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Abstract 

Background:  We previously applied hemodynamic data to personalize a mathemati-
cal model of the circulation expressed as physically interpretable parameters. The aim 
of this study was to identify patterns in the data that could potentially explain the esti-
mated parameter changes. This included investigating whether the parameters could 
be used to track the effect of physical activity on high blood pressure. Clinical trials 
have repeatedly detected beneficial changes in blood pressure after physical activity 
and uncovered changes in lower level phenotypes (such as stiffened or high-resistance 
blood vessels). These phenotypes can be characterized by parameters describing 
the mechanical properties of the circulatory system. These parameters can be incor-
porated in and contextualized by physics-based cardiovascular models of the circula-
tion, which in combination can become tools for monitoring cardiovascular disease 
progression and management in the future.

Methods:  Closed-loop and open-loop models of the left ventricle and systemic 
circulation were previously optimized to data from a pilot study with a 12-week exer-
cise intervention period. Basal characteristics and hemodynamic data such as blood 
pressure in the carotid, brachial and finger arteries, as well as left-ventricular outflow 
tract flow traces were collected in the trial. Model parameters estimated for meas-
urements made on separate days during the trial were used to compute parameter 
changes for total peripheral resistance, systemic arterial compliance, and maximal 
left-ventricular elastance. We compared the changes in these cardiovascular model-
based estimates to changes from more conventional estimates made without the use 
of physics-based models by correlation analysis. Additionally, ordinary linear regres-
sion and linear mixed-effects models were applied to determine the most informative 
measurements for the selected parameters. We applied maximal aerobic capacity 
(measured as VO2max ) data to examine if exercise had any impact on parameters 
through regression analysis and case studies.

Results and conclusions:  Parameter changes in arterial parameters estimated using 
the cardiovascular models correlated moderately well with conventional estimates. 
Estimates based on carotid pressure waveforms gave higher correlations (0.59 
and above when p < 0.05 ) than those for finger arterial pressure. Parameter changes 
over the 12-week study duration were of similar magnitude when compared to short-
term changes after a bout of intensive exercise in the same parameters. The short-term 
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changes were computed from measurements made immediately before and 24 h 
after a cardiopulmonary exercise test used to measure VO2max . Regression analy-
sis indicated that changes in VO2max did not account for any substantial amount 
of variability in total peripheral resistance, systemic arterial compliance, or maximal 
left-ventricular elastance. On the contrary, changes in stroke volume contributed to far 
more explained variability. The results suggest that more research is required to be able 
to accurately track exercise-induced changes in the vasculature for people with pre-
hypertension and hypertension using lumped-parameter models.

Introduction
Cardiovascular (CV) disease is a leading cause of loss of quality of life and premature 
death worldwide [1]. Disease progression is usually slow, and it may take years before 
detectable symptoms appear. Although it is possible to monitor biological and behav-
ioral risk factors at regular clinical visits, these measures may not provide sufficient 
insight into the underlying mechanisms contributing to the disease. In the case of essen-
tial hypertension, a persistently elevated blood pressure without an identifiable medical 
cause, we envision that monitoring the underlying hemodynamics may improve early 
detection and intervention in primary prevention of CV disease [2]. By hemodynamics 
we refer to for example measurements of blood pressure and flow, such as systolic and 
diastolic brachial pressure, and cardiac output (CO). We believe that this can in part 
be achieved by application of personalized physics-based CV models. In the clinic we 
envision that one can detect sustained parameter changes in directions consistent with 
parameter sets which are found in elevated blood pressure at an early stage. Additionally, 
this could pinpoint which part of the circulation is remodeling and give health care prac-
titioners more data to base decisions upon. Furthermore, observing parameter changes 
during therapy may give more detailed knowledge about which parameters the therapy 
successfully impacts in order to alleviate hypertension, and which parameters do not 
respond, and could possibly be targeted by other means. This is also based on a hypoth-
esis that manifestations of the underlying causes of hypertension are sufficiently repre-
sented by these parameters. As the etiology of hypertension is not yet fully understood 
this is a working hypothesis.

Physics-based CV models have already been applied to predict the outcome of spe-
cific interventions [3–6]. Some of these studies focused on interventions which can be 
made rapidly by invasive procedures or medical treatments with changes expected to 
take effect almost immediately. Other studies focused directly on the post-intervention 
hemodynamics rather than the change in parameters themselves. In such contexts the 
parameter change can be prescribed according to what is altered during an invasive 
procedure or treatment and its development is not necessarily considered an interest-
ing outcome in itself. Some examples such as work by Audebert et al. and by Gerringer 
et al. focused on a specific parameter during disease progression [7, 8]. Personalized CV 
models which predict the development of parameters given different stimuli can be valu-
able clinical tools and provide more detailed information about response to treatment 
beyond the measurable hemodynamics alone. For example, models could potentially 
give more insight into disease etiology than conventional parameter estimates alone, 
by providing continuous updates about lower level phenotypes normally not easily 
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measurable. For this to be useful, parameter estimates and their changes must be reliable 
and interpretable in a clinical context. By conventional estimates, we refer to estimates 
made by methods that are algebraic in nature and not dependent upon models of the CV 
system. Here, we focus on parameters estimated for two lumped-parameter models and 
compare the results to their conventional estimates of similar parameters from the same 
hemodynamic measurements.

In this work, we treat the mechanical model parameters as the quantities of interest 
and use these as proxies for observing changes in low-level phenotypes in the progres-
sion of CV disease, such as arterial stiffening, change in vascular tone and altered cardiac 
hemodynamics. Regular physical activity is recommended in prevention and manage-
ment of hypertension [9]. However, the effect depends on the duration, frequency, 
and intensity of exercise. Our hypothesis is that CV remodeling can be sufficiently 
represented by mechanical parameters which reflect the exercise-induced changes in 
hemodynamics.

Changes in habitual exercise have been observed to produce changes throughout the 
CV systems. A meta-analysis by Fagard et  al. concluded that aerobic exercise lowers 
blood pressure and systemic vascular resistance in a mixed population with both normal 
and high blood pressure [10]. Molmen-Hansen et  al. observed a significant reduction 
of total peripheral resistance in patients with hypertension undergoing aerobic interval 
training [11]. Ashor et al. compared studies with exercise interventions lasting between 
8–26 weeks in a meta-review and reported reduced arterial stiffness estimated via pulse 
wave velocity (PWV) in individuals with high normal blood pressure and hypertension 
after aerobic exercise [12]. In contrast, Montero et al. found reduced arterial stiffness in 
adults with high normal blood pressure and hypertension only in studies with an exercise 
intervention longer than 12 weeks or where the change could be associated with a large 
reduction in systolic blood pressure [13]. PWV is not equivalent to the arterial compli-
ance parameters often used in lumped-parameter models, but is related to the structural 
and material properties influencing arterial compliance. Changes in PWV thus suggest 
that exercise can affect arterial wall properties. The resting ventricular function is also 
affected by exercise. Molmen-Hansen also found changes in multiple markers related to 
ventricular contractility after aerobic interval training, such as ejection fraction (EF) and 
peak velocity of the tricuspid valve annulus in systole [11]. By studying rats after periods 
of training and detraining, Oláh et al. observed increase in the end-systolic left-ventric-
ular elastance after 12 weeks of exercise [14]. Hence, we expect that vascular properties 
can change as an effect of regular physical activity.

An exercise motivation trial conducted at the Norwegian University of Science and 
Technology in 2019–2020 monitored the hemodynamics of participants three times 
during the 12-week intervention period. The trial was originally designed to examine the 
effect of using Personal Activity Intelligence (PAI) score as an exercise motivator and its 
effect on blood pressure. PAI score is the output of a mathematical model considering an 
individual’s heart rate history to compute an easily understandable personalized metric 
of physical activity [15, 16]. Using data from this trial, Bjørdalsbakke et al. personalized 
two simple CV models of the systemic circulation and analyzed the variability in param-
eter estimates due to personalization method as well as variation in the population [17]. 
The chosen personalization method was an ensemble method based on local non-linear 
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optimization producing multiple parameter estimates to find an averaged solution after 
filtering out the worst estimates. Consequently, the choice of method introduced some 
variability to the parameter estimates themselves. Whether identified changes in param-
eters were primarily caused by the optimization procedure, the exercise intervention, 
or simply day-to-day variation in hemodynamics remained undetermined. Hence, the 
parameter changes during the intervention period and their explanation were the main 
focus of this manuscript. One way to approach this was to examine if identified patterns 
and trends were consistent with previous knowledge about the dependence on these 
parameters to exercise adjacent indices. The analysis was undertaken by focusing on the 
arterial parameters of total peripheral resistance, systemic arterial compliance, as well as 
maximal left-ventricular elastance. We are careful not to draw conclusions about causal-
ity from this analysis as both the data set is meager, and the analysis is insufficient to do 
so. Additionally, we investigate if there are differences between model formulations in 
estimation of parameter changes, and if the pressure waveform applied as a substitute 
for aortic hemodynamic measurements is important in this regard.

Results
Comparison of estimated parameter changes

For ease of readability, most of the closed-loop model results are presented in Appen-
dix B. We calculated the parameter changes between all measurement days. Changes for 
parameters estimated using either carotid or finger pressure waveforms were then com-
pared to the conventional estimates computed by equations (2–4). Tables 1 and 16 show 
summary statistics for the parameter changes between any of the three measurement 
days. The mean change is computed over all participants and for changes between any 
three measurement days. The mean absolute changes computed by conventional esti-
mates are larger than for the model estimates except for Cao regardless of model or data, 
and for Emax for the open-loop model using finger pressure waveforms. Cao exhibits the 
largest difference between means by a factor of approximately 2. The parameter changes 
for the open-loop models are also plotted in Figs. 1 and 2, to illustrate the development 
throughout the study period. In this case, all changes are computed relative to the initial 
estimate on measurement day 1. In the appendix, the closed-loop results are presented 
in Figs. 8 and 9.

Tables 2 and 17 show the Pearson correlation (r) between parameter changes estimated 
by model parameter optimization, and conventional estimates. The tables describe the 
correlation between changes between different measurement days in parameters Rsys , 
Cao , and Emax using both choice of pressure waveforms and models. The correlation is 
between the same changes computed by the CV model optimization versus the standard 
estimation equations Eq. (2–4). Changes in Rsys are highly correlated in all scenarios. Cao 
is mainly moderately to highly correlated for carotid pressure, but we cannot find signifi-
cant correlation when using finger pressure. Emax has no significant correlation except 
for moderate negative correlation for carotid pressure for the change from measurement 
day 1 to 3, and for all changes collected when using the closed-loop model.

Figure 3 shows examples of the correlations between parameter changes of different 
parts for the study period and compares results for both CV models, as well as the differ-
ent choice of pressure waveforms. Firstly, the correlations for the closed- and open-loop 
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models are very similar in most cases. Secondly, we observe that the correlations are 
mainly consistent between model estimates and conventional estimates by Eqs. (3, 4), 
except for Emax where the equation-based conventional estimates often exhibit the 
opposite behavior to the model estimates. There is also a pattern revealing that changes 
over the first half of the study period and over second half of the exercise period are 
often correlated to a low or moderate degree and with a negative sign.

Longitudinal and post‑exercise parameter variability

To assess whether changes monitored after 12 weeks were different to the day-to-day 
variability and short-term transient exercise effects of the hemodynamics, we computed 
the parameter changes between measurements made before the CPET and the day after. 
This was only possible for a subset of the finger pressure waveforms, since only these 
signals were monitored before and after the CPET. The average parameter changes are 

Fig. 1  The figure presents the quartiles with whiskers for the changes in parameters relative to the 
parameters estimated at baseline, or on week 0. These results are made using the carotid pressure waveform 
and the open-loop model



Page 6 of 42Bjørdalsbakke et al. BioMedical Engineering OnLine           (2024) 23:64 

presented in Tables 3 and 18. The average change from measurements made before the 
CPET to measurements made after the CPET are typically on the same order of mag-
nitude as the change after 12 weeks. There are some notable exceptions especially for 
conventional parameter estimates for left-ventricular elastance and arterial compliance 
where changes over 12 weeks are two to four times larger than the average changes com-
puted directly before and after the CPET test. Comparing Tables 1 and 16, we see that 
the range of computed CPET changes are similar to the changes that are computed over 
longer periods and over all participants. Furthermore, according to this comparison, 
the average short-term changes connected to a single CPET are very similar to the aver-
age change for any of the longer term changes for most parameters. The longer term 
changes for participants are usually higher for Cao . It should also be noted that for the 
changes following a single CPET session compared to the change over all 12 weeks, the 
sign changes for Rsys.

Fig. 2  The figure presents the quartiles with whiskers the changes in parameters relative to the parameters 
estimated at baseline, or on week 0. These results are made using the finger pressure waveform and the 
open-loop model. The asterisk * indicates that the change is for parameters made 24 h post-CPET for the 
indicated week number
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Case study

Based on the observation that the parameter changes based on finger pressure lack clear 
correlation to the conventional estimate changes in many instances, we drop these in 
the case and regression analyses onwards. Four participants who fulfilled the selection 
criteria as outlined in the "Data collection" section have their parameters throughout the 
study period shown in Figs. 6 and 7 in Appendix C. The plots also show the pairwise 
relationships between the variables incorporated in the regression analysis.

Regression analysis

The results for the first two regression analyses to investigate regression to the mean 
are shown in Tables 4 and 19. These results indicate that the final parameter values are 
generally moderately to highly positively correlated with the difference between per-
sonal and population averages. The resistance and ventricular elastance parameters on 
the final parameter day are moderately to highly correlated for either model, while com-
pliance is approximately moderately correlated. For the correlation of the parameter 
change to the difference between the initial parameter value and the population mean, 
the trend shows that regression coefficients are negative, and with apparently low-to-
moderate values of correlation. The adjusted r2 is highest in Rsys and this would also sug-
gest a higher level of regression to the mean compared to the other parameters.

For the second part of the regression analysis, we built ordinary and linear mixed 
regression models for prediction of parameter values or changes based on age, BMI, 
and gender. We also considered the scatter plots of model parameters versus the 

Table 1  Maximal, minimal, average and average absolute changes for total peripheral resistance 
( Rsys ), systemic arterial compliance ( Cao ), and maximal left-ventricular elastance ( Emax)

Results are given for parameter changes produced by open-loop model optimization and by computation using 
conventional techniques, based on both carotid (C) and finger (F) pressure waveforms

Maximal and minimal changes are given unsigned, and can be any changes between the first, second and third 
measurement days

The carotid measurements describe 14 participants with carotid pressure measurements, while the finger pressure includes 
9 participants with synchronized flow and pressure

Parameter Wave-
form

Estimation 
method

Maximal 
abs. 
change

Minimal 
abs. 
change

Maximal 
change

Minimal 
change

Mean change Mean abs. 
change

Units

Rsys C Model 0.208 0.001 0.208 − 0.165 − 0.008(0.090) 0.074(0.052) mmHg s

mLm2

Cao C Model 0.583 0.002 0.583 − 0.518 0.058(0.256) 0.206(0.162) mL

mmHgm2

Emax C Model 0.497 0.006 0.429 − 0.497 − 0.043(0.215) 0.177(0.128) mmHg

mLm2

Rsys C Conv. 0.213 0.000 0.213 − 0.203 − 0.011(0.062) 0.091(0.064) mmHg s

mLm2

Cao C Conv. 0.324 0.001 0.265 − 0.324 0.016(0.145) 0.122(0.080) mL

mmHgm2

Emax C Conv. 0.793 0.004 0.504 − 0.793 -0.074(0.246) 0.188(0.176) mmHg

mLm2

Rsys F Model 0.151 0.002 0.151 − 0.142 -0.011(0.062) 0.045(0.043) mmHg s

mLm2

Cao F Model 0.740 0.000 0.740 − 0.425 0.094(0.267) 0.192(0.208) mL

mmHgm2

Emax F Model 1.444 0.006 1.444 − 1.058 0.043(0.430) 0.270(0.337) mmHg

mLm2

Rsys F Conv. 0.163 0.002 0.157 − 0.163 − 0.019(0.072) 0.055(0.051) mmHg s

mLm2

Cao F Conv. 0.243 0.001 0.243 − 0.113 0.065(0.102) 0.098(0.070) mL

mmHgm2

Emax F Conv. 0.793 0.019 0.161 − 0.793 − 0.175(0.211) 0.207(0.179) mmHg

mLm2
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measurements to investigate possible variable relationships. The scatter plots are shown 
in Figs. 6 and 7.

Linear mixed-effects regression models are shown in Tables  5 and 6. In the major-
ity of cases, addition of SV to the baseline model caused the highest level of explained 
variance, as indicated by the unexplained variance measure (residual variance). Adding 
solely CRF (C) to the baseline model (A) did not improve the level of explained variance 
when compared to any of the models incorporating SV (B and D). For resistance, the the 
various models performed similarly in terms of residual variance, and the coefficients for 
sex, BMI, SV were consistently significant across both models with sex being the most 
influential. For arterial compliance only SV was a consistent explanatory factor across 
models with sex being the most influential. Finally, for ventricular elastance, sex and SV 
explained the larges amount of variation. While VO2max was sometimes significant for 
Cao in model C the regression coefficient typically changed sign and/or magnitude in 
model D for all parameters. Patterns in estimated coefficients and unexplained variance 
are generally similar between both the closed- and open-loop model. An exception of 
note is that the models for ventricular elastance displays a higher group variance and 
higher values for the significant coefficients for the open-loop derived parameters.

Table 2  Correlation statistics for parameter changes from total peripheral resistance ( Rsys ), systemic 
arterial compliance ( Cao ), and maximal left-ventricular elastance ( Emax)

Results are given for correlations between parameter changes produced by open-loop model optimization and by 
computation using conventional equations, based on both carotid (C) and finger (F) pressure waveforms

Parameter Wave-form Temporal change 
(meas. days)

r p value CI95%

Rsys C 1–2 0.992 < 10
−3 [0.97, 1.00]

Rsys C 1–3 0.988 < 10
−3 [0.96, 1.00]

Rsys C 2–3 0.973 < 10
−3 [0.91, 0.99]

Rsys C All 0.986 < 10
−3 [0.97,0.99]

Cao C 1–2 0.649 0.012 [0.18, 0.88]

Cao C 1–3 0.672 0.009 [0.22, 0.89]

Cao C 2–3 0.496 0.071 [− 0.05, 0.81]

Cao C All 0.618 < 10
−3 [0.39, 0.78]

Emax C 1–2 − 0.385 0.194 [− 0.77, 0.21]

Emax C 1–3 − 0.579 0.038 [− 0.86, -0.04]

Emax C 2-3 − 0.012 0.967 [-0.54, 0.52]

Emax C All − 0.267 0.096 [− 0.53, 0.05]

Rsys F 1–2 0.951 < 10
−3 [0.78, 0.99]

Rsys F 1–3 0.990 < 10
−3 [0.96, 1.00]

Rsys F 2–3 0.992 < 10
−3 [0.96, 1.00]

Rsys F All 0.984 < 10
−3 [0.96, 0.99]

Cao F 1–2 − 0.105 0.789 [− 0.72, 0.60]

Cao F 1–3 0.233 0.547 [− 0.51, 0.78]

Cao F 2–3 0.369 0.329 [− 0.39, 0.83]

Cao F All 0.181 0.365 [− 0.21, 0.53]

Emax F 1–2 − 0.206 0.625 [− 0.80, 0.58]

Emax F 1–3 − 0.126 0.767 [− 0.76, 0.64]

Emax F 2–3 − 0.466 0.206 [− 0.86, 0.29]

Emax F All − 0.356 0.081 [− 0.66, 0.05]
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The ordinary linear regression models for parameter changes shown in Tables  7 
and 8 indicate that trends are similar in terms of patterns of the adjusted r2 across 
CV models. Further, SV is the most prominent explanatory variable, and model B 
typically has the highest amount of explained variance. An exception of note is that 
the change in ventricular elastance has a higher degree of explained variance for the 
open-loop compared to the closed-loop formulation.

Fig. 3  Correlations between parameter changes over the first half, second half and the entire study period 
for the closed-loop (CL) and open-loop (OL) models. “F” indicates finger pressure waveform, while “C” indicates 
carotid waveform. From top to bottom panel: Rsys , Cao , Emax . The “Conventional” (Conv.) estimate correlations 
are based on the the data with the carotid waveform. The Conv. estimates of Rsys are slightly different for each 
of the waveforms as the mean pressure is estimated from the calibrated waveform
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Table 3  Average and average absolute parameter changes over different periods throughout the 
study period, describing the parameter change from measurements made before a CPET and the 
day after

Pre-CPET denotes parameter changes calculated between the first and final measurement day based on measurements 
made prior to the CPET

Results are given for parameter changes produced by open-loop model optimization and by computation using 
conventional techniques, based on the finger pressure waveforms

Parameter Estimation 
change

Temporal change Mean abs. change Mean change

Rsys Model CPET week 0 0.043(0.040) 0.020(0.060)

Rsys Model CPET week 12 0.059(0.022) 0.030(0.060)

Rsys Model Pre-CPET week 0-12 0.050(0.061) − 0.042(0.069)

Rsys Conv. CPET week 0 0.052(0.043) 0.016(0.072)

Rsys Conv. CPET week 12 0.064(0.022) 0.035(0.066)

Rsys Conv. Pre-CPET week 0-12 0.055(0.066) − 0.053(0.068)

Cao Model CPET week 0 0.076(0.083) 0.076(0.083)

Cao Model CPET week 12 0.254(0.349) − 0.190(0.400)

Cao Model Pre-CPET week 0-12 0.327(0.359) 0.327(0.359)

Cao Conv. CPET week 0 0.072(0.071) 0.068(0.076)

Cao Conv. CPET week 12 0.031(0.024) − 0.003(0.044)

Cao Conv. Pre-CPET week 0-12 0.127(0.069) 0.127(0.069)

Emax Model CPET week 0 0.141(0.073) 0.037(0.173)

Emax Model CPET week 12 0.254(0.217) − 0.030(0.364)

Emax Model Pre-CPET week 0-12 0.102(0.081) 0.097(0.90)

Emax Conv. CPET week 0 0.082(0.090) − 0.082(0.090)

Emax Conv. CPET week 12 0.070(0.040) 0.070(0.040)

Emax Conv. Pre-CPET week 0-12 0.281(0.078) − 0.281(0.078)

Table 4  Ordinary linear regression models for changed model parameters based on the difference 
between the individual average parameter values over the two first measurement days (subscript: 
avg) or the baseline parameter value and the population average (subscript: pop)

The asterisk indicates a p-value less than 0.05

The model parameters are optimized for the open-loop model using the carotid pressure waveform

Indices, 1–3 indicate measurement day

DV: dependent variable

DV Rsys,3 Cao,3 Emax,3 �1,3Rsys �1,3Cao �1,3Emax

Intercept 0.598* 0.969* 0.985* − 0.012 0.088 − 0.064

Rsys,avg-Rsys,pop 0.101*

Cao,avg-Cao,pop 0.166*

Emax,avg-Emax,pop 0.307*

Rsys,1-Rsys,pop − 0.056*

Cao,1-Cao,pop − 0.111

Emax,1-Emax,pop − 0.045

Adj. r2 0.673 0.337 0.867 0.250 0.129 0.001

N 14 14 14 14 14 14

F-statistic 27.72 7.616 85.62 5.330 2.925 1.014

F-test, p-value 0.000* 0.017* 0.000* 0.040* 0.113 0.334
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For Rsys , increases in CRF and SV correlated with negative change in ( �1,3Rsys ), while 
increased BMI exhibited the opposite pattern. Change in arterial compliance increases 
with increased SV, and so does ventricular elastance in both CV model formulations. 
Change in maximal ventricular elastance is explained by increases in SV, but also by age 
for the open-loop model, which is not shown to affect this parameter when compared to 
the linear mixed-effects models.

Table 5  Linear mixed-effect regression models of the model parameters total peripheral resistance, 
systemic arterial compliance, and maximal left-ventricular elastance using the closed-loop CV model

The model parameters are estimated for closed-loop model using carotid pressure waveform data. “Unex. Var.” is short for 
unexplained variance, while N is the number of observations

The regression coefficients are normalized. Asterisks indicate significant coefficients with a p-value less than 0.05

The letters A− D are labels for the different models

A B C D

Rsys :

 Intercept 0.655* 0.635* 0.626* 0.649*

 Age − 0.016 − 0.011 − 0.022 − 0.005

 Sex − 0.143* − 0.097* − 0.077 − 0.129*

 BMI − 0.098* − 0.093* − 0.118* − 0.085*

 SV − 0.076* − 0.069*

  VO2max -0.035 0.023

 Unex. Var. 0.005 0.002 0.006 0.003

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.002 0.003 0.002 0.002

Cao :  A  B  C  D

 Intercept 0.973* 1.021* 1.127* 1.055*

 Age 0.016 0.006 0.103 0.047

 Sex − 0.013 − 0.124* − 0.424* − 0.237

 BMI 0.054 0.048 0.234* 0.120

 SV 0.187* 0.218*

  VO2max 0.306* 0.107

 Unex. Var. 0.035 0.023 0.028 0.008

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.033 0.005 0.030 0.017

Emax :  A  B  C  D

 Intercept 0.955* 0.977* 0.930* 0.905*

 Age 0.021 0.015 0.004 − 0.018

 Sex 0.173* 0.121 0.178 0.246*

 BMI − 0.064 − 0.074* -0.074 − 0.124*

 SV 0.087* 0.102*

  VO2max − 0.014 − 0.092

 Unex. Var. 0.014 0.013 0.015 0.016

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.019 0.009 0.022 0.008
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Table 6  Linear mixed regression models of the model parameters total peripheral resistance, 
systemic arterial compliance, and maximal left-ventricular elastance uisng the open-loop CV model

The model parameters are estimated for open-loop model using carotid pressure waveform data

“Unex. Var.” is short for unexplained variance, while N is the number of observations

The regression coefficients are normalized

Asterisks indicate significant coefficients with a p-value less than 0.05

The letters A− D are labels for the different models

A B C D

Rsys :

 Intercept 0.660* 0.643* 0.640* 0.656*

 Age − 0.010 − 0.006 − 0.011 0.003

 Sex − 0.134* − 0.094* − 0.089 − 0.134*

 BMI − 0.096* − 0.092* − 0.110* − 0.081*

 SV − 0.067* − 0.061*

  VO2max -0.020 0.030

 Unex. Var. 0.004 0.002 0.005 0.003

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.002 0.003 0.001 0.002

Cao :  A  B  C  D

 Intercept 0.937* 0.988* 1.065* 0.985*

 Age 0.014 0.003 0.074 0.013

 Sex 0.045 − 0.074 − 0.313 − 0.107

 BMI 0.069 0.062 0.225* 0.103

 SV 0.199* 0.224*

  VO2max 0.243 0.028

 Unex. Var. 0.034 0.022 0.036 0.013

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.043 0.009 0.033 0.019

Emax : A   B  C  D

 Intercept 0.835* 0.890* 0.947* 0.873*

 Age 0.036 0.023 0.057 − 0.002

 Sex 0.443* 0.315* 0.167 0.359*

 BMI − 0.012 − 0.032 0.096 − 0.034

 SV 0.215* 0.214*

  VO2max 0.168 -0.033

 Unex. Var. 0.024 0.010 0.015 0.011

 N 42 42 28 28

 Groups 14 14 14 14

 Group size 3 3 2 2

 Group variance 0.056 0.010 0.080 0.014
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Discussion
Through a combination of correlation, regression and case analysis we identified that the 
parameter changes computed by CV model optimization do reflect some of the patterns 
found by more traditional methods, but also that the results exhibit patterns consistent 
with regression to the mean. Further, we found no patterns which indicated that change 
in cardiorespiratory fitness informed the changes. In the interest of tracking changes 
in hypertension management, these results are unsatisfactory in answering whether 
the model and estimation approach are suitable for the purpose. While the arterial 

Table 7  Ordinary linear regression models of the model parameters for total peripheral resistance, 
systemic arterial compliance, and maximal left-ventricular elastance

The model parameters are estimated for closed-loop model using carotid pressure waveform data. “Adj. r2 ” is the adjusted r2 , 
while N is the number of observations

The regression coefficients are normalized

Asterisks indicate significant coefficients with a p-value less than 0.05

The letters A− D are labels for the different models

A B C D

�1,3Rsys :

 Intercept − 0.001 − 0.004 0.004 0.005

 Age − 0.058 − 0.021 − 0.053 − 0.020

 Sex − 0.028 − 0.020 − 0.039 − 0.020

 �1,3BMI 0.009 0.006 − 0.004 0.006

 �1,3SV − 0.081* − 0.082*

 �1,3VO2max − 0.035 0.013

 Adj.  r2 0.073 0.615 0.100 0.567

 N 14 14 14 14

 F-statistic 1.343 6.192 1.361 4.405

 F-test, p-value 0.315 0.011* 0.321 0.032*

�1,3Cao :  A  B  C  D

 Intercept 0.053 0.062 0.038 0.060

 Age 0.082 − 0.024 0.066 − 0.023

 Sex − 0.008 − 0.013 0.044 − 0.008

 �1,3BMI -0.004 -0.007 0.038 0.012

 �1,3SV 0.225* 0.218*

 �1,3VO2max 0.111 0.015

 Adj.  r2 − 0.157 0.683 − 0.027 0.647

 N 14 14 14 14

 F-statistic 0.414 8.997 0.9156 5.775

 F-test, p-value 0.747 0.005* 0.495 0.015*

�1,3Emax :  A  B  C  D

 Intercept − 0.103 − 0.102 − 0.099 − 0.096

 Age 0.026 0.020 0.030 0.017

 Sex 0.143 0.142 0.136 0.128

 �1,3BMI 0.042 0.043 0.033 0.030

 �1,3SV 0.015 0.033

 �1,3VO2max − 0.024 − 0.038

 Adj.  r2 0.189 0.108 0.124 0.055

 N 14 14 14 14

 F-statistic 2.009 1.393 1.461 1.153

 F-test, p-value 0.177 0.311 0.292 0.408
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parameters were relatively consistent with other estimation methods, the ventricular 
elastance did not exhibit similar behavior. However, further pursuit of answering if such 
a personalization framework can function with a limited data set, with a model capable 
of simulating hemodynamic changes and stimuli for giving insight into the individual’s 
response, may still produce a valuable tool in the future of personalized medicine.

Total peripheral resistance has been reported to decrease after bouts of physical activ-
ity, both in the short and long term [11, 18]. The size of this decrease is also depend-
ent upon the baseline blood pressure, type of physical activity, and  the  individual’s 

Table 8  Ordinary linear regression models of the model parameters for total peripheral resistance, 
systemic arterial compliance, and maximal left-ventricular elastance

The model parameters are estimated for open-loop model using carotid pressure waveform data. “Adj. r2 ” is the adjusted r2 , 
while N is the number of observations

The regression coefficients are normalized

Asterisks indicate significant coefficients with a p-value less than 0.05

The letters A− D are labels for the different models

A B C D

�1,3Rsys :

 Intercept 0.002 − 0.001 0.006 − 0.002

 Age − 0.053 − 0.018 − 0.049 − 0.017

 Sex − 0.032 − 0.026 − 0.042 − 0.024

  �1,3BMI 0.012 0.008 0.001 0.010

  �1,3SV − 0.075* − 0.078*

  �1,3VO2max − 0.029 − 0.006

 Adj. r2 0.061 0.588 0.055 0.540

 N 14 14 14 14

 F-statistic 1.280 5.638 1.189 4.058

 F-test p-value 0.334 0.015* 0.379 0.039*

�1,3Cao :  A  B  C  D

 Intercept 0.069 0.077 0.061 0.082

 Age 0.128 0.040 0.112 0.038

 Sex 0.043 0.025 0.062 0.014

  �1,3BMI − 0.021 − 0.012 0.000 − 0.023

  �1,3SV 0.187* 0.202*

  �1,3VO2max 0.058 − 0.031

 Adj. r2 0.020 0.548 − 0.022 0.509

 N 14 14 14 14

 F-statistic 1.090 4.943 0.931 3.694

 F-test p-value 0.398 0.022* 0.448 < 0.050*

�1,3Emax : A   B  C  D

 Intercept − 0.049 − 0.045 − 0.053 − 0.041

 Age 0.139* 0.089* 0.135* 0.087*

 Sex − 0.035 − 0.045 − 0.026 − 0.054

  �1,3BMI − 0.052 − 0.047* − 0.042 − 0.056*

  �1,3SV 0.106* 0.118*

  �1,3VO2max 0.026 − 0.026

 Adj. r2 0.432 0.856 0.402 0.867

 N 14 14 14 14

 F-statistic 4.294 20.38 3.182 23.16

 F-test, p-value 0.034* 0.000* 0.069 0.000*
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properties. As a consequence, the trend of marginally lowered systemic resistance seen 
in these results on average (see Tables 1, 3, 16, and 18) is in agreement with previous 
findings. A trend of decreased resistance is also observed in several of the participants 
chosen for the case analysis.

By comparing the computed changes between measurement days and comparing to 
the changes pre- to post-CPET, there did not seem to be any clear signal of sustained 
exercise-induced remodeling in parameters over the 12 weeks which was consistently 
different than the transient short-term post-CPET effects. This may have been due to 
insufficient data, insufficient physical activity or lack of response to exercise in these 
individuals, as only one of the four participants with CPET measurements met the cri-
teria for and is included in the case study. A criteria that was determined by who saw 
the largest change in VO2max after the exercise intervention. One cannot rule out that 
there are possible non-responders to exercise in this study sample either.

Comparing the correlation of parameter changes between different parts of the study 
period (Fig. 3), we note that the changes in the first half of the study period usually tend 
towards a negative and low correlation with the changes of the second half. Although 
these correlations are not necessarily significant, this is normally recognized as a pattern 
which may indicate that the parameter values regress to a personal mean. This would 
mean that the changes may be extreme observations by chance, and are not necessarily 
caused by the study intervention. Additionally, the correlation patterns are more simi-
lar between parameters changes estimated using the same pressure waveforms and CV 
model, than when using the same CV model with different pressure waveforms. This 
suggests that the pattern of changes are more dependent upon measurement modality 
than the CV models themselves. Furthermore, if there actually is statistically signifi-
cant regression to the mean, it would also be a sign of no or little effect of exercise on 
the parameter changes. The CV model parameter changes for resistance and compli-
ance seem to correlate reasonably well with the data from conventional estimates (see 
Tables 2 and 17). This would suggest that changes in parameter estimates made for the 
CV models are informed by changes in the data and are not purely results of uncertainty 
or poor performance by the estimation method. Even though the change in hemodynam-
ics may not be convincingly informed by exercise, the fact that the pattern of changes in 
many cases agree based on different estimation approaches supports that both methods 
produce similar week-to-week variations as expressed by the data. Ventricular elastance 
on the other hand does not show the same behavior in all cases, and often has a nega-
tive relationship. The results also indicate that the carotid pressure waveform more often 
produces estimates higher correlated with the conventional parameter change estimates. 
The correlation patterns identified here are similar for both CV model formulations.

For the closed-loop model and case analysis, we found the following: total peripheral 
resistance decreased compared to baseline in two out of four participants. The arterial 
compliance parameter increased in four out of four participants. Maximal ventricular 
elastance increased in one out of four participants. Only estimates for one participant 
saw all of the listed changes simultaneously, which indicates that these parameters saw 
changes expected to lower blood pressure or improved cardiac function. For the open-
loop model, the case analysis gives the following observation: total peripheral resist-
ance decreased compared to baseline in two out of four participants, while maximal 
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ventricular elastance increased. Arterial compliance increased in four out of four par-
ticipants. The parameters in two participants saw all of the listed changes simultane-
ously. Hence, the open-loop model seems to express a pattern of consistent remodeling 
in more participants than the closed-loop model, although this is very limited data and 
possibly only marginal differences.

The regression analysis was subject to scarce data, and regression coefficients were 
rarely significant, such that these results cannot not reliably prove any influence and the 
trial study was not designed for this. However, the models may instead give an indication 
of whether physical activity or fitness did influence parameter estimates and if trends 
support what is expected from the literature. Therefore, we also attempt to interpret 
trends even for non-significant coefficients.

In Tables 4 and 19  the difference of the personal mean and population mean exhibit 
medium to high adjusted r2 for most parameters on the final measurement day. In other 
words, the more extreme the final value is, the more extreme the personal average is 
likely to be. For the relationship between parameter change and the population mean 
subtracted from the initial parameter value, low-to-medium values of adjusted r2 were 
observed. For the closed-loop model the arterial compliance exhibited the highest r2 
value, but the peripheral resistance was similarly highest in the open-loop model. These 
two parameters could therefore be more likely to be expected to regress to the popula-
tion mean for their respective models than the other parameters. As observed in 3, a 
pattern of regression to a personal mean is supported by this analysis. Combined, these 
two observations suggest that some of the changes are caused by chance. These results 
and the observed correlation between estimation methods could both at least partially 
be explained by day-to-day variability in individuals fluctuating about a personal mean.

The linear mixed-effects models indicate that for Rsys practically all covariates have 
a negative coefficient. This negative relationship is consistent with prior studies and 
physiological understanding of how improved fitness and vascular remodeling result in 
increased cardiac output through improved conduit function of the vasculature. They 
would be expected to be negative as increased SV, BMI and VO2max is expected to 
lower the resistance value due to, for example, increased cardiac output, and improved 
fitness. For Cao there are mainly positive coefficients with the exception of sex. This is 
in agreement with the expected effect of increased SV (while maintaining blood pres-
sure) and VO2max . For increased age and BMI, vessels are expected to stiffen, but the 
age range of included participants may be insufficient to detect this. Finally, for Emax , 
we find negative coefficients for BMI and VO2max . A full understanding of the rela-
tionship between BMI and ventricular contractility has not been established from 
prior works. Manoliu et al. estimated end-systolic elastance and found that contractil-
ity slowly increased with BMI in middle-aged subjects [19], but other studies suggest 
that obesity decreases with other load-independent contractility indices in people with 
hypertension [20]. Fernandes-Silva et al. observed increased end-systolic elastance with 
increased BMI in the elderly also when adjusting for age [21]. Similarly, some findings 
have indicated contractility to increase in terms of EF after exercise [11], so we would 
expect to find positive coefficients for VO2max if increased fitness has an effect. While 
different notions for cardiac contractility are used to describe human hearts and can be 
contradictory, Oláh et al. observed increased resting end-systolic elastance in rats after 
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12 weeks of exercise [14]. Positive coefficients for SV seem reasonable as increased con-
tractility could lead to a higher SV by ejecting more blood per heart beat by, for example, 
an increased EF.

The ordinary linear regression analysis of parameter changes as shown in Tables  7 
and 8, give additional perspectives. Increases in SV and VO2max tend to correspond 
with decreased �1,3Rsys . Conversely, resistance decreases when the change in SV and 
VO2max is positive, which is what we expected physiologically. On the other hand, the 
change of resistance seems to weakly increase with BMI. Change in arterial compliance 
increases with increased SV, and so does ventricular elastance in both CV model formu-
lations. Ventricular elastance change is explained mainly by SV, and age, but it is also an 
exception in that it has a significantly higher level of explained variance for the open-
loop model parameters compared to the closed-loop formulation parameters.

Taking the approximated levels of measurement uncertainty into consideration 
from  the "Measurement uncertainty" section, we find that for the OLR analysis the 
best models, which include SV, leave in the neighborhood of 40% unexplained vari-
ance. Seeing as the highest level of measurement uncertainty is also introduced by SV, 
it is possible that a part of this unexplained variance comes from this uncertainty. The 
remaining variance could possibly be explained by the variability in some of the other 
model parameters, some unknown explanatory variables that were not collected or in 
systematic measurement errors we have failed to take into consideration. For the linear 
mixed-effects models, the variance seem to be explained to a higher degree by the differ-
ent individuals, than by lacking measurement error.

It should also be noted that a weak signal for remodeling may be caused by low activ-
ity levels as only eight out of initially 26 participants increased their average weekly PAI 
from less than 50 PAI to over 100 PAI over the course of the study period. Previous stud-
ies have shown that reaching a 100 PAI weekly reduces risk of CV disease and extends 
lifespan as compared to those who do not reach this target [15, 16]. We would therefore 
expect the individuals who achieved this to be more likely to experience remodeling. 
However, VO2max is the more well established measure in the context of improved fit-
ness, and by extension cardiorespiratory remodeling, and was therefore preferred in the 
case analysis. All parameters for both CV models seem to be best explained by the addi-
tion of SV as an explanatory variable, and therefore suggests that the model parameters 
capture the hemodynamic changes from day to day or week to week, as opposed to any 
influence of physical activity in this study.

Studies by Audebert and Gerringer et al. use lumped-parameter models constructed 
in similar ways to the one used in this work to track vascular parameters in rats [7, 8]. 
The former of the two studies, examines the hepatic vessel’s vascular resistances after 
pharmacologically induced liver cirrhosis and their role in altering the hemodynamics. 
The paper demonstrates a mean of differences in hepatic arterial resistances of −38.0% 
compared to control rats after 12 weeks of cirrhosis development in a small sample of 
rats. After 18 weeks, the change is much more prominent; however, at −85.8%. Ger-
ringer et al. induced pulmonary hypertension in 27 rats with 17 control animals over a 
period of 4 weeks and investigated vascular parameter differences in 3- and 4-element 
Windkessel models at different disease stages. After 4 weeks, significant changes in the 
hypertensive group was found in both pulmonary resistance (+185.7%) and compliance 
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( −69.8%). Similarly between 2 and 4 weeks significant differences were found to be 
105.1% for resistance and −60.1% for compliance. These results suggest it is possible 
to distinguish between states of disease and health. However, both studies differs from 
ours by study subjects, what stimuli is enacted, choice of model and what parameters 
are included in the model. The mean changes in both studies are, most often, at least an 
order of magnitude larger than the mean changes observed in this study.

Results from Bjørdalsbakke et al. indicate that the closed-loop model does not have 
any considerable advantage compared to the open-loop model in terms of resolving 
parameter changes [17]. Results from the current study suggest that the open-loop 
model may be better suited for detecting parameter changes. The supporting evi-
dence is that maximal left-ventricular elastance changes can be explained with higher 
confidence using the open-loop framework. Therefore, analogously to results by Itu 
et al. [22], an open-loop model with only the adjacent vasculature could be sufficient 
to determine a selection of highly influential mechanical parameters, describing the 
pressure–volume loop and global arterial hemodynamics. However, Itu et  al. did 
not explore if this was sufficient to monitor a system in different states of exercise or 
under CV disease, which remains unknown and is likely problem dependent.

Ultimately, the comparison of the two CV models yields information about whether 
different model complexities impact what information is reflected by the parameter 
estimates given the chosen estimation method. The closed-loop formulation is par-
tially described by a stressed blood volume parameter, which the open-loop does 
not include as its total blood volume can vary during each heart cycle. Total stressed 
blood volume is highly influential on blood pressure levels in this model [23], but can 
add complexity to personalization procedures as this parameter affects the state vari-
ables of all model compartments and can possibly interact with several other param-
eters simultaneously. Therefore, we investigated whether the personalization of each 
model variant by a given personalization procedure captured the same parameter 
dependencies or whether one of the models was better suited to track parameter 
changes which were expected to come from, for example exercise stimulus, or other 
explainable causes. From the initial regression results, it seems that both models yield 
parameters that may to some degree regress towards a population mean, but mainly 
Cao . Additionally, all parameters, exhibit some signs that parameters for the individual 
may regress towards a personal mean (see Fig.  3). And neither model exhibits any 
convincing evidence that the levels of fitness changes resulting from the clinical trial 
explains any additional variance in the parameters. But we cannot conclude whether 
this is due to a low level of exercise remodeling in participants, or whether the models 
are not able to detect these effects on average. Case analysis shows that parameters 
for both models can change in a manner expected to be beneficial remodeling after 
exercise. The models also seem to be able to track changes in parameters similarly to 
other conventional techniques given variations in the data within and between indi-
viduals, but to varying degrees of correlation.

As previously noted, correlations between CV model parameter changes and con-
ventional change estimates are higher for the carotid pressure waveform, suggesting 
that carotid waveforms may be more useful for computing more realistic and accu-
rate changes (Tables 2 and 17) than the finger pressure waveforms. The changes are 
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on average larger in absolute magnitude for the arterial parameters using the carotid 
waveform, but the opposite for Emax , where the finger pressure waveform esti-
mates result in the larger changes (Tables  1 and 16). We would initially expect this 
as the waveform is closer to the arterial waveform in shape, but this study allowed 
us to investigate if the estimated changes using the different waveforms were equally 
informative or useful. In summary, the changes computed for estimates based on the 
carotid waveform are more informative than the finger pressure-derived estimates, 
when compared to conventional estimation methods.

Limitations

This study is limited by the data set as well as the CV model formulations. The CV mod-
els are simplified models of the circulation and do not resolve individual vessels and 
neglect entire parts of the circulation, such as the pulmonary circulation. Parameters 
can represent the function of several vessels, and effects such as inertance in larger ves-
sels is neglected. This is a consequence of model simplification, which in our case simpli-
fies parameter estimation at the cost of prediction accuracy and predicted features. The 
heart model is represented with a periodic elastance model, where the right ventricle 
and the atria are omitted. For the closed-loop model formulation, the heart chamber acts 
as both the right and left ventricles as the systemic veins terminate in the mitral valve. 
Heart valves are modeled as perfect unidirectional diodes which do not allow backflow.

Next, the data foundation is limited. Firstly, in the sense that there are few data points, 
the statistical analysis is restricted both in robustness and that it cannot account for 
many interaction terms. Secondly, the exercise trial design was not designed such that 
all participants would have a uniform amount of exercise. The type of exercise the par-
ticipants engaged in was not controlled either, apart from monitoring their heart rate, so 
the exercise response may be variable among participants. The data are either way too 
sparse to establish a dose–response relationship. Therefore, we have emphasized com-
parison of the identified patterns to established knowledge, rather than make new con-
clusions about the effect of exercise based on the data set and models.

Conclusion
The explanatory analysis shows that the cardiovascular model parameter changes cor-
relate at least moderately well with changes computed from more conventional esti-
mation techniques. This applies for arterial parameters using the carotid pressure 
waveform. This result suggests that the estimation method and model are able to at least 
partially capture changes in the data from week to week. The estimates of Emax are not 
often clearly correlated with conventional estimates, and it is therefore harder to argue 
that they are sensitive to the changes captured by the hemodynamics. For participants 
included in the case study, the arterial parameters for over half of participants experi-
enced changes in the direction expected from an increased amount of exercise. How-
ever, by analyzing the study population using regression models, we found no clear effect 
of cardiorespiratory fitness influence on the model parameters representing arterial 
compliance, resistance and maximal left-ventricular elastance. The model-based mean 
absolute changes over the study period were not considerably larger or smaller than 
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estimated changes from before to after a CPET test within a span of 24 h. To be able to 
learn more about parameter changes we recommend focusing on carotid or more central 
waveforms, as parameters based on these correlate better with conventional estimates 
than finger pressure-based estimates, despite their relative ease of collection. Addition-
ally, aside from slightly better correlation of Emax estimates between estimation meth-
ods, few other results indicate that there is a considerable benefit to using a closed-loop 
model in terms of tracking parameter changes even though it describes more details 
of the cardiovascular system. The open-loop model produces estimates for maximal 
ventricular elastance that yield a higher degree of explained variance in the regression 
analysis, and thereby detects more explanatory factors for the parameter. Regression 
models suggest that adding information about VO2max cannot explain more of the vari-
ability in parameter estimates in a majority of cases. This suggests that the remodeling 
effect is either too small, or the model and parametrization procedure is unable to track 
the changes reliably. Then the majority of the explanation of the computed parameter 
changes lies in week-to-week or day-to-day changes, as changes in SV are found to be 
better at explaining the parameter variability, but uncertainty in the model optimization 
cannot be ruled out as an explanatory factor.

Methods
Study design, setting, and participants

The data originated from a pilot randomized controlled trial for exercise motivation. 
The study participants were randomly split into two groups. One group was asked to 
achieve a score of of over a 100 weekly PAI points by using a mobile application read-
ing data from their wrist-worn heart-rate sensor. The second group was instructed to 
follow the World Health Organization’s general recommendations for physical activity 
[24]. A total of 26 adults (13 females), 45–65 years of age, met the inclusion criteria at 

Table 9  Baseline characteristics of the study population

BSA: body surface area; BMI: body mass index; ABPM: ambulatory blood pressure monitoring; SV: stroke volume; LVOT: left-
ventricular outflow tract

SBP and DBP signifies systolic and diastolic office blood pressure measurement

4D refers to 3D measurement averaged over time

n = 25

Height 174.3 ± 8.9 cm

Weight 85.9 ± 14.2 kg

BSA 2.0 ± 0.2 m 2

BMI 28.2 ± 3.6 kg/m2

Age 55.9 ± 3.9 years

Sex M/F 13/12

SBP 138.5 ± 12.6 mmHg

DBP 87.3 ± 8.7 mmHg

VO2max 36.4 ± 6.8 mL/(kg min)

24h ABPM awake SBP 141.0 ± 13.5 mmHg

24h ABPM awake DBP 85.4 ± 9.1 mmHg

SV (4D) 85.5 ± 20.0 mL

SV LVOT 79.7 ± 20.2 mL
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screening: hypertensive (blood pressure ≥ 140/90 ) or pre-hypertensive (blood pressure 
≥ 140/90 mmHg), currently physically inactive (self-reported < 50 PAI per week), not 
using antihypertensive medication and no history of CV disease, secondary hyperten-
sion or diabetes. One participant dropped out due to becoming unable to perform exer-
cise for a longer period during the trial period. The the study period lasted for 12 weeks, 
and hemodynamic measurements were made at the beginning, after 6 weeks and at the 
end. We refer to these as measurement days 1, 2, and 3. Parts of the trial have previ-
ously been described by øyen [25] and Bjørdalsbakke et al. [23]. The characteristics of 
the study population can be found in Table 9.

By applying a lumped-parameter model of the systemic circulation to the data from 
the trial, the mechanical properties of the circulation were estimated for specific individ-
uals as described in previous work [17]. We continued on to specifically investigate the 
left-ventricular contractility by way of maximal left-ventricular elastance ( Emax ), arterial 
stiffness by arterial compliance ( Cao ), and arterial vascular resistance by total peripheral 
resistance ( Rsys).

The code used in the analysis is available from github.com: https://​github.​com/​nilib​jo/​
NLB_​P3_​Exami​ningT​empor​alCha​nges.

Summary of the clinical trial study protocol

The aim of the clinical trial was to determine how personalized physical activity goals, in 
terms of PAI, would compare in reducing ambulatory blood pressure levels and improv-
ing CV risk profiles compared to participants following recommended national physical 
activity guidelines. The study was organized as a randomized controlled trial where the 
intervention group followed physical activity recommendations according to PAI score 
and the control group followed national guidelines. Participants were invited for screen-
ing, where they were asked to fill out a questionnaire, and blood pressure was measured 
to determine whether they had blood pressure consistent with a normotensive, pre-
hypertensive or hypertensive range. 26 participants were found to be eligible for inclu-
sion in the trial. The inclusion criteria was that they had blood pressure measurements 
in a pre-hypertensive range or above. They were not on any medication for hypertension, 
had not previously been diagnosed with hypertension, and had no history of diabetes or 
CV disease. Additionally, their self-reported activity level would amount to less than 50 
weekly PAI, meaning that their life styles were quite sedentary and that they had a lower 
than ideal activity level before participating in the trial.

After this point, the participants were given heart rate monitors to wear for a base-
line week, where they were asked to engage in normal life and not make any effort to 
participate in physical activity outside their norm. The group was split into two groups 
after this week. Group A (14 participants, 7 male) were asked to aim to participate in 
150 min of moderate-intensity exercise per week according to the WHO’s recommenda-
tions. These participants were not able to see their PAI score as measured by their heart 
rate monitors during the trial. Group B (12 participants, 7 male) were advised to gain at 
least 100 PAI per week, and could monitor their score during the study period.

Upon the end of the baseline week, the intervention period was initiated by equipping 
the participants with automated Oscar 2 (Suntech) devices for ambulatory blood pres-
sure measurement. The first day of the study period participants were asked to come in 

https://github.com/nilibjo/NLB_P3_ExaminingTemporalChanges
https://github.com/nilibjo/NLB_P3_ExaminingTemporalChanges
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to the clinic to have measurements of height, weight, and office blood pressure taken, 
and to perform a full body scan by using a Inbody 770 bioelectrical impedance system. 
Subsequently pulse wave velocity was measured. After 10 min of rest, pulse wave veloc-
ity and traces of carotid and femoral artery blood pressure waveforms were acquired by 
applanation tonometry using a Sphygmocor CvMS v9 (AtCor Medical) system as a by-
product of recording the carotid–femoral pulse wave velocity. At a different time point, 
the participant was asked to lie down in left-lateral recumbent position to perform a 
full transthoracic echocardiographic examination by trained technicians using VingMed 
Vivid E95 (GE) systems. While maintaining their position, the blood pressure Finom-
eter PRO (Finapres) or NIBP Nano (Finapres) system was mounted on their right hand, 
and the finger arterial pressure measurements were initiated, while simultaneously mak-
ing a echocardiographic measurement of the left-ventricular outflow tract blood flow 
waveform measurement. Synchronization points were made manually by having the 
participant cough and twitch their finger at a countdown while the operator made a 
simultaneous annotation in the blood pressure recording system. The third unperturbed 
cycle prior to the synchronization signal were taken as data cycles. The cycles were sub-
sequently manually matched at diastole in order to get a more precise synchronization. 
Following the echocardiographic examination the subjects were asked to engage in a 
cardiorespiratory exercise test (CPET) on a treadmill to measure VO2max. For a sub-
group of 8 of the participants, they were also asked to return the following day after 24 h 
to repeat the echocardiographic examination and finger artery pressure measurements.

Measurements were repeated for all participants after 6 weeks into the study period, 
and after 12 weeks, i.e., measurement days 2 and 3. The CPET, and repeated echocardio-
graphic measurements were only made after measurement days 1 and 3. The trial time-
line is illustrated in Fig. 4.

Fig. 4  Illustration of the trial timeline with the timing and different types of measurements
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Inclusion criteria for analysis

For the analyses within this study, the trial population was further subdivided accord-
ing to what data were available to each participant, and which analysis techniques they 
consequently could be included in. Finally, four groups of participants were formed: par-
ticipants with synchronized finger pressure signals and flow, participants with carotid 
pressure waveforms paired with flow, participants with finger pressure measurements 
following a cardiopulmonary exercise test, and participants with the most improvement 
in VO2max (the top quartile).

Inclusion criteria for correlation and regression analysis

The requirement for inclusion was having blood pressure measurements, LVOT flow 
and at least one type of pressure waveforms, as well as body mass data for all three meas-
urement days. As a consequence, all drop-outs are excluded. Further, VO2max estimates 
should exist for both measurement day 1 and 3. Height data were also required at meas-
urement day 1. For adherence to the exercise intervention, we required that the par-
ticipants wore their heart-rate monitors for at least 75% of the days of the intervention 
period.

For blood pressure, awake measurements from 24 h ABPM measurements, or alter-
natively OBP measurements where ABPM data were missing were required. For blood 
pressure waveforms, either finger pressure waveforms or carotid pressure waveforms 
were acceptable. Finger pressure also required synchronization data to LVOT flow in the 
raw data files. In terms of SV data, 4D SV was preferred, but SV derived from LVOT 
flows was sufficient if the former was missing.

Due to drop-outs, missing data, or missing synchronization data we selected 55 eli-
gible sets of measurements for synchronized finger pressure and LVOT flow. Among 
these measurements 9 participants were identified with complete records. Similarly, for 
the data sets with carotid pressure, 14 eligible participants had complete records. The 
characteristics for the selected groups using differing pressure waveforms are found in 
Appendix A.

These inclusion criteria apply for all subsequent analyses as well.

Inclusion criteria for analysis of CPET‑induced change

The CPET induces changes in hemodynamics, and bouts of exercise have been observed 
to impact hemodynamics and specifically blood pressure for up to 24 h afterwards [26]. 
This analysis was made to compare the change observed over longer periods to the 
change after one bout of strenuous exercise, or to daily variability if exercise effects have 
attenuated after 24 h. This would indicate whether the model would see any difference or 
resolve this change similarly.

Inclusion criteria for the sub-analysis on changes after the CPET we require the same 
blood pressure and echocardiography measurements as described in previous sections 
on the days immediately following measurement day 1 and 3. By also requiring com-
plete records for flow and finger pressure alignment, this left 4 participants out of the 9 
identified in the previous paragraph. Consequently, these 4 participants had complete 
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pressure and flow measurements within 24 h after CPETs conducted at the beginning 
and end of the intervention (day 1 and 3).

Inclusion criteria for individual participant case analysis

In this sub-analysis, we included the participants expected to have exercise-induced CV 
remodeling based on the measured cardiorespiratory fitness. Individual CV response to 
physical activity over both the short- and long-term is likely dependent upon properties 
in the individual which also causes challenges in predicting which type and amount of 
exercise is sufficient to expect measurable CV remodeling.

To investigate the parameter changes of those we expected to be most likely to experi-
ence CV remodeling, we selected participants based on change in VO2max . We set the 
inclusion criteria to be that the participants should fall in the upper quartile of measured 
changes in VO2max . This left 4 participants.

Data collection

Varied hemodynamic data were recorded during the course of the study in the form of 
blood pressure, aortic flow, and pulse wave velocity. The cardiorespiratory fitness (CRF) 
was also measured as VO2max through a cardiopulmonary exercise test (CPET) at 
measurement days 1 and 3 of the study period. Additionally, the activity levels through-
out the study period was monitored using wrist-worn heart rate monitors. Waveform 
data preprocessing has been described previously by Bjørdalsbakke et al. [17]. The types 
of measurements are listed in Table 10.

Physical activity monitoring

Physical activity was monitored in terms of PAI, and the effect on cardiorespiratory fit-
ness was monitored in terms of VO2max.

Physical activity monitoring was made possible by wearable wrist-worn heart rate 
monitors (LYNK2). The collected heart rate data were aggregated into daily PAI scores 
representing the physical activity level over the past week. The study group which was 
asked to achieve a 100 weekly PAI were able to see their PAI scores during the study 
intervention, while the other group asked to follow the current recommendations were 
not able to monitor their PAI score.

Table 10  A summary of measured variables from the clinical trial

ABPM, ambulatory blood pressure measurement; OBP, office blood pressure; SBP, systolic blood pressure; DBP, diastolic 
blood pressure

Category Measurements

Activity and fitness PAI [−], VO2max [mL/kg/min]

Blood pressure ABPM SBP+DBP [mmHg]

OBP SBP+DBP [mmHg]

Carotid BP waveform trace [−]

Finger BP waveform [mmHg]

Blood flow SV [mL], LVOT flow trace [−]

Other Year of birth [−], height [cm], weight [kg]



Page 25 of 42Bjørdalsbakke et al. BioMedical Engineering OnLine           (2024) 23:64 	

A cardiopulmonary exercise test (CPET) was conducted for participants on measure-
ment days 1 and 3. The test was performed using a treadmill (Woodway PPS 55) with 
Metalyzer II (Cortex).

Participants warmed up for 15 min at approximately 70% of estimated maximal heart 
rate. After warm-up workload was increased by 0.5–1 km/h and/or 1–2% inclination per 
minute until volitional exhaustion or VO2max criteria were met. VO2max was defined 
as a plateau in VO2 despite increase in workload and respiratory exchange ratio >1.05. 
22 of initially 26 participants reached this requirement, and therefore when VO2max is 
referred in this text, we actually mean VO2,peak in some cases.

Blood pressure recordings

Ambulatory blood pressure monitoring (ABPM) of brachial artery blood pressure over 
24 h was measured using Oscar 2 model 250 (SunTech Medical Inc). Conventional office 
blood pressure (OBP), which is also a brachial artery measurement, was measured using 
a TangoM2 automatic blood pressure monitor (SunTech Medical Inc). The full pressure 
waveform was also measured non-invasively in the carotid artery, and finger arteries.

Office blood pressure was recorded in both arms upon screening, and the arm with the 
highest blood pressure was chosen for all subsequent measurements on all measurement 
days. Three measurements were taken, with 1.5-min rest between each measurement. 
Participants were seated throughout the procedure. OBP measurements were taken for 
all measurements days. For 24-h ABPM, measurements were taken at 30-min intervals 
at night, and 20-min intervals by day. ABPM was performed for all measurement days.

Digital artery pressure waveforms in the finger were acquired by a Finometer PRO sys-
tem (FinaPres) for 4 participants, while the remaining participants were measured by 
a Non-Invasive Blood Pressure Nano system (FinaPres). We refer to this type of meas-
urement as finger pressure in the following. Participants were placed in the left-lateral 
recumbent position during recordings, and measurements were made in the right hand. 
Measurements could be made in the index, middle or ring finger depending on where a 
clear signal was found. The pressure waveforms were subsequently calibrated to brachial 
blood pressure values obtained by ABPM during participants’ waking hours.

We measured synchronized flow and finger pressure before performing the CPET test 
at both measurement day 1 and 3. Then the next day, and within 24 h of conducting the 
CPET, the measurements were repeated for a subset of the participants. On these extra 
measurement days OBP and 24 h ABPM was also measured. These measurements only 
exist for finger pressure waveform data, not for the carotid waveform.

A SphygmoCor (CvMS v9, AtCor Medica) system was used to trace the pressure wave-
form of the carotid artery by applanation tonometry, during the process of estimating 
the carotid–femoral pulse wave velocity. We also rescaled the resulting waveforms to 
correspond to ABPM measurements.

Echocardiography

A transthoracic echocardiographic examination was performed on all measurement 
days. In particular, the left-ventricular outflow tract flow (LVOT) flow trace was syn-
chronized to finger pressure recordings during measurement, while the participant was 
lying in a left-lateral recumbent position. 4D recordings of stroke volume (SV) were also 
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acquired. The Finapres finger cuff was mounted upon the fingers of the participants’ 
right hand while in position.

Taking the traced carotid artery waveforms, we paired them with the same aortic flow 
waveforms which the finger pressure waveforms were synchronized to.

Measurement uncertainty

For blood pressure measurements using ABPM, the devices should satisfy the European 
Society of Hypertension requirements for accuracy [27]. Consequently, at least 60% of 
measurements should be within ± 5 mmHg of error compared to measurements made 
by trained personnel using mercury manometers. Approximating this as the standard 
deviation of single blood pressure measurement, the average ABPM blood pressure 
values have a best-case measurement uncertainty standard deviation of ±0.7 mmHg. 
This approximates a lower bound and is calculated for the arithmetic mean of measure-
ments over a 16-h waking period at 20 min apart using Gauss’ law of error propagation. 
The approach also assumes the unrealistic case that the measured individual maintains 
the exact same hemodynamic state throughout the entire period, and no correlation 
between measurements.
VO2max measurements were acquired by ergospirometry. According to the manu-

facturer’s user manual Metalyzer II and Metalyzer 3B has a 2% measurement accuracy 
in expired gas volume and a 0.1% accuracy in oxygen volume according to the manual. 
A recent article comparing differences in VO2 measurement errors between different 
equipment manufacturers by Van Hooren et al. found an average measurement error of 
2.85% for Metalyzer 3B [28]. Of course, the process of identifying the maximal value can 
also introduce errors, but this warrants further analysis beyond the scope of this work.

Kitano et al. have reviewed that for semi-automatic 3D estimation of stroke volume 
from echocardiography using equipment by different manufacturers [29]. A pooled 
measurement bias of approximately −39.3 mL and −19.6 mL was found for semi-auto-
mated acquisition of end-diastolic (EDV) and end-systolic (ESV) left-ventricular vol-
umes as compared to measurements by cardiac magnetic resonance imaging (CMRI). 
SV was not reported directly but ejection fraction could not be shown to be signifi-
cantly biased. We take CMRI as the ground truth in this case. Suehiro et al. performed 
transesophageal echocardiography using the GE Vingmed E9-series, but measured 
SV directly and used thermodilution with a pulmonary artery catheter as a reference 
method [30]. The study reported a bias of −1.2 mL, or −1.9%. Suehiro et  al. also cal-
culated an adjusted percentage error based on the standard deviation in differences 
between measurement methods of 20%.

For age calculations only years of birth were available, and such age is uncertain by up 
to 1 year, which for the average age in this population corresponds to 1.8%. For weight 
and height we assume only 0.1 kg and 1 cm , i.e., approximately 0.1% and 0.6%, respec-
tively. The estimated uncertainties can be seen in Table 11.

Models

The aim of using physics-based models in this study is twofold. The first is to use limited 
hemodynamic data to try to estimate various mechanical parameters by the way the model 
constrict parameters to obey physical relationships in the circulatory system. Secondly, 
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upon the successful personalization of a model, by parameters that have a physical inter-
pretation and are informative about the individual’s CV health, the model may be subjected 
to stimuli which would give a prediction of how an individual may respond to exercise 
or other conditions or disease. The output quantities of interest, as investigated in this 
paper, to be produced by the models, are the aortic blood pressure ( Pao ) and flow wave-
forms ( Qlvao ). This includes the derived quantities of systolic and diastolic blood pressure, 
as well as ventricular volumes by way of stroke volume. The models used have been pre-
sented in detail previously by Bjørdalsbakke et al. [17, 23]. The closed-loop model is based 
on previous models by Smith et al., Segers et al., and Bovendeerd et al. [31–33]. The open-
loop model is equivalent to the model presented by Stergiopulos et  al. [34]. The models 
are depicted in Fig. 5, and the model parameters which are chosen for personalization are 
given in Table 12. Both models are investigated in this paper since they describe mainly 
the same hemodynamics with exception of the venous compartment and ventricular filling. 
They also have varying amounts of potentially personalizable parameters, which may inter-
act during optimization and cause different parameter estimates between models. Initial 
parameter guesses are sampled from ranges as described previously [17]. The quantities of 
interest predicted by the model are mainly the stroke volume, and aortic pressure wave-
form, from which all pressure measurements, which are approximated to be equivalent to 
the corresponding brachial and finger measurements for this simplified model, are derived. 
Equivalently, the aortic blood flow produced by the model is approximated to be equivalent 
to the measured LVOT flow.

Model output and parameter estimation

The models were formulated as a set of differential equations where a 4th order Runge–
Kutta scheme implemented in SciPy [35]. Model outputs are denoted as time-dependent 
signals y(t, θ) , where θ is a vector of mechanical model parameters.

Parameters are estimated by an ensemble of local optimizations, where the aortic 
flow and pressure waveforms with additional weight for systolic and diastolic values are 
included in the cost function. Hence, the parameter estimates have some inherent vari-
ability stemming from the optimization method, in addition to the intra-individual vari-
ability over time. The model was optimized by minimizing the following cost function:

Table 11  Some estimated uncertainty levels in variables used in regression based on literature 
sources and estimates

SV, stroke volume; ABPM, ambulatory blood pressure monitoring; SBP, systolic blood pressure; DBP, diastolic blood pressure

Quantity Estimated 
uncertainty 
(%)

ABPM SBP/DBP ~ 0.7

VO2max ~ 2.9

SV (4D) ~ 20

Age ~ 1.8

Height ~ 0.6

Weight ~ 0.1
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Here, the m superscript indicates a measurement while the corresponding measures 
are model predictions. N is the number of time points in the waveform sample, Psys and 
Pdia are the systolic and diastolic values of the pressure waveform Pao , while the aortic 
flow waveform is denoted as Qlvao . The final term constrains the mean venous pressure 
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Fig. 5  a The closed-loop, lumped-parameter model of the left ventricle, systemic arteries, and veins. b 
The open-loop lumped-parameter model of the left ventricle and systemic arteries. The circuit equivalent 
formulation of the models are depicted with the pressures and most of the mechanical parameters used to 
describe the systemic circulation. The venous compartment is volumeless and only partially described in the 
open-loop model. Pressures P, denote pressures in different parts of the cardiovascular system. Subscripts are 
as indicated by the figure text. Elv indicates the left-ventricular elastance function. Zao : characteristic aortic 
impedance, Cao : systemic arterial compliance, Rsys : total peripheral resistance, Rmv : mitral valve resistance. 
Taken from Bjørdalsbakke et al. [17] under a CC-BY−4.0 License
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( MVP ). All constants K are scaling constants with a magnitude similar to a reference 
level for the different measurement types. For further details, settings, and bounds for 
the optimization routine see Bjørdalsbakke et al. [17]. The cost function was identical for 
both CV models formulations, except for the final venous pressure term, which was not 
applicable to the open-loop model.

The variability for parameters estimated for a single participant at a given point in time 
was found in previous work to be smaller than for the interpersonal parameter varia-
bility for the study population, and smaller than the intra-individual variability over all 
measurement days in a majority of cases. Further details on implementation, optimiza-
tion and waveform processing can be found in Bjørdalsbakke et al. [17]. The parameters 
were normalized by body surface area (BSA), defined as BSA =

√

height·weight
3600  [36]. BSA 

has units of m 2 . This is to account for inter-individual variation in parameters that are 
known or can be assumed to be dependent upon such factors.

Parameter and statistical analysis

In addition to the parameter estimates optimized to the model itself, we computed esti-
mates based on conventional estimation methods for Cao and Rsys by the formulas:

and

For these equations PP denotes pulse pressure, SV is stroke volume, CO is cardiac out-
put, and MAP is the mean arterial pressure as computed by averaging the carotid or fin-
ger pressure waveform calibrated by brachial blood pressure. Here, PP is defined as the 
difference between systolic and diastolic brachial blood pressure.

(2)C
m
ao =

PP

SV
,

(3)R
m
sys =

MAP

CO

Table 12  The closed-loop model parameters are listed with their corresponding symbols and units

The same parameters are used to describe the open-loop model except for Csv and Vtot
Taken from Bjørdalsbakke et al. [17] under a CC-BY–4.0 license

Symbol Description Units

Cao Systemic arterial compliance mL

mmHg

Csv Systemic venous compliance mL

mmHg

Emax Maximal left ventricular elastance mmHg

mL

Emin Minimal left ventricular elastance mmHg

mL

Rmv Mitral valve resistance mmHg s

mL

Rsys Total peripheral resistance mmHg s

mL

T Heart period s

tpeak Time of peak ventricular elastance s

Vtot Total stressed blood volume mL

Zao Characteristic impedance of the aorta mmHg s

mL
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The end-systolic pressure–volume relation (ESPVR) is often approximated to be linear 
[37]. Estimation methods based on single heart beats using ventricular data have been 
proposed [38, 39]. However, we do not use ventricular volumes in this investigation, 
so therefore we use another simpler method to estimate the maximal left-ventricular 
elastance by neglecting the volume axis intercept for the ESPVR (Vd ) as follows:

Here, ESP denotes left-ventricular end-systolic pressure, and Pbr,sys is the brachial sys-
tolic pressure. This estimate carries some additional uncertainty due to this measure 
being load dependent [37]. This means that the elastance estimated in this way changes 
with changed afterload of the heart, while the slope of the end-systolic pressure–volume 
relation in the normal operating range is normally load independent.

Equations (2, 3 and 4) allowed us to compute the changes in these parameters for com-
parison to changes estimated using model-optimized parameters. Estimates made by 
these equations will be referred to as “conventional estimates”.

Regression analysis

Ordinary Linear Regression analysis as implemented in the Python library “statsmodels” 
[40], and correlation analysis performed through by the “Pingouin” Python library were 
the main employed statistical tools for this exploratory analysis.

Ross et al. have suggested research designs and statistical methods to model exercise 
response variability to changes in CRF for different study designs [41]. For our analy-
sis, we instead include CRF as a predictor to explain changes in model parameters. Ross 
et  al. recommend using linear mixed-effects models for trials with repeated measure-
ments over time, but without a control groups. We consequently look at the personal-
ized parameters where the parameter for an individual i is given as:

Further, µ indicates the population average parameter, including both the intercept, and 
common regressor coefficients estimated for the population. Simultaneously, αi is the 
personal deviation from the average, which includes permanent effects such as sex, and 
transient effects such as age and lifestyle (diet, activity level, etc.), and we only allowed 
personal deviations in the model intercept for our analysis. εi indicates all sources of 
random error, which includes measurement errors, and error from the estimation pro-
cedure, but also short-term day-to-day variation. Although the model structure for the 
dynamic CV model may be simple, the behavior of state variables and model parameters 
may be complex and depend on data quality, noise, and the model structure itself. How-
ever, we are interested to see whether the data hold patterns which may be linked to how 
the parameters are influenced by fitness level, as they change over the study period. In 
order to understand some of these relationships better, we apply ordinary linear regres-
sion and linear mixed modeling in the context of Eq.(5), to relate measurements, and 
exercise stimuli to the estimated model parameters and their changes after the inter-
vention period. The linear mixed model fits a model for estimated parameters at day 1, 
2, and 3 of the measurement period to hemodynamic and fitness measurements made 

(4)E
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≈
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ESV
.

(5)θi = µ+ αi + εi.
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at corresponding time points, while accounting for individual variability in this rela-
tionship. Ordinary regression is applied to investigate the explanatory variables of the 
direct change in parameters. Our models are built in various configurations using age, 
sex, BMI, SV, VO2max , and changes in the last three. The letters A–D indicate different 
models with different choices of the listed regressors used to predict the chosen param-
eter value or change. A is the baseline model (including age, sex, and BMI), B includes 
VO2max , C includes SV, and D includes all listed predictors. An overview of the model 
configurations can be seen in Table 13.

To investigate regression to the mean, we tested whether the value on the last measure-
ment day of an individual’s parameters highly correlated to the deviation of the individual’s 
average value ( θpers,avg ) from the population average parameter value over all measurement 
days ( θpop ). The individual average was computed using only the first two measurement 
days. A high adjusted r2 would indicate how much variance is explained in the final param-
eter value by the personal average variability, and indicate a clustering about a personal 
mean. The clinical trial was uncontrolled in terms of parameter changes and non-exercising 
participants. Therefore, we needed to test whether it was likely that calculated changes were 
due to extreme observations of random effects, or if they were influenced by the exercise 
stimulus or other causes. Additionally, the change of the parameter value between measure-
ment day 1 and 3 was tested by whether it would correlate highly to the difference between 
the initial parameter value and the population value. In this case, a high negative correlation 
would indicate regression to the population mean. We refer to these two investigations of 
regression to the mean as the “regression to the mean analyses”.

Next, for the second part of the regression analysis focusing on other covariates than 
parameter values, we investigated whether the level of or change in CRF could explain 
variability in the parameters and parameter changes. This was assessed by comparing 
unexplained (estimated residual variance) and explained variance (adjusted r2 ) for regres-
sion models. We designed models for determining either the parameter change over all 12 
weeks, or the parameter development over all 12 weeks including individual variation. We 
would then assess whether any added parameters contributed to explaining more of the 
observed variability. For prediction of changes, the changes from day 1 to 3 were analyzed 
for the parameters Emax , Cao , and Rsys . The change between measurement day j and i is 
denoted as �i,j . For all regression models, the dependent variables are Z-score standard-
ized. The regressors for the linear mixed effects models are grand mean centered for the 
standardization.

Table 13  The different regression cases and what variables are used as dependent and 
independent variables

This applies both for the ordinary linear regression models, and the linear mixed-effects models

Case Dependent variable Independent variables

A Rsys/Cao/Emax Age, sex, BMI

B Rsys/Cao/Emax Age, sex, BMI, VO2max

C Rsys/Cao/Emax Age, sex, BMI, SV

D Rsys/Cao/Emax Age, sex, BMI, VO2max , SV
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Appendix A

Participant characteristics
Tables 14 and 15 present additional statistics about the participants in the different sub-
groups based on different blood pressure waveforms.

Table 14  Baseline characteristics of the study population included with carotid pressure waveforms

BSA: body surface area; BMI: body mass index; ABPM: ambulatory blood pressure monitoring; SV: stroke volume; LVOT: left-
ventricular outflow tract

SBP and DBP signifies systolic and diastolic office blood pressure measurement

4D refers to 3D measurement averaged over time

n = 14

Height 174.1 ± 8.9 cm

Weight 86.3 ± 15.5 kg

BSA 2.0 ± 0.2 m 2

BMI 28.4 ± 4.1 kg/m2

Age 56.5 ± 3.7 years

Sex M/F 6/8

SBP 136.0 ± 7.4 mmHg

DBP 84.8 ± 6.0 mmHg

VO2max 36.4 ± 6.8 mL/(kg min)

24h ABPM awake SBP 137.1 ± 10.5 mmHg

24h ABPM awake DBP 82.9 ± 7.0 mmHg

SV (4D) 88.7 ± 21.5 mL

SV LVOT 85.7 ± 20.1 mL

Table 15  Baseline characteristics of the study population included with finger pressure waveforms

BSA: body surface area; BMI: body mass index; ABPM: ambulatory blood pressure monitoring; SV: stroke volume; LVOT: left-
ventricular outflow tract

SBP and DBP signifies systolic and diastolic office blood pressure measurement

4D refers to 3D measurement averaged over time

n = 9

Height 171.2 ± 9.8 cm

Weight 79.2 ± 11.6 kg

BSA 1.9 ± 0.2 m 2

BMI 27.0 ± 3.4 kg/m2

Age 57.3 ± 3.3 years

Sex M/F 3/6

SBP 138.6 ± 9.0 mmHg

DBP 85.3 ± 5.5 mmHg

VO2max 34.8 ± 8.3 mL/(kg min)

24h ABPM awake SBP 133.7 ± 7.3 mmHg

24h ABPM awake DBP 81.8 ± 5.8 mmHg

SV (4D) 73.3 ± 11.2 mL

SV LVOT 75.6 ± 15.8 mL
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Appendix B

Closed‑loop model results
The appended Tables 16, 17, 18, and 19 show results for the closed-loop cardiovascular 
model.

Table 16  Maximal, minimal, average and average absolute changes for total peripheral resistance 
( Rsys ), systemic arterial compliance ( Cao ), and maximal left-ventricular elastance ( Emax)

Results are given for parameter changes produced by closed-loop model optimization and by computation using 
conventional equations, based on both carotid (C) and finger (F) pressure waveforms

Maximal and minimal changes are given unsigned, and can be any changes between the first, second and third 
measurement days

The carotid measurements describe 14 participants with carotid pressure measurements, while the finger pressure includes 
9 participants with synchronized flow and pressure

Parameter Wave-
form

Estimation 
method

Maximal 
abs. 
change

Minimal 
abs. 
change

Maximal 
change

Minimal 
change

Mean change Mean abs. 
change

Units

Rsys C Model 0.211 0.001 0.211 − 0.174 − 0.009(0.097) 0.081(0.055) mmHg s

mLm2

Cao C Model 0.660 0.004 0.473 − 0.660 0.037(0.261) 0.220(0.151) mL

mmHgm2

Emax C Model 0.465 0.007 0.362 − 0.465 − 0.027(0.161) 0.133(0.094) mmHg

mLm2

Rsys C Conv. 0.213 0.000 0.213 − 0.203 − 0.011(0.111) 0.091(0.064) mmHg s

mLm2

Cao C Conv. 0.324 0.001 0.265 − 0.324 0.016(0.145) 0.122(0.080) mL

mmHgm2

Emax C Conv. 0.793 0.004 0.504 − 0.793 − 0.074(0.246) 0.188(0.176) mmHg

mLm2

Rsys F Model 0.144 0.003 0.144 − 0.141 − 0.010(0.064) 0.047(0.045) mmHg s

mLm2

Cao F Model 0.625 0.001 0.624 − 0.398 0.077(0.282) 0.207(0.207) mL

mmHgm2

Emax F Model 0.631 0.006 0.628 − 0.631 0.027(0.281) 0.234(0.159) mmHg

mLm2

Rsys F Conv. 0.163 0.002 0.157 − 0.163 − 0.019(0.072) 0.055(0.050) mmHg s

mLm2

Cao F Conv. 0.243 0.001 0.243 − 0.113 0.065(0.102) 0.098(0.070) mL

mmHgm2

Emax F Conv. 0.793 0.019 0.161 − 0.793 − 0.175(0.210) 0.207(0.179) mmHg

mLm2
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Table 17  Correlation statistics for parameter changes from total peripheral resistance ( Rsys ), 
systemic arterial compliance ( Cao ), and maximal left-ventricular elastance ( Emax)

Results are given for correlations between parameter changes produced by closed-loop model optimization and by 
computation using conventional techniques, based on both carotid (C) and finger (F) pressure waveforms

Parameter Wave-form Temporal change 
(meas. day)

r p value CI95%

Rsys C 1–2 0.994 < 10
−3 [0.98, 1.00]

Rsys C 1–3 0.995 < 10
−3 [0.98, 1.00]

Rsys C 2–3 0.990 < 10
−3 [0.97, 1.00]

Rsys C All 0.993 < 10
−3 [0.99, 1.00]

Cao C 1–2 0.594 0.025 [0.09, 0.86]

Cao C 1–3 0.816 < 10
−3 [0.50, 0.94]

Cao C 2–3 0.594 0.025 [0.09, 0.85]

Cao C All 0.674 < 10
−3 [0.47, 0.81]

Emax C 1–2 − 0.286 0.343 [− 0.72, 0.31]

Emax C 1–3 − 0.631 0.021 [− 0.88, − 0.12]

Emax C 2–3 − 0.222 0.446 [− 0.67, 0.35]

Emax C All − 0.391 0.013 [− 0.63, -0.09]

Rsys F 1–2 0.978 < 10
−3 [0.90, 1.00]

Rsys F 1–3 0.991 < 10
−3 [0.95, 1.00]

Rsys F 2–3 0.995 < 10
−3 [0.98, 1.00]

Rsys F All 0.990 < 10
−3 [0.98, 1.00]

Cao F 1–2 − 0.124 0.750 [− 0.73, 0.59]

Cao F 1–3 0.320 0.402 [− 0.44, 0.81]

Cao F 2–3 0.525 0.147 [− 0.21, 0.88]

Cao F All 0.215 0.281 [− 0.18, 0.55]

Emax F 1–2 − 0.192 0.650 [− 0.59, 0.79 ]

Emax F 1–3 − 0.321 0.438 [− 0.84, 0.50]

Emax F 2–3 − 0.418 0.263 [− 0.85, 0.34]

Emax F All − 0.327 0.110 [− 0.64, 0.08]
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Table 18  Average and average absolute parameter changes over different periods throughout the 
study period, describing the parameter change from measurements made before a CPET and the 
day after

Standard deviations are given in parentheses

Pre-CPET denotes parameter changes calculated between the first and final measurement day based on measurements 
made prior to the CPET

Results are given for parameter changes produced by closed-loop model optimization and by computation using 
conventional techniques, based on the finger pressure waveforms

Parameter Estimation 
change

Temporal change Mean abs. change Mean change

Rsys Model CPET week 0 0.046(0.040) 0.018(0.063)

Rsys Model CPET week 12 0.059(0.020) 0.026(0.063)

Rsys Model Pre-CPET week 0-12 0.047(0.063) − 0.036(0.070)

Rsys Conv. CPET week 0 0.052(0.043) 0.016(0.072)

Rsys Conv. CPET week 12 0.064(0.022) 0.035(0.065)

Rsys Conv. Pre-CPET week 0-12 0.055(0.066) − 0.053(0.067)

Cao Model CPET week 0 0.121(0.167) 0.114(0.173)

Cao Model CPET week 12 0.183(0.356) − 0.179(0.359)

Cao Model Pre-CPET week 0-12 0.312(0.348) 0.312(0.348)

Cao Conv. CPET week 0 0.072(0.071) 0.068(0.076)

Cao Conv. CPET week 12 0.031(0.024) − 0.003(0.044)

Cao Conv. Pre-CPET week 0-12 0.127(0.069) 0.127(0.069)

Emax Model CPET week 0 0.126(0.071) 0.126(0.071)

Emax Model CPET week 12 0.177(0.116) − 0.017(0.234)

Emax Model Pre-CPET week 0-12 0.113(0.078) 0.113(0.078)

Emax Conv. CPET week 0 0.082(0.090) − 0.082(-0.090)

Emax Conv. CPET week 12 0.070(0.040) 0.070(0.040)

Emax Conv. Pre-CPET week 0-12 0.281(0.078) − 0.281(0.078)

Table 19  Ordinary linear regression models for changed model parameters based on the difference 
between the individual average parameter values over the two first measurement days (subscript: 
avg) or the baseline parameter value and the population average (subscript: pop)

The model parameters are optimized for the closed-loop model using the carotid pressure waveform

Indices, 1–3 indicate measurement day

DV: dependent variable

DV: Rsys,3 Cao,3 Emax,3 �1,3Rsys �1,3Cao �1,3Emax

Intercept 0.590* 0.967* 0.988* − 0.013 0.056 − 0.041

Rsys,avg-Rsys,pop 0.102*

Cao,avg-Cao,pop 0.112*

Emax,avg-Emax,pop 0.164*

Rsys,1-Rsys,pop − 0.061*

Cao,1-Cao,pop − 0.149*

Emax,1-Emax,pop − 0.063

Adj. r2 0.637 0.231 0.644 0.265 0.319 0.076

N 14 14 14 14 14 14

F-statistic 23.81 4.911 24.47 5.682 7.095 2.067

F-test, p-value 0.000* 0.047* 0.000* 0.035* 0.021* 0.176
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Appendix C

Pairplots
Figures 6 and 7 show the pairplots for scatterplots between different variables applied in 
the regression analysis as well as the participants included in the case study. The changes 
of parameters compared to the baseline estimates using the closed-loop CV model can 
be seen in Figs. 8 and 9.

Fig. 6  Pairplots of variables used in the regression analysis. The parameter values are optimized for the 
open-loop model. The participants with VO2max changes in the top quartile are marked by black markers. The 
final measurement day is marked by a diamond. The color encoding indicates sex
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Fig. 7  Pairplots of variables used in the regression analysis. The parameter values are optimized for the 
closed-loop model. The participants with VO2max changes in the top quartile are marked by black markers. 
The final measurement day is marked by a diamond. The color encoding indicates sex
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Fig. 8  The figure presents the quartiles with wiskers for the changes in parameters relative to the parameters 
estimated at baseline, or on week 0. These results are made using the carotid pressure waveform and the 
closed-loop model
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