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Abstract 

Background:  Integration of a patient’s non-invasive imaging data in a digital twin 
(DT) of the heart can provide valuable insight into the myocardial disease substrates 
underlying left ventricular (LV) mechanical discoordination. However, when generating 
a DT, model parameters should be identifiable to obtain robust parameter estimations. 
In this study, we used the CircAdapt model of the human heart and circulation to find 
a subset of parameters which were identifiable from LV cavity volume and regional 
strain measurements of patients with different substrates of left bundle branch 
block (LBBB) and myocardial infarction (MI). To this end, we included seven patients 
with heart failure with reduced ejection fraction (HFrEF) and LBBB (study ID: 2018-
0863, registration date: 2019–10–07), of which four were non-ischemic (LBBB-only) 
and three had previous MI (LBBB-MI), and six narrow QRS patients with MI (MI-only) 
(study ID: NL45241.041.13, registration date: 2013–11–12). Morris screening method 
(MSM) was applied first to find parameters which were important for LV volume, 
regional strain, and strain rate indices. Second, this parameter subset was iteratively 
reduced based on parameter identifiability and reproducibility. Parameter identifi-
ability was based on the diaphony calculated from quasi-Monte Carlo simulations 
and reproducibility was based on the intraclass correlation coefficient ( ICC ) obtained 
from repeated parameter estimation using dynamic multi-swarm particle swarm opti-
mization. Goodness-of-fit was defined as the mean squared error ( χ2 ) of LV myocardial 
strain, strain rate, and cavity volume.

Results:  A subset of 270 parameters remained after MSM which produced high-
quality DTs of all patients ( χ2 < 1.6), but minimum parameter reproducibility was poor 
( ICCmin = 0.01). Iterative reduction yielded a reproducible ( ICCmin = 0.83) subset of 75 
parameters, including cardiac output, global LV activation duration, regional mechani-
cal activation delay, and regional LV myocardial constitutive properties. This reduced 
subset produced patient-resembling DTs ( χ2 < 2.2), while septal-to-lateral wall work-
load imbalance was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05).
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Conclusions:  By applying sensitivity and identifiability analysis, we successfully deter-
mined a parameter subset of the CircAdapt model which can be used to generate 
imaging-based DTs of patients with LV mechanical discoordination. Parameters were 
reproducibly estimated using particle swarm optimization, and derived LV myocardial 
work distribution was representative for the patient’s underlying disease substrate. This 
DT technology enables patient-specific substrate characterization and can potentially 
be used to support clinical decision making.

Keywords:  Digital twin, Mechanical discoordination, Left bundle branch block, 
Myocardial infarction, Myocardial strain, Sensitivity analysis, Identifiability analysis, 
Parameter estimation, Myocardial work, Disease characterization

Background
Left ventricular (LV) mechanical discoordination is defined by the reciprocal shortening 
and stretching of myocardium within the LV wall [1–3]. Myocardial stretching during 
systole involves wasted work and is, therefore, detrimental for cardiac pump function 
[4]. Mechanical discoordination is often caused by an electrical conduction distur-
bance, such as left bundle branch block (LBBB), but it can also be induced by myocardial 
ischemia or infarction [2]. The underlying disease substrates of mechanical discoordi-
nation determine its progression and the potential effects of cardiac resynchronization 
therapy (CRT) [2, 5].

To increase insight into a patient’s underlying disease substrates of mechanical dis-
coordination, a digital twin (DT) of the patient’s heart can be developed by integrating 
patient-specific measurements into a biophysical computational model [6]. Previous 
studies have demonstrated that LV regional strain measurements reveal different char-
acteristic patterns in hearts with LBBB [7, 8] and myocardial infarction (MI) [9], as well 
as in hearts with combined LBBB-MI substrates [5, 10]. Myocardial strain measure-
ments are, therefore, valuable to generate a DT. Furthermore, supplementing strain with 
LV cavity volume measurements, which are derived from routine non-invasive imaging, 
provides more information on LV systolic and diastolic function.

The CircAdapt model of the human heart and circulation [11] is a suitable model to 
generate DTs based on these non-invasive imaging data. CircAdapt has previously been 
shown to realistically simulate myocardial mechanics during LBBB and MI [12, 13]. Fur-
thermore, the model is able to simulate regional mechanics at the same spatial scale as 
current non-invasive strain imaging technologies and at low computational cost.

However, personalization of CircAdapt is challenged by its large number of model 
parameters, of which only a subset is identifiable from LV cavity volume and regional 
strain measurements. Determining these identifiable parameters is important to ensure 
robust parameter estimations of the DT [14]. To personalize a cardiovascular model 
with many parameters, several techniques of sensitivity and identifiability analysis have 
been described before [15, 16]. Van Osta et  al. [17] combined these techniques into a 
framework of parameter subset reduction, which consisted of Morris Screening Method 
(MSM) [18], quasi-Monte Carlo sampling, and particle swarm optimization (PSO) [19, 
20].

In the current study, we utilize and expand upon this framework of parameter subset 
reduction to determine a subset of identifiable parameters which can be used to gener-
ate DTs of patients with LV mechanical discoordination based on their LV cavity volume 
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and regional strain measurements. We also assess the credibility of these DTs by com-
paring their LV myocardial work distribution against the patient’s electrocardiographic 
characteristics and location of MI.

Results
Sensitivity analysis

Seven consecutive iterations of MSM were performed using a 6-segment LV model, 
with the last iteration including a subset of important parameters only. Computational 
time was 4.6 ± 2.7 h per MSM iteration with an average of 2143 ± 1069 trajectories. The 
results of the first and last iteration are shown in Additional file 1: Figures S1 and S2. 
The final subset after MSM consisted of D = 108 parameters, of which DMT = 94 
were myocardial tissue parameters, subdivided over the LV ( DMT,LV = 84 ), left atrium 
( DMT,LA = 7 ) and right ventricle ( DMT,RV = 3 ). The other 14 parameters included gen-
eral hemodynamic parameters ( DGH = 3 ), pulmonary and systemic circulation param-
eters ( DPS = 3 ), and mechanical activation parameters ( DMA = 8 ). Success rates of 
evaluated trajectories in all iterations were 11.4%, 13.0%, 18.9%, 18.9%, 20.2%, 19.7%, and 
20.6%, respectively.

Parameter estimation and identifiability analysis

The transition from a 6-segment LV model, which was used for the sensitivity and iden-
tifiability analyses, to an 18-segment LV model, which was used for patient-specific 
parameter estimation (PE), resulted in a threefold increase of the number of segmental 
model parameters. As a result, the total number of model parameters increased from 
D = 108 to D = 270 (par-270; Additional file 2: Table S1). Figure 1a, b demonstrates the 
propagation of ICCmin vs. mean and standard deviation of χ2 of the patient population 
while performing iterations of parameter subset reduction. The parameters included 
in all different subsets evaluated are shown in Additional file 3: Table S2. After twelve 
iterations of subset reduction, all parameters in the subset satisfied the criterium for 

Fig. 1  Propagation of a minimum intraclass correlation coefficient ( ICCmin ) of estimated model parameters 
versus b mean and standard deviation of cost function value ( χ2 ) of the population while performing 
iterations of parameter subset reduction. The green dot (par-75) indicates the parameter subset which was 
most extensive while satisfying the criterium of ICCmin > 0.75
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reproducibility ( ICCmin = 0.83 ). This final subset (par-75) consisted of cardiac output 
( q0 ), atrioventricular delay ( dTauAv ), global LV activation duration ( ADOLV ), and four 
regional parameters for each of the 18 LV segments: mechanical activation delay ( dT  ), 
reference wall area ( AmRef  ), zero-passive stress sarcomere length ( Ls0Pas ), and stiffness 
coefficient ( k1).

While ICCmin increased with reducing parameter subset size, goodness-of-fit 
decreased as reflected by an increase of the mean χ2 of the population from 0.81 ± 0.45 
(par-270) to 1.23 ± 0.56 (par-75). One additional iteration of parameter subset reduction 
(par-74) demonstrated that χ2 increased to 1.47 ± 0.67, while ICCmin remained similar 
( ICCmin = 0.83).

Obtained χ2 values including the different contributors of χ2 for all DTs generated 
using par-75 are shown in Table 1. Out of all 13 DTs, Figs. 2 and 3 show the best and 
least good DT according to χ2 , respectively. The least good DT (LBBB-only patient 2) 
visually agreed well with the strain measurements.

Digital twin credibility evaluation

All LBBB-only DTs demonstrated an increased workload on the LV free wall as com-
pared to the septum (Fig. 4). LBBB-MI DTs 2 and 3 showed a similar characteristic LV 
workload pattern which was relatively unaffected by their MI substrates. In the DT of 
patient 1, however, LV workload showed to be more homogeneous. There was no con-
sistent pattern of septal-to-lateral workload imbalance in the MI-only DTs. However, 
in MI-only DTs 1, 2, 4 and 6, segments with increased LGE showed reduced normal-
ized work ( Wnorm,i ). Septal-to-lateral work difference �W norm,LW−S (Fig. 5) was posi-
tive in all LBBB-only and LBBB-MI DTs, indicating that more work was performed 
by the lateral wall than by the septum. In the MI-only group, both positive and nega-
tive values of �W norm,LW−S were found, reflecting a non-consistent septal-to-lateral 

Table 1  Results of parameter estimation using the final parameter subset (par-75) for all 13 digital 
twins generated

χ
2 : total cost function value; VED,mea : measured LV end-diastolic volume; EFmea : measured LV ejection fraction; χ2

VED
 : LV end-

diastolic volume contributor; χ2
EF : LV ejection fraction contributor; χ2

ε
 : strain contributor; χ2

ε̇
 : strain rate contributor

Patient subgroup Patient 
number

χ
2 (–) VED,mea (mL) EFmea (%) χ

2
VED

 (–) χ
2
EF

 (–) χ
2
ε

 (–) χ
2
ε̇

 (–)

MI-only 1 0.57 132 49 < 0.1 0.3 3.8 17.6

2 1.06 69 53 2.7 0.6 6.6 30.5

3 0.64 95 49 1.0 1.9 3.7 17.8

4 1.47 69 54 0.2 0.5 9.0 46.1

5 1.12 102 52 0.8 0.6 8.2 32.8

6 0.51 118 45 0.7 0.5 4.0 14.1

LBBB-only 1 1.22 147 30 < 0.1 0.1 9.9 36.5

2 2.18 179 40 < 0.1 0.1 18.3 64.5

3 1.09 190 26 < 0.1 0.3 6.8 34.2

4 0.95 200 27 < 0.1 < 0.1 7.7 28.6

LBBB-MI 1 1.10 122 35 0.4 0.8 6.0 34.4

2 2.09 230 27 1.7 0.8 19.6 57.5

3 1.98 94 47 1.2 0.4 13.1 60.7
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pattern of workload imbalance. Comparison between subgroups revealed that 
�W norm,LW−S was higher for the LBBB-only DTs than for the MI-only DTs (p < 0.05). 
Average �Wnorm,LW−S of LBBB-MI DTs also seemed to be higher than that of MI-only 
DTs, however, no significant difference between these groups was found.

Discussion
We utilized and expanded upon an existing framework for parameter subset reduction 
to determine a subset of parameters of the CircAdapt model which were identifiable 
from LV cavity volume and regional strain measurements of patients with LV mechani-
cal discoordination. The obtained parameter subset included cardiac output, global LV 
activation duration, regional mechanical activation delay, and regional LV myocardial 
constitutive properties. This subset was used to personalize the CircAdapt model, result-
ing in the generation of a digital twin (DT). We created DTs of LBBB patients with and 
without MI and of narrow-QRS patients with MI. All DTs had similar LV cavity volumes 
and regional strain patterns as measured in the patients. Moreover, LV myocardial work 
distribution of the DT was found to provide insight into the patient’s underlying myo-
cardial disease substrate. We hypothesize that the proposed DT methodology can serve 
as a clinical support tool in patients with LV mechanical discoordination.

Fig. 2  Best fit of par-75 in the patient population according to χ2 . The upper panels show the 
echocardiographic strain and volume measurements, while the middle and lower panels show the strains 
and volumes of the DT for par-270 and par-75, respectively
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The complexity of the cardiovascular system provides a challenge for creating DTs 
of the heart and circulation, especially since available measurement data is often 
practically limited [14]. Complexity of developed cardiovascular models is highly 
variable and depends on the level of detail included to describe cardiac geometry, 
electromechanics, and hemodynamics [21]. When model complexity is too high for 
personalization, a reduced-order model can provide a useful alternative. For exam-
ple, models with lower dimensionality can be developed [22, 23], or models can be 
reparameterized to reduce their number of parameters [24]. During our iterations of 
parameter subset reduction, we simplified the CircAdapt MultiPatch model by group-
ing regional LV parameters into global LV parameters, thereby simulating homogene-
ity of all LV wall segments. The observed non-continuous increase of ICC (Fig.  1a) 
showed that identifiability of these global parameters differed from their regional 
parameter definitions.

The methods which we used for sensitivity and identifiability analysis were chosen 
based on their strengths for our optimization problem as well as on their computa-
tional feasibility [15], but they are not the only techniques to determine parameter 
sensitivity and identifiability. While we applied MSM, which has previously been used 
for sensitivity analysis in cardiovascular models with many parameters [16, 25], vari-
ance-based sensitivity analysis [15] and polynomial chaos expansion [16, 26] provide 

Fig. 3  Least good fit of par-75 in the patient population according to χ2 . The upper panels show the 
echocardiographic strain and volume measurements, while the middle and lower panels show the strains 
and volumes of the DT for par-270 and par-75, respectively
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powerful methods for lower-dimensional problems. Furthermore, we used diaphony 
as an index of identifiability, but other identifiability analysis methods have previ-
ously been described, such as profile likelihood analysis [27, 28]. This method was 
considered too computationally demanding, but might provide more insight into 
the robustness of the final parameter subset. To allow more extensive sensitivity and 
identifiability analyses in future evaluations, surrogate models could provide interest-
ing alternatives to reduce computational cost [29].

In evaluating parameter identifiability, structural and practical identifiability are com-
monly distinguished [27, 28]. This distinguishment is important since practical identi-
fiability may be improved by including more or other measurements [27, 28]. We did 
not differentiate between structural and practical identifiability since we focused on the 
use of LV cavity volume and regional strain measurements. However, if future studies 
reveal that relevant diagnostic parameters are missing, the set of measurements should 
be extended.

The use of Monte Carlo techniques to calculate diaphony was previously shown to be 
applicable for relatively large parameter sets [17]. While Van Osta et al. [17] applied this 
methodology to a CircAdapt configuration with five ventricular wall segments, in the 

Fig. 4  Regional LV normalized work ( Wnorm,i ) of all DTs generated using par-75, and segmental late 
gadolinium enhancement (LGE) percentage as quantified using cardiac magnetic resonance imaging. 
All LBBB-only and LBBB-MI DTs demonstrated a larger amount of work performed by the lateral wall as 
compared to the septum. This typical pattern of septal-to-lateral wall workload imbalance was not observed 
in the MI-only DTs. In LBBB-MI DT 1 and in MI-only DTs 1,2, 4 and 6, regions of increased LGE demonstrated 
reduced Wnorm,i . *LGE pattern was interpreted as non-ischemic by an experienced cardiologist
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current study, seven or nineteen ventricular wall segments were included. Hereby, the 
cost function was dominated by the strain and strain rate components (Eqs. 1, 11). Our 
sensitivity analysis showed, however, that certain model parameters such as q0 were par-
ticularly sensitive to the volume components. We, therefore, also calculated diaphony 
for each individual component of the cost function to assess parameter identifiability.

Patients with LV mechanical discoordination are generally associated with reduced 
pump function resulting from underlying myocardial tissue abnormalities. Our final 
parameter subset (par-75) included global LV pump function parameters as well as 
parameters determining regional myocardial activation and constitutive properties and, 
therefore, seems to include a relevant set of parameters also to describe the pathophysi-
ology of mechanical discoordination. In the current patient population, which was lim-
ited in size, we identified relatively consistent patterns of estimated parameter values 
associated with the underlying pathologies of LBBB and MI. In DTs of LBBB patients, 
mechanical activation was on average later in the LV free wall than in the septum, while 
in DTs of MI patients a selection of myocardial segments with increased LGE had a 
reduced zero-passive stress length, representing a reduced contractility, or an increased 
stiffness coefficient. As expected, we observed that mechanical activation delay was non-
identifiable in hypocontractile segments, which complicated the interpretation of seg-
mental activation delay in most DTs. At the same time, the population size was too small 
to link abnormal constitutive behavior of the myocardium to increased LGE.

Fig. 5  Normalized septal-to-lateral wall workload imbalance ( �Wnorm,LW−S ) for the DTs of the three patient 
subgroups generated using the final subset (par-75). Workload imbalance was significantly higher for the 
LBBB-only DTs than for the MI-only DTs (p < 0.05) but there was no significant difference between LBBB-only 
and LBBB-MI DTs. While �Wnorm,LW−S of LBBB-MI DTs also seemed to be higher than that of MI-only DTs, there 
was no significant difference between these two subgroups
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Future studies could investigate whether the parameters included in par-75 sufficiently 
represent the underlying myocardial tissue properties of the patient. This validation 
of parameter values is especially important since the framework of parameter subset 
reduction produces a single subset of reproducible parameters. While this parameter 
subset is the optimal solution of this framework, it may not be the only reproducible 
subset that allows generation of patient-resembling DTs based on the integrated meas-
urement information. As part of this validation, parameter estimation in healthy control 
subjects could be performed.

Credibility of DTs generated using par-75 was supported by regional myocardial work 
which provides a more integrative measure than individual model parameters. Together, 
estimated parameter values define the myocardium’s active and passive stress–strain 
relations which determine regional myocardial work. When calculated in experimental 
or clinical studies, work is often approximated using non-invasive pressure measure-
ments [30]. These DTs provide a potential advantage here, since they include myocardial 
stress calculations which allow quantifying work as the enclosed area of the myocardial 
stress–strain loop.

In agreement with experimental findings [31], our DTs of LBBB-only patients dem-
onstrated a septal-to-lateral imbalance of workload, which was not typically observed 
in our DTs of MI-only patients (Fig. 4). This observation supports the credibility of our 
DTs generated. However, while it may have been expected that septal-to-lateral work-
load imbalance was lower in the LBBB-MI DTs as compared to the LBBB-only DTs [10], 
no significant difference between these subgroups was found (Fig. 5). We note that our 
subgroup sizes were currently limited and that statistical significance may have been dif-
ferent when more patients would have been included.

Although in our study, there was no consistent spatial match between regions of 
increased LGE in the patient and reduced LV myocardial work in the DT, our DTs did 
show reduced myocardial work in infarcted regions (Fig. 4). Clinical studies using strain 
measurements to detect non-transmural and transmural infarction have found variable 
correlations between infarct transmurality and LGE, even in the absence of LBBB [32, 
33]. The non-consistent match between reduced myocardial work and increased LGE in 
our study may, therefore, be considered in line with previous findings.

Comparing our results with other personalized modeling studies in patients with LV 
mechanical discoordination, Owashi et al. [34] similarly included HFrEF patients with 
LBBB, and were able to reproduce the measured strain patterns by fitting a similar set 
of myocardial tissue parameters as included in our final subset. Mineroff et al. [35] addi-
tionally personalized parameters determining systemic and pulmonary arterial dimen-
sions as well as valvular dimensions. However, to be able to, they included additional 
measurements which increased the identifiability of these parameters in their study. 
As mentioned before, future studies could investigate whether our parameter subset is 
extensive enough to support clinical decision making or that measurements should be 
added to identify relevant parameters which are currently missing.

Computational cost presented limitations to the methodologies used in this study. For 
the initial parameter set, we considered the number of parameter interactions in the 
18-segment LV model too high to perform MSM within a feasible time frame. Therefore, 
we used a 6-segment LV model as a computationally simpler alternative. Following the 
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same reasoning, we also performed Sobol sampling in a 6-segment LV model. Evalua-
tion of three million Sobol simulations took approximately 24 h. A higher-dimensional 
space as associated with the 18-segment model would have required an exponential 
increase of the number of simulations to obtain a similar sampling density. We expect 
that the sensitivity and identifiability of parameters within the 6-segment LV model did 
not significantly differ from that in the 18-segment model, but we note that this assump-
tion was not verified. Furthermore, in PE, a maximum of five repeated optimization 
protocols were performed, while a larger number of optimizations would have further 
improved accuracy of ICC estimations. Repeated optimizations started with a different 
random seed and ran independent of each other in parallel. Each DMS–PSO evalua-
tion took between 18 and 36 h on a single core, which limited the feasibility of perform-
ing more repetitions. During the first iterations of subset reduction, moreover, multiple 
parameters were removed simultaneously. Reducing per single parameter during all iter-
ations would have been optimal since removing one parameter could increase identifi-
ability of other parameters. By performing DMS–PSO during each iteration, however, 
we did assess the effect of a simultaneous removal of parameters on χ2 so that important 
parameters were not accidentally removed.

While DMS–PSO is an effective optimization algorithm, it yields a single point esti-
mate of parameter values. Future studies could investigate whether other optimization 
algorithms based on e.g. Bayesian inference [36] could be used to obtain parameter dis-
tributions, which can have important implications when using the DT to support clinical 
decision making.

To aid in clinical decision making, the DT provides several potential strategies. One 
strategy is to directly use estimated parameter values as diagnostic or prognostic indices 
[37]. Second, since the DT is integrated into a model of the heart and circulation, many 
other indices representing the hemodynamic state of the patient can be derived from the 
DT and potentially be used as markers of interest. The septal-to-lateral workload imbal-
ance which was quantified in this study is an example of such a derived index and has 
been used as a marker to predict the effect of pacemaker therapy [38]. Third, the DT may 
be used for in silico therapy testing, thereby simulating the effect of an intervention. An 
example would be to simulate pacing therapy in dyssynchronous heart failure patients 
considered for CRT [39].

Conclusions
By applying sensitivity and identifiability analysis, we successfully determined a param-
eter subset of the CircAdapt model which can be used to generate imaging-based digital 
twins of patients with LV mechanical discoordination. The subset included cardiac out-
put, global LV activation duration, regional mechanical activation delay, and regional LV 
myocardial constitutive properties. In all patients, these parameters were reproducibly 
estimated using particle swarm optimization. The digital twin-derived LV myocardial 
work distribution seemed to provide insight into the patient’s underlying myocardial dis-
ease substrate. This DT technology may be used for automatic substrate characterization 
of patients with LV mechanical discoordination, while future studies should investigate 
the potential of these DTs to support clinical decision making.
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Methods
Patient data

Patient cohort

A total of 13 patients were retrospectively included. Seven patients with heart failure 
with reduced ejection fraction (HFrEF) and LBBB were recruited at Maastricht Univer-
sity Medical Center (MUMC), all having LVEF < 35% and QRS width ≥ 130 ms. Patients 
were selected based on availability of late gadolinium enhancement (LGE) cardiac mag-
netic resonance (CMR) exams, thereby including four non-ischemic patients (LBBB-
only) and three patients with prior MI (LBBB-MI). Patients were furthermore selected 
based on having good quality of echocardiographic images as assessed by an experienced 
cardiologist. Furthermore, six post-MI patients with narrow QRS (< 120 ms) (MI-only) 
were selected from the DEFI-MI (DEtection of Cardiac FIbrosis by LGE–MRI and circu-
lating biomarkers in patients with Myocardial Infarction) cohort, which was established 
at University Medical Center Utrecht (UMCU) [40] and which included patients with 
first-time MI. To include patients with sufficient myocardial dysfunction, we selected 
those DEFI-MI patients with a minimum LV infarct size of 10% of LV wall mass and a 
minimum LGE transmurality of 25% in at least one LV myocardial segment [12]. The 
clinical characteristics of these patients are summarized in Table 2.

Echocardiography

All patients had an echocardiographic exam in the context of the corresponding study 
where all images were digitally stored and analyzed offline. LBBB-only and LBBB-MI 
patients were scanned before cardiac resynchronization therapy device implantation 
using the EPIQ 7 ultrasound system (Philips Medical Systems, Best, The Netherlands). 
MI-only patients were scanned 6  months after the MI event using a Vivid E9 Ultra-
sound system (GE Healthcare, Horten, Norway). LV end-diastolic and end-systolic vol-
umes were reassessed by an experienced cardiologist using biplane Simpson’s method 
(Table 2).

Cardiac magnetic resonance

All patients underwent CMR with 2D LGE imaging for visualization of myocardial 
infarct tissue. All exams were performed on a 1.5 T clinical MR system (Ingenia; Philips 
Healthcare, Best, The Netherlands). Images were reviewed at the MUMC on a dedicated 
workstation (Sectra IDS7, Linköping, Sweden), and segmental LGE transmurality was 

Table 2  Clinical characteristics of the patient population and subpopulations

Values are mean ± SD

LBBB left bundle branch block, MI myocardial infarction, LVEF left ventricular ejection fraction, LVEDV left ventricular end-
diastolic volume

All patients (n = 13) LBBB-only (n = 4) MI-only (n = 6) LBBB-MI (n = 3)

Age (years) 62 ± 11 61 ± 13 58 ± 10 70 ± 6

Male gender (%, n) 85, 11 100, 4 83, 5 67, 2

QRS width (ms) 124 ± 33 153 ± 11 92 ± 13 150 ± 5

LVEF (%) 41 ± 11 31 ± 6 50 ± 3 37 ± 9

LVEDV (%) 134 ± 52 186 ± 34 98 ± 26 139 ± 55
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determined by visual assessment of an experienced cardiologist. At the UMCU, images 
were analyzed offline using Philips ISP9 software (Philips Healthcare, Best, The Neth-
erlands). Using the RV insertion points to the interventricular septum as anatomical 
landmarks, the heart was subdivided into 16 segments according to the model of the 
American Heart Association (AHA) [41], excluding the apical cap. The LGE was quan-
titatively assessed using the full width at half maximum (FWHM) method, providing a 
percentage for each of the analyzed segments and the total infarct size (global %) of the 
whole LV.

Myocardial strain imaging

Using QLAB advanced quantification software 13 for Philips ultrasound systems 
(MUMC) or EchoPac version 201 for GE (UMCU), good quality two-chamber, three-
chamber and four-chamber echocardiographic acquisitions were used for speckle track-
ing to obtain 18-segment LV longitudinal strain. Regions of interest were automatically 
tracked and manually adjusted to both the endo- and epicardial border following the 
standard recommendations [42]. The first frame in which the mitral valve was closed 
was manually selected as zero-strain reference.

Computational model: the CircAdapt model of the human heart and circulation

The CircAdapt model of the human heart and circulation is a closed-loop lumped-
parameter model which simulates beat-to-beat hemodynamics and mechanics of the 
heart and blood vessels [11]. The pulmonary and systemic circulation are modeled using 
a three-element model of resistive wave impedance, compliance and peripheral resist-
ance [43]. Cardiac walls are modelled as spherical shells, and the left and right ventricu-
lar walls are coupled through the interventricular septum using the TriSeg module [44]. 
Simulation of myocardial active and passive tissue mechanics is based on the three-
element Hill contraction model. When walls have homogeneous tissue properties, the 
model includes a total number of D = 100 parameters eligible for personalization. These 
parameters describe global hemodynamics ( DGH = 3 ), pulmonary and systemic vessels 
( DPS = 12 ), valves ( DV = 8 ), pericardium ( DP = 3 ), mechanical activation ( DMA = 4 ), 
and myocardial tissue properties ( DMT = 70 ). Myocardial tissue properties are sub-
divided over the septum and left ventricular free wall ( DMT,LV = 28 ), right ventricle 
( DMT,RV = 14 ), left atrium ( DMT,LA = 14 ), and right atrium ( DMT,RA = 14).

18‑segment and 6‑segment LV model

Walls are subdivided into different segments to simulate heterogeneity of myocardial tis-
sue properties within the walls [13]. To match the spatial scale of the available echo-
cardiographic strain measurements, an 18-segment LV model was used for parameter 
estimation in this study. To reduce computational cost during sensitivity and identifiabil-
ity analysis, however, a simplified 6-segment LV model was used.

Using the 6- or 18-segment LV model influences the total number of parameters. The 
number of LV myocardial tissue parameters DMT,LV increases from 28 in the TriSeg 
model to 14·nseg , with nseg the number of wall segments in the septum and LV free wall. 
In addition, a mechanical activation parameter is added for each extra segment. These 
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changes lead to a total number of D = 160 parameters and D = 340 parameters in the 
6- and 18-segment model, respectively.

Global LV myocardial tissue properties

We hypothesized that LV parameters which were regionally non-identifiable were 
potentially identifiable on a global LV scale. To check the sensitivity and identifiability 
of these global LV parameters, we defined these as global offset (GO) parameters, mean-
ing a global reference value for all LV segments. Adding these GO parameters increased 
the initial number of parameters for the 6-segment model to D = 174 (Additional file 3: 
Table S2).

Framework for parameter subset reduction

The framework for parameter subset reduction used in this study has been introduced 
elsewhere [17]. The framework includes a two-step approach (Fig. 6), consisting of sensi-
tivity analysis (SA) followed by a combination of PE and identifiability analysis (IA). This 
section briefly describes the framework and elaborates on a few extensions to the previ-
ously published framework.

The methodology used for SA is the Morris Screening Method (MSM) [16, 18] (Step 
1), which is a suitable method for models with many parameters. MSM ranks model 

Fig. 6  Framework for parameter subset reduction used, based on previous work by van Osta et al. [17]. 
The framework includes a two-step approach. In Step 1, sensitivity analysis using Morris Screening Method 
is performed iteratively to find parameters which are important for the model output of interest. In Step 
2, using patient-specific measurements, five repeated evaluations of parameter estimation (Step 2a) are 
performed to assess parameter reproducibility (Step 2b), after which, in case of insufficient parameter 
reproducibility, identifiability analysis is performed (Step 2c) to further reduce the parameter subset (Step 2d)
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parameters in order of sensitivity to the model output of interest, represented by the 
absolute average elementary effect µ∗ . During each iteration of MSM, parameters with 
below-average µ∗ for all outputs of interest are removed from the subset (i.e., fixed to 
their reference value). MSM iterations are repeated until all parameters in the subset 
have equal to- or above-average µ∗ for at least one output of interest.

In the second step, the parameter subset is iteratively reduced based on parameter 
identifiability. To first evaluate identifiability of the current subset, five independent DTs 
are generated for each patient using dynamic multi-swarm–particle swarm optimization 
(DMS–PSO) [45] (Step 2a). Reproducibility of parameter estimations is then assessed 
by calculating the intraclass correlation coefficient ( ICC ) (Step 2b). In case of insuffi-
cient reproducibility, parameter identifiability is more precisely quantified by Sobol low-
discrepancy sampling-derived diaphony (Step 2c). Finally, based on ICC and diaphony, 
a reduced parameter subset is proposed (Step 2d). This iterative process was stopped 
when all parameters were identifiable as based on reproducible parameter estimations.

Given the sampling range used for each parameter, the diaphony indicates on a 0-to-1 
scale to what extent a parameter has a preferred value within this range. A diaphony 
close to 1 means that the parameter has a high preference and is likely identifiable. 
Parameters with the lowest diaphony are, therefore, removed from the subset (Step 2d).

The current study expanded upon the existing framework by not only selecting the 
samples used for calculating diaphony based on the total cost function value, but also 
based on the individual components of the cost function. Moreover, the number of 
parameters removed within one iteration was chosen to depend on the size of the sub-
set. When this subset size was below a certain threshold, in addition, the effect on the 
value of the cost function was compared between removing a parameter with the lowest 
diaphony or ICC . The following paragraphs will discuss the methodologies of the frame-
work in more detail.

Sensitivity analysis

Input space  The input space � = R
D used for MSM was initially defined by the uncer-

tainty ranges of all D = 174 parameters of the 6-segment LV model (Additional file 3: 
Table S2). These ranges aimed to include a wide spectrum of cardiovascular abnormali-
ties which could be found in patients with LV mechanical discoordination.

To simulate relevant pathophysiological activation patterns rather than random acti-
vation patterns, a fixed direction of mechanical activation was defined, oriented from 
the anterior septum (S1) towards the LV posterior wall (LV4). Thereby, mechanical acti-
vation ranged from a normal to an LBBB-like activation pattern [7] (Additional file 4: 
Figure S3). Parameters τVV and τSL defined inter- and intraventricular delay, respectively, 
while parameters α1 , α2 , β1 and β2 determined activation times of the intermediately 
activated segments.

Furthermore, to simulate the functional consequences of MI, LV active myocardial tis-
sue parameters SfAct , vMax , LDAD , and LDCI , and LV passive myocardial tissue param-
eters SfPas and k1 were assigned wider ranges in segments S1, LV1, and LV3 (Additional 
file 3: Table S2). This definition allowed for a relatively large regional variation of con-
tractile function and stiffness while preserving a minimum degree of LV global contrac-
tile function and limiting LV global stiffness.
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Outputs of interest  We defined a set of scalar model outputs Yj representing the availa-
ble LV cavity volume and regional strain measurements. The volume outputs included LV 
end-diastolic volume (EDV) and LV stroke volume (SV). A total of 12 strain indices were 
calculated for each segment (Fig.  7a): peak strain ( εmin ), peak systolic strain ( εmin,sys ), 
post-systolic shortening ( �εpost ), pre-ejection stretch ( �εpre ), ejection stretch ( �εej ), 
mean systolic strain ( εsys ), mean ejection strain ( εej ), time to 10% shortening ( tsh,10 ), time 
to 50% shortening ( tsh,50 ), time to 90% shortening ( tsh,90 ), time to 10% re-lengthening 
( trel,10 ), and time to 50% re-lengthening ( trel,50 ). Furthermore, 4 regional strain rate indi-
ces were calculated (Fig. 7b): peak systolic strain rate ( ̇εmin,sys ), peak ejection strain rate 
( ̇εmin,ej ), mean systolic strain rate ( ̇εsys ), and mean ejection strain rate ( ̇εej ). It was assumed 
that these strain and strain rate indices together sufficiently described the morphology 
and amplitude of the strain signals.

MSM settings  The D-dimensional input space was normalized and discretized into a z-
level grid ( z = 8) with normalized parameter values xi ∈

{

0, 1
z−1 , . . . , 1

}

 where 

i ∈ {1, 2, . . . ,D} . Each trajectory started at a randomly chosen point on the grid and 
parameter values were changed one-at-a-time in a random order with step size � = 1

2
z

z−1 , 
such that all points on the grid were equally likely to be included. At each parameteriza-
tion x the model was evaluated and all outputs Yj were calculated. Per iteration we com-
puted a minimum of 1000 successful trajectories, after which we calculated µ∗ for all 
input–output relations.

Convergence was checked through a leave-one-out cross-validation, meaning that 
parameter importance was not changed upon leaving out any of the trajectories. If 
convergence was not met, an additional 100 successful trajectories were calculated 
until the leave-one-out condition was satisfied. To limit computational cost, a max-
imum number of 3000 successful trajectories were calculated, after which confi-
dence intervals were calculated using bootstrapping if convergence was not met. A 

Fig. 7  Strain (a) and strain rate (b) indices calculated as model output in MSM. εmin , peak strain; εmin,sys , 
peak systolic strain; �εpost , post-systolic shortening; �εpre , pre-ejection stretch; �εej , ejection stretch; εsys , 
mean systolic strain; εej , mean ejection strain; ε̇min,sys , peak systolic strain rate; ε̇min,ej , peak ejection strain 
rate; ε̇sys , mean systolic strain rate; ε̇ej , mean ejection strain rate; tsh,10 , time to 10% shortening; tsh,50 , time 
to 50% shortening; tsh,90 , time to 90% shortening; trel,10 , time to 10% re-lengthening; trel,50 , time to 50% 
re-lengthening. AVO aortic valve opening, AVC aortic valve closure
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parameter was then assumed to be non-important for a given output if the 95% confi-
dence interval of µ∗ was below the average µ∗ of all parameters.

Parameter estimation and identifiability analysis

During PE, model parameters were estimated in the 18-segment LV model to simulate 
all clinically measured strain signals. Regional LV parameters which were important dur-
ing MSM in at least one LV segment were estimated for all 18 segments, while important 
LV GO parameters were estimated only if the parameter was not estimated regionally. 
This parameter subset was iteratively reduced (Fig. 6, Step 2) to obtain a subset of identi-
fiable parameters.

Step 2a: repeated parameter estimation  The initial particle positions for DMS–PSO 
were determined by generating 1000 Monte Carlo (MC) simulations sampled from a uni-
form distribution with the same ranges as in MSM, but with additional restrictions on 
severity of electrical dyssynchrony, global LV contractility and stiffness to prevent unreal-
istic simulations. The initial particle positions were then defined by the best MC simula-
tions based on the cost function χ2 , which was defined as the mean squared error:

With dimensionless contributors:

In these equations, VED,mod and VED,mea are the simulated and measured LV end-dias-
tolic volume, respectively, while EFmod and EFmea represent the simulated and measured 
LV ejection fraction. Measurement uncertainties σVED and σEF were assumed to be pro-
portional to the measured value and equaled 0.13 · VED,mea and 0.14 · EFmea , respectively 
[46]. The number nseg equals the number of myocardial segments, while ndp is the num-
ber of data points used for comparing the simulated and measured strain and strain rate 
signals. Only strain from mitral valve closure till 10% global re-lengthening + 50 ms was 
included in the cost function, thereby excluding late diastolic strain. Simulated strain 
signals εi,mod were obtained by scaling simulated fiber strain εi,mod,f  to the amplitude of 
the longitudinal strain measurements of the patient:
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Here, Ls,i(t) is the sarcomere length of segment i at time t , while t0 is the timing of 
mitral valve closure. Furthermore, εglob,mea and εglob,mod,f  are the measured and simu-
lated peak values of the global strain signal, i.e., the average strain signal of all 18 LV 
segments. Simulated strains and strain rates were also resampled to the sampling fre-
quency of εmea . Measurement uncertainties σε and σε̇ were chosen to equal 2% and 
20%/s, respectively. Cycle time within the model ( tCycle ) was fixed to the average cycle 
time tcycle of all three echocardiographic acquisitions. Five independent estimations were 
obtained by repeating DMS–PSO with different starting points as derived from a new 
set of MC simulations.

DMS–PSO settings  A total of 60 particles were used, subdivided into 20 swarms of 
three particles. Every 20 iterations, swarms were randomly regrouped. An input space 
was defined based on the input space used for MC sampling with extended parameter 
boundaries (Additional file 2: Table S1) to improve algorithm performance. For particles 
outside these boundaries, the cost function was infinite. Particle velocities were limited to 
25% of the input space width to prevent particles from oscillating outside the input space. 
DMS–PSO was stopped when normalized particle energies were lower than 10–4, mean-
ing no parameter changed more than 1% of its MC input space width within one iteration, 
or when a maximum number of 2000 iterations were completed.

Step 2b: parameter reproducibility assessment  Intraclass correlation coefficient ( ICC ) 
was calculated for all estimated parameters by [47]

with

and

In these equations, n is the number of subjects and m equals the number of obser-
vations (i.e., repeated optimizations). For a regional LV parameter, n equaled the total 
number of myocardial segments multiplied by the number of patients, while for a global 
LV parameter n equaled the number of patients. The term xij represents the i, j th com-
ponent of the n× k matrix of all data, while Si is the mean value for each subject and x 
is the total mean value of all measured values xij . The minimum ICC of all parameters in 
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the subset ( ICCmin ) was used as a criterion for accepting or rejecting the current param-
eter subset. The subset was accepted when ICCmin > 0.75 , corresponding with good 
reproducibility [48].

Step 2c: parameter identifiability analysis  Using the 6-segment LV model, three million 
simulations were drawn from a Sobol low-discrepancy sampler using the same parameter 
ranges as in MSM [49]. Measured strains were averaged in the apex-to-base dimension, 
and nseg = 6 was used to calculate the strain- and strain rate-based components of the 
cost function as well as the total cost function value (Eqs. 1, 4, 5). To cover all patients 
in one set of simulations, tCycle was added as a parameter to allow for variation in heart 
rate. For each patient data set s , the best Nbest simulations were selected according to χ2

IA , 
which was based on the original χ2 with an additional term describing deviation of cycle 
time with doubled weight to increase importance:

with:

where σtcycle = 50ms , and tCycle and tcycle,mea are the modeled and measured cycle time, 
respectively. Furthermore, the best Nbest simulations were selected for each individual 
component of χ2

IA , meaning χ2
VED

 , χ2
EF , χ

2
tcycle

 , and the strain- and strain rate-based com-

ponents per segment χ2
εi

 and χ2
ε̇i

 . Diaphony d was then calculated for all parameters p 
and for all sixteen outputs q per patient data set s:

with Xbest(s) the set of the best Nbest = 2 · npar samples for data set s , with npar the num-
ber of parameters in the current subset. Parameters p were ranked based on their maxi-
mum diaphony over all patient data sets s and outputs q . For a regional LV parameter, 
the maximum diaphony of all six segments was used in this ranking.

Step 2d: parameter subset reduction  Initially, parameters with the lowest diaphony 
were removed from the subset. A regional LV parameter removed from the subset was 
returned into the subset as a global LV parameter, while global LV parameters removed 
were fixed to their reference values. Using this reduction approach, regional LV param-
eters determining the same tissue property in different LV segments were grouped into 
one parameter group, which was considered to be removed from the subset. When using 
the term ‘parameter group’ in this section, we, therefore, mean either a non-LV param-
eter, a global LV parameter, or a group of regional LV parameters. A total of 10, 5 or 3 
parameter groups were simultaneously removed from the current subset when more than 
30 groups were in the subset, between 16 and 30, or between 11 and 15, respectively. 

(11)χ
2
IA =

χ
2
VED

+ χ
2
EF + χ

2
ε
+ χ

2
ε̇
+ 2 · χ2

tcycle

4 + nseg · 2
,

(12)χ
2
tcycle

=

(

tCycle− tcycle,mea

σtcycle

)2

(13)dp,q(s) =

∣

∣

∣

∣

∣

∣

1

Nbest

∑

xp∈Xbest(s)

ei2πxp

∣

∣

∣

∣

∣

∣

,



Page 19 of 22Koopsen et al. BioMedical Engineering OnLine           (2024) 23:46 	

When 10 or fewer parameter groups were in the subset, only one parameter group was 
removed per iteration. Moreover, two reduced subsets were proposed based on remov-
ing the group with lowest diaphony or lowest ICC . The removal which caused the lowest 
maximal increase of χ2 out of all patients in PE was chosen as the best option.

Digital twin credibility evaluation

Experimental models of LBBB have demonstrated an asymmetrical distribution of myo-
cardial work between the septum and LV lateral wall [31]. To evaluate credibility of the 
DTs generated using the reduced parameter subset, we tested whether the DTs corrobo-
rated this observation by calculating a normalized index of septal-to-lateral wall work-
load imbalance. Specifically, it was hypothesized that this index was higher for both the 
LBBB-only and LBBB-MI DTs than for the MI-only DTs, while it was also hypothesized 
that this index was higher for the LBBB-only than for the LBBB-MI DTs [10]. To calcu-
late the index, first, myocardial work Wi in each of 18 LV segments i was calculated as 
the area enclosed by the regional stress–strain loop, multiplied with segmental wall vol-
ume. Segmental normalized work Wnorm,i was then calculated as Wi normalized by the 
summed Wi of all 18 LV segments:

Hereafter, septal-to-LV lateral wall workload imbalance �W norm,LW−S was calculated 
as the difference in summed Wnorm,i of the six LV posterolateral wall segments ( LW ) and 
summed Wnorm,i of the six septal segments ( S):

Statistical tests were performed using SPSS Statistics 24 (IBM, Chicago, IL, USA). To 
test the null hypotheses, the non-parametric Kruskal–Wallis test was performed with 
post-hoc Bonferroni correction to calculate p values.

Implementation

Equations were linearized using the Newton–Raphson method and were time-integrated 
using the Adams–Bashford method with a variable timestep �t with max(�t) = 2  ms. 
All computations were performed using a C++ implementation of the CircAdapt model 
as published before [17]. All other codings for SA, PE and IA were performed in MAT-
LAB 2019a (MathWorks, Natick, MA, United States). Simulations were run in parallel 
on an AMD Ryzen Threadripper 3970X.
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The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12938-​024-​01232-0.

Additional file 1: Figure S1. Result of the first iteration of Morris Screening Method. Parameters (shown on x-axis, 
numbers corresponding with those in Table S2) were ranked based on their maximum absolute average elementary 
effect μ∗ out of all given outputs of interest (shown on y-axis). All parameters which are left of the black vertical 
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line have normalized μ∗ > 1 for at least one output of interest and are therefore considered important. Figure S2. 
Result of the final iteration of Morris Screening Method. Parameter numbers shown on the x-axis again correspond 
with those in Table S2. Note that no parameter could be removed based on absolute average elementary effect μ∗. 
Parameters not included in this final iteration were fixed and therefore had zero elementary effect.

Additional file 2: Table S1. Parameters included in the different subsets evaluated, and their boundaries used dur-
ing dynamic multi-swarm particle swarm optimization. Units are the same as in Table S2.

Additional file 3: Table S2. All model parameters and ranges used in the Morris Screening Method, based on the 
6-segment model.

Additional file 4: Figure S3. 6-segment LV model. The blue arrows indicate the sequence of activation as was 
assumed during Morris Screening Method (MSM) to mimic a left bundle branch block activation pattern. Further-
more, the red segments (S1, LV1, LV3) were assigned wider parameter ranges during MSM to simulate the functional 
consequences of myocardial infarction.
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