on GCN-related models.

The aim of this paper is to develop a deep learning model for analyzing spatial–tem-
poral–frequency 3D features based on spatial–temporal residual graph convolutional 
neural network (STRGCN). An adjacency matrix based on the wavelet coherence 
(WC) construct was tested by recording EEG data from SZ patients and healthy con-
trols. STRGCN is able to jointly utilize cross-channel topological connectivity fea-
tures and channel-specific temporal features. The experimental results show that 
comprehensively analyzing the temporal frequency and spatial frequency informa-
tion in EEG can more comprehensively probe the electrophysiological features in the 
brain.

The main contributions of this paper are as follows:

(1)	 Development of STRGCN to classify SZ from health control (HC).
(2)	 Uncovering schizophrenic patient specificity from multiple dimensions by jointly 

utilizing cross-channel topological connectivity features and single-channel tempo-
ral features.

Results
The STRGCN method proposed in this study was tested by EEG signal data from pub-
lic datasets. For comparison, we used convolutional neural networks and long short-
term memory network (CNN-LSTM), SVM, LDA, and KNN classification algorithm 
on the same public datasets. In order to evaluate the significance of time–frequency 
features and null-frequency features in the identification of schizophrenic patients, 
the results were analyzed by masking the time–frequency features or null-frequency 
features through ablation experiments. The tenfold cross-validation technique and 
our own acquired 0-back working memory EEG signal data were selected for the vali-
dation assessment of STRGCN.
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Overall classification performance on dataset 1

The accuracy of STRGCN on the test set is compared with the other four classifica-
tion techniques, which exclusively employed PSD which is artificially extracted, and 
traditional classifiers which are SVM, KNN and LDA, as well as one deep learning 
methods, called CNN-LSTM. The results of the final comparison are shown in Fig. 1. 
From Fig.  1, it can be seen that KNN has the best classification results among the 
three classifiers with an accuracy 77.48%, while the other two classifiers only reach 
73.55% and 71.71%.

The initial training period of the experiment was set to 200. In order to prevent 
overfitting problems caused by over-training, a validation-based early stopping strat-
egy was used in the training, which made the number of final training cycles only a 

Fig. 1  Classification results of classical classifier method and STRGCN on Zenodo

Fig. 2  Accuracy and loss process for full band data with WC connectivity by the STRGCN model
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little over 100. Figure 2 shows the model improves in a relatively smooth training per-
formance process, during which there is a clear trend of convergence in both accuracy 
and loss rate. Figure 3 indicates the stability and high performance of the proposed 
model on the testing dataset.

Performance of ablation experiment

To evaluate the effectiveness of spatial graph convolutional layers and single-channel 
temporal convolutional layers in the model, two ablation experiments were conducted 
in this paper using temporal residual convolutional neural network (TRCN) and spatial 
residual graph convolutional neural network (SRGCN) notation, in which all four single-
channel temporal convolutional layers were removed in SRGCN and two spatial graph 
convolutional layers were removed in TRCN. The two ablation models were compared 
with the full model, and the testing results are shown in Table 1.

Crossover frequency experiment performance

In this experiment, we divided the full band into four sub-bands. They are delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz). Figure 4 shows the 
testing result of each band in each fold. The average classification accuracy of the full 
band is 96.32%, and sub-bands reached 90.31%, 84.69%, 86.17% and 85.91%.

Fig. 3  ROC curve for full band data with WC connectivity by the STRGCN model

Table 1  Classification results of ablation model and complete model

Accuracy (%) Recall (%) Precision (%) F1-score (%)

STRGCN 96.32 91.02 95.60 93.25

TRCN 73.47 59.17 74.07 65.79

SRGCN 87.76 72.62 98.39 83.56
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Performance of wavelet coherence as adjacency matrix

To visually represent the connectivity between the channels of SZ and HC, we cal-
culated the full-band average wavelet coherence coefficient matrices of the SZ and 
HC, respectively, and screened the channels with connectivity above 0.6. Figure  5 
displays the 3D connectivity distributions of the SZ and HC brains obtained by the 
screening.

For the statistical study of the connectivity between each group of channels, we 
employed the independent sample t test method and used Bonferroni correction 
for correction. Finally, the channel groups with significant correlation (p < 0.05) and 
extremely significant correlation (p < 0.01) are summarized in Fig. 6.

Classification performance on dataset 2

To validate the generalization of STRGCN, we performed the same experiments 
using our own collected dataset, including comparisons with traditional machine 
learning and deep learning and ablation experiments, where the parameters used in 
all experiments were kept constant. The final testing results are shown in Fig. 7.

Fig. 4  Classification results of tenfold cross-validation

Fig. 5  3D brain mapping used the averaged WC adjacency matrix, the left one is from HC and the right one 
is from SZ
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Discussion
SVM, KNN and LDA are representations of traditional machine learning algorithms, 
and CNN-LSTM is a representation of traditional deep learning algorithms in the 
comparison tests. The results in Fig.  1 show that CNN-LSTM as a traditional deep 
learning model has a greater improvement in classification effect compared to tradi-
tional machine learning algorithms. However, all four algorithms are unable to fully 
analyze the implicit information of temporal and spatial frequency features contained 
in the EEG signal, the classification accuracy cannot reach the standard of spatial–
temporal map convolutional neural network. The results in Fig.  1 also support this 
view.

It can be observed that STRGCN yields a substantial improvement in accuracy com-
pared to traditional learning algorithms. The results in Fig. 2 demonstrate that the learn-
ing impact of STRGCN converges rapidly and stabilizes at a high level within the initial 
ten epochs. This indicates that STRGCN with both temporal and spatial frequency fea-
tures has a significant advantage compared with traditional learning algorithms. To fur-
ther validate this hypothesis, we created ablation experiments in which the STRGCN 

Fig. 6  Significantly correlated groups of channels, with y-coordinate indicating the mean wavelet correlation 
coefficient, * indicating significant correlation and ** indicating extremely significant correlation in the figure

Fig. 7  Classification results of STRGCN on dataset 2
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model is used separately to achieve the effect of shielding cross-nodes topologically 
associative features and node-specific sequential features on the classification results.

The findings in Table  1 further support the theory, showing that the complete 
STRGCN has a classification accuracy that is 22.85% and 8.56% higher than models in 
which spatial graph convolutional layers and single-channel temporal convolutional lay-
ers have been removed. It can be seen that both spatial graph convolutional layers and 
single-channel temporal convolutional layers can increase classification accuracy. The 
superiority of STRGCN performance is also demonstrated by comparing their F1 scores. 
Additionally, it was discovered through comparison that TRCN performs even worse 
than CNN-LSTM. This is due to the fact that TRCN only takes into account the time–
frequency properties of the individual single channels’ worth of EEG data. CNN-LSTM 
performs better than TRCN while still treating EEG data as ordinary data occurring in 
Euclidean space. This is probably because it evaluates the mutual effect across channels. 
This suggests that the temporal and spatial frequency features in the EEG signals can be 
extracted and analyzed simultaneously to obtain more EEG characteristics of SZ.

Each of five bands was used independently to classify the data using STRGCN method, 
and in tenfold cross-validation, the complete band consistently produced the best clas-
sification result. The best classification result among the four sub-bands belongs to delta, 
which is consistent with the findings of Bougou et al. [18].

It is clear from 3D brain topography that the functional brain connection between 
SZ and HC differs significantly. The wavelet coherence connectivity of HC is typically 
higher than that of SZ in the EEG data, as can be shown in Fig. 5, which displays the 
node connectivity over the threshold of 0.6. The frontal nodes and temporal lobes of the 
SZ, which have significantly weaker connectivity strength than the HC, are noteworthy 
regions. The node pairs with significant differences in Fig. 6 are also all in this region, 
providing strong support for the above conclusion. This region corresponds to the dor-
solateral prefrontal cortex of the brain, which is a key area for executive functions. The 
reduced functional connectivity in this region may reflect the difficulties in cognitive 
control in SZ patients. This is consistent with the findings of Guo et al. [37].

The results of Figs.  4, 7 and Table  1 demonstrate the comparison results indicating 
whether in dataset 1 or dataset 2, the STRGCN method outperforms all other meth-
ods in terms of classification performance, and the traditional classifiers have the low-
est results. This demonstrates the fact that STRGCN has good generalization. When we 
tried to alter the size of the convolutional kernel and step size in the temporal layer, we 
discovered that the classification performance of STRGCN altered very little. This phe-
nomenon shows that the hyper-parameters of STRGCN have less of an impact and can 
be applied to real applications right away.

Conclusions
To explore the differences in EEG signals between SZ and HC, we propose a spatial–
temporal residual graph neural convolution network. This network sequentially extracts 
cross-channel topological correlation features and single-channel temporal causal fea-
tures from EEG signals. It utilizes a graph convolutional neural network and a single-
channel temporal convolution network, distinguishing it from the current mainstream 
CNN-LSTM model used in schizophrenia research and diagnosis.
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The method collects spatial interaction information across EEG channels using brain 
networks that mirror the functional connectivity of the brain. It also mines single-
channel dynamic temporal frequency information using single-channel temporal con-
volution centered on a causal network. The major purpose of this work is to confirm 
whether merging cross-channel topological correlation features as well as single-chan-
nel temporal variation features can disclose additional hidden information in EEG sig-
nals. Additionally, we aim to investigate the application of GCN-based methods. Unlike 
EEG-based brain network features or independent channel temporal features, we pro-
posed STRGCN takes into account both spatial frequency and temporal frequency 
aspects within the EEG signal channel. This allows aberrant features in SZ patients to be 
detected in both the frequency response of localized regions and the functional connec-
tivity across various regions.

In this study, we employed WC to determine the strength of the connections between 
the brain nodes. Compared with HC, we found that the connection strength of the SZ 
central and frontal regions is significantly reduced, and the connection strength between 
the two hemispheres is also substantially decreased. These phenomena can serve as a 
reference point for future research on the location of SZ lesions.

The research in this article still has certain limitations. Due to the small amount of 
data used, it needs to be further expanded to improve the learning ability of the model 
and reduce the data bias on the learning algorithm. In addition, although only one 
parameter, WC, is used in this article to calculate the connectivity between nodes, the 
parameters representing the connection strength between nodes can also be diversified. 
The sensitivity of different parameters to spatial features is also a feasible direction for 
future research.

Methods
Datasets

Dataset 1 in this paper were obtained from the open dataset Zenodo, which was 
recorded for 71 subjects (42 SZ patients vs. 29 healthy individuals) and included 32 
channels of EEG data with 256  Hz sampling rate. The experiment created a task with 
a reward and punishment mechanism, where a monetary gain or loss set at $0.05 per 
trial. The task required that 4 simple shapes are presented to the subject 48 times in 
a pseudo-random manner (total number of trials 192), and the subject then needed to 
earn a reward (Win) or avoid a penalty (Avoid) by pressing a button (Go) or stopping 
their respond (NoGo). Therefore, the experiment will consist of 4 stimuli: Go-to-Win, 
Go-to-Avoid, NoGo-to-Win and NoGo-to-Avoid, where the probability of obtaining a 
reward or punishment for each stimulus was set at 80% and the subject is required to 
respond quickly to win more rewards.

At the beginning of the experiment, a crosshair appeared on the screen for 0.4–0.6  s. 
Then, the stimulus phase was commenced and the screen randomly presented a stimulus 
image staying for 1 s. After that, it entered a no-response period of 0.25-2 s followed by 
a response period of 2.5  s. Finally, the screen showed a feedback image after a 1-s cross 
and stayed for 2 s. According to the different stimuli above, the feedback types can be clas-
sified as positive, negative and neutral feedback. This paper only analyzed the potentials 
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associated with events evoked by negative feedback, and selected 9 EEG channels (FP1, 
FP2, Fz, F3, F4, F7, T7, T8, C3, C4, Cz, Pz, P4, P3, F8, P8, P7, O2, O1).

All patients and healthy controls included in dataset 2 were recruited at Shanghai Yangpu 
Mental Health Center and all provided written informed consent. All SZ patients had their 
diagnosis confirmed over 1 month before recording their EEG while they had mild or mod-
erate SZ based on their pre-scales examination. All patients were between 30 and 50 years 
old, including 36 SZ patients and 18 HC participants. EEG recording was undertaken with 
a 32-channel Neuroscan. EEG recording was performed during a simple working mem-
ory task. Each participant participated in a simple 0-back task. This task consisted of two 
major steps. At the beginning, the participant focused on the “+” symbol displayed on a 
white background. In the second step, a number between 0 and 9 was shown for 2 s on the 
screen. During this time, the participant needed to press the button on the keyboard to 
answer whether the number was 1. The program recorded the answer and send it to the 
experimenter.

Dataset preprocessing

In this study, we collected EEG data from 36 SZ patients and 18 healthy individuals during 
the completion of the 0-back working memory task in order to validate the findings of the 
publicly available dataset, Zenodo [38]. We sampled the EEG signals at a sampling rate of 
1024 Hz and selected a band-pass filter with a range of 0.5–30 Hz to remove external noise 
and the interference of the internal electrical signals, such as electrocardiogram. The EEG 
signal segments which are severely disturbed were then manually deleted for interpolation 
and filling, and independent component analysis (ICA) was used to remove the artifacts 
caused by head shaking and eye movement from the EEG signals.

Wavelet coherence coefficient adjacency matrix

According to the research of Tafreshi et al., WC is generally recognized as a qualitative esti-
mator that can depict the dynamic relationships between signals in the temporal frequency 
domain [39]. The definition of a wavelet transform is the convolution of an input value x 
with a wavelet family ψ(u):

The wavelet transforms of input signals x and y can be used to calculate the wavelet cross-
spectrum around time t and frequency, i.e.,

where ∗ defines the complex conjugate and θ is assumed as a frequency-depending time 
scalar. The formula for WC at time t and frequency f  is described as:

(1)Wx

(
t, f

)
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+∞∫

−∞
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t,f (u)du.

(2)CWxy

(
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)
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t−θ/2
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(
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)
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y

(
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)
,
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Spatial–temporal residual graph convolutional neural network

Since the graph neural networks (GNN) have been proposed, they have been widely 
used in the characterization of non-Euclidean structured data [30]. Currently, there are 
two basic approaches to generalize convolution for structure graph data forms: spectral-
based GNN and spatial-based GNN. In the region of spectral-based GCN research, 
Bruna et  al. presented the first prominent model by applying convolutions in spectral 
domains with graph Fourier transforms [36]. Since then, there has been an increase 
in research on improving and extending spectrum-based GNN [40, 41]. Spatial-based 
GNNs define graph convolutions by rearranging vertices into certain grid forms which 
can be processed by normal convolutional operations [42, 43].

In the field of graph processing, GNNs can embed complex network structures into 
meaningful low-dimensional representation features [44]. Two-dimensional convolution 
is the process of taking the pixel values of the nodes within a certain range adjacent to 
each node and performing a weighted average. In two-dimensional image processing, 
each pixel point of the image can be regarded as a node whose pixel values are obtained 
by filtering its surrounding pixel points through a specific filter. The process of weighted 
average the information of the vicinity of each node when generalizing the information 
of the graph from two-dimensional to high-dimensional is known as graph convolution. 
The neighborhoods of high-dimensional nodes will be more complicated and disorgan-
ized than those of two dimensions.

As shown in Fig. 8, the proposed STRGCN model as a whole consists of two spatial–
temporal convolutional (ST-Conv) blocks. Each ST-Conv block consists of a single-
channel temporal convolutional layer, a spatial graph convolutional layer, an attention 
layer, and another single-channel temporal convolutional layer in that order. Layer 
normalization is used in each spatial–temporal convolutional block to prevent overfit-
ting. The single-channel temporal convolutional layer extracts time–frequency features 
from the single EEG channel. The spatial graph convolutional layer combines the EEG 
channels and their adjacency matrix in a unified process to extract the correlation fea-
tures between the time domain and the spatial domain. The attention layer enables the 
model to focus on the channels that are more affected by the disease. Residual learning 
is performed after each ST-Conv block to alleviate the problem of gradient dispersion or 
gradient explosion cause by the increasing depth of the deep neural network. The final 
classification result is obtained by integrating all features in each final flatten layer.

Spatial graph convolutional layer

We introduce the notion of a graph convolution operator ∗G multiplying a signal x ∈ Rn 
in the spatial space with a kernel �:

(3)WCxy

(
t, f

)
=

|CWxy

(
t, f

)
|

|CWxx

(
t, f

)
× CWyy

(
t, f

)
|
1/2

.

(4)� ∗ Gx = �(L)x = �

(
U�UT

)
x = U�(�)UTx,
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where the graph Fourier basis U ∈ Rn×n is a matrix of eigenvectors of the normalized 
graph Laplacian L = ln − D− 1

2WD− 1
2 = U�UT , ln is an identity matrix, D ∈ Rn×n is the 

diagonal degree matrix with Dii =
∑n

j=0Wij , � ∈ Rn×n is the diagonal matrix of eigen-
values of L.

The signal sequence x is filtered through the kernel � by means of Eq. (4). However, 
due to its O

(
n2
)
 complex multiplications, the use of Chebyshev polynomials as well as 

first-order approximation is considered to simplify the calculation where � is simplified 

with respect to the polynomial �� =
K−1∑
k=0

θk�
k , where θk is a vector of polynomial coef-

ficients, K  is the kernel size determining the maximum radius of the convolution from 
central nodes. When � is rescaled as 2�/�max − ln , where �max denotes the largest 

Fig. 8  An illustration of spatial–temporal residual graph convolutional neural network
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eigenvalue of L , Chebyshev polynomial Tk(x) is traditionally used to approximate kernels 

as �� ≈
K−1∑
k=0

θkTk(�) . Then the graph convolution in Eq. (4) can be rewritten as:

where Tk(L) ∈ Rn×n is the Chebyshev polynomial of order K  evaluated at the scaled 
Laplacian L = 2L/�max − ln . In this way the amount of computation can be reduced 
to O(K |ε|) , further assuming that �max can be taken approximately to 2. Thus 
2L/�max − ln ≈ L− ln=−D− 1

2WD
1
2 , and Eq. (5) can be simplified to

In order to reduce the number of parameters involved in the calculations, θ0 and θ1 are 
replaced by a single parameter by letting θ0 = −θ1 = θ . By renormalizing W̃ = W + ln 
and D̃ii =

∑n
j=0 W̃ij  . Then the graph convolution operation for a one-dimensional signal 

can finally be expressed as:

Extending this idea to signals with Ci channels, the graph convolution can be general-
ized to

where 1 ≤ j ≤ C0 and C0 represents the number of output channels, Thus there are a 
total of C0 × Ci Chebyshev coefficients to be determined.

Single‑channel temporal convolutional layer

We employ an entire convolutional structure on a temporal axis to capture sequential 
dynamic behavior of EEG recordings as Gehring et  al. have demonstrated that CNNs 
have the superiority of fast training in sequential-series analysis [45].We adopt a causal 
convolution-based method to extract features from the time series, as each EEG signal 
is only influenced by the current and previous brain activity. As shown in Fig. 9, each 

(5)� ∗ Gx = �(L)x ≈

K−1∑

k=0

θkTk(L)x,

(6)� ∗ Gx ≈ θ0x − θ1

(
D− 1

2WD− 1
2

)
x.

(7)� ∗ Gx = θ

(
ln + D− 1

2WD− 1
2

)
x = θ

(
D̃− 1

2 W̃ D̃− 1
2

)
x.

(8)�yj =

Ci∑

i=0

θi,j(L)xi,

Fig. 9  Structure of the causal convolutional model
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convolutional layer contains a 1D convolution with a kernel, followed by a rectified lin-
ear unit (ReLu) function as a nonlinearity. Additionally, the convolution only utilizes 
data collected at that time and before. Taking Xt as an example, the value of Xt in each 
layer is convolved with Xt , Xt−1 and Xt−2 of the previous layer. After the i th layer, the 
output Xt contains the features of { Xt−i−1,Xt−i · · · · · ·Xt−1,Xt } of the input layer, and 
the closer the temporal distance from Xt , the more influence it has on the output Xt . The 
width and step size of the kernel can be set according to the depth of the layer.

An input of a sequential convolution for each node can be regarded as a length-M 
sequence with Ci channels. By applying the same convolution kernel to each channel 
node in graph equally, the temporal convolution can also be generalized to the entire 
graph.

Attention layer

By taking advantage of the link between features across channels, we create a channel 
attention layer. The layer aims to highlight the important areas of the input image, as 
each channel of the feature map is thought of as a feature detector [46]. We reduce the 
spatial dimension of feature map in order to compute the channel attention effectively. 
Average-pooling has so far been widely used for aggregating spatial data. However, we 
argue that max-pooling acquires yet another crucial piece of information about distinc-
tive object properties to infer finer channel-wise attention [47].

The main structure of attention layer is shown in Fig.  10. Initially, we aggregate the 
spatial information of a feature map by using both average-pooling and max-pooling 
operations, generating two different spatial context descriptors. Subsequently, a shared 
network receives both descriptors to create our channel attention map. Multi-layer per-
ceptrons (MLP) with one hidden layer make up the shared network. Element-wise sum-
ming is used to combine the output feature vectors after the shared network has been 
applied to each descriptor. To summarize, the channel attention is computed as follows:

where σ denotes the sigmoid function. At last, the output is obtained by multiplying the 
input features with the channel attention.

Residual layer

Simply increasing the learning depth for a basic network model might result in gradient 
dispersion or gradient explosion, and the typical method for this issue is to regularize 
the layers in order to regularize the feature matrix. The training set loss will increase 

(9)Mc(F) = σ
(
MLP

(
AvgPool(F)

))
+MLP(MaxPool(F)),

Fig. 10  Structure of the attention layer in ST-Conv
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as the network depth is increased, but it will reduce as the number of network layers in 
the model increases because as the number of network layers rises, the training set loss 
steadily declines and eventual stabilization. Assuring consistency of inputs and outputs, 
adding a residual block between two ST-Conv blocks provides the network with the 
ability to transfer information across layers, highlights minute variations by including 
a direct mapping. By doing so, the model is able to disregard from the same body parts 
throughout each cycle.

Performance evaluation metrics

In order to assess the performance of the classification methods, accuracy, recall, preci-
sion and F1-score were chosen to evaluate the model performance in this paper. They 
are represented using Eqs.  (10), (11), (12), (13), respectively, where TP stands for true 
positive, TN stands for true negative, FP stands for false positive and FN stands for false 
negative:

Cross validation

Cross validation is a validation technique used to evaluate the generalizability of results. 
In prediction problems, it is common to first train the model using a training dataset 
and then test it using a dataset that is completely independent of the training dataset 
to evaluate the performance of the model in actual operation. Among these methods, 
k-fold cross-validation is a commonly used technique.

In k-fold cross-validation, the original data set is randomly divided into k equal-sized 
subsamples. Among k subsamples, one subsample is selected as test data at a time, and 
the remaining k-1 subsamples are used as training data. This process is repeated k times, 
ensuring that each subsample is used as test data once. Ultimately, these k results can 
be averaged to get a single estimate of model performance. A significant advantage 
of this approach is that all data are used for training and validation, and each data is 
used only once for validation, thus providing a stable and reliable assessment of model 
performance.
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