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ABSTRACT

Yun, Hyokun Ph.D., Purdue University, May 2014. Doubly Separable Models and
Distributed Parameter Estimation. Major Professor: S.V.N. Vishwanathan.

It is well known that stochastic optimization algorithms are both theoretically and

practically well-motivated for parameter estimation of large-scale statistical models.

Unfortunately, in general they have been considered difficult to parallelize, espe-

cially in distributed memory environment. To address the problem, we first identify

that stochastic optimization algorithms can be efficiently parallelized when the objec-

tive function is doubly separable; lock-free, decentralized, and serializable algorithms

are proposed for stochastically finding minimizer or saddle-point of doubly separable

functions. Then, we argue the usefulness of these algorithms in statistical context by

showing that a large class of statistical models can be formulated as doubly separable

functions; the class includes important models such as matrix completion and regu-

larized risk minimization. Motivated by optimization techniques we have developed

for doubly separable functions, we also propose a novel model for latent collaborative

retrieval, an important problem that arises in recommender systems.
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1. INTRODUCTION

Numerical optimization lies at the heart of almost every statistical procedure. Major-

ity of frequentist statistical estimators can be viewed as M-estimators [73] and thus

are computed by solving an optimization problem; the use of (penalized) maximum

likelihood estimator, a special case of M-estimator, is the dominant method of sta-

tistical inference. On the other hand, Bayesians also use optimization methods to

approximate the posterior distribution [12]. Therefore, in order to apply statistical

methodologies on massive datasets we confront in today’s world, we need optimiza-

tion algorithms that can scale to such data; development of such an algorithm is the

aim of this thesis.

It is well known that stochastic optimization algorithms are both theoretically

[13, 63, 64] and practically [75] well-motivated for parameter estimation of large-

scale statistical models. To briefly illustrate why they are computationally attractive,

suppose that a statistical procedure requires us to minimize a function fpθq, which

can be written in the following form:

fpθq “
m
ÿ

i“1

fipθq, (1.1)

where m is the number of data points. The most basic approach to solve this min-

imization problem is the method of gradient descent, which starts with a possibly

random initial parameter θ and iteratively moves it towards the direction of the neg-

ative gradient:

θ Ð θ ´ η ¨∇θfpθq, (1.2)
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where η is a step-size parameter. To execute (1.2) on a computer, however, we need

to compute ∇θfpθq; and this is where computational challenges arise when dealing

with large-scale data. Since

∇θfpθq “
m
ÿ

i“1

∇θfipθq, (1.3)

computation of the gradient ∇θfpθq requires Opmq computational effort. When m is

a large number, that is, the data consists of large number of samples, repeating this

computation may not be affordable.

In such a situation, stochastic gradient descent (SGD) algorithm [58] can be very

effective. The basic idea is to replace ∇θfpθq in (1.2) with an easy-to-calculate

stochastic estimator. Specifically, in each iteration the algorithm draws a uniform

random number i between 1 and m, and then instead of the exact update (1.2), it

executes the following stochastic update:

θ Ð θ ´ η ¨ tm ¨∇θfipθqu . (1.4)

Note that the SGD update (1.4) can be computed in Op1q time, independently of m.

The rational here is that m ¨∇θfipθq is an unbiased estimator of the true gradient:

E rm ¨∇θfipθqs “ ∇θfpθq, (1.5)

where the expectation is taken over the random sampling of i. Since (1.4) is a very

crude approximation of (1.2), the algorithm will of course require much more number

of iterations than it would with the exact update (1.2). Still, Bottou and Bousquet

[13] shows that SGD is asymptotically more efficient than algorithms which exactly

calculate ∇θfpθq, including not only the simple gradient descent method we intro-

duced in (1.2) but also much more complex methods such as quasi-Newton algorithms

[53].

When it comes to parallelism, however, the computational efficiency of stochastic

update (1.4) turns out to be a disadvantage; since the calculation of ∇θfipθq typ-

ically requires very little amount of computation, one can rarely expect to speed
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it up by splitting it into smaller tasks. An alternative approach is to let multiple

processors simultaneously execute (1.4) [43, 56]. Unfortunately, the computation of

∇θfipθq can possibly require reading any coordinate of θ, and the update (1.4) can

also change any coordinate of θ, and therefore every update made by one processor

has to be propagated across all processors. Such a requirement can be very costly in

distributed memory environment which the speed of communication between proces-

sors is considerably slower than that of the update (1.4); even within shared memory

architecture, the cost of inter-process synchronization significantly deteriorates the

efficiency of parallelization [79].

To propose a parallelization method that circumvents these problems of SGD, let

us step back for now and consider what would be an ideal situation for us to parallelize

an optimization algorithm, if we are given two processors. Suppose the parameter θ

can be partitioned into θp1q and θp2q, and the objective function can be written as

fpθq “ f p1qpθp1qq ` f p2qpθp2qq. (1.6)

Then, we can effectively minimize fpθq in parallel; since the minimization of f p1qpθp1qq
and f p2qpθp2qq are independent problems, processor 1 can work on minimizing f p1qpθp1qq
while processor 2 is working on f p2qpθp2qq, without having any need to communicate

with each other.

Of course, such an ideal situation rarely occurs in reality. Now let us relax the

assumption (1.6) to make it a bit more realistic. Suppose θ can be partitioned into

four sets, wp1q, wp2q, hp1q and hp2q, and the objective function can be written as

fpθq “f p1,1qpwp1q,hp1qq ` f p1,2qpwp1q,hp2qq
` f p2,1qpwp2q,hp1qq ` f p2,2qpwp2q,hp2qq. (1.7)

Note that the simple strategy we deployed for (1.6) cannot be used anymore, since

(1.7) does not admit such a simple partitioning of the problem anymore.
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Surprisingly, it turns out that the strategy for (1.6) can be adapted in a fairly

simple fashion. Let us define

f1pθq “ f p1,1qpwp1q,hp1qq ` f p2,2qpwp2q,hp2qq, (1.8)

f2pθq “ f p1,2qpwp1q,hp2qq ` f p2,1qpwp2q,hp1qq. (1.9)

Note that fpθq “ f1pθq ` f2pθq, and that f1pθq and f2pθq are both in form (1.6).

Therefore, if the objective function to minimize is f1pθq or f2pθq instead of fpθq,
it can be efficiently minimized in parallel. This property can be exploited by the

following simple two-phase algorithm:

• f1pθq-phase: processor 1 runs SGD on f p1,1qpwp1q,hp1qq, while processor 2 runs

SGD on f p2,2qpwp2q,hp2qq.

• f2pθq-phase: processor 1 runs SGD on f p1,2qpwp1q,hp2qq, while processor 2 runs

SGD on f p2,1qpwp2q,hp1qq.

Gemulla et al. [30] shows under fairly mild technical assumptions that if we switch

between these two phases periodically, the algorithm converges to the local optimum

of the original function fpθq.
This thesis is structured to answer the following natural questions one may ask at

this point. First, how can the condition (1.7) be generalized for arbitrary number of

processors? It turns out that the condition can be characterized as double separability ;

in Chapter 2 and Chapter 3, we will introduce double separability and propose efficient

parallel algorithms for optimizing doubly separable functions.

The second question would be: How useful are doubly separable functions in build-

ing statistical models? It turns out that a wide range of important statistical models

can be formulated using doubly separable functions. Chapter 4 to Chapter 7 will

be devoted to discussing how such a formulation can be done for different statistical

models. In Chapter 4, we will evaluate the effectiveness of algorithms introduced in

Chapter 2 and Chapter 3 by comparing them against state-of-the-art algorithms for

matrix completion. In Chapter 5, we will discuss how regularized risk minimization
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(RERM), a large class of problems including generalized linear model and Support

Vector Machines, can be formulated as doubly separable functions. A couple more

examples of doubly separable formulations will be given in Chapter 6. In Chapter 7

we propose a novel model for the task of latent collaborative retrieval, and propose a

distributed parameter estimation algorithm by extending ideas we have developed for

doubly separable functions. Then, we will provide the summary of our contributions

in Chapter 8 to conclude the thesis.

1.1 Collaborators

Chapter 3 and 4 were joint work with Hsiang-Fu Yu, Cho-Jui Hsieh, S.V.N. Vish-

wanathan and Inderjit Dhillon.

Chapter 5 was joint work with Shin Matsushima and S.V.N. Vishwanathan.

Chapter 6 and 7 were joint work with Parameswaran Raman and S.V.N. Vish-

wanathan.
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2. BACKGROUND

2.1 Separability and Double Separability

The notion of separability [47] has been considered as an important concept in op-

timization [71], and was found to be useful in statistical context as well [28]. Formally,

separability of a function can be defined as follows:

Definition 2.1.1 (Separability). Let tSiumi“1 be a family of sets. A function f :
śm

i“1 Si Ñ R is said to be separable if there exists fi : Si Ñ R for each i “ 1, 2, . . . ,m

such that

fpθ1, θ2, . . . , θmq “
m
ÿ

i“1

fipθiq, (2.1)

where θi P Si for all 1 ď i ď m.

As a matter of fact, the codomain of fp¨q does not necessarily have to be a real line

R as long as the addition operator is defined on it. Also, to be precise we are defining

additive separability here, and other notions of separability such as multiplicative

separability do exist. Only additively separable functions with codomain R are of

interest in this thesis, however, thus for the sake of brevity separability will always

imply additive separability. On the other hand, although Si’s are defined as general

arbitrary sets, we will always use them as subsets of finite-dimensional Euclidean

spaces.

Note that the separability of a function is a very strong condition, and objective

functions of statistical models are in most cases not separable. Usually, separability

can only be assumed for a particular term of the objective function [28]. Double

separability, on the other hand, is a considerably weaker condition:
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Definition 2.1.2 (Double Separability). Let tSiumi“1 and
 

S1j
(n

j“1
be families of sets.

A function f :
śm

i“1 Si ˆ
śn

j“1 S1j Ñ R is said to be doubly separable if there exists

fij : Si ˆ S1j Ñ R for each i “ 1, 2, . . . ,m and j “ 1, 2, . . . , n such that

fpw1, w2, . . . , wm, h1, h2, . . . , hnq “
m
ÿ

i“1

n
ÿ

j“1

fijpwi, hjq. (2.2)

It is clear that separability implies double separability.

Property 1. If f is separable, then it is doubly separable. The converse, however, is

not necessarily true.

Proof. Let f : Si Ñ R be a separable function as defined in (2.1). Then, for 1 ď i ď
m´ 1 and j “ 1, define

gijpwi, hjq :“
$

&

%

fipwiq if 1 ď i ď m´ 2

fipwiq ` fnphjq if i “ m´ 1
. (2.3)

It can be easily seen that fpw1, . . . , wm´1, hjq “
řm´1
i“1

ř1
j“1 gijpwi, hjq.

The counter-example of the converse can be easily found: fpw1, h1q “ w1 ¨ h1 is

doubly separable, but not separable. If we assume that fpw1, h1q is doubly separable,

then there exist two functions ppw1q and qph1q such that fpw1, h1q “ ppw1q ` qph1q.
However, ∇w1,h1pw1¨h1q “ 1 but∇w1,h1pppw1q`qph1qq “ 0, which is contradiction.

Interestingly, this relaxation turns out to be good enough for us to represent a

large class of important statistical models; Chapter 4 to 7 are devoted to illustrate

how different models can be formulated as doubly separable functions. The rest of

this chapter and Chapter 3, on the other hand, aims to develop efficient optimization

algorithms for general doubly separable functions.

The following properties are obvious, but are sometimes found useful:

Property 2. If f is separable, so is ´f . If f is doubly separable, so is ´f .

Proof. It follows directly from the definition.
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Property 3. Suppose f is a doubly separable function as defined in (2.2). For a fixed

ph1̊ , h2̊ , . . . , hn̊q P
śn

j“1 S1j, define

gpw1, w2, . . . , wnq :“ fpw1, w2, . . . , wn, h
˚
1 , h

˚
2 , . . . , h

˚
nq. (2.4)

Then, g is separable.

Proof. Let

gipwiq :“
n
ÿ

j“1

fijpwi, h˚j q. (2.5)

Since gpw1, w2, . . . , wnq “
řm
i“1 gipwiq, g is separable.

By symmetry, the following property is immediate.

Property 4. Suppose f is a doubly separable function as defined in (2.2). For a fixed

pw1̊ , w2̊ , . . . , wn̊q P
śm

i“1 Si, define

qph1, h2, . . . , hmq :“ fpw˚1 , w˚2 , . . . , w˚n, h1, h2, . . . , hnq. (2.6)

Then, q is separable.

2.2 Problem Formulation and Notations

Now, let us describe the nature of optimization problems that will be discussed

in this thesis. Let f be a doubly separable function defined as in (2.2). For brevity,

let W “ pw1, w2, . . . , wmq P
śm

i“1 Si, H “ ph1, h2, . . . , hnq P
śn

j“1 S1j, θ “ pW,Hq, and

denote

fpθq :“ fpW,Hq :“ fpw1, w2, . . . , wm, h1, h2, . . . , hnq. (2.7)

In most objective functions we will discuss in this thesis, fijp¨, ¨q “ 0 for large fraction

of pi, jq pairs. Therefore, we introduce a set Ω Ă t1, 2, . . . ,mu ˆ t1, 2, . . . , nu and

rewrite f as:

fpθq “
ÿ

pi,jqPΩ
fijpwi, hjq. (2.8)
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w1

w2

w3

w4

...W

wm´3

wm´2

wm´1

wm

h1 h2 h3 h4 ¨ ¨ ¨

H

hn´3hn´2hn´1 hn

f12 `fn´2,2

`f21 `f23

`f34 `f3n

`f43̀ f44 `f4m

`fm´3,3

`fm´2,2 `fm´2,4 `fm´2,n´1

`fm3

Figure 2.1.: Visualization of a doubly separable function. Each term of the function

f interacts with only one coordinate of W and one coordinate of H. The locations of

non-zero functions are sparse and described by Ω.

This will be useful in describing algorithms that take advantage of the fact that

|Ω| is much smaller than m ¨ n. For convenience, we also define Ωi “ tj : pi, jq P Ωu,
Ω̄j “ ti : pi, jq P Ωu. Also, we will assume fijp¨, ¨q is continuous for every i, j, although

may not be differentiable.

Doubly separable functions can be visualized in two dimensions as in Figure 2.1.

As can be seen, each term fij interacts with only one parameter of W and one param-

eter of H. Although the distinction between W and H is arbitrary because they are

symmetric to each other, for the convenience of reference we will call w1, w2, . . . , wm

as row parameters, and h1, h2, . . . , hn as column parameters.
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In this thesis, we are interested in two kinds of optimization problem on f , the

minimization problem and the saddle-point problem.

2.2.1 Minimization Problem

The minimization problem is formulated as follows:

min
θ
fpθq “

ÿ

pi,jqPΩ
fijpwi, hjq. (2.9)

Of course, maximization of f is equivalent to minimization of ´f ; since ´f is doubly

separable as well (Property 2), (2.9) covers both minimization and maximization

problems. For this reason, we will only discuss the minimization problem (2.9) in this

thesis.

The minimization problem (2.9) frequently arises in parameter estimation of ma-

trix factorization models and a large number of optimization algorithms are developed

in that context. However, most of them are specialized for the specific matrix factor-

ization model they aim to solve, and thus we defer the discussion of these methods

to Chapter 4. Nonetheless, the following useful property frequently exploitted in ma-

trix factorization algorithms is worth mentioning here: when h1, h2, . . . , hn are fixed,

thanks to Property 3 the minimization problem (2.9) decomposes into n independent

minimization problems:

min
wi

ÿ

jPΩi
fijpwi, hjq (2.10)

for i “ 1, 2, . . . ,m. On the other hand, when W is fixed, the problem is decomposed

into n independent minimization problems by symmetry. This can be useful for two

reasons; first, the dimensionality of each optimization problem in (2.10) is only 1{m
fraction of the original problem, so if the time complexity of an optimization algorithm

is superlinear to the dimensionality of the problem, an improvement can be made by

solving one sub-problem at a time. Also, this property can be used to parallelize

an optimization algorithm, as each sub-problem can be solved independently of each

other.
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Note that the problem of finding local minimum of fpθq is equivalent to finding

locally stable points of the following ordinary differential equation (ODE) (Yin and

Kushner [77], Chapter 4.2.2):

dθ

dt
“ ´∇θfpθq. (2.11)

This fact is useful in proving asymptotic convergence of stochastic optimization algo-

rithms by approximating them as stochastic processes that converge to stable points

of an ODE described by (2.11). The proof can be generalized for non-differentiable

functions as well (Yin and Kushner [77], Chapter 6.8).

2.2.2 Saddle-point Problem

Another optimization problem we will discuss in this thesis is the problem of

finding a saddle-point pW ˚, H˚q of f , which is defined as follows:

fpW ˚, Hq ď fpW ˚, H˚q ď fpW,H˚q, (2.12)

for any pW,Hq P śm
i“1 Si ˆ

śn
j“1 S1j. The saddle-point problem often occurs when

a solution of constrained minimization problem is sought; this will be discussed in

Chapter 5. Note that a saddle-point is also the solution of the minimax problem

min
W

max
H

fpW,Hq, (2.13)

and the maximin problem

max
H

min
W

fpW,Hq, (2.14)

at the same time [8]. Contrary to the case of minimization problem, however, neither

(2.13) nor (2.14) can be decomposed into independent sub-problems as in (2.10).

The existence of saddle-point is usually harder to verify than that of minimizer or

maximizer. In this thesis, however, we will only be interested in settings which the

following assumptions hold:

Assumption 2.2.1. •
śm

i“1 Si and
śn

j“1 S1j are nonempty closed convex sets.
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• For each W , the function fpW, ¨q is concave.

• For each H, the function fp¨, Hq is convex.

• W is bounded, or there exists H0 such that fpW,H0q Ñ 8 when }W } Ñ 8.

• H is bounded, or there exists W0 such that fpW0, Hq Ñ ´8 when }H} Ñ 8.

In such a case, it is guaranteed that a saddle-point of f exists (Hiriart-Urruty and

Lemaréchal [35], Chapter 4.3).

Similarly to the minimization problem, we prove that there exists a corresponding

ODE which the set of stable points are equal to the set of saddle-points.

Theorem 2.2.2. Suppose that f is a twice-differentiable doubly separable function as

defined in (2.2), which satisfies Assumption 2.2.1. Let G be a set of stable points of

the ODE defined as below:

dW

dt
“ ´∇WfpW,Hq, (2.15)

dH

dt
“ ∇HfpW,Hq, (2.16)

and let G1 be the set of saddle-points of f . Then, G “ G1.

Proof. Let pW ˚, H˚q be a saddle-point of f . Since a saddle-point is also a critical

point of a function,∇fpW ˚, H˚q “ 0. Therefore, pW ˚, H˚q is a fixed point of the ODE

(2.16) as well. Now we show that it is a stable point as well. For this, it suffices to

show the following stability matrix of the ODE is nonpositive definite when evaluated

at pW ˚, H˚q: (Tabor [68], Section 1.4)

SpW,Hq “
»

–

´∇W∇WfpW,Hq ´∇H∇WfpW,Hq
∇W∇HfpW,Hq ∇H∇HfpW,Hq

fi

fl . (2.17)

Let v1 P Rm and v2 P Rn be arbitrary vectors, and let vT “ pvT1 , vT2 q. Then,

vTSpW,Hqv “ ´vT1∇W∇WfpW,Hqv1 ` vT2∇H∇HfpW,Hqv2 ď 0, (2.18)
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due to assumed convexity of fp¨, Hq and concavity of fpW, ¨q. Therefore, the stability

matrix is nonpositive definite everywhere including pW ˚, H˚q, and therefore G1 Ă G.

On the other hand, suppose that pW ˚, H˚q is a stable point; then, by definition

of stable point, ∇fpW ˚, H˚q “ 0. Now to show that pW ˚, H˚q is a saddle-point, we

need to prove the Hessian of f at pW ˚, H˚q is indefinite; this immediately follows

from convexity of fp¨, Hq and concavity of fpW, ¨q.

2.3 Stochastic Optimization

2.3.1 Basic Algorithm

A large number of optimization algorithms have been proposed for the minimiza-

tion of a general continuous function [53], and popular batch optimization algorithms

such as L-BFGS [52] or bundle methods [70] can be applied to the minimization prob-

lem (2.9). However, each iteration of a batch algorithm requires exact calculation of

the objective function (2.9) and its gradient; as this takes Op|Ω|q computational effort,

when Ω is a large set the algorithm may take a long time to converge.

In such a situation, an improvement in the speed of convergence can be found

by appealing to stochastic optimization algorithms such as stochastic gradient de-

scent (SGD) [13]. While different versions of SGD algorithm may exist for a single

optimization problem according to how the stochastic estimator is defined, the most

straightforward version of SGD on the minimization problem (2.9) can be described as

follows: starting with a possibly random initial parameter θ, the algorithm repeatedly

samples pi, jq P Ω uniformly at random and applies the update

θ Ð θ ´ η ¨ |Ω| ¨∇θfijpwi, hjq, (2.19)

where η is a step-size parameter. The rational here is that since |Ω| ¨ ∇θfijpwi, hjq
is an unbiased estimator of the true gradient ∇θfpθq, in the long run the algorithm
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will reach the solution similar to what one would get with the basic gradient descent

algorithm, which uses the following update:

θ Ð θ ´ η ¨∇θfpθq. (2.20)

Convergence guarantees and properties of this SGD algorithm are well known [13].

Note that since ∇wi1
fijpwi, hjq “ 0 for i1 ‰ i and ∇hj1

fijpwi, hjq “ 0 for j1 ‰ j,

(2.19) can be more compactly written as

wi Ð wi ´ η ¨ |Ω| ¨∇wifijpwi, hjq, (2.21)

hj Ð hj ´ η ¨ |Ω| ¨∇hjfijpwi, hjq. (2.22)

In other words, each SGD update (2.19) reads and modifies only two coordinates of

θ at a time, which is a small fraction when m or n is large. This will be found useful

in designing parallel optimization algorithms later.

On the other hand, in order to solve the saddle-point problem (2.12), it suffices

to make a simple modification on SGD update equations in (2.21) and (2.22):

wi Ð wi ´ η ¨ |Ω| ¨∇wifijpwi, hjq, (2.23)

hj Ð hj ` η ¨ |Ω| ¨∇hjfijpwi, hjq. (2.24)

Intuitively, (2.23) takes stochastic descent direction in order to solve minimization

problem in W , and (2.24) takes stochastic ascent direction in order to solve maxi-

mization problem in H. Under mild conditions, this algorithm is also guaranteed to

converge to the saddle-point of the function f [51]. From now on, we will refer to this

algorithm as SSO (Stochastic Saddle-point Optimization) algorithm.

2.3.2 Distributed Stochastic Gradient Algorithms

Now, we will discuss how SGD and SSO algorithms introduced in the previous

section can be efficiently parallelized using traditional techniques of batch synchro-

nization. For now, we will denote each parallel computing unit as a processor ; in
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a shared memory setting a processor is a thread and in a distributed memory ar-

chitecture a processor is a machine. This abstraction allows us to present parallel

algorithms in a unified manner. The exception is Chapter 3.5 which we discuss how

to take advantage of hybrid architecture where there are multiple threads spread

across multiple machines.

As discussed in Chapter 1, in general stochastic gradient algorithms have been

considered to be difficult to parallelize; the computational cost of each stochastic

gradient update is often very cheap and thus it is not desirable to divide this compu-

tation across multiple processors. On the other hand, this also means that if multiple

processors are executing the stochastic gradient update in parallel, parameter values

of these algorithms are very frequently updated; therefore the cost of communication

for synchronizing these parameter values across multiple processors can be prohibitive

[79], especially in the distributed memory setting.

In the literature of matrix completion, however, there exists stochastic optimiza-

tion algorithms that can be efficiently parallelized by avoiding the need for frequent

synchronization. It turns out that the only major requirement of these algorithms is

double separability of the objective function; therefore, these algorithms have great

utility beyond the task of matrix completion, as will be illustrated throughout the

thesis.

In this subsection, we will introduce Distributed Stochastic Gradient Descent

(DSGD) of Gemulla et al. [30] for the minimization problem (2.9) and Distributed

Stochastic Saddle-point Optimization (DSSO) algorithm, our proposal for the saddle-

point problem (2.12). The key observation of DSGD is that SGD updates of (2.21)

and (2.21) involve on only one row parameter wi and one column parameter hj; given

pi, jq P Ω and pi1, j1q P Ω, if i ‰ i1 and j ‰ j1 then one can simultaneously perform

SGD updates (2.21) on wi and wi1 and (2.21) on hj and hj1 . In other words, updates

to wi and hj are independent of updates to wi1 and hj1 as long as i ‰ i1 and j ‰ j1.

The same property holds for DSSO; this opens up the possibility that minpm,nq pairs

of parameters pwi, hjq can be updated in parallel.
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Figure 2.2.: Illustration of DSGD/DSSO algorithm with 4 processors. The rows of Ω

and corresponding fijs as well as the parameters W and H are partitioned as shown.

Colors denote ownership. The active area of each processor is shaded dark. Left:

initial state. Right: state after one bulk synchronization step. See text for details.

We will use the above observation in order to derive a parallel algorithm for finding

the minimizer or saddle-point of f pW,Hq. However, before we formally describe

DSGD and DSSO we would like to present some intuition using Figure 2.2. Here we

assume that we have access to 4 processors. As in Figure 2.1, we visualize f with

a m ˆ n matrix; non-zero interaction between W and H are marked by x. Initially,

both parameters as well as rows of Ω and corresponding fij’s are partitioned across

processors as depicted in Figure 2.2 (left); colors in the figure denote ownership e.g.,

the first processor owns a fraction of Ω and a fraction of the parameters W and H

(denoted as W p1q and Hp1q) shaded with red. Each processor samples a non-zero

entry pi, jq of Ω within the dark shaded rectangular region (active area) depicted

in the figure, and updates the corresponding Wi and Hj. After performing a fixed

number of updates, the processors perform a bulk synchronization step and exchange

coordinates of H. This defines an epoch. After an epoch, ownership of the H variables

and hence the active area changes as shown in Figure 2.2 (left). The algorithm iterates

over the epochs until convergence.
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Now let us formally introduce DSGD and DSSO. Suppose p processors are avail-

able, and let I1, . . . , Ip denote p partitions of the set t1, . . . ,mu and J1, . . . , Jp denote p

partitions of the set t1, . . . , nu such that |Iq| « |Iq1 | and |Jr| « |Jr1 |. Ω and correspond-

ing fij’s are partitioned according to I1, . . . , Ip and distributed across p processors.

On the other hand, the parameters tw1, . . . , wmu are partitioned into p disjoint sub-

sets W p1q, . . . ,W ppq according to I1, . . . , Ip while th1, . . . , hdu are partitioned into p

disjoint subsets Hp1q, . . . , Hppq according to J1, . . . , Jp and distributed to p processors.

The partitioning of t1, . . . ,mu and t1, . . . , du induces a pˆ p partition on Ω:

Ωpq,rq :“ tpi, jq P Ω : i P Iq, j P Jru , q, r P t1, . . . , pu .

The execution of DSGD and DSSO algorithm consists of epochs; at the beginning of

the r-th epoch (r ě 1), processor q owns Hpσrpqqq where

σr pqq “ tpq ` r ´ 2q mod pu ` 1, (2.25)

and executes stochastic updates (2.21) and (2.22) for the minimization problem

(DSGD) and (2.23) and (2.24) for the saddle-point problem (DSSO), only on co-

ordinates in Ωpq,σrpqqq. Since these updates only involve variables in W pqq and Hpσpqqq,

no communication between processors is required to perform these updates. After ev-

ery processor has finished a pre-defined number of updates, Hpqq is sent to Hσ´1
pr`1q

pqq

and the algorithm moves on to the pr ` 1q-th epoch. The pseudo-code of DSGD and

DSSO can be found in Algorithm 1.

It is important to note that DSGD and DSSO are serializable; that is, there is an

equivalent update ordering in a serial implementation that would mimic the sequence

of DSGD/DSSO updates. In general, serializable algorithms are expected to exhibit

faster convergence in number of iterations, as there is little waste of computation due

to parallelization [49]. Also, they are easier to debug than non-serializable algorithms

which processors may interact with each other in unpredictable complex fashion.

Nonetheless, it is not immediately clear whether DSGD/DSSO would converge to

the same solution the original serial algorithm would converge to; while the original
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Algorithm 1 Pseudo-code of DSGD and DSSO

1: tηru: step size sequence

2: Each processor q initializes W pqq, Hpqq

3: while Convergence do

4: // start of epoch r

5: Parallel Foreach q P t1, 2, . . . , pu
6: for pi, jq P Ωpq,σrpqqq do

7: // Stochastic Gradient Update

8: wi Ð wi ´ ηr ¨ |Ω| ¨∇wifijpwi, hjq
9: if DSGD then

10: hj Ð hj ´ ηr ¨ |Ω| ¨∇hjfijpwi, hjq
11: else

12: hj Ð hj ` ηr ¨ |Ω| ¨∇hjfijpwi, hjq
13: end if

14: end for

15: non-blocking send Hσrpqq to machine σ´1
r`1pσrpqqq

16: receive Hσr`1pqq

17: Parallel End

18: r Ð r ` 1

19: end while
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algorithm samples pi, jq-pairs from entire Ω, the sampling of DSGD/DSSO is confined

to Ωp1,σrp1qq,Ωp2,σrp2qq, . . . ,Ωpp,σrppqq, which is only 1{p fraction of the whole. Surpris-

ingly, Gemulla et al. [30] proves that DSGD will converge to a local minimum of the

objective function f ; the proof can be readily adapted for DSSO.

The essential idea of the proof is that the difference between the execution of serial

SGD and that of DSGD will be washed out if two algorithms are run for a sufficiently

long time. This intuition can be quantified as follows. One can see that at r-th epoch,

DSGD and DSSO are optimizing the following function:

frpW,Hq “ p ¨
p
ÿ

q“1

ÿ

pi,jqPΩpq,σrpqqq
fijpwi, hjq, (2.26)

instead of the original function f . Note that the function is multiplied by p to match

the scale of f . Then, the difference between updates made at r-th epoch of serial

SGD and DSGD can then be quantified as ηr p∇θfrpθq ´∇θfpθqq. Theorem 6.1.1 of

Yin and Kushner [77] shows that if this “difference” converges to zero, that is,

lim
sÑ8 ηs

s
ÿ

r“1

p∇θfrpθq ´∇θfpθqq Ñ 0, (2.27)

then under reasonably mild conditions such as continuity of f and boundedness of the

solution, DSGD and DSSO will converge to the set of stable points of ODEs (2.11)

and (2.16) respectively, which is the desired result (recall the equivalence between

solutions of an optimization problem and stable points of an ODE, as illustrated in

Chapter 2.2).

By the construction of σr in (2.25),

T`p´1
ÿ

r“T
p∇θfrpθq ´∇θfpθqq “ 0 (2.28)

for any positive integer T , because each fij appears exactly once in p epochs. There-

fore, condition (2.27) is trivially satisfied. Of course, there are other choices of σr that

can also satisfy (2.27); Gemulla et al. [30] shows that if σr is a regenerative process,

that is, each fij appears in the temporary objective function fr in the same frequency,

then (2.27) is satisfied.
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3. NOMAD: NON-LOCKING, STOCHASTIC MULTI-MACHINE

ALGORITHM FOR ASYNCHRONOUS AND DECENTRALIZED

OPTIMIZATION

3.1 Motivation

Note that at the end of each epoch, DSGD/DSSO requires every processor to stop

sampling stochastic gradients, and communicate column parameters between proces-

sors to prepare for the next epoch. In the distributed-memory setting, algorithms

that bulk synchronize their state after every iteration are popular [19, 70]. This is

partly because of the widespread availability of the MapReduce framework [20] and

its open source implementation Hadoop [1].

Unfortunately, bulk synchronization based algorithms have two major drawbacks:

First, the communication and computation steps are done in sequence. What this

means is that when the CPU is busy, the network is idle and vice versa. The second

issue is that they suffer from what is widely known as the the curse of last reducer

[4, 67]. In other words, all machines have to wait for the slowest machine to finish

before proceeding to the next iteration. Zhuang et al. [79] report that DSGD suffers

from this problem even in the shared memory setting.

In this section, we present NOMAD (Non-locking, stOchastic Multi-machine al-

gorithm for Asynchronous and Decentralized optimization), a parallel algorithm for

optimization of doubly separable functions, which processors exchange messages in

an asynchronous fashion [11] to avoid bulk synchronization.
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3.2 Description

Similarly to DSGD, NOMAD splits row indices t1, 2, . . . ,mu into p disjoint sets

I1, I2, . . . , Ip which are of approximately equal size. This induces a partition on the

rows of the nonzero locations Ω. The q-th processor stores n sets of indices Ω̄
pqq
j , for

j P t1, . . . , nu, which are defined as

Ω̄
pqq
j :“  pi, jq P Ω̄j; i P Iq

(

,

as well as corresponding fij’s. Note that once Ω and corresponding fij’s are parti-

tioned and distributed to the processors, they are never moved during the execution

of the algorithm.

Recall that there are two types of parameters in doubly separable models: row

parameters wi’s, and column parameters hj’s. In NOMAD, wi’s are partitioned ac-

cording to I1, I2, . . . , Ip, that is, the q-th processor stores and updates wi for i P Iq.
The variables in W are partitioned at the beginning, and never move across processors

during the execution of the algorithm. On the other hand, the hj’s are split randomly

into p partitions at the beginning, and their ownership changes as the algorithm pro-

gresses. At each point of time an hj variable resides in one and only processor, and it

moves to another processor after it is processed, independent of other item variables.

Hence these are called nomadic variables1.

Processing a column parameter hj at the q-th procesor entails executing SGD

updates (2.21) and (2.22) or (2.24) on the pi, jq-pairs in the set Ω̄
pqq
j . Note that these

updates only require access to hj and wi for i P Iq; since Iq’s are disjoint, each wi

variable in the set is accessed by only one processor. This is why the communication

of wi variables is not necessary. On the other hand, hj is updated only by the

processor that currently owns it, so there is no need for a lock; this is the popular

owner-computes rule in parallel computing. See Figure 3.1.

1Due to symmetry in the formulation, one can also make the wi’s nomadic and partition the hj ’s.
To minimize the amount of communication between processors, it is desirable to make hj ’s nomadic
when n ă m, and vice versa.
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(a) Initial assignment of W and H. Each

processor works only on the diagonal active

area in the beginning.
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(b) After a processor finishes processing col-

umn j, it sends the corresponding parameter

wj to another. Here, h2 is sent from 1 to 4.
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cessed by the new processor. Here, proces-

sor 4 can now process column 2.
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(d) During the execution of the algorithm,

the ownership of the component hj changes.

Figure 3.1.: Graphical Illustration of the Algorithm 2
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We now formally define the NOMAD algorithm (see Algorithm 2 for detailed

pseudo-code). Each processor q maintains its own concurrent queue, queuerqs, which

contains a list of columns it has to process. Each element of the list consists of the

index of the column j (1 ď j ď n), and a corresponding column parameter hj; this

pair is denoted as pj, hjq. Each processor q pops a pj, hjq pair from its own queue,

queuerqs, and runs stochastic gradient update on Ω̄
pqq
j , which corresponds to functions

in column j locally stored in processor q (line 14 to 22). This changes values of wi

for i P Iq and hj. After all the updates on column j are done, a uniformly random

processor q1 is sampled (line 23) and the updated pj, hjq pair is pushed into the queue

of that processor, q1 (line 24). Note that this is the only time where a processor com-

municates with another processor. Also note that the nature of this communication

is asynchronous and non-blocking. Furthermore, as long as the queue is nonempty,

the computations are completely asynchronous and decentralized. Moreover, all pro-

cessors are symmetric, that is, there is no designated master or slave.

3.3 Complexity Analysis

First, we consider the case when the problem is distributed across p processors,

and study how the space and time complexity behaves as a function of p. Each

processor has to store 1{p fraction of the m row parameters, and approximately

1{p fraction of the n column parameters. Furthermore, each processor also stores

approximately 1{p fraction of the |Ω| functions. Then, the space complexity per

processor is Oppm` n` |Ω|q{pq. As for time complexity, we find it useful to use the

following assumptions: performing the SGD updates in line 14 to 22 takes a time

and communicating a pj, hjq to another processor takes c time, where a and c are

hardware dependent constants. On the average, each pj, hjq pair contains O p|Ω| {npq
non-zero entries. Therefore when a pj, hjq pair is popped from queuerqs in line 13

of Algorithm 2, on the average it takes a ¨ p|Ω| {npq time to process the pair. Since
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Algorithm 2 the basic NOMAD algorithm

1: λ: regularization parameter

2: tηtu: step size sequence

3: Initialize W and H

4: // initialize queues

5: for j P t1, 2, . . . , nu do

6: q „ UniformDiscrete t1, 2, . . . , pu
7: queuerqs.pushppj, hjqq
8: end for

9: // start p processors

10: Parallel Foreach q P t1, 2, . . . , pu
11: while stop signal is not yet received do

12: if queuerqs not empty then

13: pj, hjq Ð queuerqs.pop()
14: for pi, jq P Ω̄

pqq
j do

15: // Stochastic Gradient Update

16: wi Ð wi ´ ηr ¨ |Ω| ¨∇wifijpwi, hjq
17: if minimization problem then

18: hj Ð hj ´ ηr ¨ |Ω| ¨∇hjfijpwi, hjq
19: else

20: hj Ð hj ` ηr ¨ |Ω| ¨∇hjfijpwi, hjq
21: end if

22: end for

23: q1 „ UniformDiscrete t1, 2, . . . , pu
24: queuerq1s.pushppj, hjqq
25: end if

26: end while

27: Parallel End
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computation and communication can be done in parallel, as long as a ¨ p|Ω| {npq is

higher than c a processor is always busy and NOMAD scales linearly.

Suppose that |Ω| is fixed but the number of processors p increases; that is, we

take a fixed size dataset and distribute it across p processors. As expected, for a large

enough value of p (which is determined by hardware dependent constants a and b) the

cost of communication will overwhelm the cost of processing an item, thus leading to

slowdown.

On the other hand, suppose the work per processor is fixed, that is, |Ω| increases

and the number of processors p increases proportionally. The average time a¨p|Ω| {npq
to process an item remains constant, and NOMAD scales linearly.

Finally, we discuss the communication complexity of NOMAD. For this discussion

we focus on a single column parameter hj. In order to be processed by all the p pro-

cessors once, it needs to be communicated p times. This requires Oppq communication

per item. There are n items, and if we make a simplifying assumption that during

the execution of NOMAD each item is processed a constant c number of times by

each processor, then the total communication complexity is Opnpq.

3.4 Dynamic Load Balancing

As different processors have different number of nonzero functions per column,

the speed at which a processor processes a set of functions Ω̄
pqq
j for a column j also

varies among processors. Furthermore, in the distributed memory setting different

processors might execute updates at different rates dues to differences in hardware

and system load. NOMAD can handle this by dynamically balancing the workload of

processors: in line 23 of Algorithm 2, instead of sampling the recipient of a message

uniformly at random we can preferentially select a processors which has fewer columns

in its queue to process. To do this, a payload carrying information about the size

of the queuerqs is added to the messages that the processors send each other. The

overhead of the payload is just a single integer per message. This scheme allows us
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to dynamically load balance, and ensures that a slower processor will receive smaller

amount of work compared to others.

3.5 Hybrid Architecture

In a hybrid architecture we have multiple threads on a single machine as well as

multiple machines distributed across the network. In this case, we make two improve-

ments to the basic NOMAD algorithm. First, in order to amortize the communica-

tion costs we reserve two additional threads per machine for sending and receiving

pj, hjq pairs over the network. Intra-machine communication is much cheaper than

machine-to-machine communication, since the former does not involve a network hop.

Therefore, whenever a machine receives a pj, hjq pair, it circulates the pair among all

of its threads before sending the pair over the network. This is done by uniformly

sampling a random permutation whose size equals to the number of processor threads,

and sending the column variable to each thread according to this permutation. Cir-

culating a variable more than once was found to not improve convergence in practice,

and hence is not used in our implementations.

3.5.1 Implementation Details

Multi-threaded MPI was used for inter-machine communication. Instead of com-

municating single pj, hjq pairs, we follow the strategy of [65], and accumulate a fixed

number of pairs (e.g., 100) before transmitting them over the network.

NOMAD can be implemented with lock-free data structures since the only inter-

action between threads is via operations on the queue. We used the concurrent queue

provided by Intel Thread Building Blocks (TBB) [3]. Although technically not lock-

free, the TBB concurrent queue nevertheless scales almost linearly with the number

of threads.

There is very minimal sharing of memory among threads in NOMAD. By making

memory assignments in each thread carefully aligned with cache lines we can exploit
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memory locality and avoid cache ping-pong. This results in near linear scaling for

the multi-threaded setting.

3.6 Related Work

3.6.1 Map-Reduce and Friends

There are other existing approaches to parallelize SGD for matrix completion, and

they can also be generalized for doubly separable functions as well. In this section,

we briefly discuss how NOMAD is conceptually different from those methods.

DSGD++ is an algorithm proposed by Teflioudi et al. [69] to address the afore-

mentioned utilization issue of computation and communication resources. Instead of

using p partitions, DSGD++ uses 2p partitions. While the p processors are process-

ing p partitions, the other p partitions are sent over the network. This keeps both

the network and CPU busy simultaneously. However, DSGD++ also suffers from the

curse of the last reducer.

Another attempt to alleviate the problems of bulk synchronization in the shared

memory setting is the FPSGD** algorithm of Zhuang et al. [79]; given p threads,

FPSGD** partitions the parameters into more than p sets, and uses a task manager

thread to distribute the partitions. When a thread finishes updating one partition,

it requests for another partition from the task manager. It is unclear how to extend

this idea to the distributed memory setting.

In NOMAD we sidestep all the drawbacks of bulk synchronization. Like DSGD++

we also simultaneously keep the network and CPU busy. On the other hand, like

FPSGD** we effectively load balance between the threads. To understand why NO-

MAD enjoys both these benefits, it is instructive to contrast the data partitioning

schemes underlying DSGD, DSGD++, FPSGD**, and NOMAD (see Figure 3.2).

Given p number of processors, DSGD divides locations of non-zero functions Ω into

p ˆ p number of blocks; DSGD++ improves upon DSGD by further dividing each

block to 1 ˆ 2 sub-blocks (Figure 3.2 (a) and (b)). On the other hand, FPSGD**
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Figure 3.2.: Comparison of data partitioning schemes between algorithms. Example

active area of stochastic gradient sampling is marked as gray.

splits A into p1 ˆ p1 blocks with p1 ą p (Figure 3.2 (c)), while NOMAD uses p ˆ n

blocks (Figure 3.2 (d)). In terms of communication there is no difference between

various partitioning schemes; all of them require Opnpq communication for each col-

umn to be processed a constant c number of times. However, having smaller blocks

means that NOMAD has much more flexibility in assigning blocks to processors, and

hence better ability to exploit parallelism. Because NOMAD operates at the level

of individual column parameters, hj, it can dynamically load balance by assigning

fewer columns to a slower processor. A pleasant side effect of such a fine grained

partitioning coupled with the lock free nature of updates is that one does not require

sophisticated scheduling algorithms to achieve good performance. Consequently, NO-

MAD has outperformed DSGD, DSGD++, and FPSGD** in our experiments (see

Chapter 4.3).
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3.6.2 Asynchronous Algorithms

There is growing interest in designing machine learning algorithms that do not

perform bulk synchronization. See, for instance, the randomized (block) coordinate

descent methods of Richtarik and Takac [57] and the Hogwild! algorithm of Recht

et al. [56]. A relatively new approach to asynchronous parallelism is to use a so-called

parameter server. A parameter server is either a single machine or a distributed set

of machines which caches the current values of the parameters. Processors store local

copies of the parameters and perform updates on them, and periodically synchronize

their local copies with the parameter server. The parameter server receives updates

from all processors, aggregates them, and communicates them back to the processors.

The earliest work on a parameter server, that we are aware of, is due to Smola and

Narayanamurthy [65], who propose using a parameter server for collapsed Gibbs sam-

pling in Latent Dirichlet Allocation. PowerGraph [32], upon which the latest version

of the GraphLab toolkit is based, is also essentially based on the idea of a parame-

ter server. However, the difference in case of PowerGraph is that the responsibility

of parameters is distributed across multiple machines, but at the added expense of

synchronizing the copies.

Very roughly speaking, the asynchronously parallel optimization algorithm for ma-

trix completion in GraphLab works as follows: Wi and Hj variables are distributed

across multiple machines, and whenever Wi is being updated as a solution of the

sub-problem (2.10), the values of Hj’s for j P Ωi are retrieved across the network and

read-locked until the update is finished. GraphLab provides functionality such as net-

work communication and a distributed locking mechanism to implement this. How-

ever, frequently acquiring read-locks over the network can be expensive. GraphLab

provides a complex job scheduler which attempts to minimize this cost, but then the

efficiency of parallelization depends on the difficulty of the scheduling problem and

the effectiveness of the scheduler.



31

Our empirical evaluation in Appendix A.3 shows that NOMAD performs signifi-

cantly better than GraphLab. The reasons are not hard to see. First, because of the

lock free nature of NOMAD, we completely avoid acquiring expensive network locks.

Second, we use stochastic updates which allows us to exploit finer grained parallelism

as compared to solving the minimization problem (2.10) which involves more number

of coordinates than two. In fact, the GraphLab framework is not well suited for SGD

(personal communication with the developers of GraphLab). Finally, because of the

finer grained data partitioning scheme used in NOMAD, unlike GraphLab whose per-

formance heavily depends on the underlying scheduling algorithms we do not require

a complicated scheduling mechanism.

3.6.3 Numerical Linear Algebra

The concepts of asynchronous and non-blocking updates have also been studied

in numerical linear algebra. To avoid the load balancing problem and to reduce

processor idle time, asynchronous numerical methods were first proposed over four

decades ago by Chazan and Miranker [18]. Given an operator H : Rm Ñ Rm, to

find the fixed point solution x˚ such that Hpx˚q “ x˚, a standard Gauss-Seidel-type

procedure performs the update xi “ pHpxqqi sequentially (or randomly). Using the

asynchronous procedure, each computational node asynchronously conducts updates

on each variable (or a subset) xnew
i “ pHpxqqi and then overwrites xi in common

memory by xnew
i . Theory and applications of this asynchronous method have been

widely studied (see the literature review of Frommer and Szyld [29] and the seminal

textbook by Bertsekas and Tsitsiklis [11]). The concept of this asynchronous fixed-

point update is very closely related to the Hogwild algorithm of Recht et al. [56] or

the so-called Asynchronous SGD (ASGD) method proposed by Teflioudi et al. [69].

Unfortunately, such algorithms are non-serializable, that is, there may not exist an

equivalent update ordering in a serial implementation. In contrast, our NOMAD
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algorithm is not only asynchronous but also serializable, and therefore achieves faster

convergence in practice.

On the other hand, non-blocking communication has also been proposed to ac-

celerate iterative solvers in a distributed setting. For example, Hoefler et al. [36]

presented a distributed conjugate gradient (CG) implementation with non-blocking

collective MPI operations for solving linear systems. However, this algorithm still re-

quires synchronization at each CG iteration, so it is very different from our NOMAD

algorithm.

3.6.4 Discussion

We remark that among algorithms we have discussed so far, NOMAD is the

only distributed-memory algorithm which is both asynchronous and lock-free. Other

parallelizations of SGD such as DSGD and DSGD++ are lock-free, but not fully

asynchronous; therefore, the cost of synchronization will increase as the number of

machines grows [79]. On the other hand, GraphLab [49] is asynchronous but not

lock-free, therefore depends on a complex job scheduler to reduce the side-effect of

using locks.
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4. MATRIX COMPLETION

As discussed in Chapter 2.3, many of the parallel SGD algorithms were specifically

developed for the matrix completion model. However, there are many deterministic

optimization algorithms for matrix completion as well; therefore, the matrix comple-

tion problem is an ideal benchmark test that can be used to evaluate the effectiveness

of algorithms we have introduced so far.

Note that the matrix completion model itself has been considered as an important

statistical model in machine learning and data mining community as well. It is partly

thanks to the empirical success of the model in the Netflix prize challenge [41], which

participants of the challenge were asked to predict unseen movie ratings of users based

on given training data.

4.1 Formulation

Most of the notations defined here are consistent with those introduced in Chap-

ter 2. We redefine some of them here, however, to illustrate their interpretation in

this particular context of matrix completion.

Let A P Rmˆn be a rating matrix, where m denotes the number of users and n the

number of items. Typically m " n, although the algorithms we consider in this paper

do not depend on such an assumption. Furthermore, let Ω Ď t1 . . .mu ˆ t1, . . . , nu
denote the observed entries of A, that is, pi, jq P Ω implies that user i gave item

j a rating of Aij. The goal here is to predict accurately the unobserved ratings.

For convenience, we define Ωi to be the set of items rated by the i-th user, i.e.,

Ωi :“ tj : pi, jq P Ωu. Analogously Ω̄j :“ ti : pi, jq P Ωu is the set of users who have

rated item j. Also, let aJi denote the i-th row of A.
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A standard model for matrix completion finds matrices W P Rmˆk and H P Rnˆk,

with k ! minpm,nq, such that A « WHJ. One way to understand this model

is to realize that each row wJ
i P Rk of W can be thought of as a k-dimensional

embedding of the user. Analogously, each row hJj P Rk of H is an embedding of

the item in the same k-dimensional space. In order to predict the pi, jq-th entry of

A we simply use xwi,hjy, where x¨, ¨y denotes the Euclidean inner product of two

vectors. The goodness of fit of the model is measured by a loss function. While

DSGD or NOMAD can work with an arbitrary separable loss, for ease of exposition

we will only discuss the square loss: 1
2
pAij ´ xwi,hjyq2. Furthermore, we need to

enforce regularization to prevent over-fitting, and to predict well on the unknown

entries of A. Again, a variety of regularizers can be handled by our algorithm, but we

will only focus on the following weighted square norm-regularization in this paper:

λ
2

řm
i“1 |Ωi| ¨ }wi}2 ` λ

2

řn
j“1

ˇ

ˇΩ̄j

ˇ

ˇ ¨ }hi}2, where λ ą 0 is a regularization parameter.

Here, | ¨ | denotes the cardinality of a set, and }¨}2 is the L2 norm of a vector. Putting

everything together yields the following objective function:

min
W P Rmˆk

H P Rnˆk

JpW,Hq :“ 1

2

ÿ

pi,jqPΩ
pAij ´ xwi,hjyq2 ` λ

2

˜

m
ÿ

i“1

|Ωi| ¨ }wi}2 `
n
ÿ

j“1

ˇ

ˇΩ̄j

ˇ

ˇ ¨ }hi}2
¸

.

(4.1)

This can be further simplified and written as

JpW,Hq “ 1

2

ÿ

pi,jqPΩ

 pAij ´ xwi,hjyq2 ` λ
`}wi}2 ` }hj}2

˘(

.

Observe that this is in doubly separable form (2.2).

In the sequel we will let wil and hil for 1 ď l ď k denote the l-th coordinate of the

column vectors wi and hj, respectively. Furthermore, HΩi (resp. WΩ̄j) will be used

to denote the sub-matrix of H (resp. W ) formed by collecting rows corresponding to

Ωi (resp. Ω̄j).
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Note that as illustrated in (2.10), if we fix H then the optimization problem

(4.1) decomposes to m independent convex optimization problems, with each of them

having the following form:

min
wiPRk

Jipwiq “ 1

2

ÿ

jPΩi
pAij ´ xwi,hjyq2 ` λ }wi}2 . (4.2)

Analogously, if we fix W then (4.1) decomposes into n independent convex optimiza-

tion problems, each of which has the following form:

min
hjPRk

J̄jphjq “ 1

2

ÿ

iPΩ̄j
pAij ´ xwi,hjyq2 ` λ }hj}2 .

The gradient and Hessian of Jipwq can be easily computed:

∇Jipwiq “Mwi ´ b, and ∇2Jipwiq “M,

where we have defined M :“ HJ
Ωi
HΩi ` λI and b :“ HJai.

4.2 Batch Optimization Algorithms

While we have introduced stochastic optimization techniques in Chapter 2.3, here

we will present two well known batch optimization strategies specifically developed

for solving (4.1). These two approaches essentially differ in only two characteristics

namely, the sequence in which updates to the variables in W and H are carried out,

and the level of approximation in the update.

4.2.1 Alternating Least Squares

A simple version of the Alternating Least Squares (ALS) algorithm updates vari-

ables as follows: w1, w2, . . ., wm, h1, h2, . . ., hn, w1, . . . and so on. Updates to wi

are computed by solving (4.2) which is in fact a least squares problem, and thus the

following Newton update gives us:

wi Ð wi ´
“

∇2Jipwiq
‰´1∇Jipwiq, (4.3)

which can be rewritten using M and b as wi ÐM´1b. Updates to hj’s are analogous.
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4.2.2 Coordinate Descent

The ALS update involves formation of the Hessian and its inversion. In order

to reduce the computational complexity, one can replace the Hessian by its diagonal

approximation:

wi Ð wi ´
“

diag
`

∇2Ji pwiq
˘‰´1∇Ji pwiq , (4.4)

which can be rewritten using M and b as

wi Ð wi ´ diagpMq´1 rMwi ´ bs . (4.5)

If we update one component of wi at a time, the update (4.5) can be written as:

wil Ð wil ´ xml,wiy ´ bl
mll

, (4.6)

where ml is l-th row of matrix M , bl is l-th component of b and mll is the l-th

coordinate of ml.

If we choose the update sequence w11, . . ., w1k, w21, . . ., w2k, . . ., wm1, . . ., wmk,

h11, . . ., h1k, h21, . . ., h2k, . . . , hn1, . . ., hnk, w11, . . ., w1k, and so on, then this recovers

Cyclic Coordinate Descent (CCD) [37]. On the other hand, the update sequence w11,

. . ., wm1, h11, . . ., hn1, w12, . . ., wm2, h12, . . ., hn2 and so on, recovers the CCD++

algorithm of Yu et al. [78]. The CCD++ updates can be performed more efficiently

than the CCD updates by maintaining a residual matrix [78].

4.3 Experiments

In this section, we evaluate the empirical performance of NOMAD with extensive

experiments. For the distributed memory experiments we compare NOMAD with

DSGD [31], DSGD++ [69] and CCD++ [78]. We also compare against GraphLab,

but the quality of results produced by GraphLab are significantly worse than the other

methods, and therefore the plots for this experiment are delegated to Appendix A.3.

For the shared memory experiments we pitch NOMAD against FPSGD** [79] (which
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is shown to outperform DSGD in single machine experiments) as well as CCD++.

Our experiments are designed to answer the following:

• How does NOMAD scale with the number of cores on a single machine? (Section

4.3.2)

• How does NOMAD scale as a fixed size dataset is distributed across multiple

machines? (Section 4.3.3)

• How does NOMAD perform on a commodity hardware cluster? (Chapter 4.3.4)

• How does NOMAD scale when both the size of the data as well as the number

of machines grow? (Section 4.3.5)

Since the objective function (4.1) is non-convex, different optimizers will converge

to different solutions. Factors which affect the quality of the final solution include 1)

initialization strategy, 2) the sequence in which the ratings are accessed, and 3) the

step size decay schedule. It is clearly not feasible to consider the combinatorial effect

of all these factors on each algorithm. However, we believe that the overall trend of

our results is not affected by these factors.

4.3.1 Experimental Setup

Publicly available code for FPSGD**1 and CCD++2 was used in our experiments.

For DSGD and DSGD++, which we had to implement ourselves because the code

is not publicly available, we closely followed the recommendations of Gemulla et al.

[31] and Teflioudi et al. [69], and in some cases made improvements based on our

experience. For a fair comparison all competing algorithms were tuned for optimal

performance on our hardware. The code and scripts required for reproducing the

experiments are readily available for download from http://www.stat.purdue.edu/

~yun3. Parameters used in our experiments are summarized in Table 4.1.

1http://www.csie.ntu.edu.tw/~cjlin/libmf/
2http://www.cs.utexas.edu/~rofuyu/libpmf/

http://www.stat.purdue.edu/~yun3
http://www.stat.purdue.edu/~yun3
http://www.csie.ntu.edu.tw/~cjlin/libmf/
http://www.cs.utexas.edu/~rofuyu/libpmf/
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Table 4.1.: Dimensionality parameter k, regularization parameter λ (4.1) and step-

size schedule parameters α, β (4.7)

Name k λ α β

Netflix 100 0.05 0.012 0.05

Yahoo! Music 100 1.00 0.00075 0.01

Hugewiki 100 0.01 0.001 0

Table 4.2.: Dataset Details

Name Rows Columns Non-zeros

Netflix [7] 2,649,429 17,770 99,072,112

Yahoo! Music [23] 1,999,990 624,961 252,800,275

Hugewiki [2] 50,082,603 39,780 2,736,496,604
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For all experiments, except the ones in Chapter 4.3.5, we will work with three

benchmark datasets namely Netflix, Yahoo! Music, and Hugewiki (see Table 5.2 for

more details). The same training and test dataset partition is used consistently for all

algorithms in every experiment. Since our goal is to compare optimization algorithms,

we do very minimal parameter tuning. For instance, we used the same regularization

parameter λ for each dataset as reported by Yu et al. [78], and shown in Table 4.1;

we study the effect of the regularization parameter on the convergence of NOMAD

in Appendix A.1. By default we use k “ 100 for the dimension of the latent space;

we study how the dimension of the latent space affects convergence of NOMAD in

Appendix A.2. All algorithms were initialized with the same initial parameters; we

set each entry of W and H by independently sampling a uniformly random variable

in the range p0, 1?
k
q [78, 79].

We compare solvers in terms of Root Mean Square Error (RMSE) on the test set,

which is defined as:
d

ř

pi,jqPΩtest pAij ´ xwi,hjyq2
|Ωtest| ,

where Ωtest denotes the ratings in the test set.

All experiments, except the ones reported in Chapter 4.3.4, are run using the

Stampede Cluster at University of Texas, a Linux cluster where each node is outfitted

with 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi Coprocessor

(MIC Architecture). For single-machine experiments (Chapter 4.3.2), we used nodes

in the largemem queue which are equipped with 1TB of RAM and 32 cores. For all

other experiments, we used the nodes in the normal queue which are equipped with

32 GB of RAM and 16 cores (only 4 out of the 16 cores were used for computation).

Inter-machine communication on this system is handled by MVAPICH2.

For the commodity hardware experiments in Chapter 4.3.4 we used m1.xlarge

instances of Amazon Web Services, which are equipped with 15GB of RAM and four

cores. We utilized all four cores in each machine; NOMAD and DSGD++ uses two

cores for computation and two cores for network communication, while DSGD and
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CCD++ use all four cores for both computation and communication. Inter-machine

communication on this system is handled by MPICH2.

Since FPSGD** uses single precision arithmetic, the experiments in Chapter 4.3.2

are performed using single precision arithmetic, while all other experiments use double

precision arithmetic. All algorithms are compiled with Intel C++ compiler, with

the exception of experiments in Chapter 4.3.4 where we used gcc which is the only

compiler toolchain available on the commodity hardware cluster. For ready reference,

exceptions to the experimental settings specific to each section are summarized in

Table 4.3.

Table 4.3.: Exceptions to each experiment

Section Exception

Chapter 4.3.2 • run on largemem queue (32 cores, 1TB RAM)

• single precision floating point used

Chapter 4.3.4 • run on m1.xlarge (4 cores, 15GB RAM)

• compiled with gcc

• MPICH2 for MPI implementation

Chapter 4.3.5 • Synthetic datasets

The convergence speed of stochastic gradient descent methods depends on the

choice of the step size schedule. The schedule we used for NOMAD is

st “ α

1` β ¨ t1.5 , (4.7)

where t is the number of SGD updates that were performed on a particular user-item

pair pi, jq. DSGD and DSGD++, on the other hand, use an alternative strategy

called bold-driver [31]; here, the step size is adapted by monitoring the change of the

objective function.
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4.3.2 Scaling in Number of Cores

For the first experiment we fixed the number of cores to 30, and compared the

performance of NOMAD vs FPSGD**3 and CCD++ (Figure 4.1). On Netflix (left)

NOMAD not only converges to a slightly better quality solution (RMSE 0.914 vs

0.916 of others), but is also able to reduce the RMSE rapidly right from the begin-

ning. On Yahoo! Music (middle), NOMAD converges to a slightly worse solution

than FPSGD** (RMSE 21.894 vs 21.853) but as in the case of Netflix, the initial

convergence is more rapid. On Hugewiki, the difference is smaller but NOMAD still

outperforms. The initial speed of CCD++ on Hugewiki is comparable to NOMAD,

but the quality of the solution starts to deteriorate in the middle. Note that the

performance of CCD++ here is better than what was reported in Zhuang et al.

[79] since they used double-precision floating point arithmetic for CCD++. In other

experiments (not reported here) we varied the number of cores and found that the

relative difference in performance between NOMAD, FPSGD** and CCD++ are very

similar to that observed in Figure 4.1.

For the second experiment we varied the number of cores from 4 to 30, and plot

the scaling behavior of NOMAD (Figures 4.2, 4.3 and 4.4). Figure 4.2 shows how test

RMSE changes as a function of the number of updates. Interestingly, as we increased

the number of cores, the test RMSE decreased faster. We believe this is because when

we increase the number of cores, the rating matrix A is partitioned into smaller blocks;

recall that we split A into pˆ n blocks, where p is the number of parallel processors.

Therefore, the communication between processors becomes more frequent, and each

SGD update is based on fresher information (see also Chapter 3.3 for mathematical

analysis). This effect was more strongly observed on Yahoo! Music dataset than

others, since Yahoo! Music has much larger number of items (624,961 vs. 17,770

of Netflix and 39,780 of Hugewiki) and therefore more amount of communication is

needed to circulate the new information to all processors.

3Since the current implementation of FPSGD** in LibMF only reports CPU execution time, we
divide this by the number of threads and use this as a proxy for wall clock time.
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On the other hand, to assess the efficiency of computation we define average

throughput as the average number of ratings processed per core per second, and plot it

for each dataset in Figure 4.3, while varying the number of cores. If NOMAD exhibits

linear scaling in terms of the speed it processes ratings, the average throughput should

remain constant4. On Netflix, the average throughput indeed remains almost constant

as the number of cores changes. On Yahoo! Music and Hugewiki, the throughput

decreases to about 50% as the number of cores is increased to 30. We believe this is

mainly due to cache locality effects.

Now we study how much speed-up NOMAD can achieve by increasing the number

of cores. In Figure 4.4, we set y-axis to be test RMSE and x-axis to be the total CPU

time expended which is given by the number of seconds elapsed multiplied by the

number of cores. We plot the convergence curves by setting the # cores=4, 8, 16,

and 30. If the curves overlap, then this shows that we achieve linear speed up as we

increase the number of cores. This is indeed the case for Netflix and Hugewiki. In

the case of Yahoo! Music we observe that the speed of convergence increases as the

number of cores increases. This, we believe, is again due to the decrease in the block

size which leads to faster convergence.
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Figure 4.1.: Comparison of NOMAD, FPSGD**, and CCD++ on a single-machine

with 30 computation cores.

4Note that since we use single-precision floating point arithmetic in this section to match the im-
plementation of FPSGD**, the throughput of NOMAD is about 50% higher than that in other
experiments.
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Figure 4.2.: Test RMSE of NOMAD as a function of the number of updates, when

the number of cores is varied.
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Figure 4.3.: Number of updates of NOMAD per core per second as a function of the

number of cores.
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4.3.3 Scaling as a Fixed Dataset is Distributed Across Processors

In this subsection, we use 4 computation threads per machine. For the first

experiment we fix the number of machines to 32 (64 for hugewiki), and compare

the performance of NOMAD with DSGD, DSGD++ and CCD++ (Figure 4.5). On

Netflix and Hugewiki, NOMAD converges much faster than its competitors; not only

initial convergence is faster, it also discovers a better quality solution. On Yahoo!

Music, four methods perform almost the same to each other. This is because the

cost of network communication relative to the size of the data is much higher for

Yahoo! Music; while Netflix and Hugewiki have 5,575 and 68,635 non-zero ratings

per each item respectively, Yahoo! Music has only 404 ratings per item. Therefore,

when Yahoo! Music is divided equally across 32 machines, each item has only 10

ratings on average per each machine. Hence the cost of sending and receiving item

parameter vector hj for one item j across the network is higher than that of executing

SGD updates on the ratings of the item locally stored within the machine, Ω̄
pqq
j . As

a consequence, the cost of network communication dominates the overall execution

time of all algorithms, and little difference in convergence speed is found between

them.

For the second experiment we varied the number of machines from 1 to 32, and

plot the scaling behavior of NOMAD (Figures 4.6, 4.7 and 4.8). Figures 4.6 shows

how test RMSE decreases as a function of the number of updates. Again, if NO-

MAD scales linearly the average throughput has to remain constant. On the Netflix

dataset (left) convergence is mildly slower with two or four machines. However, as we

increase the number of machines the speed of convergence improves. On Yahoo! Mu-

sic (center), we uniformly observe improvement in convergence speed when 8 or more

machines are used; this is again the effect of smaller block sizes which was discussed

in Chapter 4.3.2. On the Hugewiki dataset, however, we do not see any notable

difference between configurations.
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In Figure 4.7 we plot the average throughput (the number of updates per machine

per core per second) as a function of the number of machines. On Yahoo! Music

the average throughput goes down as we increase the number of machines, because

as mentioned above, each item has a small number of ratings. On Hugewiki we

observe almost linear scaling, and on Netflix the average throughput even improves

as we increase the number of machines; we believe this is because of cache locality

effects. As we partition users into smaller and smaller blocks, the probability of cache

miss on user parameters wi’s within the block decrease, and on Netflix this makes

a meaningful difference: indeed, there are only 480,189 users in Netflix who have

at least one rating. When this is equally divided into 32 machines, each machine

contains only 11,722 active users on average. Therefore the wi variables only take

11MB of memory, which is smaller than the size of L3 cache (20MB) of the machine

we used and therefore leads to increase in the number of updates per machine per

core per second.

Now we study how much speed-up NOMAD can achieve by increasing the number

of machines. In Figure 4.8, we set y-axis to be test RMSE and x-axis to be the number

of seconds elapsed multiplied by the total number of cores used in the configuration.

Again, all lines will coincide with each other if NOMAD shows linear scaling. On

Netflix, with 2 and 4 machines we observe mild slowdown, but with more than 4

machines NOMAD exhibits super-linear scaling. On Yahoo! Music we observe super-

linear scaling with respect to the speed of a single machine on all configurations, but

the highest speedup is seen with 16 machines. On Hugewiki, linear scaling is observed

in every configuration.

4.3.4 Scaling on Commodity Hardware

In this subsection, we want to analyze the scaling behavior of NOMAD on com-

modity hardware. Using Amazon Web Services (AWS), we set up a computing cluster

that consists of 32 machines; each machine is of type m1.xlarge and equipped with
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Figure 4.5.: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a HPC

cluster.
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Figure 4.6.: Test RMSE of NOMAD as a function of the number of updates on a

HPC cluster, when the number of machines is varied.
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quad-core Intel Xeon E5430 CPU and 15GB of RAM. Network bandwidth among

these machines is reported to be approximately 1Gb/s5.

Since NOMAD and DSGD++ dedicates two threads for network communication,

on each machine only two cores are available for computation6. In contrast, bulk

synchronization algorithms such as DSGD and CCD++ which separate computa-

tion and communication can utilize all four cores for computation. In spite of this

disadvantage, Figure 4.9 shows that NOMAD outperforms all other algorithms in

this setting as well. In this plot, we fixed the number of machines to 32; on Netflix

and Hugewiki, NOMAD converges more rapidly to a better solution. Recall that

on Yahoo! Music, all four algorithms performed very similarly on a HPC cluster in

Chapter 4.3.3. However, on commodity hardware NOMAD outperforms the other

algorithms. This shows that the efficiency of network communication plays a very

important role in commodity hardware clusters where the communication is relatively

slow. On Hugewiki, however, the number of columns is very small compared to the

number of ratings and thus network communication plays smaller role in this dataset

compared to others. Therefore, initial convergence of DSGD is a bit faster than NO-

MAD as it uses all four cores on computation while NOMAD uses only two. Still,

the overall convergence speed is similar and NOMAD finds a better quality solution.

As in Chapter 4.3.3, we increased the number of machines from 1 to 32, and

studied the scaling behavior of NOMAD. The overall pattern is identical to what was

found in Figure 4.6, 4.7 and 4.8 of Chapter 4.3.3. Figure 4.10 shows how the test

RMSE decreases as a function of the number of updates. As in Figure 4.6, the speed

of convergence is faster with larger number of machines as the updated information is

more frequently exchanged. Figure 4.11 shows the number of updates performed per

second in each computation core of each machine; NOMAD exhibits linear scaling on

Netflix and Hugewiki, but slows down on Yahoo! Music due to extreme sparsity of

5http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html
6Since network communication is not computation-intensive, for DSGD++ we used four computation
threads instead of two and got better results; thus we report results with four computation threads
for DSGD++.

http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html
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the data. Figure 4.12 compares the convergence speed of different settings when the

same amount of computational power is given to each; on every dataset we observe

linear to super-linear scaling up to 32 machines.
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Figure 4.9.: Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a commod-

ity hardware cluster.
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Figure 4.10.: Test RMSE of NOMAD as a function of the number of updates on a

commodity hardware cluster, when the number of machines is varied.

4.3.5 Scaling as both Dataset Size and Number of Machines Grows

In previous sections (Chapter 4.3.3 and Chapter 4.3.4), we studied the scalabil-

ity of algorithms by partitioning a fixed amount of data into increasing number of

machines. In real-world applications of collaborative filtering, however, the size of

the data should grow over time as new users are added to the system. Therefore, to

match the increased amount of data with equivalent amount of physical memory and
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Figure 4.11.: Number of updates of NOMAD per machine per core per second as a

function of the number of machines, on a commodity hardware cluster.
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commodity hardware cluster, when the number of machines is varied.
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computational power, the number of machines should increase as well. The aim of this

section is to compare the scaling behavior of NOMAD and that of other algorithms

in this realistic scenario.

To simulate such a situation, we generated synthetic datasets which resemble

characteristics of real data; the number of ratings for each user and each item is

sampled from the corresponding empirical distribution of the Netflix data. As we

increase the number of machines from 4 to 32, we fixed the number of items to be the

same to that of Netflix (17,770), and increased the number of users to be proportional

to the number of machines (480,189 ˆ the number of machines7). Therefore, the

expected number of ratings in each dataset is proportional to the number of machines

(99,072,112 ˆ the number of machines) as well.

Conditioned on the number of ratings for each user and item, the nonzero lo-

cations are sampled uniformly at random. Ground-truth user parameters wi’s and

item parameters hj’s are generated from 100-dimensional standard isometric Gaussian

distribution, and for each rating Aij, Gaussian noise with mean zero and standard

deviation 0.1 is added to the “true” rating xwi,hjy.
Figure 4.13 shows that the comparative advantage of NOMAD against DSGD and

CCD++ increases as we grow the scale of the problem. NOMAD clearly outperforms

DSGD on all configurations; DSGD is very competitive on the small scale, but as the

size of the problem grows NOMAD shows better scaling behavior.

4.3.6 Conclusion

From our experimental study we conclude that

• On a single machine, NOMAD shows near-linear scaling up to 30 threads.

• When a fixed size dataset is distributed across multiple machines, NOMAD

shows near-linear scaling up to 32 machines.

7480,189 is the number of users in Netflix who have at least one rating.
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Figure 4.13.: Comparison of algorithms when both dataset size and the number of

machines grows. Left: 4 machines, middle: 16 machines, right: 32 machines
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• Both in shared-memory and distributed-memory setting, NOMAD exhibits su-

perior performance against state-of-the-art competitors; in commodity hard-

ware cluster, the comparative advantage is more conspicuous.

• When both the size of the data as well as the number of machines grow, the

scaling behavior of NOMAD is much nicer than its competitors.
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5. REGULARIZED RISK MINIMIZATION

5.1 Introduction

Numerous methods in statistics and machine learning minimize a regularized

risk [70]:

P pwq “ λΩ pwq ` 1

m

m
ÿ

i“1

` pw,xi, yiq . (5.1)

Here, w is the parameter of the model, ` p¨, ¨, ¨q is a loss function, which is convex

in w, while Ωp¨q is a regularizer which penalizes complex models, and λ ą 0 trade-

offs between the average loss and the regularizer. The average loss is sometimes also

called the empirical risk. Note that the loss is evaluated and averaged over m training

data points xi and their corresponding labels yi. While more general models also fall

under the regularized risk minimization umbrella [70], for the ease of exposition in

this paper we will restrict ourselves to the following assumptions:

• the data xi and the model parameter w lie in a d dimensional Euclidean space,

that is, xi,w P Rd

• the loss ` pw,xi, yiq can be written as `i pxw,xiyq, where xw,xy denotes the

Euclidean dot product

• the regularizer decomposes, that is, Ωpwq can be written as
ř

j φjpwjq for some

φ : RÑ R. Here wj denotes the j-th coordinate of w.

This yields the objective function

min
w

P pwq “ λ
d
ÿ

j“1

φj pwjq ` 1

m

m
ÿ

i“1

`i pxw,xiyq . (5.2)

A number of well known algorithms can be derived by specializing (5.2). For

instance, if yi P t˘1u, then by setting φjpwjq “ w2
j and letting `i pxw,xiyq “
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max p0, 1´ yi xw,xiyq recovers binary linear support vector machines (SVMs) [61].

On the other hand, by using the same regularizer but changing the loss function

to `i pxw,xiyq “ log p1` exp p´yi xw,xiyqq yields regularized logistic regression [12].

Similarly, setting `i pxw,xiyq “ 1
2
pyi ´ xw,xiyq2 and φj pwjq “ |wj| leads to LASSO

[34]. Also note that the entire class of generalized linear model [25] with separable

penalty can be fit into this framework as well.

A number of specialized as well as general purpose algorithms have been proposed

for minimizing the regularized risk. For instance, if both the loss and the regularizer

are smooth, as is the case with logistic regression, then quasi-Newton algorithms

such as L-BFGS [46] have been found to be very successful. On the other hand, for

non-smooth regularized risk minimization Teo et al. [70] proposed a bundle method

for regularized risk minimization (BMRM). Both L-BFGS and BMRM belong to the

broad class of batch minimization algorithms. What this means is that at every

iteration these algorithms compute the regularized risk P pwq as well as its gradient

∇P pwq “ λ
d
ÿ

j“1

∇φj pwjq ¨ ej ` 1

m

m
ÿ

i“1

∇`i pxw,xiyq ¨ xi, (5.3)

where ej denotes the j-th standard basis vector which contains a one at the j-th

coordinate and zeros everywhere else. Both P pwq as well as the gradient ∇P pwq
take Opmdq time to compute, which is computationally expensive when m the number

of data points is large. Batch algorithms overcome this hurdle by using the fact that

the empirical risk 1
m

řm
i“1 `i pxw,xiyq as well as its gradient 1

m

řm
i“1∇`i pxw,xiyq ¨ xi

decompose over the data points, and therefore one can distribute the data across

machines to compute P pwq and ∇P pwq in a distributed fashion.

Batch algorithms, unfortunately, are known to be not favorable for machine learn-

ing both empirically [75] and theoretically [13, 63, 64], as we have discussed in Chap-

ter 2.3. It is now widely accepted that stochastic algorithms which process one data

point at a time are more effective for regularized risk minimization. Stochastic al-

gorithms, however, are in general difficult to parallelize, as we have discussed so far.
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Therefore we will reformulate the model as a doubly separable function to apply

efficient parallel algorithms we introduced in Chapter 2.3.2 and Chapter 3.

5.2 Reformulating Regularized Risk Minimization

In this section we will reformulate the regularized risk minimization problem into

an equivalent saddle-point problem. This is done by linearizing the objective function

(5.2) in terms of w as follows: rewrite (5.2) by introducing an auxiliary variable ui

for each data point:

min
w,u

λ
d
ÿ

j“1

φj pwjq ` 1

m

m
ÿ

i“1

`i puiq (5.4a)

s.t. ui “ xw,xiy @ i “ 1, . . . ,m. (5.4b)

Using Lagrange multipliers αi to eliminate the constraints, the above objective func-

tion can be rewritten:

min
w,u

max
α

λ
d
ÿ

j“1

φj pwjq ` 1

m

m
ÿ

i“1

`i puiq ` 1

m

m
ÿ

i“1

αipui ´ xw,xiyq.

Here u denotes a vector whose components are ui. Likewise, α is a vector whose

components are αi. Since the objective function (5.4) is convex and the constrains

are linear, strong duality applies [15]. Thanks to strong duality, we can switch the

maximization over α and the minimization over w,u:

max
α

min
w,u

λ
d
ÿ

j“1

φj pwjq ` 1

m

m
ÿ

i“1

`i puiq ` 1

m

m
ÿ

i“1

αi pui ´ xw,xiyq .

Grouping terms which depend only on u yields

max
α

min
w,u

λ
d
ÿ

j“1

φj pwjq ´ 1

m

m
ÿ

i“1

αi xw,xiy ` 1

m

m
ÿ

i“1

αiui ` `ipuiq.

Note that the first two terms in the above equation are independent of u, and

minui αiui ` `ipuiq is ´`‹i p´αiq where `‹i p¨q is the Fenchel-Legendre conjugate of `ip¨q



58

Name `ipuq ´`‹i p´αq
Hinge max p1´ yiu, 0q yiα for α P r0, yis

Logistic logp1` expp´yiuqq ´ tyiα logpyiαq ` p1´ yiαq logp1´ yiαqu for α P p0, yiq
Square pu´ yiq2{2 yiα ´ α2{2

Table 5.1.: Different loss functions and their dual. r0, yis denotes r0, 1s if yi “ 1, and

r´1, 0s if yi “ ´1; p0, yiq is defined similarly.

(see Table 5.1 for some examples) [59]. This yields our final objective function which

we will henceforth denote by

max
α

min
w

f pw,αq :“ λ
d
ÿ

j“1

φj pwjq ´ 1

m

m
ÿ

i“1

αi xw,xiy ´ 1

m

m
ÿ

i“1

`‹i p´αiq .

At first glance, the above objective function seems unremarkable, except for the

fact that it is a function of both the primal parameters w as well as the Lagrange

multipliers α. However, it can be rewritten in the following form to reveal a very

useful and interesting structure.

Let xij denote the j-th coordinate of xi, and Ωi :“ tj : xij ‰ 0u denote the non-

zero coordinates of xi. Similarly, let Ω̄j :“ ti : xij ‰ 0u denote the set of data points

where the j-th coordinate is non-zero and Ω :“ tpi, jq : xij ‰ 0u denote the set of

all non-zero coordinates in the training dataset x1, . . . ,xm. Then, fpw,αq can be

rewritten as

f pw,αq “
ÿ

pi,jqPΩ

λφj pwjq
ˇ

ˇΩ̄j

ˇ

ˇ

´ `‹i p´αiq
m |Ωi| ´

αiwjxij
m

, (5.5)

where | ¨ | denotes the cardinality of a set. Remarkably, each component in the

summation depends only one term of w and α: the function is in doubly separable

form (2.2).

If we take the gradient of fpw,αq in terms of w and set it to zero to eliminate

w, then we obtain so-called dual objective which is a function of α. Moreover, any

w˚ which is a solution of the primal problem (5.4), and any α˚ which is a solution
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of the dual problem is a saddle-point of f pw,αq [15]. In other words, minimizing

the primal, maximizing the dual, or finding a saddle-point of f pw,αq are equivalent

problems. The saddle-point of a doubly separable function can be numerically found

by methods we introduced in Chapter 2.3 and Chapter 3.

5.3 Implementation Details

Our code is implemented in portable C++ and uses Intel Thread Building Blocks [3]

for multi-threading and the MPICH2 library which provides an implementation of the

Message Passing Interface, MPI, for inter-machine communication. The parameters

are initialized to 0. To prevent degeneracy in logistic regression, the value of αj is

projected to lie in the range pε, 1´ εq with ε “ 10´6, while in the case of linear SVM

it is naturally projected to its parameter space r0, 1s. Similarly, the wi are restricted

to lie in the interval r´1{λ, 1{λs for linear SVM and r´ logp2q{λ, logp2q{λs for logistic

regression.

As for step size tuning, we adapt the bold driver heuristic suggested by Gemulla

et al. [31]. The main difference is that we are solving a saddle point problem and

hence require reduction in the primal objective function and increase in the dual

objective function for algorithm to make progress. Also, to speed up the convergence

it will be beneficial to have different step sizes for w and α. Therefore, our criterion

is as follows: if the primal objective function value has decreased from that of the

last iteration, we increase the step size of w by multiplying it with 1.05. On the other

hand, if the primal value has increased and the dual gap has widened, we drastically

decrease the step size for w by multiplying it with 0.5. If the dual gap has decreased,

however, we do not decrease the step size, since at least some improvement has been

made in the previous iteration. The step size for α is adjusted in the same way, but

we monitor dual objective value instead of primal.

In the case of the parallel version of our algorithm, we partition the data and

run dual coordinate descent [24] on each partition independently to initialize the
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parameters. To treat nomadic variables in a thread-safe way we used the concurrent

queue provided by TBB. Each machine posseses two threads, sender and receiver,

which are dedicated to inter-machine commutation of nomadic variables. Sender

thread, as the name implies, keeps sending pairs of pj, wjq to other machines. The

receiver thread is tasked with receiving the pairs. Whenever a pair is received, it is

circulated among all of threads before sending being sent to the sender thread for

communication over the network.

5.4 Existing Parallel SGD Algorithms for RERM

Effective parallelization of SGD for RERM is an open problem, which has received

significant research attention in recent years. As we mentioned above, the key difficul-

ties in parallelizing SGD update are that 1) stochastic gradient calculation requires us

to read each coordinate of w, and 2) updates can write to every coordinate of w. Due

to 2), updates have to be executed in serial, leaving little room for parallelization.

Existing work has focused on working around the limitation of stochastic optimization

by either a) introducing strategies for computing the stochastic gradient in parallel,

b) updating the parameter in parallel, or c) performing independent updates and

combining the resulting parameter vectors. While the former two are popular in the

shared memory setting, the latter is popular in the distributed memory setting. We

will now briefly review these schemes.

An algorithm which uses strategy (a) was proposed by Langford et al. [43]. Their

algorithm uses multiple slave threads which work with slightly outdated parameter

vectors to compute gradients. These stale gradients are then used by a master thread

to update the parameter vector. Langford et al. [43] show that in spite of using stale

gradients, the algorithm converges. However, the master needs to write-lock and the

slaves have to read-lock the parameter vector during access, which causes bottlenecks.

An algorithm which uses strategy (b) was proposed by [56]. Their algorithm,

Hogwild!, allows multiple threads to update the vector simultaneously. This results
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in a lock-free parallel update of the parameter vector, that is, different threads can

read and write the parameter vector without locks. However, the downside of this

approach is that synchronizing the L1 caches of various threads causes considerable

slowdown in throughput. It is unclear how to extend the above two algorithms to the

distributed memory setting.

In the distributed memory setting, a number of proposals exist. Some of the

earliest work that we are aware of includes algorithms by Bertsekas and Tsitsiklis

[10] and their recent variants such as the algorithm of Ram et al. [55]. The basic

idea here is that data is distributed across multiple processors, each of which works

with their own version of the parameter vector. After a fixed number of updates,

individual machines communicate their parameter vector to their neighbors. Each

machine averages the parameter vectors received from its neighbors, and the iteration

proceeds. These algorithms require frequent communication and synchronization. On

the other extreme, Zinkevich et al. [80] propose to run stochastic optimization on a

subset of data in each individual processor and finally average the results. There is no

communication, but the empirical performance of such a method is usually inferior

(see section 5.5).

Another class of algorithms use a so-called parameter server to synchronize local

updates to the parameters Smola and Narayanamurthy [65]. In a nutshell, the idea

here is that the updates to the parameters are continuously and asynchronously com-

municated to a processor which is designated as a parameter server, which in turn

accumulates the updates and periodically transmits them to other machines. The

main drawback of such a scheme is that it is not easy to “serialize” the updates, that

is, to replay the updates on a single machine. This makes these algorithms slow to

converge, and difficult to debug [49].
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5.5 Empirical Evaluation

We conduct three preliminary experiments to test the efficacy of solving the saddle-

point problem, and to compare it with state-of-the-art methods. The first experiment

is to show that saddle point formulation is versatile, and can be applied to a variety

of problems including linear SVM and logistic regression. In the second experiment

we will study the behavior of the algorithms on medium sized datasets on a single

machine. Finally, we study convergence in large datasets in a multi-machine setup.

We will mainly report test error vs iterations in the main body of the paper.

5.5.1 Experimental Setup

We work with the following publicly available datasets: real-sim, news20, worm,

kdda, kddb, alpha, ocr, and dna (see Table 5.2 for summary statistics). news20 and

real-sim are from Hsieh et al. [38], worm is from Franc and Sonnenburg [27], while

kdda and kddb are from the KDD cup 2010 challenge1. The alpha, dna, ocr datasets

are from the Pascal Large Scale Learning Workshop [66]. Wherever, training and

test splits were available, we used them. Otherwise we randomly split the data and

used 80% for training and 20% for testing. The same training test split is used for all

algorithms in every experiment. We selected these datasets because they span a wide

spectrum of values in terms of number of data points, number of features, sparsity,

and class balance. They also represent data from a variety of application domains.

For simplicity we set the regularization parameter λ “ 10´3. Our goal is to

compare optimizers. Therefore, tuning λ to obtain the best test performance is not

our focus2. Moreover, note that since we are dealing with a convex regularized risk,

all optimization algorithms will converge to the same solution. For a fair compari-

son, wherever possible, the algorithms are initialized with the same initial parameter

values.

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2In fact, a large value of λ is favorable to the batch optimization algorithms.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html


63

Table 5.2.: Summary of the datasets used in our experiments. m is the total # of

examples, d is the # of features, s is the feature density (% of features that are non-

zero), m` :m´ is the ratio of the number of positive vs negative examples, Datasize

is the size of the data file on disk. M/G denotes a million/billion.

dataset m d |Ω| s(%) m` :m´ Datasize

ocr 2.8 M 1156 3.24G 100 0.96 43.18 GB

dna 40 M 800 8.00G 25.0 3e´3 63.04 GB

kdda 8.41M 20.22M 0.31G 1.82e-4 6.56 2.55 GB

kddb 19.26M 29.89M 0.59G 1.02e-4 7.91 4.90 GB

worm 0.82M 804 0.17G 25.12 0.06 0.93 GB

alpha 0.4M 500 0.20G 100 0.99 2.74 GB

news20 15960 1.36 M 7.26M 0.033 1.00 0.11 GB

real-sim 57763 20958 2.97M 0.245 0.44 0.07 GB

5.5.2 Parameter Tuning

For SSO and DSSO we used the bold-driver heuristic discussed in section 5.3.

This requires tuning three parameters: ηw0 the initial step size for w, ηα0 the initial

step size for α, and the period for updating the step size. We expect that as we

gain more experience with saddle point optimization, an automatic mechanism for

selecting these parameters will be developed. However, for the preliminary results

reported in this paper, we do a semi-systematic search for the optimal values by letting

ηw0 P t10´1, 10´2, . . . , 10´6u, ηα0 P t10´1, 10´2, . . . , 10´6u, and period P t1, 2, 5, 10u.

5.5.3 Competing Algorithms

For stochastic gradient descent, we used sgd-2.1, which is available for download

from http://leon.bottou.org/projects/sgd. It is widely acknowledged as one of

http://leon.bottou.org/projects/sgd
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the fastest and most robust implementations for the single machine case. The stepsize

schedule used is

ηt “ η0

1` λη0t
,

and initial stepsize η0 is automatically tuned by using a small subset of the data.

For batch optimization we use BMRM, which is a first-order bundle method based

solver which is specialized for smooth as well as non-smooth regularized risk mini-

mization [70]. We also use L-BFGS, which is one of the fastest general purpose limited

memory Quasi-Newton algorithms. For both algorithms, we implemented our own

loss functions in C++ and used them with PETSc3 and TAO4 libraries, which provide

a framework for efficient large scale linear algebra and optimization. In particular,

we used the Limited Memory Variable Metric (lmvm) Quasi Newton optimization

algorithm, as well as the BMRM solver from TAO. The code was compiled without

debugging symbols for optimal performance, and the default stopping criterion was

used for both solvers.

We also compare against the dual coordinate descent (DCD) algorithm, which

performs very competitively in single machine experiments, and is the basis for the

popular LibLinear library [24]. One way to view DCD is that it is SGD with automatic

step size tuning (see e.g., Vishwanathan and Cheng [74]). We implemented our own

version of DCD.

Finally for the distributed memory experiments we will compare DSSO and NO-

MAD against the parallel stochastic gradient descent solver of Zinkevich et al. [80].

This will be called PSGD in the sequel. We implemented a version of PSGD in our

framework using C++ and MPI. Our implementation partitions the data across pro-

cessors, and independently runs SGD on each partition independently. After every

iteration of SGD, the parameters of the different processors are averaged during a

bulk synchronization step, and the iteration proceeds.

3Version 3.4.3 from http://www.mcs.anl.gov/petsc/
4Version 2.2 from https://bitbucket.org/sarich/tao-2.2

http://www.mcs.anl.gov/petsc/
https://bitbucket.org/sarich/tao-2.2
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5.5.4 Versatility

Our first experiment is designed to show the versatility of using the saddle-point

formulation. By plugging in different loss functions, one recovers different well known

models. As long as the loss is convex, and the regularizer is separable, our saddle-

point formulation is valid. Here, we will restrict ourselves to a subset of the datasets

(real-sim and news20) and work with the square norm-regularizer and two differ-

ent loss functions: the hinge loss which leads to linear SVM, and the logistic loss

which leads to regularized logistic regression. All experiments are conducted using

a single machine. Note that L-BFGS can only handle smooth objective functions, it

is excluded from the linear SVM experiments because the hinge loss is non-smooth.

Since the computational complexity of all the algorithms is Opmdq for performing

one iteration through the data, our main goal here is to show how the test error

behaves as function of the number of iterations. A secondary goal is to show how

the primal objective function (5.2) changes as a function of the number of iterations

(see supplementary material). Results for real-sim can be found in Figure 5.1, while

the results for news20 can be found in Figures 5.2. In the case of real-sim for the

hinge loss, SSO converges to a better solution must faster than SGD. The same story

is repeated for logistic regression. However, in the case of news20 SGD is able to

converge to a marginally better solution. As expected, for small datasets and large

values of λ, both the batch solvers exhibit competitive performance. DCD, which can

be viewed as SGD with automatic step size tuning performs the best in all cases. We

are investigating if similar step size tuning mechanisms can be adapted for SSO. In

particular, note that the jumpy behavior of the test error for SSO, which happens

because we use the bold driver heuristic to tune step sizes.

5.5.5 Single Machine Experiments

From now on we will only concentrate on logistic regression. In this section, we are

interested in checking the convergence speed of SSO vs other algorithms on medium
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Figure 5.1.: Test error vs iterations for real-sim on linear SVM and logistic regres-

sion.
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Figure 5.2.: Test error vs iterations for news20 on linear SVM and logistic regression.
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Figure 5.3.: Test error vs iterations for alpha and kdda.
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Figure 5.4.: Test error vs iterations for kddb and worm.

sized datasets. Therefore we will concentrate on the following 4 datasets: kdda, kddb,

alpha, worm.

On alpha the test error oscillates (Figure 5.3), but eventually converges to the

optimal value. SGD is faster than SSO on this dataset. On both kdda and kddb

datasets, convergence of SSO is slower than that of SGD. The reason for this is

because both these datasets are very sparse and have a very large number of features.

Therefore, the number of parameters of SSGD is much higher than that of SGD

and other competing algorithms. This makes step size tuning for SSO significantly

challenging. On the other hand for the worm dataset, where the number of features

is small, SSO outperforms SGD and is comparable to BMRM.
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5.5.6 Multi-Machine Experiments

In this section, we are interested in checking the convergence speed of SSO vs

other algorithms on medium to large sized datasets but in a distributed memory

setting. Therefore we will concentrate on the following 4 datasets: kdda, kddb, ocr,

and dna. The experiments are run on 8 machines, with 4 cores per machine (total of

32 processors). We also plot test error vs wall-clock time for the parallel experiments.

On the kdda dataset, even though SSO is competitive in terms of test error vs number

of iterations, each update of SSO is slower than that of BMRM and L-BFGS which

use numerical linear algebra libraries. On kddb and ocr we see oscillating behavior

which occurs because of the bold driver heuristic. Better step size tuning for SSO

is likely to yield competitive results. On dna, which is a very heavily imbalanced

dataset, all methods converge rather quickly. It is noteworthy that PSGD does not

perform well, and often returns very sub-optimal solutions both in terms of test error

and primal objective function value.

We also compare the convergence speed of synchronous algorithm (DSSO, Algo-

rithm 1) and asynchronous algorithm (NOMAD, Algorithm 2). This experiment was

also run on 8 machines with 4 cores each; as can be seen in Figure 5.5, NOMAD

indeed reduces the primal-dual gap more rapidly than DSSO does.
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Figure 5.6.: Performances for kdda in multi-machine senario.

0 20 40 60 80

12.0

13.0

14.0

15.0

Number of iterations

T
es
t
E
rr
or

(%
)

kddb, logistic regression, λ “ 10´3

PSGD
BMRM
L-BFGS
DSSO

100 200 300 400 500 600

12.0

13.0

14.0

15.0

Wall Clock Time (sec)

T
es
t
E
rr
or

(%
)

kddb, logistic regression, λ “ 10´3

PSGD
BMRM
L-BFGS
DSSO
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Figure 5.8.: Performances for ocr in multi-machine senario.
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5.6 Discussion and Conclusion

We presented a new equivalent formulation of regularized risk minimization, which

has a doubly separable structure and can be exploited to derive an efficient parallel

algorithm. Our experimental results are arguably preliminary, and clearly there is a

lot of scope for improvement. For instance, using a better step size tuning mecha-

nism will clearly accelerate convergence of our algorithm. We are currently exploring

Periodic Step Size adaptation [39] and Stochastic Meta Descent [62]. Also, we believe

that using lower values of λ in our experiments would have better brought out the

differences between the algorithms; batch algorithms typically converge very fast for

strongly convex functions whose eigenvalues are bounded away from zero. Finally,

some of the performance difference between the algorithms arises because stochastic

optimization algorithms suffer from poor locality of memory access. Nevertheless,

discovering the doubly separable nature of the regularized risk gives rise to a natu-

rally parallelizable algorithm, thus settling an open problem in the machine learning

community.



71

6. OTHER EXAMPLES OF DOUBLE SEPARABILITY

For a given statistical model, there can be more than one way to achieve double

separability. In this chapter, we briefly introduce multinomial logistic regression and

item response theory model, which also belong to regularized risk minimization but

allow additional doubly separable formulations different from (5.5).

6.1 Multinomial Logistic Regression

Multinomial logistic regression [33] is a generalization of binary logistic regres-

sion which the response variable can have n possible values. The data consists

of px1, y1q,px2, y2q,. . .,pxm, ymq where each xi P Rd and yi P t1, 2, . . . , nu for i “
1, 2, . . . ,m. The model is then parametrized by n number of d-dimensional vectors

w1,w2, . . . ,wK P Rd, with the negative log-likelihood being:

Jpw1, . . . ,wKq :“
m
ÿ

i“1

´xwyi , xiy ` log

˜

K
ÿ

k“1

exp pxwi, xiyq
¸

. (6.1)

Gopal and Yang [33] observes that the following property of the logarithm function

can be useful in this situation:

logpγq ď aγ ´ logpaq ´ 1, (6.2)

for any γ ą 0 and a ą 0. The bound is tight when a “ 1{γ. By introducing auxiliary

variables a1, a2, . . . , am, the objective function can be rewritten as

Jpa1, . . . , am,w1, . . . ,wKq :“
m
ÿ

i“1

K
ÿ

k“1

ˆ

´I pyi “ kq ¨ xwk, xiy ` ai ¨ exp pxwi, xiyq ´ 1

K
logpaiq ´ 1

K

˙

. (6.3)

The objective function is now doubly separable. Note that the optimal w1,w2, . . . ,wd

of (6.3) corresponds to that of (6.1), since the bound (6.2) is tight for optimal ai

values.
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6.2 Item Response Theory

Item response theory (IRT) model [21] is an important statistical model in psy-

chometrics to analyze a latent trait of entity measured by an instrument. One of the

most popular application is the scoring of tests such as Graduate Record Examina-

tion (GRE) or Graduate Management Admission Test (GMAT). Denote latent traits

of entities we aim to estimate as θ1, θ2, . . . , θm, and suppose they are examined by n

dichotomous instruments; yij “ 0, 1 denotes the measurement of i-th entity by j-th

instrument. Then, the negative log-likelihood of IRT model is1:

Jpθ1, θ2, . . . , θm, b1, . . . , bnq :“
m
ÿ

i“1

n
ÿ

j“1

´yij ¨ pθi ´ bjq ` log p1` exp pθi ´ bjqq . (6.4)

One can see that the model is readily in doubly separable form.

1For brevity of exposition, here we have only introduced the 1PL (1 Parameter Logistic) IRT model,
but in fact 2PL and 3PL models are also doubly separable.
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7. LATENT COLLABORATIVE RETRIEVAL

7.1 Introduction

Learning to rank is a problem of ordering a set of items according to their rele-

vances to a given context [16]. In document retrieval, for example, a query is given

to a machine learning algorithm, and it is asked to sort the list of documents in the

database for the given query. While a number of approaches have been proposed

to solve this problem in the literature, in this paper we provide a new perspective

by showing a close connection between ranking and a seemingly unrelated topic in

machine learning, namely, robust binary classification.

In robust classification [40], we are asked to learn a classifier in the presence of

outliers. Standard models for classificaion such as Support Vector Machines (SVMs)

and logistic regression do not perform well in this setting, since the convexity of

their loss functions does not let them give up their performance on any of the data

points [48]; for a classification model to be robust to outliers, it has to be capable of

sacrificing its performance on some of the data points.

We observe that this requirement is very similar to what standard metrics for

ranking try to evaluate. Normalized Discounted Cumulative Gain (NDCG) [50], the

most popular metric for learning to rank, strongly emphasizes the performance of a

ranking algorithm at the top of the list; therefore, a good ranking algorithm in terms

of this metric has to be able to give up its performance at the bottom of the list if

that can improve its performance at the top.

In fact, we will show that NDCG can indeed be written as a natural generaliza-

tion of robust loss functions for binary classification. Based on this observation we

formulate RoBiRank, a novel model for ranking, which maximizes the lower bound

of NDCG. Although the non-convexity seems unavoidable for the bound to be tight
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[17], our bound is based on the class of robust loss functions that are found to be

empirically easier to optimize [22]. Indeed, our experimental results suggest that

RoBiRank reliably converges to a solution that is competitive as compared to other

representative algorithms even though its objective function is non-convex.

While standard deterministic optimization algorithms such as L-BFGS [53] can be

used to estimate parameters of RoBiRank, to apply the model to large-scale datasets

a more efficient parameter estimation algorithm is necessary. This is of particular

interest in the context of latent collaborative retrieval [76]; unlike standard ranking

task, here the number of items to rank is very large and explicit feature vectors and

scores are not given.

Therefore, we develop an efficient parallel stochastic optimization algorithm for

this problem. It has two very attractive characteristics: First, the time complexity

of each stochastic update is independent of the size of the dataset. Also, when the

algorithm is distributed across multiple number of machines, no interaction between

machines is required during most part of the execution; therefore, the algorithm enjoys

near linear scaling. This is a significant advantage over serial algorithms, since it is

very easy to deploy a large number of machines nowadays thanks to the popularity

of cloud computing services, e.g. Amazon Web Services.

We apply our algorithm to latent collaborative retrieval task on Million Song

Dataset [9] which consists of 1,129,318 users, 386,133 songs, and 49,824,519 records;

for this task, a ranking algorithm has to optimize an objective function that consists

of 386, 133ˆ 49, 824, 519 number of pairwise interactions. With the same amount of

wall-clock time given to each algorithm, RoBiRank leverages parallel computing to

outperform the state-of-the-art with a 100% lift on the evaluation metric.
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7.2 Robust Binary Classification

We view ranking as an extension of robust binary classification, and will adopt

strategies for designing loss functions and optimization techniques from it. Therefore,

we start by reviewing some relevant concepts and techniques.

Suppose we are given training data which consists of n data points px1, y1q, px2, y2q,
. . ., pxn, ynq, where each xi P Rd is a d-dimensional feature vector and yi P t´1,`1u is

a label associated with it. A linear model attempts to learn a d-dimensional parameter

ω, and for a given feature vector x it predicts label `1 if xx, ωy ě 0 and ´1 otherwise.

Here x¨, ¨y denotes the Euclidean dot product between two vectors. The quality of ω

can be measured by the number of mistakes it makes:

Lpωq :“
n
ÿ

i“1

Ipyi ¨ xxi, ωy ă 0q. (7.1)

The indicator function Ip¨ ă 0q is called the 0-1 loss function, because it has a value of

1 if the decision rule makes a mistake, and 0 otherwise. Unfortunately, since (7.1) is

a discrete function its minimization is difficult; in general, it is an NP-Hard problem

[26]. The most popular solution to this problem in machine learning is to upper bound

the 0-1 loss by an easy to optimize function [6]. For example, logistic regression uses

the logistic loss function σ0ptq :“ log2p1 ` 2´tq, to come up with a continuous and

convex objective function

Lpωq :“
n
ÿ

i“1

σ0pyi ¨ xxi, ωyq, (7.2)

which upper bounds Lpωq. It is easy to see that for each i, σ0pyi ¨ xxi, ωyq is a convex

function in ω; therefore, Lpωq, a sum of convex functions, is a convex function as

well and much easier to optimize than Lpωq in (7.1) [15]. In a similar vein, Support

Vector Machines (SVMs), another popular approach in machine learning, replace the

0-1 loss by the hinge loss. Figure 7.1 (top) graphically illustrates three loss functions

discussed here.

However, convex upper bounds such as Lpωq are known to be sensitive to outliers

[48]. The basic intuition here is that when yi ¨ xxi, ωy is a very large negative number
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for some data point i, σpyi ¨ xxi, ωyq is also very large, and therefore the optimal

solution of (7.2) will try to decrease the loss on such outliers at the expense of its

performance on “normal” data points.

In order to construct loss functions that are robust to noise, consider the following

two transformation functions:

ρ1ptq :“ log2pt` 1q, ρ2ptq :“ 1´ 1

log2pt` 2q , (7.3)

which, in turn, can be used to define the following loss functions:

σ1ptq :“ ρ1pσ0ptqq, σ2ptq :“ ρ2pσ0ptqq. (7.4)

Figure 7.1 (middle) shows these transformation functions graphically, and Figure 7.1

(bottom) contrasts the derived loss functions with logistic loss. One can see that

σ1ptq Ñ 8 as t Ñ ´8, but at a much slower rate than σ0ptq does; its derivative

σ11ptq Ñ 0 as t Ñ ´8. Therefore, σ1p¨q does not grow as rapidly as σ0ptq on hard-

to-classify data points. Such loss functions are called Type-I robust loss functions by

Ding [22], who also showed that they enjoy statistical robustness properties. σ2ptq be-

haves even better: σ2ptq converges to a constant as tÑ ´8, and therefore “gives up”

on hard to classify data points. Such loss functions are called Type-II loss functions,

and they also enjoy statistical robustness properties [22].

In terms of computation, of course, σ1p¨q and σ2p¨q are not convex, and therefore

the objective function based on such loss functions is more difficult to optimize.

However, it has been observed in Ding [22] that models based on optimization of Type-

I functions are often empirically much more successful than those which optimize

Type-II functions. Furthermore, the solutions of Type-I optimization are more stable

to the choice of parameter initialization. Intuitively, this is because Type-II functions

asymptote to a constant, reducing the gradient to almost zero in a large fraction of the

parameter space; therefore, it is difficult for a gradient-based algorithm to determine

which direction to pursue. See Ding [22] for more details.
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7.3 Ranking Model via Robust Binary Classification

In this section, we will extend robust binary classification to formulate RoBiRank,

a novel model for ranking.

7.3.1 Problem Setting

Let X “ tx1, x2, . . . , xnu be a set of contexts, and Y “ ty1, y2, . . . , ymu be a set

of items to be ranked. For example, in movie recommender systems X is the set of

users and Y is the set of movies. In some problem settings, only a subset of Y is

relevant to a given context x P X ; e.g. in document retrieval systems, only a subset

of documents is relevant to a query. Therefore, we define Yx Ă Y to be a set of items

relevant to context x. Observed data can be described by a set W :“ tWxyuxPX ,yPYx
where Wxy is a real-valued score given to item y in context x.

We adopt a standard problem setting used in the literature of learning to rank.

For each context x and an item y P Yx, we aim to learn a scoring function fpx, yq :

X ˆ Yx Ñ R that induces a ranking on the item set Yx; the higher the score, the

more important the associated item is in the given context. To learn such a function,

we first extract joint features of x and y, which will be denoted by φpx, yq. Then, we

parametrize fp¨, ¨q using a parameter ω, which yields the following linear model:

fωpx, yq :“ xφpx, yq, ωy , (7.5)

where, as before, x¨, ¨y denotes the Euclidean dot product between two vectors. ω

induces a ranking on the set of items Yx; we define rankωpx, yq to be the rank of item

y in a given context x induced by ω. More precisely,

rankωpx, yq :“ |ty1 P Yx : y1 ‰ y, fωpx, yq ă fωpx, y1qu| ,

where |¨| denotes the cardinality of a set. Observe that rankωpx, yq can also be written

as a sum of 0-1 loss functions (see e.g. Usunier et al. [72]):

rankωpx, yq “
ÿ

y1PYx,y1‰y
I pfωpx, yq ´ fωpx, y1q ă 0q . (7.6)
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7.3.2 Basic Model

If an item y is very relevant in context x, a good parameter ω should position y

at the top of the list; in other words, rankωpx, yq has to be small. This motivates the

following objective function for ranking:

Lpωq :“
ÿ

xPX
cx

ÿ

yPYx
vpWxyq ¨ rankωpx, yq, (7.7)

where cx is an weighting factor for each context x, and vp¨q : R` Ñ R` quantifies

the relevance level of y on x. Note that tcxu and vpWxyq can be chosen to reflect the

metric the model is going to be evaluated on (this will be discussed in Section 7.3.3).

Note that (7.7) can be rewritten using (7.6) as a sum of indicator functions. Following

the strategy in Section 7.2, one can form an upper bound of (7.7) by bounding each

0-1 loss function by a logistic loss function:

Lpωq :“
ÿ

xPX
cx

ÿ

yPYx
v pWxyq

ÿ

y1PYx,y1‰y
σ0 pfωpx, yq ´ fωpx, y1qq . (7.8)

Just like (7.2), (7.8) is convex in ω and hence easy to minimize.

Note that (7.8) can be viewed as a weighted version of binary logistic regression

(7.2); each px, y, y1q triple which appears in (7.8) can be regarded as a data point in a

logistic regression model with φpx, yq ´ φpx, y1q being its feature vector. The weight

given on each data point is cx ¨ vpWxyq. This idea underlies many pairwise ranking

models.

7.3.3 DCG and NDCG

Although (7.8) enjoys convexity, it may not be a good objective function for

ranking. It is because in most applications of learning to rank, it is much more

important to do well at the top of the list than at the bottom of the list, as users

typically pay attention only to the top few items. Therefore, if possible, it is desirable

to give up performance on the lower part of the list in order to gain quality at the
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top. This intuition is similar to that of robust classification in Section 7.2; a stronger

connection will be shown in below.

Discounted Cumulative Gain (DCG)[50] is one of the most popular metrics for

ranking. For each context x P X , it is defined as:

DCGxpωq :“
ÿ

yPYx

2Wxy ´ 1

log2 prankωpx, yq ` 2q . (7.9)

Since 1{ logpt`2q decreases quickly and then asymptotes to a constant as t increases,

this metric emphasizes the quality of the ranking at the top of the list. Normalized

DCG simply normalizes the metric to bound it between 0 and 1 by calculating the

maximum achievable DCG value mx and dividing by it [50]:

NDCGxpωq :“ 1

mx

ÿ

yPYx

2Wxy ´ 1

log2 prankωpx, yq ` 2q . (7.10)

These metrics can be written in a general form as:

cx
ÿ

yPYx

v pWxyq
log2 prankωpx, yq ` 2q . (7.11)

By setting vptq “ 2t ´ 1 and cx “ 1, we recover DCG. With cx “ 1{mx, on the other

hand, we get NDCG.

7.3.4 RoBiRank

Now we formulate RoBiRank, which optimizes the lower bound of metrics for

ranking in form (7.11). Observe that the following optimization problems are equiv-

alent:

max
ω

ÿ

xPX
cx

ÿ

yPYx

v pWxyq
log2 prankωpx, yq ` 2q ô (7.12)

min
ω

ÿ

xPX
cx

ÿ

yPYx
v pWxyq ¨

"

1´ 1

log2 prankωpx, yq ` 2q
*

. (7.13)

Using (7.6) and the definition of the transformation function ρ2p¨q in (7.3), we can

rewrite the objective function in (7.13) as:

L2pωq :“
ÿ

xPX
cx

ÿ

yPYx
v pWxyq ¨ ρ2

˜

ÿ

y1PYx,y1‰y
I pfωpx, yq ´ fωpx, y1q ă 0q

¸

. (7.14)
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Since ρ2p¨q is a monotonically increasing function, we can bound (7.14) with a

continuous function by bounding each indicator function using logistic loss:

L2pωq :“
ÿ

xPX
cx

ÿ

yPYx
v pWxyq ¨ ρ2

˜

ÿ

y1PYx,y1‰y
σ0 pfωpx, yq ´ fωpx, y1qq

¸

. (7.15)

This is reminiscent of the basic model in (7.8); as we applied the transformation

function ρ2p¨q on the logistic loss function σ0p¨q to construct the robust loss function

σ2p¨q in (7.4), we are again applying the same transformation on (7.8) to construct a

loss function that respects metrics for ranking such as DCG or NDCG (7.11). In fact,

(7.15) can be seen as a generalization of robust binary classification by applying the

transformation on a group of logistic losses instead of a single logistic loss. In both

robust classification and ranking, the transformation ρ2p¨q enables models to give up

on part of the problem to achieve better overall performance.

As we discussed in Section 7.2, however, transformation of logistic loss using ρ2p¨q
results in Type-II loss function, which is very difficult to optimize. Hence, instead of

ρ2p¨q we use an alternative transformation function ρ1p¨q, which generates Type-I loss

function, to define the objective function of RoBiRank:

L1pωq :“
ÿ

xPX
cx

ÿ

yPYx
v pWxyq ¨ ρ1

˜

ÿ

y1PYx,y1‰y
σ0 pfωpx, yq ´ fωpx, y1qq

¸

. (7.16)

Since ρ1ptq ě ρ2ptq for every t ą 0, we have L1pωq ě L2pωq ě L2pωq for every ω.

Note that L1pωq is continuous and twice differentiable. Therefore, standard gradient-

based optimization techniques can be applied to minimize it.

As in standard models of machine learning, of course, a regularizer on ω can be

added to avoid overfitting; for simplicity, we use `2-norm in our experiments, but

other loss functions can be used as well.
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7.4 Latent Collaborative Retrieval

7.4.1 Model Formulation

For each context x and an item y P Y , the standard problem setting of learning to

rank requires training data to contain feature vector φpx, yq and score Wxy assigned

on the x, y pair. When the number of contexts |X | or the number of items |Y | is large,

it might be difficult to define φpx, yq and measure Wxy for all x, y pairs, especially if it

requires human intervention. Therefore, in most learning to rank problems we define

the set of relevant items Yx Ă Y to be much smaller than Y for each context x, and

then collect data only for Yx. Nonetheless, this may not be realistic in all situations;

in a movie recommender system, for example, for each user every movie is somewhat

relevant.

On the other hand, implicit user feedback data are much more abundant. For

example, a lot of users on Netflix would simply watch movie streams on the system

but do not leave an explicit rating. By the action of watching a movie, however, they

implicitly express their preference. Such data consist only of positive feedback, unlike

traditional learning to rank datasets which have score Wxy between each context-item

pair x, y. Again, we may not be able to extract feature vector φpx, yq for each x, y

pair.

In such a situation, we can attempt to learn the score function fpx, yq without

feature vector φpx, yq by embedding each context and item in an Euclidean latent

space; specifically, we redefine the score function of ranking to be:

fpx, yq :“ xUx, Vyy , (7.17)

where Ux P Rd is the embedding of the context x and Vy P Rd is that of the item

y. Then, we can learn these embeddings by a ranking model. This approach was

introduced in Weston et al. [76] using the name of latent collaborative retrieval.

Now we specialize RoBiRank model for this task. Let us define Ω to be the set

of context-item pairs px, yq which was observed in the dataset. Let vpWxyq “ 1 if
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px, yq P Ω, and 0 otherwise; this is a natural choice since the score information is not

available. For simplicity, we set cx “ 1 for every x. Now RoBiRank (7.16) specializes

to:

L1pU, V q “
ÿ

px,yqPΩ
ρ1

˜

ÿ

y1‰y
σ0pfpUx, Vyq ´ fpUx, Vy1qq

¸

. (7.18)

Note that now the summation inside the parenthesis of (7.18) is over all items Y

instead of a smaller set Yx, therefore we omit specifying the range of y1 from now on.

To avoid overfitting, a regularizer term on U and V can be added to (7.18); for

simplicity we use the Frobenius norm of each matrix in our experiments, but of course

other regularizers can be used.

7.4.2 Stochastic Optimization

When the size of the data |Ω| or the number of items |Y | is large, however, methods

that require exact evaluation of the function value and its gradient will become very

slow since the evaluation takes O p|Ω| ¨ |Y |q computation. In this case, stochastic op-

timization methods are desirable [13]; in this subsection, we will develop a stochastic

gradient descent algorithm whose complexity is independent of |Ω| and |Y |.
For simplicity, let θ be a concatenation of all parameters tUxuxPX , tVyuyPY . The

gradient ∇θL1pU, V q of (7.18) is

ÿ

px,yqPΩ
∇θρ1

˜

ÿ

y1‰y
σ0pfpUx, Vyq ´ fpUx, Vy1qq

¸

.

Finding an unbiased estimator of the above gradient whose computation is indepen-

dent of |Ω| is not difficult; if we sample a pair px, yq uniformly from Ω, then it is easy

to see that the following simple estimator

|Ω| ¨∇θρ1

˜

ÿ

y1‰y
σ0pfpUx, Vyq ´ fpUx, Vy1qq

¸

(7.19)

is unbiased. This still involves a summation over Y , however, so it requires Op|Y |q
calculation. Since ρ1p¨q is a nonlinear function it seems unlikely that an unbiased
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stochastic gradient which randomizes over Y can be found; nonetheless, to achieve

standard convergence guarantees of the stochastic gradient descent algorithm, unbi-

asedness of the estimator is necessary [51].

We attack this problem by linearizing the objective function by parameter expan-

sion. Note the following property of ρ1p¨q [14]:

ρ1ptq “ log2pt` 1q ď ´ log2 ξ `
ξ ¨ pt` 1q ´ 1

log 2
. (7.20)

This holds for any ξ ą 0, and the bound is tight when ξ “ 1
t`1

. Now introducing an

auxiliary parameter ξxy for each px, yq P Ω and applying this bound, we obtain an

upper bound of (7.18) as

LpU, V, ξq :“
ÿ

px,yqPΩ
´ log2 ξxy `

ξxy

´

ř

y1‰y σ0pfpUx, Vyq ´ fpUx, Vy1qq ` 1
¯

´ 1

log 2
.

(7.21)

Now we propose an iterative algorithm in which, each iteration consists of pU, V q-
step and ξ-step; in the pU, V q-step we minimize (7.21) in pU, V q and in the ξ-step we

minimize in ξ. The pseudo-code of the algorithm is given in the Algorithm 3.

pU, V q-step The partial derivative of (7.21) in terms of U and V can be calculated

as:

∇U,VLpU, V, ξq :“ 1

log 2

ÿ

px,yqPΩ
ξxy

˜

ÿ

y1‰y
∇U,V σ0pfpUx, Vyq ´ fpUx, Vy1qq

¸

.

Now it is easy to see that the following stochastic procedure unbiasedly estimates the

above gradient:

• Sample px, yq uniformly from Ω

• Sample y1 uniformly from Yz tyu
• Estimate the gradient by

|Ω| ¨ p|Y | ´ 1q ¨ ξxy
log 2

¨∇U,V σ0pfpUx, Vyq ´ fpUx, Vy1qq. (7.22)
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Algorithm 3 Serial parameter estimation algorithm for latent collaborative retrieval
1: η: step size

2: while convergence in U, V and ξ do

3: while convergence in U, V do

4: // pU, V q-step
5: Sample px, yq uniformly from Ω

6: Sample y1 uniformly from Yz tyu
7: Ux Ð Ux ´ η ¨ ξxy ¨∇Uxσ0pfpUx, Vyq ´ fpUx, Vy1qq
8: Vy Ð Vy ´ η ¨ ξxy ¨∇Vyσ0pfpUx, Vyq ´ fpUx, Vy1qq
9: end while

10: // ξ-step

11: for px, yq P Ω do

12: ξxy Ð 1
ř

y1‰y σ0pfpUx,Vyq´fpUx,Vy1 qq`1

13: end for

14: end while
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Therefore a stochastic gradient descent algorithm based on (7.22) will converge to a

local minimum of the objective function (7.21) with probability one [58]. Note that

the time complexity of calculating (7.22) is independent of |Ω| and |Y |. Also, it is a

function of only Ux and Vy; the gradient is zero in terms of other variables.

ξ-step When U and V are fixed, minimization of ξxy variable is independent of each

other and a simple analytic solution exists:

ξxy “ 1
ř

y1‰y σ0pfpUx, Vyq ´ fpUx, Vy1qq ` 1
. (7.23)

This of course requires Op|Y |q work. In principle, we can avoid summation over Y by

taking stochastic gradient in terms of ξxy as we did for U and V . However, since the

exact solution is very simple to compute and also because most of the computation

time is spent on pU, V q-step rather than ξ-step, we found this update rule to be

efficient.

7.4.3 Parallelization

The linearization trick in (7.21) not only enables us to construct an efficient

stochastic gradient algorithm, but also makes possible to efficiently parallelize the

algorithm across multiple number of machines. The objective function is technically

not doubly separable, but a strategy similar to that of DSGD introduced in Chap-

ter 2.3.2 can be deployed.

Suppose there are p number of machines. The set of contexts X is randomly

partitioned into mutually exclusive and exhaustive subsets X p1q,X p2q, . . . ,X ppq which

are of approximately the same size. This partitioning is fixed and does not change

over time. The partition on X induces partitions on other variables as follows: U pqq :“
tUxuxPX pqq , Ωpqq :“  px, yq P Ω : x P X pqq(, ξpqq :“ tξxyupx,yqPΩpqq , for 1 ď q ď p.

Each machine q stores variables U pqq, ξpqq and Ωpqq. Since the partition on X is

fixed, these variables are local to each machine and are not communicated. Now we
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describe how to parallelize each step of the algorithm: the pseudo-code can be found

in Algorithm 4.

Algorithm 4 Multi-machine parameter estimation algorithm for latent collaborative

retrieval
η: step size

while convergence in U, V and ξ do

// parallel pU, V q-step
while convergence in U, V do

Sample a partition
 

Yp1q,Yp2q, . . . ,Ypqq
(

Parallel Foreach q P t1, 2, . . . , pu
Fetch all Vy P V pqq
while predefined time limit is exceeded do

Sample px, yq uniformly from
 px, yq P Ωpqq, y P Ypqq(

Sample y1 uniformly from Ypqqz tyu
Ux Ð Ux ´ η ¨ ξxy ¨∇Uxσ0pfpUx, Vyq ´ fpUx, Vy1qq
Vy Ð Vy ´ η ¨ ξxy ¨∇Vyσ0pfpUx, Vyq ´ fpUx, Vy1qq

end while

Parallel End

end while

// parallel ξ-step

Parallel Foreach q P t1, 2, . . . , pu
Fetch all Vy P V
for px, yq P Ωpqq do

ξxy Ð 1
ř

y1‰y σ0pfpUx,Vyq´fpUx,Vy1 qq`1

end for

Parallel End

end while
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pU, V q-step At the start of each pU, V q-step, a new partition on Y is sampled to

divide Y into Yp1q,Yp2q, . . . ,Yppq which are also mutually exclusive, exhaustive and of

approximately the same size. The difference here is that unlike the partition on X , a

new partition on Y is sampled for every pU, V q-step. Let us define V pqq :“ tVyuyPYpqq .
After the partition on Y is sampled, each machine q fetches Vy’s in V pqq from where it

was previously stored; in the very first iteration which no previous information exists,

each machine generates and initializes these parameters instead. Now let us define

LpqqpU pqq, V pqq, ξpqqq :“
ÿ

px,yqPΩpqq,yPYpqq
´ log2 ξxy

`
ξxy

´

ř

y1PYpqq,y1‰y σ0pfpUx, Vyq ´ fpUx, Vy1qq ` 1
¯

´ 1

log 2
.

In parallel setting, each machine q runs stochastic gradient descent on LpqqpU pqq, V pqq, ξpqqq
instead of the original function LpU, V, ξq. Since there is no overlap between machines

on the parameters they update and the data they access, every machine can progress

independently of each other. Although the algorithm takes only a fraction of data

into consideration at a time, this procedure is also guaranteed to converge to a local

optimum of the original function LpU, V, ξq. Note that in each iteration,

∇U,VLpU, V, ξq “ q2 ¨ E
«

ÿ

1ďqďp
∇U,VL

pqqpU pqq, V pqq, ξpqqq
ff

,

where the expectation is taken over random partitioning of Y . Therefore, although

there is some discrepancy between the function we take stochastic gradient on and the

function we actually aim to minimize, in the long run the bias will be washed out and

the algorithm will converge to a local optimum of the objective function LpU, V, ξq.
This intuition can be easily translated to the formal proof of the convergence; since

each partitioning of Y is independent of each other, we can appeal to the law of

large numbers to prove that the necessary condition (2.27) for the convergence of the

algorithm is satisfied.

ξ-step In this step, all machines synchronize to retrieve every entry of V . Then,

each machine can update ξpqq independently of each other. When the size of V is
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very large and cannot be fit into the main memory of a single machine, V can be

partitioned as in pU, V q-step and updates can be calculated in a round-robin way.

Note that this parallelization scheme requires each machine to allocate only 1
p
-

fraction of memory that would be required for a single-machine execution. Therefore,

in terms of space complexity the algorithm scales linearly with the number of ma-

chines.

7.5 Related Work

In terms of modeling, viewing ranking problem as a generalization of binary clas-

sification problem is not a new idea; for example, RankSVM defines the objective

function as a sum of hinge losses, similarly to our basic model (7.8) in Section 7.3.2.

However, it does not directly optimize the ranking metric such as NDCG; the ob-

jective function and the metric are not immediately related to each other. In this

respect, our approach is closer to that of Le and Smola [44] which constructs a con-

vex upper bound on the ranking metric and Chapelle et al. [17] which improves the

bound by introducing non-convexity. The objective function of Chapelle et al. [17]

is also motivated by ramp loss, which is used for robust classification; nonetheless,

to our knowledge the direct connection between the ranking metrics in form (7.11)

(DCG, NDCG) and the robust loss (7.4) is our novel contribution. Also, our objective

function is designed to specifically bound the ranking metric, while Chapelle et al.

[17] proposes a general recipe to improve existing convex bounds.

Stochastic optimization of the objective function for latent collaborative retrieval

has been also explored in Weston et al. [76]. They attempt to minimize

ÿ

px,yqPΩ
Φ

˜

1`
ÿ

y1‰y
IpfpUx, Vyq ´ fpUx, Vy1q ă 0q

¸

, (7.24)

where Φptq “ řt
k“1

1
k
. This is similar to our objective function (7.21); Φp¨q and ρ2p¨q

are asymptotically equivalent. However, we argue that our formulation (7.21) has

two major advantages. First, it is a continuous and differentiable function, therefore
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gradient-based algorithms such as L-BFGS and stochastic gradient descent have con-

vergence guarantees. On the other hand, the objective function of Weston et al. [76]

is not even continuous, since their formulation is based on a function Φp¨q that is de-

fined for only natural numbers. Also, through the linearization trick in (7.21) we are

able to obtain an unbiased stochastic gradient, which is necessary for the convergence

guarantee, and to parallelize the algorithm across multiple machines as discussed in

Section 7.4.3. It is unclear how these techniques can be adapted for the objective

function of Weston et al. [76].

Note that Weston et al. [76] proposes a more general class of models for the task

than can be expressed by (7.24). For example, they discuss situations in which we

have side information on each context or item to help learning latent embeddings.

Some of the optimization techniqures introduced in Section 7.4.2 can be adapted for

these general problems as well, but is left for future work.

Parallelization of an optimization algorithm via parameter expansion (7.20) was

applied to a bit different problem named multinomial logistic regression [33]. However,

to our knowledge we are the first to use the trick to construct an unbiased stochastic

gradient that can be efficiently computed, and adapt it to stratified stochastic gradient

descent (SSGD) scheme of Gemulla et al. [31]. Note that the optimization algorithm

can alternatively be derived using convex multiplicative programming framework of

Kuno et al. [42]. In fact, Ding [22] develops a robust classification algorithm based on

this idea; this also indicates that robust classification and ranking are closely related.

7.6 Experiments

In this section we empirically evaluate RoBiRank. Our experiments are divided

into two parts. In Section 7.6.1, we apply RoBiRank on standard benchmark datasets

from the learning to rank literature. These datasets have relatively small number of

relevant items |Yx| for each context x, so we will use L-BFGS [53], a quasi-Newton

algorithm, for optimization of the objective function (7.16). Although L-BFGS is de-
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signed for optimizing convex functions, we empirically find that it converges reliably

to a local minima of the RoBiRank objective function (7.16) in all our experiments. In

Section 7.6.2 we apply RoBiRank to the million songs dataset (MSD), where stochas-

tic optimization and parallelization are necessary.
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7.6.1 Standard Learning to Rank

We will try to answer the following questions:

• What is the benefit of transforming a convex loss function (7.8) into a non-

covex loss function (7.16)? To answer this, we compare our algorithm against

RankSVM [45], which uses a formulation that is very similar to (7.8), and is a

state-of-the-art pairwise ranking algorithm.

• How does our non-convex upper bound on negative NDCG compare against

other convex relaxations? As a representative comparator we use the algorithm

of Le and Smola [44], mainly because their code is freely available for download.

We will call their algorithm LSRank in the sequel.

• How does our formulation compare with the ones used in other popular algo-

rithms such as LambdaMART, RankNet, etc? In order to answer this ques-

tion, we carry out detailed experiments comparing RoBiRank with 12 dif-

ferent algorithms. In Figure 7.2 RoBiRank is compared against RankSVM,

LSRank, InfNormPush [60] and IRPush [5]. We then downloaded RankLib 1

and used its default settings to compare against 8 standard ranking algorithms

(see Figure7.3) - MART, RankNet, RankBoost, AdaRank, CoordAscent, Lamb-

daMART, ListNet and RandomForests.

• Since we are optimizing a non-convex objective function, we will verify the sen-

sitivity of the optimization algorithm to the choice of initialization parameters.

We use three sources of datasets: LETOR 3.0 [16] , LETOR 4.02 and YAHOO LTRC

[54], which are standard benchmarks for learning to rank algorithms; Table 7.1 shows

their summary statistics. Each dataset consists of five folds; we consider the first

fold, and use the training, validation, and test splits provided. We train with dif-

ferent values of the regularization parameter, and select a parameter with the best

NDCG value on the validation dataset. Then, performance of the model with this

1http://sourceforge.net/p/lemur/wiki/RankLib
2http://research.microsoft.com/en-us/um/beijing/projects/letor/letor4dataset.aspx
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parameter on the test dataset is reported. For a fair comparison, every algorithm

follows exactly the same protocol and uses the same split of data. All experiments

in this section are conducted on a computing cluster where each node has two 2.1

GHz 12-core AMD 6172 processors with 48 GB physical memory per node. We used

an optimized implementation of the L-BFGS algorithm provided by the Toolkit for

Advanced Optimization (TAO)3 for estimating the parameter of RoBiRank. For the

other algorithms, we used the implementations provided by the authors. Our main

goal is to compare the performance of the models, and not the speed of parame-

ter estimation. However, we note that the training time is very comparable for all

three algorithms, with RoBiRank being at most two to three times slower than other

algorithms on some datasets.

We use values of NDCG at different levels of truncation as our evaluation metric

[50]; see Figure 7.2. While RoBiRank outperforms its competitors on most of the

datasets, of particular interest is the result on TD 2004 dataset. The performance

of RankSVM is a bit insensitive to the level of truncation for NDCG. On the other

hand, RoBiRank, which uses non-convex loss function to concentrate its performance

at the top of the ranked list, performs much better especially at low truncation

levels. It is also interesting to note that the NDCG@k curve of LSRank is similar to

that of RoBiRank, but RoBiRank consistently outperforms at each level. RobiRank

dominates Inf-Push and IR-Push on all datasets except TD 2003 and OHSUMED

where IRPush seems to fare better at the top of the list. Compared to the 8 standard

algorithms, again RobiRank either outperforms or performs comparably to the best

algorithm except on two datasets (TD 2003 and HP 2003), where MART and Random

Forests overtake RobiRank at few values of NDCG. We present a summary of the

NDCG values obtained by each algorithm in Table 7.1.

We also investigated the sensitivity of parameter estimation to the choice of initial

parameter. We initialized ω randomly with 10 different seed values. Blue lines in

Figure 7.4 show mean and standard deviation of NDCG values at different levels of

3http://www.mcs.anl.gov/research/projects/tao/index.html
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Figure 7.2.: Comparison of RoBiRank, RankSVM, LSRank [44], Inf-Push and IR-

Push
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Figure 7.3.: Comparison of RoBiRank, MART, RankNet, RankBoost, AdaRank,

CoordAscent, LambdaMART, ListNet and RandomForests
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truncation; as can be seen, even though our objective function is non-convex, L-BFGS

reliably converges to solutions with similar test performance. This conclusion is in

line with the observation of Ding [22]. We also tried two more variants; initialization

by all-zeroes (red line) and the solution of RankSVM (black line). In most cases it

did not affect the quality of solution, but on TD 2003 and HP 2004 datasets, zero

initialization gave slightly better results.

7.6.2 Latent Collaborative Retrieval

In this subsection, we ask the following question: Given large amounts of com-

putational resources, what is the best latent collaborative retrieval model (in terms

of predictive performance on the test dataset) that one can produce within a given

wall-clock time? Towards this end, we work with the parallel variant of RoBiRank de-

scribed in Section 7.4.3. As a representative dataset we use the Million Song Dataset

(MSD) [9], which consists of 1,129,318 users (|X |), 386,133 songs (|Y |), and 49,824,519

records (|Ω|) of a user x playing a song y in the training dataset. The objective is to

predict the songs from the test dataset that a user is going to listen to4.

Since explicit ratings are not given, NDCG is not applicable for this task; we

use precision at 1 and 10 [50] as our evaluation metric. Squared frobenius norm of

matrices U and V were added to the objective function (7.16) for regularization, and

the entries of U and V were independently sampled uniformly from 0 to 1{?d. We

performed a grid-search to find the best step size parameter.

This experiment was run on a computing cluster where each machine is equipped

with 2 Intel Xeon E5 processors (16 cores) and 32GB of RAM. Our algorithm is imple-

mented in C++ and uses Intel Thread Building Blocks (TBB) to handle thread-level

parallelization, and MVAPICH2 was used for machine-to-machine communication.

Due to a limitation of the job scheduler on the cluster all experiments had to be

stopped after 100,000 seconds.

4the original data also provides the number of times a song was played by a user, but we ignored
this in our experiment.
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Figure 7.4.: Performance of RoBiRank based on different initialization methods
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In our first experiment we study the scaling behavior of RoBiRank as a function

of number of machines. RoBiRank p denotes the parallel version of RoBiRank which

is distributed across p machines. In Figure 7.5 (left) we plot mean Precision@1 as a

function of the number of machines ˆ the number of seconds elapsed; this is a proxy

for CPU time. If an algorithm linearly scales across multiple processors, then all lines

in the figure should overlap with each other. As can be seen RoBiRank exhibits near

ideal speed up when going from 4 to 32 machines5.

In our next experiment we compare RoBiRank with a state of the art algorithm

from Weston et al. [76], which optimizes a similar objective function (7.24). We

compare how fast the quality of the solution improves as a function of wall clock

time. Since the authors of Weston et al. [76] do not make available their code, we

implemented their algorithm within our framework using the same data structures

and libraries used by our method. Furthermore, for a fair comparison, we used the

same initialization for U and V and performed an identical grid-search over the step

size parameter for both algorithms.

Figure 7.5 (center, right) shows the results of the experiment. It can be seen that

on a single machine the algorithm of Weston et al. [76] is very competitive and out-

performs RoBiRank. The reason for this might be the introduction of the additional

ξ variables in RoBiRank, which slows down convergence. However, RoBiRank train-

ing can be distributed across processors, while it is not clear how to parallelize the

algorithm of Weston et al. [76]. Consequently, RoBiRank 32 which uses 32 machines

for its computation can produce a significantly better model within the same wall

clock time window.

7.7 Conclusion

In this chapter, we developed RoBiRank, a novel model on ranking, based on

insights and techniques from the literature of robust binary classification. Then, we

5The graph for RoBiRank 1 is hard to see because it was run for only 100,000 CPU-seconds.
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proposed a scalable and parallelizable stochastic optimization algorithm that can be

applied to the task of latent collaborative retrieval which large-scale data without

feature vectors and explicit scores have to take care of. Experimental results on

both learning to rank datasets and latent collaborative retrieval dataset suggest the

advantage of our approach.

We are currently investigating how to extend our method to the more general con-

text of collaborative retrieval tasks in which additional side information is available,

as discussed in Weston et al. [76].
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8. SUMMARY

8.1 Contributions

We provide a summary of our contributions and discuss directions for future re-

search.

Optimization of Doubly Separable Functions We have identified double sep-

arability as a useful property of a function that can be used to efficiently parallelize

stochastic optimization algorithms. We have proposed DSSO, an adaptation of DSGD

for saddle-point problems which has similar convergence guarantees, and NOMAD,

an asynchronous algorithm that utilizes fine-grained partitioning of the problem for

efficient scaling in massive distributed computing environment.

Reformulating Existing Statistical models as Doubly Separable Functions

We have shown that a large class of statistical models can be formulated as doubly

separable functions. In the case of matrix completion and item response theory, the

original formulations were readily in doubly separable form; on the other hand, for

regularized risk minimization and multinomial logistic regression, we had to introduce

different parameter expansion techniques to achieve double separability.

Formulation of Ranking as Robust Binary Classification We have argued

that metrics for information retrieval such as NDCG can be understood as general-

ization of robust classification, and proposed RoBiRank, a novel algorithm for learning

to rank. Then, we have identified that when RoBiRank is applied for latent collab-

orative retrieval, a feature-free version of the ranking problem, it can be efficiently

parallelized with a simple extension of techniques for doubly separable functions.
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8.2 Future Work

The idea of double separability can be further generalized for more than two

dimensions. For example, one may define triple separability, or even separability of an

arbitrary order. Tensor factorization problems will be naturally fit into this extended

framework, but are there any other statistical models which can be formulated in

this extended notion of separability? Also, can optimization algorithms for doubly

separable functions be generalized for this more general setting? These are interesting

questions that remain unanswered yet.

Furthermore, although we have confined our interest to optimization problems in

this thesis, double separability might be found useful in Bayesian models as well to

efficiently parallelize MCMC sampling or variational inference algorithms. We are

currently investigating how the NOMAD framework can be used for Latent Dirichlet

Allocation (LDA).
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A. SUPPLEMENTARY EXPERIMENTS ON MATRIX

COMPLETION

A.1 Effect of the Regularization Parameter

In this subsection, we study the convergence behavior of NOMAD as we change

the regularization parameter λ (Figure A.1). Note that in Netflix data (left), for

non-optimal choices of the regularization parameter the test RMSE increases from

the initial solution as the model overfits or underfits to the training data. While

NOMAD reliably converges in all cases, on Netflix the convergence is notably faster

with higher values of λ; this is expected because regularization smooths the objective

function and makes the optimization problem easier to solve. On other datasets,

the speed of convergence was not very sensitive to the selection of the regularization

parameter.
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Figure A.1.: Convergence behavior of NOMAD when the regularization parameter λ

is varied.
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A.2 Effect of the Latent Dimension

In this subsection, we study the convergence behavior of NOMAD as we change

the dimensionality parameter k (Figure A.2). In general, the convergence is faster

for smaller values of k as the computational cost of SGD updates (2.21) and (2.22)

is linear to k. On the other hand, the model gets richer with higher values of k, as

its parameter space expands; it becomes capable of picking up weaker signals in the

data, with the risk of overfitting. This is observed in Figure A.2 with Netflix (left)

and Yahoo! Music (right). In Hugewiki, however, small values of k were sufficient to

fit the training data, and test RMSE suffers from overfitting with higher values of k.

Nonetheless, NOMAD reliably converged in all cases.
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Figure A.2.: Convergence behavior of NOMAD when the latent dimension k is varied.

A.3 Comparison of NOMAD with GraphLab

Here we provide experimental comparison with GraphLab of Low et al. [49].

GraphLab PowerGraph 2.2, which can be downloaded from https://github.com/

graphlab-code/graphlab was used in our experiments. Since GraphLab was not

compatible with Intel compiler, we had to compile it with gcc. The rest of experi-

mental setting is identical to what was described in Section 4.3.1.

Among a number of algorithms GraphLab provides for matrix completion in its

collaborative filtering toolkit, only Alternating Least Squares (ALS) algorithm is suit-

able for solving the objective function (4.1); unfortunately, Stochastic Gradient De-

https://github.com/graphlab-code/graphlab
https://github.com/graphlab-code/graphlab
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scent (SGD) implementation of GraphLab does not converge. According to private

conversations with GraphLab developers, this is because the abstraction currently

provided by GraphLab is not suitable for the SGD algorithm. Its biassgd algorithm,

on the other hand, is based on a model different from (4.1) and therefore not directly

comparable to NOMAD as an optimization algorithm.

Although each machine in HPC cluster is equipped with 32 GB of RAM and we

distribute the work into 32 machines in multi-machine experiments, we had to tune

nfibers parameter to avoid out of memory problems, and still was not able to run

GraphLab on Hugewiki data in any setting. We tried both synchronous and asyn-

chronous engines of GraphLab, and report the better of the two on each configuration.

Figure A.3 shows results of single-machine multi-threaded experiments, while Fig-

ure A.4 and Figure A.5 shows multi-machine experiments on HPC cluster and com-

modity cluster respectively. Clearly, NOMAD converges orders of magnitude faster

than GraphLab in every setting, and also converges to better solutions. Note that

GraphLab converges faster in single-machine setting with large number of cores (30)

than in multi-machine setting with large number of machines (32) but small number

of cores (4) each. We conjecture that this is because the locking and unlocking of

a variable has to be requested via network communication in distributed memory

setting; on the other hand, NOMAD does not require a locking mechanism and thus

scales better with the number of machines.

Although GraphLab biassgd is based on a model different from (4.1), for the

interest of readers we provide comparisons with it on commodity hardware cluster.

Unfortunately, GraphLab biassgd crashed when we ran it on more than 16 machines,

so we had to run it on only 16 machines and assumed GraphLab will linearly scale up

to 32 machines, in order to generate plots in Figure A.5. Again, NOMAD was orders

of magnitude faster than GraphLab and converges to a better solution.
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Figure A.3.: Comparison of NOMAD and GraphLab on a single machine with 30

computation cores.
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Figure A.4.: Comparison of NOMAD and GraphLab on a HPC cluster.
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