DOUBLY SEPARABLE MODELS

AND DISTRIBUTED PARAMETER ESTIMATION

A Dissertation
Submitted to the Faculty
of
Purdue University
by

Hyokun Yun

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

May 2014
Purdue University

West Lafayette, Indiana



To my family.

11



111

ACKNOWLEDGMENTS

For an incompetent person such as myself to complete the Ph.D program of Statis-
tics at Purdue University, exceptional amount of effort and patience from other people
were required. Therefore, the most natural way to start this thesis is by acknowledg-
ing contributions of these people.

My advisor, Prof. S.V.N. (Vishy) Vishwanathan, was clearly the person who had
to suffer the most. When 1 first started the Ph.D program, I was totally incapable of
thinking about anything carefully since I had been too lazy to use my brain for my
entire life. Through countless discussions we have had almost every day for past five
years, he patiently taught me the habit of thinking. I am only making baby steps
yet - five years were not sufficient even for Vishy to make me decent - but I sincerely
thank him for changing my life, besides so many other wonderful things he has done
for me.

I would also like to express my utmost gratitude to my collaborators. It was a
great pleasure to work with Prof. Shin Matsushima at Tokyo University; it was his
idea to explore double separability beyond the matrix completion problem. On the
other hand, I was very lucky to work with extremely intelligent and hard-working
people at University of Texas at Austin, namely Hsiang-Fu Yu, Cho-Jui Hsieh and
Prof. Inderjit Dhillon. I also give many thanks to Parameswaran Raman for his hard
work on RoBiRank.

On the other hand, I deeply appreciate the guidance I have received from professors
at Purdue University. Especially, I am greatly indebted to Prof. Jennifer Neville, who
has strongly supported every step I took in the graduate school from the start to the
very end. Prof. Chuanhai Liu motivated me to always think critically about statistical
procedures; I will constantly endeavor to meet his high standard on Statistics. I also

thank Prof. David Gleich for giving me invaluable comments to improve the thesis.



v

In addition, I feel grateful to Prof. Karsten Borgwardt at Max Planck Insti-
tute, Dr. Chaitanya Chemudugunta at Blizzard Entertainment, Dr. A Kumaran
at Microsoft Research, and Dr. Guy Lebanon at Amazon for giving me amazing
opportunities to experience these institutions and work with them.

Furthermore, I thank Prof. Anirban DasGupta, Sergey Kirshner, Olga Vitek, Fab-
rice Baudoin, Thomas Sellke, Burgess Davis, Chong Gu, Hao Zhang, Guang Cheng,
William Cleveland, Jun Xie and Herman Rubin for inspirational lectures that shaped
my knowledge on Statistics. I also deeply appreciate generous help from the follow-
ing people and those who I have unfortunately omitted: Nesreen Ahmed, Kuk-Hyun
Ahn, Kyungmin Ahn, Chloé-Agathe Azencott, Nguyen Cao, Soo Young Chang, Lin-
Yang Cheng, Hyunbo Cho, Mihee Cho, InKyung Choi, Joon Hee Choi, Meena Choi,
Seungjin Choi, Sung Sub Choi, Yun Sung Choi, Hyonho Chun, Andrew Cross, Dou-
glas Crabill, Jyotishka Datta, Alexander Davies, Glen DePalma, Vasil Denchev, Nan
Ding, Rebecca Doerge, Marian Duncan, Guy Feldman, Ghihoon Ghim, Dominik
Grimm, Ralf Herbrich, Jean-Baptiste Jeannin, Youngjoon Jo, Chi-Hyuck Jun, Kyuh-
wan Jung, Yushin Hong, Qiming Huang, Whitney Huang, Seung-sik Hwang, Suvidha
Kancharla, Byung Gyun Kang, Funjoo Kang, Jinhak Kim, Kwang-Jae Kim, Kang-
min Kim, Moogung Kim, Young Ha Kim, Timothy La Fond, Alex Lamb, Baron Chi
Wai Law, Duncan Ermini Leaf, Daewon Lee, Dongyoon Lee, Jaewook Lee, Sumin
Lee, Jeff Li, Limin Li, Eunjung Lim, Diane Martin, Sai Sumanth Miryala, Sebastian
Moreno, Houssam Nassif, Jeongsoo Park, Joonsuk Park, Mijung Park, Joel Pfeiffer,
Becca Pillion, Shaun Ponder, Pablo Robles, Alan Qi, Yixuan Qiu, Barbara Rakitsch,
Mary Roe, Jeremiah Rounds, Ted Sandler, Ankan Saha, Bin Shen, Nino Shervashidze,
Alex Smola, Bernhard Scholkopf, Gaurav Srivastava, Sanvesh Srivastava, Wei Sun,
Behzad Tabibian, Abhishek Tayal, Jeremy Troisi, Feng Yan, Pinar Yanardag, Jiasen
Yang, Ainur Yessenalina, Lin Yuan, Jian Zhang.

Using this opportunity, I would also like to express my deepest love to my family.

Everything was possible thanks to your strong support!



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . 0 0 0 oo viii
LIST OF FIGURESI . . . .. . . ... . ix
ABBREVTATIONS xii
xiii

1

)

2 Background| . . . . .. ..o 7
[2.1 Separability and Double Separabilityl . . . . . ... ... ... ... 7
2.2 Problem Formulation and Notations/. . . . . .. ... ... ... .. 9
2.2.1 Minimization Problem| . . . . . . . ... ... ... 11

[2.2.2  Saddle-point Problem|. . . . . . . ... ... ... ... ... 12

[2.3  Stochastic Optimization| . . . . . . . . . . ... ... ... .. ... 14
2.3.1 Basic Algorithm|. . . . . . ... ... ... .. ... ..... 14

[2.3.2  Distributed Stochastic Gradient Algorithms| . . . . . . . .. 15

[3 NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous |
[ and Decentralized optimization| . . . . . . ... .. ... ... ... ... 21
B.1 Motavationl. . . . . . . ... 21
[3.2  Description| . . . . .. ... oo 22
[3.3  Complexity Analysis| . . . . .. ... .. ... ... ... 24
[3.4  Dynamic Load Balancing|. . . . .. ... ... ... ... ...... 26
(3.5 Hybrid Architecturel . . . . . . . . . ... 0oL 27
[3.5.1 Implementation Details|. . . . . . .. ... ... .. ... .. 27

8.6 Related Workl . . . . . ... ... .. 28
[3.6.1 Map-Reduce and Friends|. . . . . . ... ... ... ... .. 28

[3.6.2  Asynchronous Algorithms| . . . . . . ... ... .. ... .. 30

[3.6.3  Numerical Linear Algebra] . . . . . ... ... .. ... ... 31

[3.6.4 Discussionl . . . . . .. ... 32

4 Matrix Completion| . . . . . .. . . ... Lo 33
4.1 Formulation| . . . . . . . . ... 33
4.2 Batch Optimization Algorithms| . . . . . . . . ... ... ... ... 35
[4.2.1 Alternating Least Squares| . . . . . . .. ... ... ..... 35

4.2.2 Coordinate Descent| . . . . . . ... ... ... ... ..... 36



(4.3 Experiments . . . . .. ... oo
[4.3.1 Experimental Setup|. . . . . . .. .. ... ... ... ...
[4.3.2  Scaling in Number of Cores| . . . . ... ... ... .....
[4.3.3  Scaling as a Fixed Dataset is Distributed Across Processors|.
[4.3.4  Scaling on Commodity Hardware| . . . . . .. ... ... ..
[4.3.5 Scaling as both Dataset Size and Number of Machines Grows|
M36 Conclusionl. . . . . . . .. .

[> Regularized Risk Minimization|. . . . . . . . . . . . ... ... ... ...

61 TIntroductionl . . . . . . . . . . ...

[>.2  Retormulating Regularized Risk Minimization| . . . . . . . . . . ..

[>.3 Implementation Details|. . . . . .. .. ... ... ... ... ...

[>.4  Existing Parallel SGD Algorithms for RERM|. . . . . ... ... ..

[>.5  Empirical Evaluation| . . . . ... ... 000000000
[5.5.1  Experimental Setup|. . . . . . ... ... ... ...
[5.5.2  Parameter Tuningf. . . . . . ... ... ... ...
[5.5.3  Competing Algorithms| . . . . . . .. ... .. ... ... ..
[5.5.4  Versatility| . . . . . . ...
[5.5.5  Single Machine Experiments| . . . . . .. ... .. ... ...
[5.5.6  Multi-Machine Experiments| . . . . . . . ... ... ... ..

Isi.gi l!’l{ig;!l{i{i‘l!zll iill!l g:!!llg;lll{ i!zlll .......................

6 Other Examples of Double Separability| . . . . ... ... ... ... ...
[6.1  Multinomial Logistic Regression| . . . . . . .. ... ... ... ...
[6.2 Item Response Theoryl . . . . . . . . ... ... ... ... .. ...

[(__Latent Collaborative Retrievall . . . . . . . . . ... .. ... ... ....

(7.1 Introductionl . . . . . . . . .. ...

[7.2  Robust Binary Classification| . . . . . . . .. ... ... ... ....

[7.3  Ranking Model via Robust Binary Classification| . . . . . . . .. ..
[7.3.1 Problem Setting|. . . . ... ... ... ... ... ......
Ii 12512 lii!:i’lg: I!Ig!!ig:ll ...........................
733 DCGand NDCG . .. ... ... ... ... ... ...,
(3.4 RoBiRankl . . . ... ... ..o oo

(.4 Latent Collaborative Retrievall . . . . . ... .. ... ... ... ..
[r.4.1  Model Formulationl . . . . . ... ... ... .00
[7.4.2  Stochastic Optimization| . . . . . . . .. ... ... .....
[r.4.3  Parallelizationl . . . . . . . . .. ... ... L.

(.5  Related Workl . . . . . . . . ...

[7.6  Experiments . . . . .. . ... ...
[7.6.1 Standard Learning to Rank| . . . . ... ... .. ... ...
Ii '!i'z Li!!g:lll g:!!lli!tzgzli!li!s: I;g:lll‘s:&i!ll -----------------

vi



vii

Page

8 SUIMIMATY| . . . v v v v e e e e e e e 103
.1 Contributions . . . . . . . .. .. 103
8.2 Future Workl. . . . .. ... ... 104
LIST OF REFERENCES . . . . . . . .. . . .. . ... 105
[A" Supplementary Experiments on Matrix Completion| . . . . . . .. .. .. 111
[A.1 Eftect of the Regularization Parameter| . . . . . . . . .. ... ... 111
(A2 Pffect of the Latent Dimensionl . . . . .. ... ... ... .. ... 112
[A.3 Comparison of NOMAD with GraphLab . . . .. ... .. ... .. 112

VITAL . . 115



viil

LIST OF TABLES

Table Page
4.1 Dimensionality parameter k, regularization parameter A (4.1) and step- |

size schedule parameters o, 3 (&.7)] . . . . . ... ... ... ... ... 38
4.2 Dataset Details . . . . . .. .. ... 38
4.3  Exceptions to each experiment|. . . . . . . ... ... .. ... ... 40

5.1 Different loss functions and their dual. [0, ;]| denotes |0, 1] if y; = 1, and |
[—1,0] if y; = —1; (0,y;) is defined similarly| . . . . . ... .. ... .. 58

(5.2  Summary of the datasets used in our experiments. m 1is the total # of |
examples, d is the # of features, s is the feature density (% of features
that are non-zero), m, : m_ is the ratio of the number of positive vs
negative examples, Datasize is the size of the data file on disk. M/G
denotes a million/billion. | . . . . . .. ... o o000 63

[7.1 Descriptive Statistics of Datasets and Experimental Results in Section[7.6.1}] 92




LIST OF FIGURES

1X

Figure Page
[2.1 Visualization of a doubly separable function. Each term of the function |
| f interacts with only one coordinate of 1 and one coordinate of H. The |
| locations of non-zero tunctions are sparse and described by €2.[ . . . . . 10
[2.2 Ilustration of DSGD/DSSO algorithm with 4 processors. The rows of ) |

and corresponding f;;s as well as the parameters W and [ are partitioned

as shown. Colors denote ownership. The active area of each processor is
| shaded dark. Left: initial state. Right: state atter one bulk synchroniza- |
| tion step. See text for details. | . . . . .. ..o 17
[3.1 Graphical [llustration of the Algorithm{2[ . . . . . . ... ... ... . . 23
[3.2 Comparison of data partitioning schemes between algorithms. Example |
| active area of stochastic gradient sampling is marked as gray.. . . . . . 29
4.1 Comparison of NOMAD, FPSGD** and CCD++ on a single-machine |
| with 30 computation cores.| . . . . . . . . ... ... ... ... ... 42
4.2  Test RMSE of NOMAD as a function of the number of updates, when the |
| number of coresis varied) . . . ... ..o 43
(4.3 Number of updates of NOMAD per core per second as a tunction of the |
| number of cores] . . .. ... 43
4.4 Test RMSE of NOMAD as a function of computation time (time in seconds |

x the number of cores), when the number of cores is varied.| . . . . . . 43
4.5 Comparison of NOMAD, DSGD, DSGD+4-, and CCD-++ on a HPC clus- |
I 7 46
4.6 Test RMSE of NOMAD as a function of the number of updates on a HPC |
| cluster, when the number of machines is varied.| . . . . . . . .. .. .. 46
4.7 Number of updates of NOMAD per machine per core per second as a |
| tunction of the number ot machines, on a HPC cluster.| . . . . . . . .. 46
4.8  Test RMSE of NOMAD as a function of computation time (time in seconds

x the number of machines x the number of cores per each machine) on a
| HPC cluster, when the number of machines is varied.| . . . . . . . . .. 47

4.9  Comparison of NOMAD, DSGD, DSGD++, and CCD++ on a commodity

[ hardware cluster) . . . . . . . .

49



Figure Page
[4.10 Test RMSE of NOMAD as a function of the number of updates on a |
| commodity hardware cluster, when the number of machines is varied.| . 49
[4.11 Number of updates of NOMAD per machine per core per second as a |
| function of the number of machines, on a commodity hardware cluster.| 50
4.12 Test RMSE of NOMAD as a function of computation time (time in seconds
x the number of machines x the number of cores per each machine) on a
| commodity hardware cluster, when the number of machines is varied.| . 50
[4.13 Comparison of algorithms when both dataset size and the number of ma- |
| chines grows. Left: 4 machines, middle: 16 machines, right: 32 machines| 52
[>.1 Test error vs iterations for real-sim on linear SVM and logistic regression.| 66
[5.2  Test error vs iterations for news20 on linear SVM and logistic regression.| 66
[5.3  Test error vs iterations for alpha and kdda.| . . . . . ... ... .. .. 67
.4 Test error vs iterations for kddb and worm. . . . . . . . ... ... ... 67
[>.50 Comparison between synchronous and asynchronous algorithm on ocr |
[ dafaset] . . . . . .. .. ... 68
0.6 Performances for kdda in multi-machine senario. . . . . . . . . . . .. 69
.7 Performances for kddb in multi-machine senariof. . . . . . . .. . . .. 69
.8 Performances for ocr in multi-machine senario . . . . . .. ... ... 69
0.9 Performances for dna in multi-machine senario . . . . ... ... ... 69
(7.1 "Top: Convex Upper Bounds for 0-1 Loss. Middle: Transformation func- |
| tions for constructing robust losses. Bottom: Logistic loss and its trans- |
[ formed robust variants. | . . . . . .. .. ... 76
[7.2  Comparison of RoBiRank, RankSVM, LSRank [44], Inf-Push and IR-Push |
I 95
[7.3  Comparison of RoBiRank, MART, RankNet, RankBoost, AdaRank, Co- |
| ordAscent, LambdaMART', ListNet and RandomForests| . . . . . . .. 96
98
(7.5 Top: the scaling behavior of RoBiRank on Million Song Dataset. Middle, |
| Bottom: Performance comparison of RoBiRank and Weston et al. [70] |
| when the same amount of wall-clock time for computation is given.| . . 100
[A.1 Convergence behavior of NOMAD when the regularization parameter \ is |
Cvaried] . . . . . .. 111



x1

Figure Page
[A.2 Convergence behavior ot NOMAD when the latent dimension £ is varied.| 112
[A.3 Comparison of NOMAD and GraphLab on a single machine with 30 com- |
| putation cores. | . . . . . .. Lo 114
[A.4 Comparison of NOMAD and GraphlLab on a HPC cluster.| . . . . . .. 114
[A.5 Comparison of NOMAD and GraphLab on a commodity hardware cluster. |




SGD
SSO
ODE
DSGD
DSSO
NOMAD

RERM
IRT

ABBREVIATIONS

Stochastic Gradient Descent

Stochastic Saddle-point Optimization

Ordinary Differential Equation

Distributed Stochastic Gradient Descent

Distributed Stochastic Saddle-point Optimization

Non-locking, stOchastic Multi-machine algorithm for Asyn-
chronous and Decentralized optimization

REgularized Risk Minimization

Item Response Theory

xii



xiil

ABSTRACT

Yun, Hyokun Ph.D.; Purdue University, May 2014. Doubly Separable Models and
Distributed Parameter Estimation. Major Professor: S.V.N. Vishwanathan.

It is well known that stochastic optimization algorithms are both theoretically and
practically well-motivated for parameter estimation of large-scale statistical models.
Unfortunately, in general they have been considered difficult to parallelize, espe-
cially in distributed memory environment. To address the problem, we first identify
that stochastic optimization algorithms can be efficiently parallelized when the objec-
tive function is doubly separable; lock-free, decentralized, and serializable algorithms
are proposed for stochastically finding minimizer or saddle-point of doubly separable
functions. Then, we argue the usefulness of these algorithms in statistical context by
showing that a large class of statistical models can be formulated as doubly separable
functions; the class includes important models such as matrix completion and regu-
larized risk minimization. Motivated by optimization techniques we have developed
for doubly separable functions, we also propose a novel model for latent collaborative

retrieval, an important problem that arises in recommender systems.



X1v



1. INTRODUCTION

Numerical optimization lies at the heart of almost every statistical procedure. Major-
ity of frequentist statistical estimators can be viewed as M-estimators [73] and thus
are computed by solving an optimization problem; the use of (penalized) maximum
likelihood estimator, a special case of M-estimator, is the dominant method of sta-
tistical inference. On the other hand, Bayesians also use optimization methods to
approximate the posterior distribution [12]. Therefore, in order to apply statistical
methodologies on massive datasets we confront in today’s world, we need optimiza-
tion algorithms that can scale to such data; development of such an algorithm is the
aim of this thesis.

It is well known that stochastic optimization algorithms are both theoretically
[13, 63, 64] and practically [75] well-motivated for parameter estimation of large-
scale statistical models. To briefly illustrate why they are computationally attractive,
suppose that a statistical procedure requires us to minimize a function f(6), which

can be written in the following form:
HOESWAGH (1.1)
i=1

where m is the number of data points. The most basic approach to solve this min-
imization problem is the method of gradient descent, which starts with a possibly
random initial parameter 6 and iteratively moves it towards the direction of the neg-

ative gradient:

0 —0—n-Vof(0), (1.2)



where 7 is a step-size parameter. To execute (1.2) on a computer, however, we need
to compute Vyf(6); and this is where computational challenges arise when dealing

with large-scale data. Since
Vof(0) = Y, Vafi(0), (1.3)
i=1

computation of the gradient Vg f(0) requires O(m) computational effort. When m is
a large number, that is, the data consists of large number of samples, repeating this
computation may not be affordable.

In such a situation, stochastic gradient descent (SGD) algorithm [58] can be very
effective. The basic idea is to replace Vyf(0) in (1.2) with an easy-to-calculate
stochastic estimator. Specifically, in each iteration the algorithm draws a uniform
random number ¢ between 1 and m, and then instead of the exact update , it

executes the following stochastic update:
0 —0—n-{m-Vyfi(0)}. (1.4)

Note that the SGD update ([1.4)) can be computed in O(1) time, independently of m.

The rational here is that m - Vg f;(6) is an unbiased estimator of the true gradient:
E[m - Vg fi(0)] = Vof(0), (1.5)

where the expectation is taken over the random sampling of i. Since is a very
crude approximation of , the algorithm will of course require much more number
of iterations than it would with the exact update . Still, Bottou and Bousquet
[13] shows that SGD is asymptotically more efficient than algorithms which exactly
calculate Vg f(0), including not only the simple gradient descent method we intro-
duced in but also much more complex methods such as quasi-Newton algorithms
[53].

When it comes to parallelism, however, the computational efficiency of stochastic
update turns out to be a disadvantage; since the calculation of Vg f;(0) typ-

ically requires very little amount of computation, one can rarely expect to speed



it up by splitting it into smaller tasks. An alternative approach is to let multiple
processors simultaneously execute [43, 56]. Unfortunately, the computation of
Vi fi(0) can possibly require reading any coordinate of 0, and the update can
also change any coordinate of €, and therefore every update made by one processor
has to be propagated across all processors. Such a requirement can be very costly in
distributed memory environment which the speed of communication between proces-
sors is considerably slower than that of the update ; even within shared memory
architecture, the cost of inter-process synchronization significantly deteriorates the
efficiency of parallelization [79].

To propose a parallelization method that circumvents these problems of SGD, let
us step back for now and consider what would be an ideal situation for us to parallelize
an optimization algorithm, if we are given two processors. Suppose the parameter 6

can be partitioned into #) and #®, and the objective function can be written as

F(0) = fOO) + fA(01). (1.6)

Then, we can effectively minimize f(6) in parallel; since the minimization of fM(§™M)
and £ (0®?) are independent problems, processor 1 can work on minimizing £ (9(1))
while processor 2 is working on f®(0)), without having any need to communicate
with each other.

Of course, such an ideal situation rarely occurs in reality. Now let us relax the
assumption to make it a bit more realistic. Suppose 6 can be partitioned into

four sets, w, w® h® and h® and the objective function can be written as

£(0) :f(lﬁl)(w(l)’ h(l)) + 12 (w(1)7 h(2))

+ e (wW® W) 4 (22 (w® K@), (1.7)

Note that the simple strategy we deployed for (|1.6) cannot be used anymore, since
(1.7) does not admit such a simple partitioning of the problem anymore.



Surprisingly, it turns out that the strategy for ([1.6) can be adapted in a fairly

simple fashion. Let us define

f1(0) = FHD (w, B 4 f22 (w, h), (18)
f2(0) = f12 (w, ) + f2D (w, h), (19)

Note that f(0) = fi(0) + f2(f), and that f,(f) and f2(f) are both in form (|1.6].
Therefore, if the objective function to minimize is f1(0) or fo(f) instead of f(#),
it can be efficiently minimized in parallel. This property can be exploited by the

following simple two-phase algorithm:

e f1(0)-phase: processor 1 runs SGD on f1(w® h®) while processor 2 runs

SGD on &2 (w® h®).

e f5(6)-phase: processor 1 runs SGD on (12 (w) h®), while processor 2 runs

SGD on f@D(w® hW).

Gemulla et al. [30] shows under fairly mild technical assumptions that if we switch
between these two phases periodically, the algorithm converges to the local optimum
of the original function f(6).

This thesis is structured to answer the following natural questions one may ask at
this point. First, how can the condition be generalized for arbitrary number of
processors? It turns out that the condition can be characterized as double separability;
in Chapter [2Jand Chapter 3] we will introduce double separability and propose efficient
parallel algorithms for optimizing doubly separable functions.

The second question would be: How useful are doubly separable functions in build-
ing statistical models? It turns out that a wide range of important statistical models
can be formulated using doubly separable functions. Chapter [] to Chapter [7] will
be devoted to discussing how such a formulation can be done for different statistical
models. In Chapter ] we will evaluate the effectiveness of algorithms introduced in
Chapter [2] and Chapter [3] by comparing them against state-of-the-art algorithms for

matrix completion. In Chapter 5, we will discuss how regularized risk minimization



(RERM), a large class of problems including generalized linear model and Support
Vector Machines, can be formulated as doubly separable functions. A couple more
examples of doubly separable formulations will be given in Chapter [6 In Chapter
we propose a novel model for the task of latent collaborative retrieval, and propose a
distributed parameter estimation algorithm by extending ideas we have developed for
doubly separable functions. Then, we will provide the summary of our contributions

in Chapter |8 to conclude the thesis.

1.1 Collaborators

Chapter [3] and [4] were joint work with Hsiang-Fu Yu, Cho-Jui Hsieh, S.V.N. Vish-
wanathan and Inderjit Dhillon.

Chapter |5| was joint work with Shin Matsushima and S.V.N. Vishwanathan.

Chapter [0] and [7] were joint work with Parameswaran Raman and S.V.N. Vish-

wanathan.






2. BACKGROUND
2.1 Separability and Double Separability

The notion of separability [47] has been considered as an important concept in op-
timization [71], and was found to be useful in statistical context as well [2§]. Formally,

separability of a function can be defined as follows:

Definition 2.1.1 (Separability). Let {S;};", be a family of sets. A function f :
[T, Si = R is said to be separable if there exists f; : S; — R for eachi =1,2,...,m
such that

f(01,02, ..., 00) :Zfi(9i>7 (2.1)
i=1
where 6; € S; for all 1 <1< m.

As a matter of fact, the codomain of f(-) does not necessarily have to be a real line
R as long as the addition operator is defined on it. Also, to be precise we are defining
additive separability here, and other notions of separability such as multiplicative
separability do exist. Only additively separable functions with codomain R are of
interest in this thesis, however, thus for the sake of brevity separability will always
imply additive separability. On the other hand, although S;’s are defined as general
arbitrary sets, we will always use them as subsets of finite-dimensional Euclidean
spaces.

Note that the separability of a function is a very strong condition, and objective
functions of statistical models are in most cases not separable. Usually, separability
can only be assumed for a particular term of the objective function [28]. Double

separability, on the other hand, is a considerably weaker condition:



Definition 2.1.2 (Double Separability). Let {S;};", and {S’} be families of sets.
A function f: ][, S; x H] 1 S} — R is said to be doubly separable if there exists
fij :Si xS > R for each i =1,2,...,m and j = 1,2,...,n such that

f(wlana"'ywmyh'lahQM"

||M3

Z 4 (wi, h (2.2)

It is clear that separability implies double separability.

Property 1. If f is separable, then it is doubly separable. The converse, however, is

not necessarily true.

Proof. Let f:S; — R be a separable function as defined in (2.1)). Then, for 1 <i <
m — 1 and j = 1, define
fi(ws) if 1<i<m-—-2
gij(wi, h]) = ] . . (23)
filw;) + fu(hy) if i=m-—1
It can be easily seen that f(wy,..., wm_1,h;) =2, Z;:l i (wi, hyj).

The counter-example of the converse can be easily found: f(wq,hy) = wy - hy is
doubly separable, but not separable. If we assume that f(ws, hy) is doubly separable,
then there exist two functions p(w;) and ¢(hy) such that f(wi, hy) = p(wy) + q(hy).
However, V., n, (wi-h1) = 1 but Vy, 5, (p(w1)+q(hy)) = 0, which is contradiction. [

Interestingly, this relaxation turns out to be good enough for us to represent a
large class of important statistical models; Chapter {4] to [7| are devoted to illustrate
how different models can be formulated as doubly separable functions. The rest of
this chapter and Chapter |3 on the other hand, aims to develop efficient optimization
algorithms for general doubly separable functions.

The following properties are obvious, but are sometimes found useful:
Property 2. If f is separable, so is —f. If f is doubly separable, so is —f.

Proof. 1t follows directly from the definition. O



Property 3. Suppose f is a doubly separable function as defined in (2.2)). For a fized
(hi,h3,.. hy) € 152, S), define

glwy, wa, ... wy) = flwy,wa, ... wy, AT R, ... RhY). (2.4)
Then, g is separable.

Proof. Let
j=1
Since g(w, wa, ..., w,) = >, gi(w;), g is separable. O
By symmetry, the following property is immediate.

Property 4. Suppose f is a doubly separable function as defined in (2.2)). For a fized

(wi,wh, ..., wk) e [ 2, S:, define
q(hi,hay ..o hy) = f(w],wy, ..., w by, hoy oo hy). (2.6)

Then, q is separable.

2.2 Problem Formulation and Notations

Now, let us describe the nature of optimization problems that will be discussed
in this thesis. Let f be a doubly separable function defined as in ({2.2)). For brevity,
let W = (wl,wg, R ,wm) € H:il Si, H = (hl, hg, e hn) S H?:l S;, 0= (W, H), and

denote
f0):=f(W,H) := f(wy,wa, ..., Wy, h1,he, ... "hy). (2.7)

In most objective functions we will discuss in this thesis, f;;(-,-) = 0 for large fraction
of (i,j) pairs. Therefore, we introduce a set Q < {1,2,...,m} x {1,2,...,n} and
rewrite f as:

F0) =Y filwihy). (2.8)
(

i.4)e0



10

H
ha | hy | hs | hy o gl o by,

w1 fi2 + fr—22

Wa + fo1 + fo3

w3 +f34 + /3

Wy + faz+ faa +fa

W

Wm-—3 + fin—33
Wm—2 +fm—22 +fm-24 + f—2n-1
Wi —1

Wm +fm3

Figure 2.1.: Visualization of a doubly separable function. Each term of the function
f interacts with only one coordinate of W and one coordinate of H. The locations of

non-zero functions are sparse and described by €).

This will be useful in describing algorithms that take advantage of the fact that
12| is much smaller than m - n. For convenience, we also define Q; = {j : (i,7) € Q},
Q; = {i: (i,7) € Q}. Also, we will assume f;;(, ) is continuous for every i, j, although
may not be differentiable.

Doubly separable functions can be visualized in two dimensions as in Figure [2.1]
As can be seen, each term f;; interacts with only one parameter of W and one param-
eter of H. Although the distinction between W and H is arbitrary because they are
symmetric to each other, for the convenience of reference we will call wy, ws, ..., wy,

as row parameters, and hq, ha, ..., h, as column parameters.



11

In this thesis, we are interested in two kinds of optimization problem on f, the

minimization problem and the saddle-point problem.

2.2.1 Minimization Problem

The minimization problem is formulated as follows:
min f(0) = D fiilwi, by). (2.9)
(.7)eQ
Of course, maximization of f is equivalent to minimization of —f; since — f is doubly
separable as well (Property , covers both minimization and maximization
problems. For this reason, we will only discuss the minimization problem in this
thesis.

The minimization problem frequently arises in parameter estimation of ma-
trix factorization models and a large number of optimization algorithms are developed
in that context. However, most of them are specialized for the specific matrix factor-
ization model they aim to solve, and thus we defer the discussion of these methods
to Chapter 4] Nonetheless, the following useful property frequently exploitted in ma-
trix factorization algorithms is worth mentioning here: when hq, hs, ..., h,, are fixed,
thanks to Property |3l the minimization problem decomposes into n independent
minimization problems:

min > fi(wi, ) (2.10)

JEQ;

forv=1,2,...,m. On the other hand, when W is fixed, the problem is decomposed
into n independent minimization problems by symmetry. This can be useful for two
reasons; first, the dimensionality of each optimization problem in is only 1/m
fraction of the original problem, so if the time complexity of an optimization algorithm
is superlinear to the dimensionality of the problem, an improvement can be made by
solving one sub-problem at a time. Also, this property can be used to parallelize
an optimization algorithm, as each sub-problem can be solved independently of each

other.



12

Note that the problem of finding local minimum of f(#) is equivalent to finding
locally stable points of the following ordinary differential equation (ODE) (Yin and
Kushner [77], Chapter 4.2.2):

do

i —Vof(0). (2.11)

This fact is useful in proving asymptotic convergence of stochastic optimization algo-
rithms by approximating them as stochastic processes that converge to stable points
of an ODE described by . The proof can be generalized for non-differentiable
functions as well (Yin and Kushner [77], Chapter 6.8).

2.2.2 Saddle-point Problem

Another optimization problem we will discuss in this thesis is the problem of

finding a saddle-point (W*, H*) of f, which is defined as follows:
fW* H) < f(W*, H*) < f(W,HY), (2.12)

for any (W, H) € [[;Z;Si x [[;_; S}. The saddle-point problem often occurs when

a solution of constrained minimization problem is sought; this will be discussed in

Chapter |5l Note that a saddle-point is also the solution of the minimax problem

min max f(W, H), (2.13)
and the maximin problem
MAX min fW, H), (2.14)

at the same time [8]. Contrary to the case of minimization problem, however, neither

(2.13]) nor (2.14) can be decomposed into independent sub-problems as in (2.10)).

The existence of saddle-point is usually harder to verify than that of minimizer or
maximizer. In this thesis, however, we will only be interested in settings which the

following assumptions hold:

Assumption 2.2.1. o [[:2,Si and [[;_, S are nonempty closed convex sets.



13

e For each W, the function f(W,-) is concave.

e For each H, the function f(-, H) is conver.

o W is bounded, or there exists Hy such that f(W, Hy) — o0 when |[W/| — 0.
e H is bounded, or there exists Wy such that f(Wy, H) — —0 when |H|| — oo.

In such a case, it is guaranteed that a saddle-point of f exists (Hiriart-Urruty and
Lemaréchal [35], Chapter 4.3).
Similarly to the minimization problem, we prove that there exists a corresponding

ODE which the set of stable points are equal to the set of saddle-points.

Theorem 2.2.2. Suppose that f is a twice-differentiable doubly separable function as
defined in (2.2)), which satisfies Assumption |2.2.1. Let G be a set of stable points of
the ODE defined as below:

% = —Vwf(W, H), (2.15)
L~ Vurw, ), (2.16)

and let G' be the set of saddle-points of f. Then, G = G'.

Proof. Let (W*, H*) be a saddle-point of f. Since a saddle-point is also a critical
point of a function, V f(W* H*) = 0. Therefore, (W*, H*) is a fixed point of the ODE
(2.16) as well. Now we show that it is a stable point as well. For this, it suffices to

show the following stability matrix of the ODE is nonpositive definite when evaluated

at (W*, H*): (Tabor [68], Section 1.4)

W, H) - —VwVwf(W,H) —VgVwf(W, H) (2.17)
’ VaVafW,H)  VuVaf(W.H) | |

Let v; € R™ and vy € R™ be arbitrary vectors, and let v? = (v v). Then,

vIS(W, H)v = vl ViV f(W, H)vy +vi VgV f(W, H)v, <0, (2.18)



14

due to assumed convexity of f(-, H) and concavity of f(W,-). Therefore, the stability
matrix is nonpositive definite everywhere including (W*, H*), and therefore G’ < G.

On the other hand, suppose that (/W*, H*) is a stable point; then, by definition
of stable point, Vf(W* H*) = 0. Now to show that (W*, H*) is a saddle-point, we
need to prove the Hessian of f at (W*, H*) is indefinite; this immediately follows
from convexity of f(-, H) and concavity of f(W,-). ]

2.3 Stochastic Optimization
2.3.1 Basic Algorithm

A large number of optimization algorithms have been proposed for the minimiza-
tion of a general continuous function [53], and popular batch optimization algorithms
such as L-BFGS [52] or bundle methods [70] can be applied to the minimization prob-
lem . However, each iteration of a batch algorithm requires exact calculation of
the objective function and its gradient; as this takes O(|(2|) computational effort,
when (Q is a large set the algorithm may take a long time to converge.

In such a situation, an improvement in the speed of convergence can be found
by appealing to stochastic optimization algorithms such as stochastic gradient de-
scent (SGD) [13]. While different versions of SGD algorithm may exist for a single
optimization problem according to how the stochastic estimator is defined, the most
straightforward version of SGD on the minimization problem can be described as
follows: starting with a possibly random initial parameter 6, the algorithm repeatedly

samples (7, j) € Q uniformly at random and applies the update
0 — 6 —n-Q Vofi(wi, hy), (2.19)

where 7 is a step-size parameter. The rational here is that since Q|- Vg fi;(w;, h;)

is an unbiased estimator of the true gradient Vo f(6), in the long run the algorithm



15

will reach the solution similar to what one would get with the basic gradient descent

algorithm, which uses the following update:
0 —0—n-Vof(h). (2.20)

Convergence guarantees and properties of this SGD algorithm are well known [13].
Note that since V., fij(w;, hj) = 0 for ¢ # i and th,fl-j(wi, h;) = 0 for j" # j,
(2.19) can be more compactly written as

W; < Wiy — 1 - |Q| : vwifij(wiv hj)7 (2-21)

hj <« hj —n- ’Q| : thfij(wi, h]) (222)

In other words, each SGD update (2.19) reads and modifies only two coordinates of
6 at a time, which is a small fraction when m or n is large. This will be found useful
in designing parallel optimization algorithms later.

On the other hand, in order to solve the saddle-point problem ([2.12), it suffices

to make a simple modification on SGD update equations in (2.21)) and ([2.22)):

w; < w; —n - |Q - vwifij(wiv hj)7 (2.23)
hj <« hj + n- |Q| : thfij(wi, hj) (224)

Intuitively, takes stochastic descent direction in order to solve minimization
problem in W, and takes stochastic ascent direction in order to solve maxi-
mization problem in H. Under mild conditions, this algorithm is also guaranteed to
converge to the saddle-point of the function f [51]. From now on, we will refer to this

algorithm as SSO (Stochastic Saddle-point Optimization) algorithm.

2.3.2 Distributed Stochastic Gradient Algorithms

Now, we will discuss how SGD and SSO algorithms introduced in the previous
section can be efficiently parallelized using traditional techniques of batch synchro-

nization. For now, we will denote each parallel computing unit as a processor; in



16

a shared memory setting a processor is a thread and in a distributed memory ar-
chitecture a processor is a machine. This abstraction allows us to present parallel
algorithms in a unified manner. The exception is Chapter [3.5| which we discuss how
to take advantage of hybrid architecture where there are multiple threads spread
across multiple machines.

As discussed in Chapter [I} in general stochastic gradient algorithms have been
considered to be difficult to parallelize; the computational cost of each stochastic
gradient update is often very cheap and thus it is not desirable to divide this compu-
tation across multiple processors. On the other hand, this also means that if multiple
processors are executing the stochastic gradient update in parallel, parameter values
of these algorithms are very frequently updated; therefore the cost of communication
for synchronizing these parameter values across multiple processors can be prohibitive
[79], especially in the distributed memory setting.

In the literature of matrix completion, however, there exists stochastic optimiza-
tion algorithms that can be efficiently parallelized by avoiding the need for frequent
synchronization. It turns out that the only major requirement of these algorithms is
double separability of the objective function; therefore, these algorithms have great
utility beyond the task of matrix completion, as will be illustrated throughout the
thesis.

In this subsection, we will introduce Distributed Stochastic Gradient Descent
(DSGD) of Gemulla et al. [30] for the minimization problem and Distributed
Stochastic Saddle-point Optimization (DSSO) algorithm, our proposal for the saddle-
point problem (2.12)). The key observation of DSGD is that SGD updates of
and involve on only one row parameter w; and one column parameter h;; given
(1,7) € Q and (i,5") € Q, if i # i’ and j # ;' then one can simultaneously perform
SGD updates ([2.21)) on w; and w; and on h; and hj. In other words, updates
to w; and h; are independent of updates to wy and hj as long as i # i’ and j # j'.
The same property holds for DSSO; this opens up the possibility that min(m, n) pairs

of parameters (w;, h;) can be updated in parallel.



17

gL v H®) H® J248)) H® H® H®

7777777777 e 20707077 77777777774 7777777777
2772777777 22777777777 2077777777 1777777777
2272277777 2277277777 2277727777 1707777777
2772777777 77777777777 7277777777 177777777
2222222727 22222222227 2222222272 272722272777

r7777 X X X 77727 X X X
77777 X 77777 X
w2222 w2222y
22077 X X X 22277 X X X
77777 _ X x 77777 4 X x
X X X X
X X X X
w2 w(2)
X X X X
N X Vi X X &—\ X
22222 N e 222 T\ Y N ~
v X X a srrr7 x X 2 X
3 s7277 X X X 3 s7777 X X X
W() AR W( ) {22007
srrr7 X x sr777 x x
- o
7 R - - B i R S
X X X X X X X X
| S X | S X
w@) w@ | ——
X X X |IX X X X X
 E— X  E— X

Figure 2.2.: Tllustration of DSGD/DSSO algorithm with 4 processors. The rows of €2
and corresponding f;;s as well as the parameters W and H are partitioned as shown.
Colors denote ownership. The active area of each processor is shaded dark. Left:

initial state. Right: state after one bulk synchronization step. See text for details.

We will use the above observation in order to derive a parallel algorithm for finding
the minimizer or saddle-point of f (W, H). However, before we formally describe
DSGD and DSSO we would like to present some intuition using Figure Here we
assume that we have access to 4 processors. As in Figure 2.1] we visualize f with
a m X n matrix; non-zero interaction between W and H are marked by x. Initially,
both parameters as well as rows of €2 and corresponding f;;’s are partitioned across
processors as depicted in Figure (left); colors in the figure denote ownership e.g.,
the first processor owns a fraction of €2 and a fraction of the parameters W and H
(denoted as W) and H®M) shaded with red. Each processor samples a non-zero
entry (i,j) of Q within the dark shaded rectangular region (active area) depicted
in the figure, and updates the corresponding W; and H;. After performing a fixed
number of updates, the processors perform a bulk synchronization step and exchange
coordinates of H. This defines an epoch. After an epoch, ownership of the H variables
and hence the active area changes as shown in Figure (left). The algorithm iterates

over the epochs until convergence.



18

Now let us formally introduce DSGD and DSSO. Suppose p processors are avail-
able, and let Iy, ..., I, denote p partitions of the set {1,...,m} and .J;,. .., J, denote p
partitions of the set {1, ..., n} such that |I,| ~ |I,| and |J,| ~ |J,»|. 2 and correspond-
ing f;;’s are partitioned according to Iy, ..., I, and distributed across p processors.
On the other hand, the parameters {wy, ..., w,,} are partitioned into p disjoint sub-
sets W W® according to I, ... , I, while {hy,..., hq} are partitioned into p
disjoint subsets HY, ..., H® according to Ji, ..., J, and distributed to p processors.
The partitioning of {1,...,m} and {1,...,d} induces a p x p partition on :

Q) = {(i,j)eQ :iel,je .}, q¢re{l,...,p}.

The execution of DSGD and DSSO algorithm consists of epochs; at the beginning of

the 7-th epoch (r > 1), processor ¢ owns H (@) where
o, (q) = {(¢g+r—2) mod p} + 1, (2.25)

and executes stochastic updates and for the minimization problem
(DSGD) and and for the saddle-point problem (DSSO), only on co-
ordinates in Q@) Since these updates only involve variables in W@ and H((@),
no communication between processors is required to perform these updates. After ev-
ery processor has finished a pre-defined number of updates, H@ is sent to H Tren) (@)
and the algorithm moves on to the (r + 1)-th epoch. The pseudo-code of DSGD and
DSSO can be found in Algorithm

It is important to note that DSGD and DSSO are serializable; that is, there is an
equivalent update ordering in a serial implementation that would mimic the sequence
of DSGD/DSSO updates. In general, serializable algorithms are expected to exhibit
faster convergence in number of iterations, as there is little waste of computation due
to parallelization [49]. Also, they are easier to debug than non-serializable algorithms
which processors may interact with each other in unpredictable complex fashion.

Nonetheless, it is not immediately clear whether DSGD/DSSO would converge to

the same solution the original serial algorithm would converge to; while the original



19

Algorithm 1 Pseudo-code of DSGD and DSSO

1: {n,}: step size sequence

2: Bach processor ¢ initializes W@ H(@
3: while Convergence do

4: // start of epoch r

5: Parallel Foreach g€ {1,2,...,p}

6: for (i,7) e Q@) do

7: // Stochastic Gradient Update
8: wi — w; = - [Qf - Vi, fi(wi, hy)

9: if DSGD then

10: hj — hj = [Q] - Vi, fij(wi, hy)
11: else
12: hyj < hj +n, - [Q - Vi, fij(ws, hy)
13: end if
14: end for
15: non-blocking send H"(9 to machine o,
16: receive Hor+1(9)

17: Parallel End
18: r—r+1

19: end while

-1

+1

(0r(q))




20

algorithm samples (i, j)-pairs from entire €2, the sampling of DSGD/DSSO is confined
to Qer() 2er@)  Q@or®) which is only 1/p fraction of the whole. Surpris-
ingly, Gemulla et al. [30] proves that DSGD will converge to a local minimum of the
objective function f; the proof can be readily adapted for DSSO.

The essential idea of the proof is that the difference between the execution of serial
SGD and that of DSGD will be washed out if two algorithms are run for a sufficiently
long time. This intuition can be quantified as follows. One can see that at r-th epoch,
DSGD and DSSO are optimizing the following function:

P
OV H)=p-Y > filwihy), (2.26)
4=1 (i,j)eQ@.or(@)
instead of the original function f. Note that the function is multiplied by p to match
the scale of f. Then, the difference between updates made at r-th epoch of serial
SGD and DSGD can then be quantified as 1, (Vaf,(0) — Vo f(0)). Theorem 6.1.1 of

Yin and Kushner [77] shows that if this “difference” converges to zero, that is,

S

lim 1, ) (Vof(8) = Vo f(8)) — 0, (2.27)

r=1
then under reasonably mild conditions such as continuity of f and boundedness of the
solution, DSGD and DSSO will converge to the set of stable points of ODEs
and respectively, which is the desired result (recall the equivalence between
solutions of an optimization problem and stable points of an ODE, as illustrated in
Chapter .

By the construction of o, in (2.25)),

T+p—1

D1 (Vofi(0) = Vof(0)) =0 (2.28)

r=T
for any positive integer 7', because each f;; appears exactly once in p epochs. There-
fore, condition ([2.27)) is trivially satisfied. Of course, there are other choices of o, that
can also satisfy (2.27)); Gemulla et al. [30] shows that if o, is a regenerative process,

that is, each f;; appears in the temporary objective function f, in the same frequency,

then ([2.27)) is satisfied.



21

3. NOMAD: NON-LOCKING, STOCHASTIC MULTI-MACHINE
ALGORITHM FOR ASYNCHRONOUS AND DECENTRALIZED
OPTIMIZATION

3.1 Motivation

Note that at the end of each epoch, DSGD/DSSO requires every processor to stop
sampling stochastic gradients, and communicate column parameters between proces-
sors to prepare for the next epoch. In the distributed-memory setting, algorithms
that bulk synchronize their state after every iteration are popular [19, [70]. This is
partly because of the widespread availability of the MapReduce framework [20] and
its open source implementation Hadoop [I].

Unfortunately, bulk synchronization based algorithms have two major drawbacks:
First, the communication and computation steps are done in sequence. What this
means is that when the CPU is busy, the network is idle and vice versa. The second
issue is that they suffer from what is widely known as the the curse of last reducer
[4, 67]. In other words, all machines have to wait for the slowest machine to finish
before proceeding to the next iteration. Zhuang et al. [79] report that DSGD suffers
from this problem even in the shared memory setting.

In this section, we present NOMAD (Non-locking, stOchastic Multi-machine al-
gorithm for Asynchronous and Decentralized optimization), a parallel algorithm for
optimization of doubly separable functions, which processors exchange messages in

an asynchronous fashion [I1] to avoid bulk synchronization.



22

3.2 Description

Similarly to DSGD, NOMAD splits row indices {1,2,...,m} into p disjoint sets
I, Iy, ..., I, which are of approximately equal size. This induces a partition on the
rows of the nonzero locations €2. The g-th processor stores n sets of indices Q§-q), for

je{l,...,n}, which are defined as
O = {(i,j) e QyyieI,},

as well as corresponding f;;’s. Note that once {2 and corresponding f;;’s are parti-
tioned and distributed to the processors, they are never moved during the execution
of the algorithm.

Recall that there are two types of parameters in doubly separable models: row
parameters w;’s, and column parameters h;’s. In NOMAD, w;’s are partitioned ac-
cording to Iy, I, ..., I,, that is, the ¢-th processor stores and updates w; for ¢ € I,.
The variables in W are partitioned at the beginning, and never move across processors
during the execution of the algorithm. On the other hand, the h;’s are split randomly
into p partitions at the beginning, and their ownership changes as the algorithm pro-
gresses. At each point of time an h; variable resides in one and only processor, and it
moves to another processor after it is processed, independent of other item variables.
Hence these are called nomadic variabledl,

Processing a column parameter h; at the g-th procesor entails executing SGD

updates (2.21)) and ([2.22)) or (2.24)) on the (4, j)-pairs in the set ng). Note that these

updates only require access to h; and w; for i € Iy; since I,’s are disjoint, each w;
variable in the set is accessed by only one processor. This is why the communication
of w; variables is not necessary. On the other hand, h; is updated only by the
processor that currently owns it, so there is no need for a lock; this is the popular

owner-computes rule in parallel computing. See Figure (3.1}

'Due to symmetry in the formulation, one can also make the w;’s nomadic and partition the h;’s.
To minimize the amount of communication between processors, it is desirable to make h;’s nomadic
when n < m, and vice versa.



j2aey H® H® H@®
~~|////,//,/'E|
Wy
N
Y x x
W
wo x x x
2%
w(2)
w3
w(4)

(a) Initial assignment of W and H. Each
processor works only on the diagonal active

area in the beginning.

w (D)

w®

w3

w4)

(c) Upon receipt, the component is pro-
cessed by the new processor. Here, proces-

sor 4 can now process column 2.

23

— _
2777 | x X
777 1
a 122 |
1
Wi e | x x x
2007 | \
7777 I X X X
w2
w®)
— I_‘ 1 X X
L 1
4) [ e
W( ) — | Ix X X
— ol x

(b) After a processor finishes processing col-
umn j, it sends the corresponding parameter

w; to another. Here, hy is sent from 1 to 4.

4 v 77 177 [

A VY R 77 N A NN - -

2 RN 27 {771 NN
X

x x
x
1
w (D) x x
__ o X
x x
x x
w2 < x
x x
.- - X
3 x x
w® x x %
x x
x &K T T T
x
4
w® x X X

(d) During the execution of the algorithm,

the ownership of the component h; changes.

Figure 3.1.: Graphical Hlustration of the Algorithm



24

We now formally define the NOMAD algorithm (see Algorithm [2| for detailed
pseudo-code). Each processor ¢ maintains its own concurrent queue, queue|q|, which
contains a list of columns it has to process. Each element of the list consists of the
index of the column j (1 < j < n), and a corresponding column parameter h;; this
pair is denoted as (j,h;). Each processor ¢ pops a (j, h;) pair from its own queue,
queue|q|, and runs stochastic gradient update on ng), which corresponds to functions
in column j locally stored in processor ¢ (line [14] to [22]). This changes values of w;
for i € I, and h;. After all the updates on column j are done, a uniformly random
processor ¢ is sampled (line and the updated (j, h;) pair is pushed into the queue
of that processor, ¢’ (line . Note that this is the only time where a processor com-
municates with another processor. Also note that the nature of this communication
is asynchronous and non-blocking. Furthermore, as long as the queue is nonempty,
the computations are completely asynchronous and decentralized. Moreover, all pro-

cessors are symmetric, that is, there is no designated master or slave.

3.3 Complexity Analysis

First, we consider the case when the problem is distributed across p processors,
and study how the space and time complexity behaves as a function of p. Each
processor has to store 1/p fraction of the m row parameters, and approximately
1/p fraction of the n column parameters. Furthermore, each processor also stores
approximately 1/p fraction of the |Q| functions. Then, the space complexity per
processor is O((m +n + |Q2|)/p). As for time complexity, we find it useful to use the
following assumptions: performing the SGD updates in line [T14] to 22| takes a time
and communicating a (j, h;) to another processor takes c¢ time, where a and ¢ are
hardware dependent constants. On the average, each (j, h;) pair contains O (|$2| /np)
non-zero entries. Therefore when a (j, h;) pair is popped from queue|q] in line
of Algorithm [2] on the average it takes a - (|2 /np) time to process the pair. Since



25

Algorithm 2 the basic NOMAD algorithm

1:

2:

3:

4.

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24

25:

26:

A: regularization parameter

{m}: step size sequence

Initialize W and H

// initialize queues

for je{1,2,...,n} do
q ~ UniformDiscrete {1,2,...,p}
queue[q] . push((j, ;)

end for

// start p processors

Parallel Foreach g€ {1,2,...,p}

while stop signal is not yet received do

if queue[q]| not empty then

(J, hj) < queue[q].pop ()
for (i,7) € Q§Q) do

// Stochastic Gradient Update
wi —wi — 1y Q- Vi, fij(wi, hy)
if minimization problem then

hj < h; —n, - [Q - Vi, fij(wi, hy)
else

hj < hj + .- |Q] - Vi, fij(wi, hy)
end if

end for

q' ~ UniformDiscrete {1,2, ..., p}

queue|q']. push((j, h;))

end if

end while

27: Parallel End




26

computation and communication can be done in parallel, as long as a - (|| /np) is
higher than ¢ a processor is always busy and NOMAD scales linearly.

Suppose that || is fixed but the number of processors p increases; that is, we
take a fixed size dataset and distribute it across p processors. As expected, for a large
enough value of p (which is determined by hardware dependent constants a and b) the
cost of communication will overwhelm the cost of processing an item, thus leading to
slowdown.

On the other hand, suppose the work per processor is fixed, that is, || increases
and the number of processors p increases proportionally. The average time a-(|Q2| /np)
to process an item remains constant, and NOMAD scales linearly.

Finally, we discuss the communication complexity of NOMAD. For this discussion
we focus on a single column parameter h;. In order to be processed by all the p pro-
cessors once, it needs to be communicated p times. This requires O(p) communication
per item. There are n items, and if we make a simplifying assumption that during
the execution of NOMAD each item is processed a constant ¢ number of times by

each processor, then the total communication complexity is O(np).

3.4 Dynamic Load Balancing

As different processors have different number of nonzero functions per column,
the speed at which a processor processes a set of functions ng) for a column j also
varies among processors. Furthermore, in the distributed memory setting different
processors might execute updates at different rates dues to differences in hardware
and system load. NOMAD can handle this by dynamically balancing the workload of
processors: in line 23] of Algorithm [2] instead of sampling the recipient of a message
uniformly at random we can preferentially select a processors which has fewer columns
in its queue to process. To do this, a payload carrying information about the size
of the queue|q| is added to the messages that the processors send each other. The

overhead of the payload is just a single integer per message. This scheme allows us



27

to dynamically load balance, and ensures that a slower processor will receive smaller

amount of work compared to others.

3.5 Hybrid Architecture

In a hybrid architecture we have multiple threads on a single machine as well as
multiple machines distributed across the network. In this case, we make two improve-
ments to the basic NOMAD algorithm. First, in order to amortize the communica-
tion costs we reserve two additional threads per machine for sending and receiving
(4, h;) pairs over the network. Intra-machine communication is much cheaper than
machine-to-machine communication, since the former does not involve a network hop.
Therefore, whenever a machine receives a (j, h;) pair, it circulates the pair among all
of its threads before sending the pair over the network. This is done by uniformly
sampling a random permutation whose size equals to the number of processor threads,
and sending the column variable to each thread according to this permutation. Cir-
culating a variable more than once was found to not improve convergence in practice,

and hence is not used in our implementations.

3.5.1 Implementation Details

Multi-threaded MPI was used for inter-machine communication. Instead of com-
municating single (j, h;) pairs, we follow the strategy of [65], and accumulate a fixed
number of pairs (e.g., 100) before transmitting them over the network.

NOMAD can be implemented with lock-free data structures since the only inter-
action between threads is via operations on the queue. We used the concurrent queue
provided by Intel Thread Building Blocks (TBB) [3]. Although technically not lock-
free, the TBB concurrent queue nevertheless scales almost linearly with the number
of threads.

There is very minimal sharing of memory among threads in NOMAD. By making

memory assignments in each thread carefully aligned with cache lines we can exploit



28

memory locality and avoid cache ping-pong. This results in near linear scaling for

the multi-threaded setting.

3.6 Related Work
3.6.1 Map-Reduce and Friends

There are other existing approaches to parallelize SGD for matrix completion, and
they can also be generalized for doubly separable functions as well. In this section,
we briefly discuss how NOMAD is conceptually different from those methods.

DSGD++ is an algorithm proposed by Teflioudi et al. [69] to address the afore-
mentioned utilization issue of computation and communication resources. Instead of
using p partitions, DSGD++ uses 2p partitions. While the p processors are process-
ing p partitions, the other p partitions are sent over the network. This keeps both
the network and CPU busy simultaneously. However, DSGD++ also suffers from the
curse of the last reducer.

Another attempt to alleviate the problems of bulk synchronization in the shared
memory setting is the FPSGD** algorithm of Zhuang et al. [79]; given p threads,
FPSGD** partitions the parameters into more than p sets, and uses a task manager
thread to distribute the partitions. When a thread finishes updating one partition,
it requests for another partition from the task manager. It is unclear how to extend
this idea to the distributed memory setting.

In NOMAD we sidestep all the drawbacks of bulk synchronization. Like DSGD-++
we also simultaneously keep the network and CPU busy. On the other hand, like
FPSGD** we effectively load balance between the threads. To understand why NO-
MAD enjoys both these benefits, it is instructive to contrast the data partitioning
schemes underlying DSGD, DSGD++, FPSGD**, and NOMAD (see Figure [3.2).
Given p number of processors, DSGD divides locations of non-zero functions €2 into
p x p number of blocks; DSGD++ improves upon DSGD by further dividing each
block to 1 x 2 sub-blocks (Figure (a) and (b)). On the other hand, FPSGD**



29

X X | ‘X 1‘7( X|

. ‘ SRR
l T

(a) DSGD (b) DSGD++
(c) FPSGD** (d) NOMAD

Figure 3.2.: Comparison of data partitioning schemes between algorithms. Example

active area of stochastic gradient sampling is marked as gray.

splits A into p’ x p’ blocks with p’ > p (Figure (¢)), while NOMAD uses p x n
blocks (Figure (d)). In terms of communication there is no difference between
various partitioning schemes; all of them require O(np) communication for each col-
umn to be processed a constant ¢ number of times. However, having smaller blocks
means that NOMAD has much more flexibility in assigning blocks to processors, and
hence better ability to exploit parallelism. Because NOMAD operates at the level
of individual column parameters, h;, it can dynamically load balance by assigning
fewer columns to a slower processor. A pleasant side effect of such a fine grained
partitioning coupled with the lock free nature of updates is that one does not require
sophisticated scheduling algorithms to achieve good performance. Consequently, NO-

MAD has outperformed DSGD, DSGD++, and FPSGD** in our experiments (see
Chapter .



30

3.6.2 Asynchronous Algorithms

There is growing interest in designing machine learning algorithms that do not
perform bulk synchronization. See, for instance, the randomized (block) coordinate
descent methods of Richtarik and Takac [57] and the Hogwild! algorithm of Recht
et al. [56]. A relatively new approach to asynchronous parallelism is to use a so-called
parameter server. A parameter server is either a single machine or a distributed set
of machines which caches the current values of the parameters. Processors store local
copies of the parameters and perform updates on them, and periodically synchronize
their local copies with the parameter server. The parameter server receives updates
from all processors, aggregates them, and communicates them back to the processors.
The earliest work on a parameter server, that we are aware of, is due to Smola and
Narayanamurthy [65], who propose using a parameter server for collapsed Gibbs sam-
pling in Latent Dirichlet Allocation. PowerGraph [32], upon which the latest version
of the GraphLab toolkit is based, is also essentially based on the idea of a parame-
ter server. However, the difference in case of PowerGraph is that the responsibility
of parameters is distributed across multiple machines, but at the added expense of
synchronizing the copies.

Very roughly speaking, the asynchronously parallel optimization algorithm for ma-
trix completion in GraphLab works as follows: W; and H; variables are distributed
across multiple machines, and whenever W; is being updated as a solution of the
sub-problem , the values of H;’s for j € €); are retrieved across the network and
read-locked until the update is finished. GraphLab provides functionality such as net-
work communication and a distributed locking mechanism to implement this. How-
ever, frequently acquiring read-locks over the network can be expensive. GraphLab
provides a complex job scheduler which attempts to minimize this cost, but then the
efficiency of parallelization depends on the difficulty of the scheduling problem and

the effectiveness of the scheduler.



31

Our empirical evaluation in Appendix shows that NOMAD performs signifi-
cantly better than GraphLab. The reasons are not hard to see. First, because of the
lock free nature of NOMAD, we completely avoid acquiring expensive network locks.
Second, we use stochastic updates which allows us to exploit finer grained parallelism
as compared to solving the minimization problem ([2.10)) which involves more number
of coordinates than two. In fact, the GraphLab framework is not well suited for SGD
(personal communication with the developers of GraphLab). Finally, because of the
finer grained data partitioning scheme used in NOMAD, unlike GraphLab whose per-
formance heavily depends on the underlying scheduling algorithms we do not require

a complicated scheduling mechanism.

3.6.3 Numerical Linear Algebra

The concepts of asynchronous and non-blocking updates have also been studied
in numerical linear algebra. To avoid the load balancing problem and to reduce
processor idle time, asynchronous numerical methods were first proposed over four
decades ago by Chazan and Miranker [I§]. Given an operator H : R™ — R™, to
find the fixed point solution z* such that H(xz*) = z*, a standard Gauss-Seidel-type
procedure performs the update x; = (H(x)), sequentially (or randomly). Using the

asynchronous procedure, each computational node asynchronously conducts updates

new —

on each variable (or a subset) a}

(H(zx)), and then overwrites z; in common

new
(2

memory by V. Theory and applications of this asynchronous method have been
widely studied (see the literature review of Frommer and Szyld [29] and the seminal
textbook by Bertsekas and Tsitsiklis [I1]). The concept of this asynchronous fixed-
point update is very closely related to the Hogwild algorithm of Recht et al. [56] or
the so-called Asynchronous SGD (ASGD) method proposed by Teflioudi et al. [69)].
Unfortunately, such algorithms are non-serializable, that is, there may not exist an

equivalent update ordering in a serial implementation. In contrast, our NOMAD



32

algorithm is not only asynchronous but also serializable, and therefore achieves faster
convergence in practice.

On the other hand, non-blocking communication has also been proposed to ac-
celerate iterative solvers in a distributed setting. For example, Hoefler et al. [36]
presented a distributed conjugate gradient (CG) implementation with non-blocking
collective MPI operations for solving linear systems. However, this algorithm still re-
quires synchronization at each CG iteration, so it is very different from our NOMAD

algorithm.

3.6.4 Discussion

We remark that among algorithms we have discussed so far, NOMAD is the
only distributed-memory algorithm which is both asynchronous and lock-free. Other
parallelizations of SGD such as DSGD and DSGD++ are lock-free, but not fully
asynchronous; therefore, the cost of synchronization will increase as the number of
machines grows [79]. On the other hand, GraphLab [49] is asynchronous but not
lock-free, therefore depends on a complex job scheduler to reduce the side-effect of

using locks.



33

4. MATRIX COMPLETION

As discussed in Chapter [2.3] many of the parallel SGD algorithms were specifically
developed for the matrix completion model. However, there are many deterministic
optimization algorithms for matrix completion as well; therefore, the matrix comple-
tion problem is an ideal benchmark test that can be used to evaluate the effectiveness
of algorithms we have introduced so far.

Note that the matrix completion model itself has been considered as an important
statistical model in machine learning and data mining community as well. It is partly
thanks to the empirical success of the model in the Netflix prize challenge [41], which
participants of the challenge were asked to predict unseen movie ratings of users based

on given training data.

4.1 Formulation

Most of the notations defined here are consistent with those introduced in Chap-
ter 2l We redefine some of them here, however, to illustrate their interpretation in
this particular context of matrix completion.

Let A € R™*" be a rating matrix, where m denotes the number of users and n the
number of items. Typically m » n, although the algorithms we consider in this paper
do not depend on such an assumption. Furthermore, let Q < {1...m} x {1,...,n}
denote the observed entries of A, that is, (i,7) € € implies that user i gave item
J a rating of A;;. The goal here is to predict accurately the unobserved ratings.
For convenience, we define €); to be the set of items rated by the i-th user, i.e.,
Q= {j: (i,5) € }. Analogously Q; := {i : (i,7) € Q} is the set of users who have

rated item j. Also, let a; denote the i-th row of A.



34

A standard model for matrix completion finds matrices W € R™** and H € R™**,
with k& « min(m,n), such that A ~ WH'. One way to understand this model
is to realize that each row w; € R¥ of W can be thought of as a k-dimensional
embedding of the user. Analogously, each row hjT e R* of H is an embedding of
the item in the same k-dimensional space. In order to predict the (7, j)-th entry of
A we simply use (w;,h;), where (,-) denotes the Euclidean inner product of two
vectors. The goodness of fit of the model is measured by a loss function. While
DSGD or NOMAD can work with an arbitrary separable loss, for ease of exposition
we will only discuss the square loss: 3 (4;; — (w;,h;))?. Furthermore, we need to
enforce regularization to prevent over-fitting, and to predict well on the unknown
entries of A. Again, a variety of regularizers can be handled by our algorithm, but we
will only focus on the following weighted square norm-regularization in this paper:
23l Wil + %Z?:l €] - |h;|?*, where A > 0 is a regularization parameter.
Here, |-| denotes the cardinality of a set, and |-|* is the Ly norm of a vector. Putting

everything together yields the following objective function:

min J(W, H) := Z — (Wi hy))” (ZIQI Iwill” +Z\Q\ | H)-

W e Rmxk
gk (z,] )EQ

(4.1)

This can be further simplified and written as

J(W,H) = Z {(Aij = Wi, )"+ A (fwil* + by ) } -

(%J)EQ

Observe that this is in doubly separable form ([2.2)).
In the sequel we will let w; and h; for 1 < [ < k denote the [-th coordinate of the
column vectors w; and h;, respectively. Furthermore, Hg, (resp. Wq_ ) will be used

to denote the sub-matrix of H (resp. W) formed by collecting rows corresponding to

Q; (resp. Q).



35

Note that as illustrated in (2.10)), if we fix H then the optimization problem
(4.1) decomposes to m independent convex optimization problems, with each of them

having the following form:

: 1 2 2
min Ji(w;) = = > (A = (wi, b)) + A fwi*. (4.2)
WiGR 2 .

JeQ;
Analogously, if we fix W then (4.1)) decomposes into n independent convex optimiza-

tion problems, each of which has the following form:

o |
min J;(h;) = 3 2 (Ayj = (wi,hy))® + Ay

ZEQ]'

The gradient and Hessian of J;(w) can be easily computed:
VJi(w;) = Mw; — b, and V2J;(w;) = M,

where we have defined M := H} Ho, + Al and b := Ha,.

4.2 Batch Optimization Algorithms

While we have introduced stochastic optimization techniques in Chapter 2.3} here
we will present two well known batch optimization strategies specifically developed
for solving . These two approaches essentially differ in only two characteristics
namely, the sequence in which updates to the variables in W and H are carried out,

and the level of approximation in the update.

4.2.1 Alternating Least Squares

A simple version of the Alternating Least Squares (ALS) algorithm updates vari-
ables as follows: wy, wo, ..., W,,,, hy, hy, ..., h,, wq, ... and so on. Updates to w;
are computed by solving (4.2]) which is in fact a least squares problem, and thus the

following Newton update gives us:
W, — wi — [V2i(w)] " VJi(ws), (4.3)

which can be rewritten using M and b as w; « M ~'b. Updates to h;’s are analogous.



36
4.2.2 Coordinate Descent

The ALS update involves formation of the Hessian and its inversion. In order
to reduce the computational complexity, one can replace the Hessian by its diagonal

approximation:
w; < w; — [diag (V*J; (Wz’))]_l VJ; (w;), (4.4)
which can be rewritten using M and b as
w; «— w; — diag(M) ™' [Mw; —b]. (4.5)
If we update one component of w; at a time, the update (4.5)) can be written as:
Wi <~ Wip — ———— (4.6)

where m; is [-th row of matrix M, b; is [-th component of b and my is the [-th
coordinate of m,;.

If we choose the update sequence wiy, ..., Wik, Wat, ..., Wak, - .., Wi, - - -, Wink,
hit, ..., hag, hot, ..o hog, ooy bty oo oy By, w11, .. ., w1k, and so on, then this recovers
Cyclic Coordinate Descent (CCD) [37]. On the other hand, the update sequence wy;,

vy Wi, P11, ooy Bp1, W12, .., Wpa, hia, ..., hye and so on, recovers the CCD++
algorithm of Yu et al. [78]. The CCD++ updates can be performed more efficiently

than the CCD updates by maintaining a residual matrix [78].

4.3 Experiments

In this section, we evaluate the empirical performance of NOMAD with extensive
experiments. For the distributed memory experiments we compare NOMAD with
DSGD [31], DSGD++ [69] and CCD++ [78]. We also compare against GraphLab,
but the quality of results produced by GraphLab are significantly worse than the other
methods, and therefore the plots for this experiment are delegated to Appendix [A.3]
For the shared memory experiments we pitch NOMAD against FPSGD** [79] (which



37

is shown to outperform DSGD in single machine experiments) as well as CCD++.

Our experiments are designed to answer the following:

e How does NOMAD scale with the number of cores on a single machine? (Section

1.3.0)

e How does NOMAD scale as a fixed size dataset is distributed across multiple

machines? (Section [4.3.3))
e How does NOMAD perform on a commodity hardware cluster? (Chapter [4.3.4))

e How does NOMAD scale when both the size of the data as well as the number
of machines grow? (Section [4.3.5))

Since the objective function (4.1) is non-convex, different optimizers will converge
to different solutions. Factors which affect the quality of the final solution include 1)
initialization strategy, 2) the sequence in which the ratings are accessed, and 3) the
step size decay schedule. It is clearly not feasible to consider the combinatorial effect
of all these factors on each algorithm. However, we believe that the overall trend of

our results is not affected by these factors.

4.3.1 Experimental Setup

Publicly available code for FPSGD**{{]and CCD++|was used in our experiments.
For DSGD and DSGD-++, which we had to implement ourselves because the code
is not publicly available, we closely followed the recommendations of Gemulla et al.
[31] and Teflioudi et al. [69], and in some cases made improvements based on our
experience. For a fair comparison all competing algorithms were tuned for optimal
performance on our hardware. The code and scripts required for reproducing the
experiments are readily available for download from http://www.stat.purdue.edu/

~yun3. Parameters used in our experiments are summarized in Table [4.1]

http://www.csie.ntu.edu.tw/~cjlin/libmf/
Znttp://www.cs.utexas.edu/~rofuyu/libpmf/


http://www.stat.purdue.edu/~yun3
http://www.stat.purdue.edu/~yun3
http://www.csie.ntu.edu.tw/~cjlin/libmf/
http://www.cs.utexas.edu/~rofuyu/libpmf/

38

Table 4.1.: Dimensionality parameter k, regularization parameter A (4.1)) and step-

size schedule parameters «, 8 (4.7))

Name k Q 15}

Netflix 100 | 0.05 | 0.012 | 0.05

Yahoo! Music | 100 | 1.00 | 0.00075 | 0.01

Hugewiki 100 | 0.01 | 0.001 0

Table 4.2.: Dataset Details

Name Rows Columns Non-zeros
Netflix [7] 2,649,429 17,770 99,072,112
Yahoo! Music [23] | 1,999,990 | 624,961 | 252,800,275
Hugewiki [2] 50,082,603 | 39,780 | 2,736,496,604




39

For all experiments, except the ones in Chapter we will work with three
benchmark datasets namely Netflix, Yahoo! Music, and Hugewiki (see Table for
more details). The same training and test dataset partition is used consistently for all
algorithms in every experiment. Since our goal is to compare optimization algorithms,
we do very minimal parameter tuning. For instance, we used the same regularization
parameter A for each dataset as reported by Yu et al. [78], and shown in Table ;
we study the effect of the regularization parameter on the convergence of NOMAD
in Appendix [A.T] By default we use k = 100 for the dimension of the latent space;
we study how the dimension of the latent space affects convergence of NOMAD in
Appendix All algorithms were initialized with the same initial parameters; we
set each entry of W and H by independently sampling a uniformly random variable
in the range (0, \/LE) [78, [79].

We compare solvers in terms of Root Mean Square Error (RMSE) on the test set,

which is defined as:

\/ Do yeaen (Aij — (Wi, hy))?
|Qtest | )
where Q' denotes the ratings in the test set.

All experiments, except the ones reported in Chapter [£.3.4] are run using the
Stampede Cluster at University of Texas, a Linux cluster where each node is outfitted
with 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel Xeon Phi Coprocessor
(MIC Architecture). For single-machine experiments (Chapter [4.3.2)), we used nodes
in the largemem queue which are equipped with 1TB of RAM and 32 cores. For all
other experiments, we used the nodes in the normal queue which are equipped with
32 GB of RAM and 16 cores (only 4 out of the 16 cores were used for computation).
Inter-machine communication on this system is handled by MVAPICH2.

For the commodity hardware experiments in Chapter we used ml.xlarge
instances of Amazon Web Services, which are equipped with 15GB of RAM and four
cores. We utilized all four cores in each machine; NOMAD and DSGD-++ uses two

cores for computation and two cores for network communication, while DSGD and



40

CCD++ use all four cores for both computation and communication. Inter-machine
communication on this system is handled by MPICH2.

Since FPSGD** uses single precision arithmetic, the experiments in Chapter
are performed using single precision arithmetic, while all other experiments use double
precision arithmetic. All algorithms are compiled with Intel C++ compiler, with
the exception of experiments in Chapter where we used gcc which is the only
compiler toolchain available on the commodity hardware cluster. For ready reference,

exceptions to the experimental settings specific to each section are summarized in

Table [4.3]

Table 4.3.: Exceptions to each experiment

Section Exception

Chapter 4.3.2| | ® run on largemem queue (32 cores, 1'TB RAM)

e single precision floating point used

Chapter 4.3.4| | ® run on m1.xlarge (4 cores, 15GB RAM)

compiled with gcc

MPICH2 for MPI implementation

Chapter 4.3.5

Synthetic datasets

The convergence speed of stochastic gradient descent methods depends on the

choice of the step size schedule. The schedule we used for NOMAD is

(07

I

(4.7)

where t is the number of SGD updates that were performed on a particular user-item
pair (i,7). DSGD and DSGD++, on the other hand, use an alternative strategy
called bold-driver [31]; here, the step size is adapted by monitoring the change of the

objective function.



41

4.3.2 Scaling in Number of Cores

For the first experiment we fixed the number of cores to 30, and compared the
performance of NOMAD vs FPSGD**f] and CCD++ (Figure [.1)). On Netflix (left)
NOMAD not only converges to a slightly better quality solution (RMSE 0.914 vs
0.916 of others), but is also able to reduce the RMSE rapidly right from the begin-
ning. On Yahoo! Music (middle), NOMAD converges to a slightly worse solution
than FPSGD** (RMSE 21.894 vs 21.853) but as in the case of Netflix, the initial
convergence is more rapid. On Hugewiki, the difference is smaller but NOMAD still
outperforms. The initial speed of CCD++ on Hugewiki is comparable to NOMAD,
but the quality of the solution starts to deteriorate in the middle. Note that the
performance of CCD++ here is better than what was reported in Zhuang et al.
[79] since they used double-precision floating point arithmetic for CCD++. In other
experiments (not reported here) we varied the number of cores and found that the
relative difference in performance between NOMAD, FPSGD** and CCD++ are very
similar to that observed in Figure [4.1]

For the second experiment we varied the number of cores from 4 to 30, and plot
the scaling behavior of NOMAD (Figures , and . Figure shows how test
RMSE changes as a function of the number of updates. Interestingly, as we increased
the number of cores, the test RMSE decreased faster. We believe this is because when
we increase the number of cores, the rating matrix A is partitioned into smaller blocks;
recall that we split A into p x n blocks, where p is the number of parallel processors.
Therefore, the communication between processors becomes more frequent, and each
SGD update is based on fresher information (see also Chapter for mathematical
analysis). This effect was more strongly observed on Yahoo! Music dataset than
others, since Yahoo! Music has much larger number of items (624,961 vs. 17,770
of Netflix and 39,780 of Hugewiki) and therefore more amount of communication is

needed to circulate the new information to all processors.

3Since the current implementation of FPSGD** in LibMF only reports CPU execution time, we
divide this by the number of threads and use this as a proxy for wall clock time.



42

On the other hand, to assess the efficiency of computation we define average
throughput as the average number of ratings processed per core per second, and plot it
for each dataset in Figure 4.3 while varying the number of cores. If NOMAD exhibits
linear scaling in terms of the speed it processes ratings, the average throughput should
remain constaniﬁ On Netflix, the average throughput indeed remains almost constant
as the number of cores changes. On Yahoo! Music and Hugewiki, the throughput
decreases to about 50% as the number of cores is increased to 30. We believe this is
mainly due to cache locality effects.

Now we study how much speed-up NOMAD can achieve by increasing the number
of cores. In Figure [4.4] we set y-axis to be test RMSE and x-axis to be the total CPU
time expended which is given by the number of seconds elapsed multiplied by the
number of cores. We plot the convergence curves by setting the # cores=4, 8, 16,
and 30. If the curves overlap, then this shows that we achieve linear speed up as we
increase the number of cores. This is indeed the case for Netflix and Hugewiki. In
the case of Yahoo! Music we observe that the speed of convergence increases as the
number of cores increases. This, we believe, is again due to the decrease in the block

size which leads to faster convergence.

Netflix, machines=1, cores=30, A = 0.05, k = 100 Yahoo!, machines=1, cores=30, A = 1.00, k = 100 Hugewiki, machines=1, cores=30, A = 0.01, k = 100
0.95 1 T T T

-e- NOMAD
— FPSGD** ||

-e— NOMAD —e— NOMAD
— FPSGD** 26 — FPSGD** |{
-- CCD++ |

0.9 H

o
o
=

0.8+
0.93 |

test RMSE

test RMSE
test RMSE

07

o
=Y
o

0.6 |-

I | I I | I 5 I | ! . |
0'910 100 200 300 400 0 100 200 300 400 0'00 500 1,000 1,500 2,000 2,500 3,000

seconds seconds seconds

Figure 4.1.: Comparison of NOMAD, FPSGD**, and CCD++ on a single-machine

with 30 computation cores.

4Note that since we use single-precision floating point arithmetic in this section to match the im-
plementation of FPSGD**, the throughput of NOMAD is about 50% higher than that in other
experiments.



Netflix, machines=1, A = 0.05, k = 100

. —e— # cores=4
0.98 —=— # cores=8 ] —=— # cores=8 ‘\ —=— # cores=8
—e—# cores=16 281 —e— 4 cores=16 [| 0.65 - —e—# cores=16 [|
= ——# cores=30 m ——# cores=30 m ——# cores=30
% 0.96 | H 2] 2]
Z Z % | 2 oo
‘é 0.94 |- ?) Z
nr 7 05|
0.92 29 |- —
L L L L L L ()5 L L L L L 1

—e— # cores=4

I
0 0.2

I I
0.4 0.6

number of updates -10%

Yahoo!, machines=1, A = 1.00, k£ = 100

—e— # cores=4 ||

I
0 05 1

I
1.5 2 25 3

number of updates -10%0

Hugewiki, machines=1, A = 0.01, k£ = 100

number of updates

[

10t

43

Figure 4.2.: Test RMSE of NOMAD as a function of the number of updates, when

the number of cores is varied.

Nlo(%glix, machines=1, A = 0.05, k = 100 Yaholo(!)bl\[usic, machines=1, A = 1.00, k£ = 100 Huﬁﬁ:‘}viki, machines=1, A = 0.01, k£ = 100
T T T T T T
9 5 s e | Q .
2 . . H o 2 41 i : *
5 af s 8 1 = sk 8 o
=% [ ] . a ] i L] .
3 o 30 | :
g 3 R 8 [ ] M
= = l 2 I 2
|5 @ 2 |- 4
(= (=%
o2 12 Z
< < O
2 1 1 210 il 2
= = 3
0 . . | | | | 0 | . | | . | 0 . | | | |
5 10 15 20 25 30 5 10 5 20 25 30 5 10 15 20 25 30

number of cores

number of cores

number of cores

Figure 4.3.: Number of updates of NOMAD per core per second as a function of the

number of cores.

Netflix, machines=1, A = 0.05, £ = 100 Yahoo!, machines=1, A = 1.00, k£ = 100 Hugewiki, machines=1, A = 0.01, k£ = 100
- - - - : T -
—e— # cores=4 —e— # cores=4 ° —e— # cores=4
0.98 —u— # cores=8 [| . —a— # cores=8 | —u— # cores=8
—e—# cores=16 281 —e—# cores=16 | 0.65 - —e—# cores=16 [|
m ——# cores=30 m ——# cores=30 m ——# cores=30
& 0.96 H @n 1%}
= = 26 = 061
~ 1 S
= = =
ur 0.55
0.92
22
. , , . , . , . , , 0.5, , \ , 1
0 1,000 2,000 3,000 4,000 5,000 6,000 0 2,000 4,000 6,000 8,000 0 0.5 1 1.5 2
seconds x cores seconds X cores seconds x cores -10°

Figure 4.4.: Test RMSE of NOMAD as a function of computation time (time in

seconds x the number of cores), when the number of cores is varied.



44

4.3.3 Scaling as a Fixed Dataset is Distributed Across Processors

In this subsection, we use 4 computation threads per machine. For the first
experiment we fix the number of machines to 32 (64 for hugewiki), and compare
the performance of NOMAD with DSGD, DSGD++ and CCD++ (Figure [£.5). On
Netflix and Hugewiki, NOMAD converges much faster than its competitors; not only
initial convergence is faster, it also discovers a better quality solution. On Yahoo!
Music, four methods perform almost the same to each other. This is because the
cost of network communication relative to the size of the data is much higher for
Yahoo! Music; while Netflix and Hugewiki have 5,575 and 68,635 non-zero ratings
per each item respectively, Yahoo! Music has only 404 ratings per item. Therefore,
when Yahoo! Music is divided equally across 32 machines, each item has only 10
ratings on average per each machine. Hence the cost of sending and receiving item
parameter vector h; for one item j across the network is higher than that of executing
SGD updates on the ratings of the item locally stored within the machine, Qg-q). As
a consequence, the cost of network communication dominates the overall execution
time of all algorithms, and little difference in convergence speed is found between
them.

For the second experiment we varied the number of machines from 1 to 32, and
plot the scaling behavior of NOMAD (Figures and . Figures |4.6| shows
how test RMSE decreases as a function of the number of updates. Again, if NO-
MAD scales linearly the average throughput has to remain constant. On the Netflix
dataset (left) convergence is mildly slower with two or four machines. However, as we
increase the number of machines the speed of convergence improves. On Yahoo! Mu-
sic (center), we uniformly observe improvement in convergence speed when 8 or more
machines are used; this is again the effect of smaller block sizes which was discussed
in Chapter [£.3.2] On the Hugewiki dataset, however, we do not see any notable

difference between configurations.



45

In Figure we plot the average throughput (the number of updates per machine
per core per second) as a function of the number of machines. On Yahoo! Music
the average throughput goes down as we increase the number of machines, because
as mentioned above, each item has a small number of ratings. On Hugewiki we
observe almost linear scaling, and on Netflix the average throughput even improves
as we increase the number of machines; we believe this is because of cache locality
effects. As we partition users into smaller and smaller blocks, the probability of cache
miss on user parameters w;’s within the block decrease, and on Netflix this makes
a meaningful difference: indeed, there are only 480,189 users in Netflix who have
at least one rating. When this is equally divided into 32 machines, each machine
contains only 11,722 active users on average. Therefore the w; variables only take
11MB of memory, which is smaller than the size of L3 cache (20MB) of the machine
we used and therefore leads to increase in the number of updates per machine per
core per second.

Now we study how much speed-up NOMAD can achieve by increasing the number
of machines. In Figurel4.8, we set y-axis to be test RMSE and z-axis to be the number
of seconds elapsed multiplied by the total number of cores used in the configuration.
Again, all lines will coincide with each other if NOMAD shows linear scaling. On
Netflix, with 2 and 4 machines we observe mild slowdown, but with more than 4
machines NOMAD exhibits super-linear scaling. On Yahoo! Music we observe super-
linear scaling with respect to the speed of a single machine on all configurations, but
the highest speedup is seen with 16 machines. On Hugewiki, linear scaling is observed

in every configuration.

4.3.4 Scaling on Commodity Hardware

In this subsection, we want to analyze the scaling behavior of NOMAD on com-
modity hardware. Using Amazon Web Services (AWS), we set up a computing cluster

that consists of 32 machines; each machine is of type m1.xlarge and equipped with



Netflix, machines=32, cores=4, A\ = 0.05, k = 100

1

0.98

0.96

test RMSE

0.94

0.92

—o- NOMAD
DSGD
DSCGD++ ||
oo CCD++

Figure 4.5.: Comparison of NOMAD, DSGD,

cluster.

test RMSE

n n
60 100 120

seconds

Netflix, cores=4, A = 0.05, k = 100

test RMSE

Yahoo!, machines=32, cores=4, A = 1.00, k = 100

—o- NOMAD
DSGD ||
DSGD++
oo COD++

|
60 100

seconds

Yahoo!, cores=4, A = 1.00, k = 100

120

27
L —e— # machines=1
| —a— # machines=2 2 |-
—o— # machines=4
[ —— # machines=8 5_; 251
= ——# machines=16 s
L \ - -# machines=32 ilf 24|
Z
L )
| 23|
[ 22
I L L L L L L L L L L L L L
0 0204 06 08 1 12 14 0 0.5 1 1.5 2 25 3
number of updates -10%0 number of updates 101

Hugewiki, machines=64.

0.7 T :
-e—- NOMAD
— DSGD
0.65 |- DSGD++ ||

test RMSE

.
0 200

I I
400 600

seconds

Hugewiki, cores=4, A = 0.01, k = 100

test RMSE

0.6

T T T
—e— # machines=4
—=— # machine

—— #machines=32
——# machines=64

0 1 2 3 4 5
number of updates 101

46

, cores=4, \ = 0.01, £ = 100

DSGD++, and CCD++ on a HPC

Figure 4.6.: Test RMSE of NOMAD as a function of the number of updates on a

HPC cluster, when the number of machines is varied.

updates per machine per core per sec

1)d§tﬁix, cores=4, A = 0.05, k = 100
T

1 - ' o 4
o H '
L}
st 38 |
9l ]
s ]
o
0 5 10 15 20 25 30 35

number of machines

updates per machine per core per sec

1\6ghoul, cores=4, A = 1.00, k£ = 100

3’ll! |

0 0 5 10 15 20 25 30
number of machines

35

153
<
g
;3
o
S
g 2
=1
g
i
2 1
-
L
"
13
3
<
T 0

I}bltgewiki. cores=4, A = 0.01, k = 100

0 10

| | |
20 30 40 50
number of machines

60

70

Figure 4.7.: Number of updates of NOMAD per machine per core per second as a

function of the number of machines, on a HPC cluster.



47

Netflix, cores=4, A = 0.05, k = 100 Yahoo!, cores=4, A = 1.00, k£ = 100 Hugewiki, cores=4, A = 0.01, k = 100
1 T - : : 27— - : T T : :
—e— # machines=1 —e— # machines=1 —e— # machines=4
. . 0.7 . Ml
—=— # machines=2 2% | —=— # machines=2 || —=— # machines=8
0.98 - —e— # machines=4 || —e— # machines=4 —e—# machines=16
) —— # machin = 95| —— # machines=8 || m 0.651 ——# machines=32 [|
E 0.96 - \ ——# machine H ﬁ —— # machines=16 ﬁ ——# machines=64
f \ -+ -# machines i‘f ol -o-# machines=32 || ilf 061
23 0.55 |
0.92 2
L L L L L L L L L L 05 L L L L 1
01,000 2,000 3,000 4,000 5,000 6,000 0 2,000 4,000 6,000 8,000 0 0.5 1 1.5 2
seconds x machines x cores seconds x machines x cores seconds x machines x cores -10°

Figure 4.8.: Test RMSE of NOMAD as a function of computation time (time in
seconds x the number of machines x the number of cores per each machine) on a

HPC cluster, when the number of machines is varied.



48

quad-core Intel Xeon E5430 CPU and 15GB of RAM. Network bandwidth among
these machines is reported to be approximately 1Gb/ sﬂ

Since NOMAD and DSGD++ dedicates two threads for network communication,
on each machine only two cores are available for computationﬂ In contrast, bulk
synchronization algorithms such as DSGD and CCD++ which separate computa-
tion and communication can utilize all four cores for computation. In spite of this
disadvantage, Figure [4.9 shows that NOMAD outperforms all other algorithms in
this setting as well. In this plot, we fixed the number of machines to 32; on Netflix
and Hugewiki, NOMAD converges more rapidly to a better solution. Recall that
on Yahoo! Music, all four algorithms performed very similarly on a HPC cluster in
Chapter 4.3.31 However, on commodity hardware NOMAD outperforms the other
algorithms. This shows that the efficiency of network communication plays a very
important role in commodity hardware clusters where the communication is relatively
slow. On Hugewiki, however, the number of columns is very small compared to the
number of ratings and thus network communication plays smaller role in this dataset
compared to others. Therefore, initial convergence of DSGD is a bit faster than NO-
MAD as it uses all four cores on computation while NOMAD uses only two. Still,
the overall convergence speed is similar and NOMAD finds a better quality solution.

As in Chapter [£.3.3] we increased the number of machines from 1 to 32, and
studied the scaling behavior of NOMAD. The overall pattern is identical to what was
found in Figure [4.6] and of Chapter £.3.3] Figure [£.10] shows how the test
RMSE decreases as a function of the number of updates. As in Figure 4.6 the speed
of convergence is faster with larger number of machines as the updated information is
more frequently exchanged. Figure [4.11| shows the number of updates performed per
second in each computation core of each machine; NOMAD exhibits linear scaling on

Netflix and Hugewiki, but slows down on Yahoo! Music due to extreme sparsity of

Shttp://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html

6Since network communication is not computation-intensive, for DSGD++ we used four computation
threads instead of two and got better results; thus we report results with four computation threads
for DSGD++.


http://epamcloud.blogspot.com/2013/03/testing-amazon-ec2-network-speed.html

49

the data. Figure compares the convergence speed of different settings when the
same amount of computational power is given to each; on every dataset we observe

linear to super-linear scaling up to 32 machines.

Netflix, machines=32, cores=4, A\ = 0.05, k = 100 Yahoo!, machines=32, cores=4, A = 1.00, k = 100 Hugewiki, machines=32, cores=4, A = 1.00, k = 100

1 T T : : 0.65 T T
—o— NOMAD —o— NOMAD i -o- NOMAD
— DSGD 26 — DSGD | — DSGD
0.98 DSGD++ || DSGD++ ! DSGD++
= - CCD++ @ = 0.6 - CCD++
w0 wn wn : e
= b = =
~ = [~=R A N NP
b7 --- % %
< .. ] < 2055
0 100 200 300 400 500 0 100 200 300 400 500 600 0 1,000 2,000 3,000 4,000
seconds seconds seconds

Figure 4.9.: Comparison of NOMAD, DSGD, DSGD++, and CCD++4 on a commod-

ity hardware cluster.

Netflix, cores=4, A = 0.05, k = 100

Yahoo!, cores=4, A = 1.00, k = 100

Hugewiki, cores=4, A = 0.01, k = 100

1 T T T T T 27— T T T T T T T T
L —e— # machines=1 r —e— # machines=1 —e— # machines=8
oosl = —=— # machines=2 2 —a— # machines=2 || 14} il
. \ —o— # machines=4 —e— # machines=4 —e— #machines=32
@ | —+— # machines=8 Bo25) —+— # machines=8 || m 12p
% 0.96 \ ——# machines=16 | £ ——# machines=16 %’
~ --o--# machines=32 ~oog ) ---# machines=32 || ~ 1F
% 0.94 g E
23| 08
0.92 2| 0.6 -
L L L L L L L L L L L L L L L L L
0 02 04 06 08 1 12 14 0 05 1 15 2 25 3 0 0.5 1 1.5 2

number of updates 101

number of updates -10%

number of updates 101

Figure 4.10.: Test RMSE of NOMAD as a function of the number of updates on a

commodity hardware cluster, when the number of machines is varied.

4.3.5 Scaling as both Dataset Size and Number of Machines Grows

In previous sections (Chapter and Chapter 4.3.4), we studied the scalabil-
ity of algorithms by partitioning a fixed amount of data into increasing number of
machines. In real-world applications of collaborative filtering, however, the size of
the data should grow over time as new users are added to the system. Therefore, to

match the increased amount of data with equivalent amount of physical memory and



o Netflix, cores=4, A = 0.05, k = 100
4 -10°
T T T T
= l.l' |- 4
=7 . 0 '
5
2 oaf |
@
3
B o5) 1
g
g
=
< ol | | | | | .
& 0 5 10 15 20 25 30 35

number of machines

updates per machine per core per sec

1\(]’@}100!‘ cores=4, A = 1.00, k£ = 100

I I I I
0 5 10 15 20 25 30 3¢

number of machines

updates per machine per core per sec

1.2

0.8
0.6
0.4
0.2

I—{Hg,ewiki, cores=4, A = 1.00, k = 100

| .
10 15 20 25 30
number of machines

50

Figure 4.11.: Number of updates of NOMAD per machine per core per second as a

function of the number of machines, on a commodity hardware cluster.

Netflix, cores=4, A = 0.05, k = 100

MSE

test R

—e— # machines=1

—o— # machines=4
—— # machines=8
——# machines=16

--o--# machines=32

0

I I I I
02 04 06 08 1 1.2
seconds x machines x cores -10*

test RMSE

27

26

25

24

23

22

Yahoo!, cores=4, A = 1.00, k = 100

—— # machines=8
——# machines=16

--o--# machines=32

seconds x machines x cores -10*

I
0 0.5 1 1.5 2

test RMSE

0.8

0.6

Hugewiki, cores=4, A = 0.01, k = 100

—e— # machines=8
—a—# machines=16 ||
—e— #machines=32

I I I I
0 02 04 06 08 1
seconds x machines x cores -10°

Figure 4.12.: Test RMSE of NOMAD as a function of computation time (time in

seconds x the number of machines x the number of cores per each machine) on a

commodity hardware cluster, when the number of machines is varied.



ol

computational power, the number of machines should increase as well. The aim of this
section is to compare the scaling behavior of NOMAD and that of other algorithms
in this realistic scenario.

To simulate such a situation, we generated synthetic datasets which resemble
characteristics of real data; the number of ratings for each user and each item is
sampled from the corresponding empirical distribution of the Netflix data. As we
increase the number of machines from 4 to 32, we fixed the number of items to be the
same to that of Netflix (17,770), and increased the number of users to be proportional
to the number of machines (480,189 x the number of machinesﬂ). Therefore, the
expected number of ratings in each dataset is proportional to the number of machines
(99,072,112 x the number of machines) as well.

Conditioned on the number of ratings for each user and item, the nonzero lo-
cations are sampled uniformly at random. Ground-truth user parameters w;’s and
item parameters h;’s are generated from 100-dimensional standard isometric Gaussian
distribution, and for each rating A;;, Gaussian noise with mean zero and standard
deviation 0.1 is added to the “true” rating (w;, h;).

Figure[4.13|shows that the comparative advantage of NOMAD against DSGD and
CCD++ increases as we grow the scale of the problem. NOMAD clearly outperforms
DSGD on all configurations; DSGD is very competitive on the small scale, but as the
size of the problem grows NOMAD shows better scaling behavior.

4.3.6 Conclusion

From our experimental study we conclude that
e On a single machine, NOMAD shows near-linear scaling up to 30 threads.

e When a fixed size dataset is distributed across multiple machines, NOMAD

shows near-linear scaling up to 32 machines.

480,189 is the number of users in Netflix who have at least one rating.



52

machines=4, cores=4, k = 100, A = 0.01 machines=16, cores=4, k = 100, A = 0.01 machines=32, cores=4, k = 100, A = 0.01
1.8 . : : 2.2 : ‘ - : :
‘- —e— NOMAD —e- NOMAD 241 . —o—- NOMAD ||
— DSGD — DSGD K — DSGD
.. |--- CCD++ --- CCD++ --- CCD++
1.7+ \ d 2r D d 221 \
»n . %) . @ .
2 = e
= = Z 2 1
Z % 1.8 e e Z e
< 16} = ‘~._~.. = sl N Tl |
, o \\\’\,_;4 | L6 \\¥ ]
L5 0 1,000 2,000 3,000 4,000 5,000 0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
seconds seconds 10t seconds 101

Figure 4.13.: Comparison of algorithms when both dataset size and the number of

machines grows. Left: 4 machines, middle: 16 machines, right: 32 machines



93

e Both in shared-memory and distributed-memory setting, NOMAD exhibits su-
perior performance against state-of-the-art competitors; in commodity hard-

ware cluster, the comparative advantage is more conspicuous.

e When both the size of the data as well as the number of machines grow, the

scaling behavior of NOMAD is much nicer than its competitors.



54



95

5. REGULARIZED RISK MINIMIZATION
5.1 Introduction

Numerous methods in statistics and machine learning minimize a regularized

risk [70]:
P(w) = %Z (W, X4, i) - (5.1)

Here, w is the parameter of the model, ¢ (-,-,-) is a loss function, which is convex
in w, while Q(-) is a regularizer which penalizes complex models, and A > 0 trade-
offs between the average loss and the regularizer. The average loss is sometimes also
called the empirical risk. Note that the loss is evaluated and averaged over m training
data points x; and their corresponding labels y;. While more general models also fall
under the regularized risk minimization umbrella [70], for the ease of exposition in

this paper we will restrict ourselves to the following assumptions:

e the data x; and the model parameter w lie in a d dimensional Euclidean space,
that is, x;, w € R?

e the loss ¢(w,x;,y;) can be written as ¢; ((w,x;)), where (w,x) denotes the
Euclidean dot product

e the regularizer decomposes, that is, 2(w) can be written as > ¢;(w;) for some

¢ : R — R. Here w; denotes the j-th coordinate of w.

This yields the objective function
1 m
P(w) =\ — i) - 5.2
mln jz:lgbj w;) mZ ((w,x;)) (5.2)

A number of well known algorithms can be derived by specializing (5.2). For
instance, if y; € {£1}, then by setting ¢;(w;) = w? and letting £; ((w,x;)) =



o6

max (0,1 — y; (w,X;)) recovers binary linear support vector machines (SVMs) [61].
On the other hand, by using the same regularizer but changing the loss function
to £; ({w,x;)) = log (1 + exp (—y; {w,x;))) yields regularized logistic regression [12].
Similarly, setting ¢; ((w,x;)) = % (y; — (w,x,))" and ¢; (w;) = |w,| leads to LASSO
[34]. Also note that the entire class of generalized linear model [25] with separable
penalty can be fit into this framework as well.

A number of specialized as well as general purpose algorithms have been proposed
for minimizing the regularized risk. For instance, if both the loss and the regularizer
are smooth, as is the case with logistic regression, then quasi-Newton algorithms
such as L-BFGS [46] have been found to be very successful. On the other hand, for
non-smooth regularized risk minimization Teo et al. [T0] proposed a bundle method
for regularized risk minimization (BMRM). Both L-BFGS and BMRM belong to the

broad class of batch minimization algorithms. What this means is that at every

iteration these algorithms compute the regularized risk P(w) as well as its gradient

VP (W) =AY V6 (wy) e + % 3V (G x0) - xi (5.3)

where e; denotes the j-th standard basis vector which contains a one at the j-th
coordinate and zeros everywhere else. Both P (w) as well as the gradient VP (w)
take O(md) time to compute, which is computationally expensive when m the number
of data points is large. Batch algorithms overcome this hurdle by using the fact that
the empirical risk = >, £; ({w,x;)) as well as its gradient - >, V{; ((w,x;)) - x;
decompose over the data points, and therefore one can distribute the data across
machines to compute P (w) and VP (w) in a distributed fashion.

Batch algorithms, unfortunately, are known to be not favorable for machine learn-
ing both empirically [75] and theoretically [13 63, 64], as we have discussed in Chap-
ter 2.3 It is now widely accepted that stochastic algorithms which process one data
point at a time are more effective for regularized risk minimization. Stochastic al-

gorithms, however, are in general difficult to parallelize, as we have discussed so far.



57

Therefore we will reformulate the model as a doubly separable function to apply

efficient parallel algorithms we introduced in Chapter and Chapter [3]

5.2 Reformulating Regularized Risk Minimization

In this section we will reformulate the regularized risk minimization problem into
an equivalent saddle-point problem. This is done by linearizing the objective function
(5.2) in terms of w as follows: rewrite ([5.2) by introducing an auxiliary variable u;

for each data point:

min A Y05 (u;) + % > b () (5.42)
st w={w,x;) Vi=1,...,m. (5.4Db)

Using Lagrange multipliers «; to eliminate the constraints, the above objective func-
tion can be rewritten:

d m m
. 1 1
f‘fvl}lfllmngAZ 5 (w;) + E;& (ui) + EZ%(W — (W, x;)).

j=1 i=1
Here u denotes a vector whose components are u;. Likewise, a is a vector whose
components are «;. Since the objective function is convex and the constrains
are linear, strong duality applies [15]. Thanks to strong duality, we can switch the

maximization over v and the minimization over w, u:

i C (w;) + %Z a; (u; — (W, x;)) .

j=1 i=1 i=1

Grouping terms which depend only on u yields
d 1 m 1 m
in A j(wj) — — i W, X)) + — i + Gi(ug).
max min j;@(wj) m;a (W, %;) m;&u (us)

Note that the first two terms in the above equation are independent of u, and

min,, oc;u; + 4;(u;) is —€;(—ca;) where £;(-) is the Fenchel-Legendre conjugate of ;(-)



o8

Name li(u) i (—a)

Hinge max (1 — y;u,0) y;a for a € [0, y;]

Logistic | log(1 + exp(—y;u)) | — {yialog(yiar) + (1 — yiax) log(1 — y;0) } for a € (0, y;)

Square (u—y;)?/2 yio — /2

Table 5.1.: Different loss functions and their dual. [0,y;] denotes [0,1] if y; = 1, and
[—1,0] if y; = —1; (0, ;) is defined similarly.

(see Table |5.1| for some examples) [59]. This yields our final objective function which

we will henceforth denote by

maxmlnf(wa —)\Zqﬁ] w;) Zaz<w X;) ZK*

j=1
At first glance, the above objective function seems unremarkable, except for the
fact that it is a function of both the primal parameters w as well as the Lagrange
multipliers ac. However, it can be rewritten in the following form to reveal a very
useful and interesting structure.

Let z;; denote the j-th coordinate of x;, and ; := {j : x;; # 0} denote the non-
zero coordinates of x;. Similarly, let Q; := {i : ;; # 0} denote the set of data points
where the j-th coordinate is non-zero and €2 := {(,7) : z;; # 0} denote the set of
all non-zero coordinates in the training dataset xi,...,x,,. Then, f(w,a) can be

rewritten as

)‘¢j (wj) 6*(—067;) oziwj:z:ij

f(w,a) = — — - - : (5.5)
(ZJZ);Q ‘QJ‘ m €] m
where | - | denotes the cardinality of a set. Remarkably, each component in the

summation depends only one term of w and a:: the function is in doubly separable
form ([2.2]).

If we take the gradient of f(w,a) in terms of w and set it to zero to eliminate
w, then we obtain so-called dual objective which is a function of ac. Moreover, any

w* which is a solution of the primal problem (5.4, and any a* which is a solution



99

of the dual problem is a saddle-point of f(w,a) [15]. In other words, minimizing
the primal, maximizing the dual, or finding a saddle-point of f (w, ) are equivalent
problems. The saddle-point of a doubly separable function can be numerically found

by methods we introduced in Chapter [2.3|and Chapter [3]

5.3 Implementation Details

Our code is implemented in portable C++ and uses Intel Thread Building Blocks [3]
for multi-threading and the MPICH2 library which provides an implementation of the
Message Passing Interface, MPI, for inter-machine communication. The parameters
are initialized to 0. To prevent degeneracy in logistic regression, the value of o; is
projected to lie in the range (¢,1 — €) with € = 107%, while in the case of linear SVM
it is naturally projected to its parameter space [0, 1]. Similarly, the w; are restricted
to lie in the interval [—1/A, 1/A] for linear SVM and [— log(2)/A,log(2)/A] for logistic
regression.

As for step size tuning, we adapt the bold driver heuristic suggested by Gemulla
et al. [31]. The main difference is that we are solving a saddle point problem and
hence require reduction in the primal objective function and increase in the dual
objective function for algorithm to make progress. Also, to speed up the convergence
it will be beneficial to have different step sizes for w and «. Therefore, our criterion
is as follows: if the primal objective function value has decreased from that of the
last iteration, we increase the step size of w by multiplying it with 1.05. On the other
hand, if the primal value has increased and the dual gap has widened, we drastically
decrease the step size for w by multiplying it with 0.5. If the dual gap has decreased,
however, we do not decrease the step size, since at least some improvement has been
made in the previous iteration. The step size for a is adjusted in the same way, but
we monitor dual objective value instead of primal.

In the case of the parallel version of our algorithm, we partition the data and

run dual coordinate descent [24] on each partition independently to initialize the



60

parameters. To treat nomadic variables in a thread-safe way we used the concurrent
queue provided by TBB. Each machine posseses two threads, sender and receiver,
which are dedicated to inter-machine commutation of nomadic variables. Sender
thread, as the name implies, keeps sending pairs of (j,w;) to other machines. The
receiver thread is tasked with receiving the pairs. Whenever a pair is received, it is
circulated among all of threads before sending being sent to the sender thread for

communication over the network.

5.4 Existing Parallel SGD Algorithms for RERM

Effective parallelization of SGD for RERM is an open problem, which has received
significant research attention in recent years. As we mentioned above, the key difficul-
ties in parallelizing SGD update are that 1) stochastic gradient calculation requires us
to read each coordinate of w, and 2) updates can write to every coordinate of w. Due
to 2), updates have to be executed in serial, leaving little room for parallelization.
Existing work has focused on working around the limitation of stochastic optimization
by either a) introducing strategies for computing the stochastic gradient in parallel,
b) updating the parameter in parallel, or c¢) performing independent updates and
combining the resulting parameter vectors. While the former two are popular in the
shared memory setting, the latter is popular in the distributed memory setting. We
will now briefly review these schemes.

An algorithm which uses strategy (a) was proposed by Langford et al. [43]. Their
algorithm uses multiple slave threads which work with slightly outdated parameter
vectors to compute gradients. These stale gradients are then used by a master thread
to update the parameter vector. Langford et al. [43] show that in spite of using stale
gradients, the algorithm converges. However, the master needs to write-lock and the
slaves have to read-lock the parameter vector during access, which causes bottlenecks.

An algorithm which uses strategy (b) was proposed by [56]. Their algorithm,

Hogwild!, allows multiple threads to update the vector simultaneously. This results



61

in a lock-free parallel update of the parameter vector, that is, different threads can
read and write the parameter vector without locks. However, the downside of this
approach is that synchronizing the L1 caches of various threads causes considerable
slowdown in throughput. It is unclear how to extend the above two algorithms to the
distributed memory setting.

In the distributed memory setting, a number of proposals exist. Some of the
earliest work that we are aware of includes algorithms by Bertsekas and Tsitsiklis
[10] and their recent variants such as the algorithm of Ram et al. [55]. The basic
idea here is that data is distributed across multiple processors, each of which works
with their own version of the parameter vector. After a fixed number of updates,
individual machines communicate their parameter vector to their neighbors. Each
machine averages the parameter vectors received from its neighbors, and the iteration
proceeds. These algorithms require frequent communication and synchronization. On
the other extreme, Zinkevich et al. [80] propose to run stochastic optimization on a
subset of data in each individual processor and finally average the results. There is no
communication, but the empirical performance of such a method is usually inferior
(see section [5.5)).

Another class of algorithms use a so-called parameter server to synchronize local
updates to the parameters Smola and Narayanamurthy [65]. In a nutshell, the idea
here is that the updates to the parameters are continuously and asynchronously com-
municated to a processor which is designated as a parameter server, which in turn
accumulates the updates and periodically transmits them to other machines. The
main drawback of such a scheme is that it is not easy to “serialize” the updates, that
is, to replay the updates on a single machine. This makes these algorithms slow to

converge, and difficult to debug [49].



62

5.5 Empirical Evaluation

We conduct three preliminary experiments to test the efficacy of solving the saddle-
point problem, and to compare it with state-of-the-art methods. The first experiment
is to show that saddle point formulation is versatile, and can be applied to a variety
of problems including linear SVM and logistic regression. In the second experiment
we will study the behavior of the algorithms on medium sized datasets on a single
machine. Finally, we study convergence in large datasets in a multi-machine setup.

We will mainly report test error vs iterations in the main body of the paper.

5.5.1 Experimental Setup

We work with the following publicly available datasets: real-sim, news20, worm,
kdda, kddb, alpha, ocr, and dna (see Table for summary statistics). news20 and
real-sim are from Hsieh et al. [38], worm is from Franc and Sonnenburg [27], while
kdda and kddb are from the KDD cup 2010 Challengeﬂ The alpha, dna, ocr datasets
are from the Pascal Large Scale Learning Workshop [66]. Wherever, training and
test splits were available, we used them. Otherwise we randomly split the data and
used 80% for training and 20% for testing. The same training test split is used for all
algorithms in every experiment. We selected these datasets because they span a wide
spectrum of values in terms of number of data points, number of features, sparsity,
and class balance. They also represent data from a variety of application domains.

For simplicity we set the regularization parameter A = 1073. Our goal is to
compare optimizers. Therefore, tuning A\ to obtain the best test performance is not
our focug?} Moreover, note that since we are dealing with a convex regularized risk,
all optimization algorithms will converge to the same solution. For a fair compari-
son, wherever possible, the algorithms are initialized with the same initial parameter

values.

"http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
2In fact, a large value of X is favorable to the batch optimization algorithms.


http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

63

Table 5.2.: Summary of the datasets used in our experiments. m is the total # of
examples, d is the # of features, s is the feature density (% of features that are non-
zero), m, :m_ is the ratio of the number of positive vs negative examples, Datasize

is the size of the data file on disk. M/G denotes a million/billion.

dataset m d Q2] s(%) | my:m_ | Datasize
ocr 2.8 M 1156 | 3.24G 100 0.96 | 43.18 GB
dna 40 M 800 | 8.00G 25.0 3e—3 | 63.04 GB
kdda 8.41M | 20.22M | 0.31G | 1.82¢-4 6.56 | 2.55 GB
kddb 19.26M | 29.89M | 0.59G | 1.02e-4 791 | 4.90 GB
worm 0.82M 804 | 0.17G 25.12 0.06 | 0.93 GB
alpha 0.4M 500 | 0.20G 100 099 | 2.74 GB
news20 15960 | 1.36 M | 7.26M 0.033 1.00 | 0.11 GB
real-sim | 57763 | 20958 | 2.97M 0.245 0.44 | 0.07 GB

5.5.2 Parameter Tuning

For SSO and DSSO we used the bold-driver heuristic discussed in section (.3
This requires tuning three parameters: 7 the initial step size for w, n§ the initial
step size for a, and the period for updating the step size. We expect that as we
gain more experience with saddle point optimization, an automatic mechanism for
selecting these parameters will be developed. However, for the preliminary results
reported in this paper, we do a semi-systematic search for the optimal values by letting

ny e {1071,1072,...,107%}, ns € {1071,1072,...,1075}, and period € {1,2,5,10}.

5.5.3 Competing Algorithms

For stochastic gradient descent, we used sgd-2.1, which is available for download

from http://leon.bottou.org/projects/sgd. It is widely acknowledged as one of


http://leon.bottou.org/projects/sgd

64

the fastest and most robust implementations for the single machine case. The stepsize
schedule used is

Mo

= 1 +)\7]0t’

and initial stepsize 7, is automatically tuned by using a small subset of the data.

For batch optimization we use BMRM, which is a first-order bundle method based
solver which is specialized for smooth as well as non-smooth regularized risk mini-
mization [70]. We also use L-BFGS, which is one of the fastest general purpose limited
memory Quasi-Newton algorithms. For both algorithms, we implemented our own
loss functions in C++ and used them with PETSd?|and TAQflibraries, which provide
a framework for efficient large scale linear algebra and optimization. In particular,
we used the Limited Memory Variable Metric (Imvm) Quasi Newton optimization
algorithm, as well as the BMRM solver from TAQO. The code was compiled without
debugging symbols for optimal performance, and the default stopping criterion was
used for both solvers.

We also compare against the dual coordinate descent (DCD) algorithm, which
performs very competitively in single machine experiments, and is the basis for the
popular LibLinear library [24]. One way to view DCD is that it is SGD with automatic
step size tuning (see e.g., Vishwanathan and Cheng [74]). We implemented our own
version of DCD.

Finally for the distributed memory experiments we will compare DSSO and NO-
MAD against the parallel stochastic gradient descent solver of Zinkevich et al. [80].
This will be called PSGD in the sequel. We implemented a version of PSGD in our
framework using C++ and MPI. Our implementation partitions the data across pro-
cessors, and independently runs SGD on each partition independently. After every
iteration of SGD, the parameters of the different processors are averaged during a

bulk synchronization step, and the iteration proceeds.

3Version 3.4.3 from http://www.mcs.anl.gov/petsc/
4Version 2.2 from https://bitbucket.org/sarich/tao-2.2


http://www.mcs.anl.gov/petsc/
https://bitbucket.org/sarich/tao-2.2

65

5.5.4 Versatility

Our first experiment is designed to show the versatility of using the saddle-point
formulation. By plugging in different loss functions, one recovers different well known
models. As long as the loss is convex, and the regularizer is separable, our saddle-
point formulation is valid. Here, we will restrict ourselves to a subset of the datasets
(real-sim and news20) and work with the square norm-regularizer and two differ-
ent loss functions: the hinge loss which leads to linear SVM, and the logistic loss
which leads to regularized logistic regression. All experiments are conducted using
a single machine. Note that L-BFGS can only handle smooth objective functions, it
is excluded from the linear SVM experiments because the hinge loss is non-smooth.
Since the computational complexity of all the algorithms is O(md) for performing
one iteration through the data, our main goal here is to show how the test error
behaves as function of the number of iterations. A secondary goal is to show how
the primal objective function (5.2)) changes as a function of the number of iterations
(see supplementary material). Results for real-sim can be found in Figure[5.1], while
the results for news20 can be found in Figures [5.2] In the case of real-sim for the
hinge loss, SSO converges to a better solution must faster than SGD. The same story
is repeated for logistic regression. However, in the case of news20 SGD is able to
converge to a marginally better solution. As expected, for small datasets and large
values of A, both the batch solvers exhibit competitive performance. DCD, which can
be viewed as SGD with automatic step size tuning performs the best in all cases. We
are investigating if similar step size tuning mechanisms can be adapted for SSO. In
particular, note that the jumpy behavior of the test error for SSO, which happens

because we use the bold driver heuristic to tune step sizes.

5.5.5 Single Machine Experiments

From now on we will only concentrate on logistic regression. In this section, we are

interested in checking the convergence speed of SSO vs other algorithms on medium



Figure 5.1.:

sion.

Test Error (%)

Figure 5.2.:

real-sim, linear SVM, A = 10~

real-sim, logistic regression, A = 10

66

10 : : 100
—— DCD
9 —— SGD || 95
— —=— BMRM —
= —— SSO = 9.0
| A 85
F & 8.0
7.5
0

20 40 60
Number of iterations

80

Test error vs iterations for real-sim

news20, linear SVM, A = 107°

| .
40 60
Number of iterations

g
20

80

on linear SVM and logistic regres-

news20, logistic regression, A = 1073

T T 20.0
—— DCD
' +B§\?¥3\I |
o BMRY _
— 850 180
16 =
g
=
4 % 16.0
&
12 |
14.0

20

40

—— DCD
—— SGD
—=- BMRM
—+ L-BFGS
—— SS0

60

Number of iterations

f
20

40 60
Number of iterations

Test error vs iterations for news20 on linear SVM and logistic regression.



67

alpha, logistic regression, A = 1073 kdda, logistic regression, A = 1073
30.0 F) 14.0 T T
— DCD — DCD
— SGD || —— SGD
— —s— BMRM — 135 - BMRM |
= —- L-BFGS = — L-BFGS
5 —— SSO H = ——  SSO
= 5 13.0
12.5
* l ' ! % AAAAAAAAA i 4
20 40 60 80 0 20 40 60 80
Number of iterations Number of iterations

Figure 5.3.: Test error vs iterations for alpha and kdda.

kddb, logistic regression, A = 1073 worm, logistic regression, A = 1073

10.0 T

T
—+ DCD

—— DCD
—— SGD | —— SGD
- —=- BMRM _ 80 —= BMRM |
S —+ L-BFGS |{ = ~+ L-BFGS
5 —  SSO 5 - SSO
= 1 =
e Xk
0 50 100 150 0 20 40 60 80

Number of iterations Number of iterations

Figure 5.4.: Test error vs iterations for kddb and worm.

sized datasets. Therefore we will concentrate on the following 4 datasets: kdda, kddb,

alpha, worm.

On alpha the test error oscillates (Figure , but eventually converges to the
optimal value. SGD is faster than SSO on this dataset. On both kdda and kddb
datasets, convergence of SSO is slower than that of SGD. The reason for this is
because both these datasets are very sparse and have a very large number of features.
Therefore, the number of parameters of SSGD is much higher than that of SGD
and other competing algorithms. This makes step size tuning for SSO significantly
challenging. On the other hand for the worm dataset, where the number of features

is small, SSO outperforms SGD and is comparable to BMRM.



68

1%](5151&\, logistic regression, A = 1073
T

2.5 — DSSO ||
- NOMAD
20| :

Primal-Dual Gap
&
T
1

1.0+ :

0.5k

500 1,000 1,500 2,000
Number of iterations

Figure 5.5.: Comparison between synchronous and asynchronous algorithm on ocr

dataset.

5.5.6 Multi-Machine Experiments

In this section, we are interested in checking the convergence speed of SSO vs
other algorithms on medium to large sized datasets but in a distributed memory
setting. Therefore we will concentrate on the following 4 datasets: kdda, kddb, ocr,
and dna. The experiments are run on 8 machines, with 4 cores per machine (total of
32 processors). We also plot test error vs wall-clock time for the parallel experiments.
On the kdda dataset, even though SSO is competitive in terms of test error vs number
of iterations, each update of SSO is slower than that of BMRM and L-BFGS which
use numerical linear algebra libraries. On kddb and ocr we see oscillating behavior
which occurs because of the bold driver heuristic. Better step size tuning for SSO
is likely to yield competitive results. On dna, which is a very heavily imbalanced
dataset, all methods converge rather quickly. It is noteworthy that PSGD does not
perform well, and often returns very sub-optimal solutions both in terms of test error
and primal objective function value.

We also compare the convergence speed of synchronous algorithm (DSSO, Algo-
rithm 1)) and asynchronous algorithm (NOMAD, Algorithm . This experiment was
also run on 8 machines with 4 cores each; as can be seen in Figure [5.5, NOMAD
indeed reduces the primal-dual gap more rapidly than DSSO does.



T
[ B T R O N

Test Error (%)

—
)

kdda, logistic regression, A = 1073

0 —

| ~ PSG
5 —&~ BMRM ||

—— L-BFGS

0 — DSSO |
5 .
0 .
5 .

0 20 40 60 80
Number of iterations

100

69

kdda, logistic regression, A = 1073

Wiy Al
100 200 300 400
Wall Clock Time (sec)

15.0 — : :
— PSGD
14.5 - —=— BMRM |
— —+ L-BFGS
X140 —— DSSO |4
g ..
A 13.5 i B
L 1s0} :
125 | ) 1
" -

500 600

Figure 5.6.: Performances for kdda in multi-machine senario.

15.0 ‘ :
—— PSGD
~=~ BMRM
140 —+ L-BFGS ||
X —— DSSO
g
£ 13.0
12.0

kddb, logistic regression, A = 1073

P
Number of iterations

Test Error (%)

15.0

H
=
o

13.0

g
=

kddb, logistic regression, A = 1073

—+ PSGD
-5 BMRM

—— DSSO

—+ L-BFGS |

200 300
Wall Clock Time (sec)

100 400 500

600

Figure 5.7.: Performances for kddb in multi-machine senario.

30.0

o %}
*® ©
o o

Test Error (%)

o
N
o

Figure 5.8.: Performances for

2.0

15

Test Error (%)

0.5

ocr, logistic regression, A = 1073

T T T T T

—+— PSGD
—=- BMRM
—+ L-BFGS ||

—— DSSO

0 20 40 60 80
Number of iterations

100 120

dna, logistic regression, A = 1073

—— PSGD
—= BMRM
—- L-BFGS ||
—— DSSO

20 40 60 80
Number of iterations

Test Error (%)

30.0

%)
©
=3

28.0

]
Iy
=3

ocr, logistic regression, A = 1073

—— PSGD
—=- BMRM
—— L-BFGS
—— DSSO

i

Wall Clock Time (sec)

200 400 600 800 1,0001,2001,400

ocr in multi-machine senario.

Test Error (%)

2.0

dna, logistic regression, A = 1072

—
[N

=
=]

—+ PSGD
-~ BMRM
— L-BFGS
—— DSSO

Wall Clock Time (sec)

200 400 600 800 1,000 1,200

Figure 5.9.: Performances for dna in multi-machine senario.



70

5.6 Discussion and Conclusion

We presented a new equivalent formulation of regularized risk minimization, which
has a doubly separable structure and can be exploited to derive an efficient parallel
algorithm. Our experimental results are arguably preliminary, and clearly there is a
lot of scope for improvement. For instance, using a better step size tuning mecha-
nism will clearly accelerate convergence of our algorithm. We are currently exploring
Periodic Step Size adaptation [39] and Stochastic Meta Descent [62]. Also, we believe
that using lower values of A\ in our experiments would have better brought out the
differences between the algorithms; batch algorithms typically converge very fast for
strongly convex functions whose eigenvalues are bounded away from zero. Finally,
some of the performance difference between the algorithms arises because stochastic
optimization algorithms suffer from poor locality of memory access. Nevertheless,
discovering the doubly separable nature of the regularized risk gives rise to a natu-
rally parallelizable algorithm, thus settling an open problem in the machine learning

community.



71

6. OTHER EXAMPLES OF DOUBLE SEPARABILITY

For a given statistical model, there can be more than one way to achieve double
separability. In this chapter, we briefly introduce multinomial logistic regression and
item response theory model, which also belong to regularized risk minimization but

allow additional doubly separable formulations different from ([5.5).

6.1 Multinomial Logistic Regression

Multinomial logistic regression [33] is a generalization of binary logistic regres-
sion which the response variable can have n possible values. The data consists
of (x1,%1),(X2,%2),- - -,(Xm, Ym) Where each x; € R? and y; € {1,2,...,n} for i =
1,2,...,m. The model is then parametrized by n number of d-dimensional vectors

Wi, Wa,...,Wg € R% with the negative log-likelihood being:

J(wi,...,wi) o= Y = {wy, z;) + log (Z exp (<Wi,xi>)> : (6.1)
i=1 k=1

Gopal and Yang [33] observes that the following property of the logarithm function

can be useful in this situation:
log(v) < ay —log(a) — 1, (6.2)
for any v > 0 and a > 0. The bound is tight when a = 1/v. By introducing auxiliary

variables ay, as, . .., a,, the objective function can be rewritten as

J(ay, ... Qp, W1, ... W) 1=

3330 (< = 0o+ e (o) = o) — ) (63

i=1k=1
The objective function is now doubly separable. Note that the optimal wi, wo, ..., wy

of (6.3) corresponds to that of (6.1), since the bound (6.2)) is tight for optimal a;

values.



72

6.2 Item Response Theory

Item response theory (IRT) model [21] is an important statistical model in psy-
chometrics to analyze a latent trait of entity measured by an instrument. One of the
most popular application is the scoring of tests such as Graduate Record Examina-
tion (GRE) or Graduate Management Admission Test (GMAT). Denote latent traits
of entities we aim to estimate as 61, 6s,...,0,,, and suppose they are examined by n
dichotomous instruments; y;; = 0,1 denotes the measurement of i-th entity by j-th

instrument. Then, the negative log-likelihood of IRT model is[|:
J(01,02, .0 b1, by) = > > =y (0; — bj) + log (1 + exp (6; — b;)) . (6.4)
i=1j=1

One can see that the model is readily in doubly separable form.

IFor brevity of exposition, here we have only introduced the 1PL (1 Parameter Logistic) IRT model,
but in fact 2PL and 3PL models are also doubly separable.



73

7. LATENT COLLABORATIVE RETRIEVAL
7.1 Introduction

Learning to rank is a problem of ordering a set of items according to their rele-
vances to a given context [I6]. In document retrieval, for example, a query is given
to a machine learning algorithm, and it is asked to sort the list of documents in the
database for the given query. While a number of approaches have been proposed
to solve this problem in the literature, in this paper we provide a new perspective
by showing a close connection between ranking and a seemingly unrelated topic in
machine learning, namely, robust binary classification.

In robust classification [40], we are asked to learn a classifier in the presence of
outliers. Standard models for classificaion such as Support Vector Machines (SVMs)
and logistic regression do not perform well in this setting, since the convexity of
their loss functions does not let them give up their performance on any of the data
points [48]; for a classification model to be robust to outliers, it has to be capable of
sacrificing its performance on some of the data points.

We observe that this requirement is very similar to what standard metrics for
ranking try to evaluate. Normalized Discounted Cumulative Gain (NDCG) [50], the
most popular metric for learning to rank, strongly emphasizes the performance of a
ranking algorithm at the top of the list; therefore, a good ranking algorithm in terms
of this metric has to be able to give up its performance at the bottom of the list if
that can improve its performance at the top.

In fact, we will show that NDCG can indeed be written as a natural generaliza-
tion of robust loss functions for binary classification. Based on this observation we
formulate RoBiRank, a novel model for ranking, which maximizes the lower bound

of NDCG. Although the non-convexity seems unavoidable for the bound to be tight



74

[T7], our bound is based on the class of robust loss functions that are found to be
empirically easier to optimize [22]. Indeed, our experimental results suggest that
RoBiRank reliably converges to a solution that is competitive as compared to other
representative algorithms even though its objective function is non-convex.

While standard deterministic optimization algorithms such as L-BFGS [53] can be
used to estimate parameters of RoBiRank, to apply the model to large-scale datasets
a more efficient parameter estimation algorithm is necessary. This is of particular
interest in the context of latent collaborative retrieval [76]; unlike standard ranking
task, here the number of items to rank is very large and explicit feature vectors and
scores are not given.

Therefore, we develop an efficient parallel stochastic optimization algorithm for
this problem. It has two very attractive characteristics: First, the time complexity
of each stochastic update is independent of the size of the dataset. Also, when the
algorithm is distributed across multiple number of machines, no interaction between
machines is required during most part of the execution; therefore, the algorithm enjoys
near linear scaling. This is a significant advantage over serial algorithms, since it is
very easy to deploy a large number of machines nowadays thanks to the popularity
of cloud computing services, e.g. Amazon Web Services.

We apply our algorithm to latent collaborative retrieval task on Million Song
Dataset [9] which consists of 1,129,318 users, 386,133 songs, and 49,824,519 records;
for this task, a ranking algorithm has to optimize an objective function that consists
of 386,133 x 49,824,519 number of pairwise interactions. With the same amount of
wall-clock time given to each algorithm, RoBiRank leverages parallel computing to

outperform the state-of-the-art with a 100% lift on the evaluation metric.



75

7.2 Robust Binary Classification

We view ranking as an extension of robust binary classification, and will adopt
strategies for designing loss functions and optimization techniques from it. Therefore,
we start by reviewing some relevant concepts and techniques.

Suppose we are given training data which consists of n data points (z1,v1), (%2, y2),

<oy (Tn, Yn), where each z; € R? is a d-dimensional feature vector and y; € {—1, +1} is
a label associated with it. A linear model attempts to learn a d-dimensional parameter
w, and for a given feature vector x it predicts label +1 if (z,w) > 0 and —1 otherwise.
Here (-, -) denotes the Euclidean dot product between two vectors. The quality of w
can be measured by the number of mistakes it makes:
n
L(w) := > I(y; - (s, w) < 0). (7.1)
i=1
The indicator function I(- < 0) is called the 0-1 loss function, because it has a value of
1 if the decision rule makes a mistake, and 0 otherwise. Unfortunately, since is
a discrete function its minimization is difficult; in general, it is an NP-Hard problem
[26]. The most popular solution to this problem in machine learning is to upper bound
the 0-1 loss by an easy to optimize function [6]. For example, logistic regression uses
the logistic loss function og(t) := logy(1 + 27%), to come up with a continuous and

convex objective function
L(w) == Y, oo(yi - (i, w)), (7.2)
i=1

which upper bounds L(w). It is easy to see that for each i, oo (y; - (z;,w)) is a convex
function in w; therefore, L(w), a sum of convex functions, is a convex function as
well and much easier to optimize than L(w) in [15]. In a similar vein, Support
Vector Machines (SVMs), another popular approach in machine learning, replace the
0-1 loss by the hinge loss. Figure (top) graphically illustrates three loss functions
discussed here.

However, convex upper bounds such as L(w) are known to be sensitive to outliers

[48]. The basic intuition here is that when y; - {x;,w) is a very large negative number



76

T
4+ _ 0-1 loss |

.
- .
-, === hinge loss
R N TP logistic loss | |
3 NN,
-
.
‘\
wn .
8 2 - \‘ |
— A
.
‘e, ®

| |
-3 -2 -1 0 1 2 3

margin
I T T

5 | | =——identity .

4 - -
]
=
£ 3 1
=
g
5 2f 1
=
2

1 [ -

0 [ -

| | | | | |
0 1 2 3 4 5
t

4 [ -
2
2

2 [ -

0 [ -

| | | | |

Figure 7.1.: Top: Convex Upper Bounds for 0-1 Loss. Middle: Transformation func-
tions for constructing robust losses. Bottom: Logistic loss and its transformed robust

variants.



7

for some data point i, o(y; - (x;,w)) is also very large, and therefore the optimal
solution of will try to decrease the loss on such outliers at the expense of its
performance on “normal” data points.

In order to construct loss functions that are robust to noise, consider the following

two transformation functions:

1

pi(t) :=log,y(t + 1), pa(t) :=1— Togy(t £ 2)° (7.3)

which, in turn, can be used to define the following loss functions:

a1(t) := pi(oo(t), 0a(t) := pa(0o(t)). (7.4)

Figure (middle) shows these transformation functions graphically, and Figure
(bottom) contrasts the derived loss functions with logistic loss. One can see that
01(t) — o as t — —oo, but at a much slower rate than og(t) does; its derivative
oi(t) — 0 as t — —oo. Therefore, o;(-) does not grow as rapidly as oy(t) on hard-
to-classify data points. Such loss functions are called Type-I robust loss functions by
Ding [22], who also showed that they enjoy statistical robustness properties. o5(t) be-
haves even better: o5(t) converges to a constant as ¢ — —oo, and therefore “gives up”
on hard to classify data points. Such loss functions are called Type-II loss functions,
and they also enjoy statistical robustness properties [22].

In terms of computation, of course, o;(-) and o3(+) are not convex, and therefore
the objective function based on such loss functions is more difficult to optimize.
However, it has been observed in Ding [22] that models based on optimization of Type-
I functions are often empirically much more successful than those which optimize
Type-II functions. Furthermore, the solutions of Type-I optimization are more stable
to the choice of parameter initialization. Intuitively, this is because Type-II functions
asymptote to a constant, reducing the gradient to almost zero in a large fraction of the
parameter space; therefore, it is difficult for a gradient-based algorithm to determine

which direction to pursue. See Ding [22] for more details.



78

7.3 Ranking Model via Robust Binary Classification

In this section, we will extend robust binary classification to formulate RoBiRank,

a novel model for ranking.

7.3.1 Problem Setting

Let X = {x1,x9,...,x,} be a set of contexts, and Y = {y1,%2,...,Yym} be a set
of items to be ranked. For example, in movie recommender systems X is the set of
users and Y is the set of movies. In some problem settings, only a subset of ) is
relevant to a given context x € X'; e.g. in document retrieval systems, only a subset
of documents is relevant to a query. Therefore, we define ), < ) to be a set of items
relevant to context z. Observed data can be described by a set W = {Way} .y o)
where W, is a real-valued score given to item y in context x.

We adopt a standard problem setting used in the literature of learning to rank.
For each context = and an item y € },, we aim to learn a scoring function f(z,y) :
X x Y, — R that induces a ranking on the item set ),; the higher the score, the
more important the associated item is in the given context. To learn such a function,
we first extract joint features of x and y, which will be denoted by ¢(x,y). Then, we

parametrize f(-,-) using a parameter w, which yields the following linear model:

fw(x>y) = <¢($7y)7w>7 (75)

where, as before, (-, ) denotes the Euclidean dot product between two vectors. w
induces a ranking on the set of items ),; we define rank,(x,y) to be the rank of item

y in a given context x induced by w. More precisely,

rank, (z,y) == [{y € Vo 1/ # y, fu(z,y) < fula,y)}],

where |-| denotes the cardinality of a set. Observe that rank, (x,y) can also be written

as a sum of 0-1 loss functions (see e.g. Usunier et al. [72]):

rank, (z,y) = Y I (ful(z,y) = fulz,y) <0). (7.6)

Y€V Y #Y



79

7.3.2 Basic Model

If an item y is very relevant in context x, a good parameter w should position y
at the top of the list; in other words, rank,(z,y) has to be small. This motivates the

following objective function for ranking:

L(w) := Y ¢z > v(Wyy) - rank,(z,y), (7.7)

xeX YEYVa

where ¢, is an weighting factor for each context z, and v(-) : RT — R* quantifies
the relevance level of y on z. Note that {c¢,} and v(W,,) can be chosen to reflect the
metric the model is going to be evaluated on (this will be discussed in Section [7.3.3).
Note that can be rewritten using as a sum of indicator functions. Following
the strategy in Section , one can form an upper bound of by bounding each

0-1 loss function by a logistic loss function:

f(w) = Zcx 2 v (ny) Z 00 (fw(xay) - fw(xay/»' (7'8)

zeX  yeV, YEVa Y #Y
Just like , is convex in w and hence easy to minimize.

Note that can be viewed as a weighted version of binary logistic regression
; each (x,y,y’) triple which appears in can be regarded as a data point in a
logistic regression model with ¢(z,y) — ¢(z,y’) being its feature vector. The weight
given on each data point is ¢, - v(W,,). This idea underlies many pairwise ranking

models.

7.3.3 DCG and NDCG

Although enjoys convexity, it may not be a good objective function for
ranking. It is because in most applications of learning to rank, it is much more
important to do well at the top of the list than at the bottom of the list, as users
typically pay attention only to the top few items. Therefore, if possible, it is desirable

to give up performance on the lower part of the list in order to gain quality at the



30

top. This intuition is similar to that of robust classification in Section a stronger
connection will be shown in below.
Discounted Cumulative Gain (DCG)[50] is one of the most popular metrics for

ranking. For each context x € X, it is defined as:
oWey — 1
DCG,(
Z ' log, (rank,, (z, y) + 2)

(7.9)

Since 1/log(t +2) decreases quickly and then asymptotes to a constant as ¢ increases,
this metric emphasizes the quality of the ranking at the top of the list. Normalized
DCG simply normalizes the metric to bound it between 0 and 1 by calculating the

maximum achievable DCG value m, and dividing by it [50]:

1 OWey 1
my & 1og, (rank, (z,y) +2)

NDCG, (w) := (7.10)

These metrics can be written in a general form as:

Y 0 (W) . (7.11)

5 log, (rank, (z,y) + 2)
By setting v(t) = 2 — 1 and ¢, = 1, we recover DCG. With ¢, = 1/m,, on the other
hand, we get NDCG.

7.3.4 RoBiRank

Now we formulate RoBiRank, which optimizes the lower bound of metrics for

ranking in form ([7.11)). Observe that the following optimization problems are equiv-

alent:
max ) | ¢ (V) < (7.12)
; yezyl log, ( rank (x,y) +2)
1
min Y ¢, v (W) - {1 — } . (7.13)
w m;} yezylz v log, (rank,(z,y) + 2)

Using (7.6) and the definition of the transformation function ps(-) in (7.3)), we can
rewrite the objective function in ([7.13)) as:

:zcmzvm)m( D f<fw<x7y>—fw<x,y'><o>>. (7.14)

zeX  yeVs Y€V, y #Y



81

Since po(-) is a monotonically increasing function, we can bound (7.14) with a

continuous function by bounding each indicator function using logistic loss:

Ly(w) = Y e Y v (Way) o ( Y, oo(fulzy) - fw(w,y’))> . (7.15)

reX  yeV. Y €Vasy' #y
This is reminiscent of the basic model in ([7.8)); as we applied the transformation
function ps(-) on the logistic loss function oy(-) to construct the robust loss function
o9(+) in ([7.4), we are again applying the same transformation on to construct a
loss function that respects metrics for ranking such as DCG or NDCG . In fact,
can be seen as a generalization of robust binary classification by applying the
transformation on a group of logistic losses instead of a single logistic loss. In both
robust classification and ranking, the transformation ps(-) enables models to give up
on part of the problem to achieve better overall performance.

As we discussed in Section , however, transformation of logistic loss using po(-)
results in Type-II loss function, which is very difficult to optimize. Hence, instead of
p2(+) we use an alternative transformation function p;(-), which generates Type-I loss

function, to define the objective function of RoBiRank:

Liw) =D e Y v (Way)-p ( Y, oo(fuley) - fw(aﬁ,y’))> - (7.16)

zeX YEVy Y eV, Yy #yY

Since p;(t) = pa(t) for every t > 0, we have Li(w) = Ly(w) = Ly(w) for every w.

Note that L; (w) is continuous and twice differentiable. Therefore, standard gradient-
based optimization techniques can be applied to minimize it.

As in standard models of machine learning, of course, a regularizer on w can be
added to avoid overfitting; for simplicity, we use fs-norm in our experiments, but

other loss functions can be used as well.



82

7.4 Latent Collaborative Retrieval
7.4.1 Model Formulation

For each context x and an item y € ), the standard problem setting of learning to
rank requires training data to contain feature vector ¢(z,y) and score W,, assigned
on the x,y pair. When the number of contexts |X| or the number of items || is large,
it might be difficult to define ¢(x,y) and measure Wy, for all x, y pairs, especially if it
requires human intervention. Therefore, in most learning to rank problems we define
the set of relevant items ), < Y to be much smaller than ) for each context x, and
then collect data only for ),. Nonetheless, this may not be realistic in all situations;
in a movie recommender system, for example, for each user every movie is somewhat
relevant.

On the other hand, implicit user feedback data are much more abundant. For
example, a lot of users on Netflix would simply watch movie streams on the system
but do not leave an explicit rating. By the action of watching a movie, however, they
implicitly express their preference. Such data consist only of positive feedback, unlike
traditional learning to rank datasets which have score W, between each context-item
pair z,y. Again, we may not be able to extract feature vector ¢(z,y) for each x,y
pair.

In such a situation, we can attempt to learn the score function f(z,y) without
feature vector ¢(z,y) by embedding each context and item in an Euclidean latent

space; specifically, we redefine the score function of ranking to be:

[l y) == U, Vi), (7.17)

where U, € R? is the embedding of the context x and V,, € R? is that of the item

y. Then, we can learn these embeddings by a ranking model. This approach was

introduced in Weston et al. [76] using the name of latent collaborative retrieval.
Now we specialize RoBiRank model for this task. Let us define ) to be the set

of context-item pairs (x,y) which was observed in the dataset. Let v(W,,) = 1 if



33

(x,y) € ©, and 0 otherwise; this is a natural choice since the score information is not
available. For simplicity, we set ¢, = 1 for every x. Now RoBiRank specializes

to:
LUV)= (Z oo(f(Us, Vy) — f(Ux,Vy'))> : (7.18)

(2,y)eQ y' £y

Note that now the summation inside the parenthesis of is over all items Y
instead of a smaller set ),, therefore we omit specifying the range of ¢ from now on.
To avoid overfitting, a regularizer term on U and V' can be added to ; for
simplicity we use the Frobenius norm of each matrix in our experiments, but of course

other regularizers can be used.

7.4.2 Stochastic Optimization

When the size of the data || or the number of items |)| is large, however, methods
that require exact evaluation of the function value and its gradient will become very
slow since the evaluation takes O (|| - |)|) computation. In this case, stochastic op-
timization methods are desirable [I3]; in this subsection, we will develop a stochastic
gradient descent algorithm whose complexity is independent of || and |Y|.

For simplicity, let 6 be a concatenation of all parameters {U,} .y, {Vy},)- The
gradient VoL, (U, V) of (7.18) is

Z Vop1 <Z UO(f(Uﬂlv Vy) - f(UJE’V;/))) :

(z,9)eR Yy #y
Finding an unbiased estimator of the above gradient whose computation is indepen-
dent of |Q| is not difficult; if we sample a pair (z,y) uniformly from €2, then it is easy

to see that the following simple estimator

€2 - Vo (Z oo(f(Uz, Vy) — f(U:mV;/))) (7.19)

y'#Y
is unbiased. This still involves a summation over ), however, so it requires O(|)])

calculation. Since p;(-) is a nonlinear function it seems unlikely that an unbiased



84

stochastic gradient which randomizes over ) can be found; nonetheless, to achieve
standard convergence guarantees of the stochastic gradient descent algorithm, unbi-
asedness of the estimator is necessary [51].

We attack this problem by linearizing the objective function by parameter expan-
sion. Note the following property of p;(-) [14]:

E-(t+1)—1

2
log 2 (7.20)

p1(t) = logy(t +1) < —log, & +
This holds for any £ > 0, and the bound is tight when & = u+1 Now introducing an

auxiliary parameter &, for each (z,y) € Q and applying this bound, we obtain an

upper bound of (7.18]) as

s (S 0002 V,) = F(U V) +1) — 1

L(U7V7€> = Z _10g25xy+ 10g2

(z,y)e2

(7.21)

Now we propose an iterative algorithm in which, each iteration consists of (U, V)-
step and &-step; in the (U, V)-step we minimize (7.21)) in (U, V') and in the &-step we
minimize in §. The pseudo-code of the algorithm is given in the Algorithm [3

(U,V)-step The partial derivative of ([7.21)) in terms of U and V' can be calculated

as:

Vor LU V,€) = —— %] sxy(Z vu,vo()(fwx,vy)—f<Uz,w>>).

log 2 (z,y)eQ y'#y
Now it is easy to see that the following stochastic procedure unbiasedly estimates the

above gradient:

e Sample (z,y) uniformly from 2
e Sample y' uniformly from )\ {y}
e Estimate the gradient by

Q- (Y[ = 1) - &y
log 2

: VU,VJD(f(Uxa Vy) - f(Ua:a ‘/;/)) (722)



85

Algorithm 3 Serial parameter estimation algorithm for latent collaborative retrieval
1: m: step size

2: while convergence in U,V and ¢ do

3: while convergence in U,V do

4: // (U, V)-step

5: Sample (x,y) uniformly from

6: Sample y' uniformly from Y\ {y}

n U U by Vool f(Un V) — f(Un V)
S Ve Voo Vool F(Un V) — F(U V)

9: end while
10: // E-step
11: for (z,y) € Q2 do

. <«— L
12: Eay Sy 29 00 Uz Vo)~ (U2, V, ) +1

13: end for

14: end while




36

Therefore a stochastic gradient descent algorithm based on ([7.22) will converge to a
local minimum of the objective function (|7.21)) with probability one [58]. Note that
the time complexity of calculating (7.22)) is independent of || and |Y|. Also, it is a

function of only U, and V,; the gradient is zero in terms of other variables.

g-step  When U and V' are fixed, minimization of &, variable is independent of each

other and a simple analytic solution exists:

1
Zy/;ﬁy O—O(f(Uoca ‘/y) - f(Ux, ‘/y/)) +1

Cay = (7.23)

This of course requires O(|)|) work. In principle, we can avoid summation over ) by
taking stochastic gradient in terms of &, as we did for U and V. However, since the
exact solution is very simple to compute and also because most of the computation
time is spent on (U, V)-step rather than &-step, we found this update rule to be

efficient.

7.4.3 Parallelization

The linearization trick in not only enables us to construct an efficient
stochastic gradient algorithm, but also makes possible to efficiently parallelize the
algorithm across multiple number of machines. The objective function is technically
not doubly separable, but a strategy similar to that of DSGD introduced in Chap-
ter can be deployed.

Suppose there are p number of machines. The set of contexts X is randomly
partitioned into mutually exclusive and exhaustive subsets XV, X® . xX®) which
are of approximately the same size. This partitioning is fixed and does not change
over time. The partition on X induces partitions on other variables as follows: U@ :=
{Us}periw, QO = {(z,y)eQ:xe X(‘Z)}, £@ .= {fry}(z,y)eg(qw for 1 <qg<p.

Each machine ¢ stores variables U@, €@ and Q@ . Since the partition on X is

fixed, these variables are local to each machine and are not communicated. Now we



87

describe how to parallelize each step of the algorithm: the pseudo-code can be found

in Algorithm [4]

Algorithm 4 Multi-machine parameter estimation algorithm for latent collaborative

retrieval
7: step size

while convergence in U,V and £ do
// parallel (U,V)-step
while convergence in U,V do
Sample a partition {YV), Y@ .. y@}
Parallel Foreach q € {1,2,...,p}
Fetch all V, e V(@
while predefined time limit is exceeded do
Sample (x,y) uniformly from {(x, y) e QD ye y@}
Sample ¢ uniformly from Y@\ {y}
Up < Uy =0 &y Vo,00(f(Us, Vy) = f(Us, Vi)
Vy e Vo =11+ Eoy - Ty, 00(F U Vi) = £ (Ur Vi)
end while
Parallel End
end while
// parallel &-step
Parallel Foreach ¢q € {1,2,...,p}
Fetch all V,, e V
for (z,y) € Q9 do

1
ay < Sy 2y 00U U Vi)~ Uz, V)L

end for
Parallel End

end while




38

(U,V)-step At the start of each (U, V)-step, a new partition on ) is sampled to
divide Y into y<1>, y<2>, o ,y<p> which are also mutually exclusive, exhaustive and of
approximately the same size. The difference here is that unlike the partition on X, a
new partition on ) is sampled for every (U, V)-step. Let us define V(@ := {Vibyeyi-
After the partition on ) is sampled, each machine g fetches V,’s in V(@ from where it
was previously stored; in the very first iteration which no previous information exists,
each machine generates and initializes these parameters instead. Now let us define

LO(U@ y@ ¢@)y.— Z —log, &ay

(z,y)eQ(@) yey(d)

Eur (Dyreyiongray 00U U Vy) = F(U, V) +1) — 1
* log 2 '

In parallel setting, each machine ¢ runs stochastic gradient descent on L@ (U@ V(@ ¢(0)
instead of the original function L(U, V,§). Since there is no overlap between machines
on the parameters they update and the data they access, every machine can progress
independently of each other. Although the algorithm takes only a fraction of data
into consideration at a time, this procedure is also guaranteed to converge to a local
optimum of the original function L(U,V,¢). Note that in each iteration,

VuvL(U, V&) =¢*-E| >, Vyy LO@UD v@ ¢y,

1<q<p

where the expectation is taken over random partitioning of ). Therefore, although
there is some discrepancy between the function we take stochastic gradient on and the
function we actually aim to minimize, in the long run the bias will be washed out and
the algorithm will converge to a local optimum of the objective function L(U,V,§).
This intuition can be easily translated to the formal proof of the convergence; since
each partitioning of ) is independent of each other, we can appeal to the law of
large numbers to prove that the necessary condition for the convergence of the

algorithm is satisfied.

¢-step  In this step, all machines synchronize to retrieve every entry of V. Then,

each machine can update £ independently of each other. When the size of V is



39

very large and cannot be fit into the main memory of a single machine, V' can be
partitioned as in (U, V')-step and updates can be calculated in a round-robin way.
Note that this parallelization scheme requires each machine to allocate only i—
fraction of memory that would be required for a single-machine execution. Therefore,
in terms of space complexity the algorithm scales linearly with the number of ma-

chines.

7.5 Related Work

In terms of modeling, viewing ranking problem as a generalization of binary clas-
sification problem is not a new idea; for example, RankSVM defines the objective
function as a sum of hinge losses, similarly to our basic model in Section .
However, it does not directly optimize the ranking metric such as NDCG; the ob-
jective function and the metric are not immediately related to each other. In this
respect, our approach is closer to that of Le and Smola [44] which constructs a con-
vex upper bound on the ranking metric and Chapelle et al. [I7] which improves the
bound by introducing non-convexity. The objective function of Chapelle et al. [17]
is also motivated by ramp loss, which is used for robust classification; nonetheless,
to our knowledge the direct connection between the ranking metrics in form ([7.11]
(DCG, NDCG) and the robust loss is our novel contribution. Also, our objective
function is designed to specifically bound the ranking metric, while Chapelle et al.
[T7] proposes a general recipe to improve existing convex bounds.

Stochastic optimization of the objective function for latent collaborative retrieval

has been also explored in Weston et al. [76]. They attempt to minimize
2, @ (1 + 2 (U V) = f(Us Vy) < 0)) : (7.24)
(z,9)eR Yy #y

where ®(t) = Y} _, =. This is similar to our objective function (7.21)); ®(-) and ps(-)
are asymptotically equivalent. However, we argue that our formulation ([7.21)) has

two major advantages. First, it is a continuous and differentiable function, therefore



90

gradient-based algorithms such as L-BFGS and stochastic gradient descent have con-
vergence guarantees. On the other hand, the objective function of Weston et al. [70]
is not even continuous, since their formulation is based on a function ®(-) that is de-
fined for only natural numbers. Also, through the linearization trick in we are
able to obtain an unbiased stochastic gradient, which is necessary for the convergence
guarantee, and to parallelize the algorithm across multiple machines as discussed in
Section [7.4.3] It is unclear how these techniques can be adapted for the objective
function of Weston et al. [76].

Note that Weston et al. [76] proposes a more general class of models for the task
than can be expressed by . For example, they discuss situations in which we
have side information on each context or item to help learning latent embeddings.
Some of the optimization techniqures introduced in Section can be adapted for
these general problems as well, but is left for future work.

Parallelization of an optimization algorithm via parameter expansion ((7.20) was
applied to a bit different problem named multinomial logistic regression [33]. However,
to our knowledge we are the first to use the trick to construct an unbiased stochastic
gradient that can be efficiently computed, and adapt it to stratified stochastic gradient
descent (SSGD) scheme of Gemulla et al. [31]. Note that the optimization algorithm
can alternatively be derived using convex multiplicative programming framework of
Kuno et al. [42]. In fact, Ding [22] develops a robust classification algorithm based on

this idea; this also indicates that robust classification and ranking are closely related.

7.6 Experiments

In this section we empirically evaluate RoBiRank. Our experiments are divided
into two parts. In Section [7.6.1] we apply RoBiRank on standard benchmark datasets
from the learning to rank literature. These datasets have relatively small number of
relevant items |),| for each context z, so we will use L-BFGS [53], a quasi-Newton

algorithm, for optimization of the objective function ([7.16]). Although L-BFGS is de-



91

signed for optimizing convex functions, we empirically find that it converges reliably
to a local minima of the RoBiRank objective function ([7.16)) in all our experiments. In
Section we apply RoBiRank to the million songs dataset (MSD), where stochas-

tic optimization and parallelization are necessary.



92

1°9°/| UO1109G UT S} NS} [ejUewLIodXr pue sjaseIR(] JO SO1)SIPe)S 2A1YdLINSo(] *1°L 9[qe],
70T ¢0T ¢—0T €€16°0 €0L8°0 1¢¢6°0 61 V8L 8002 DIN
70T ¢—0T 60T 889870 066.°0 €068°0 v | 2691 L00Z OIN
70T 0T I L2L°0 178470 GI8L0 02T | 1€5°TE | MOSUTSIN
70T ¢—0T ¢-0T 781870 92990 66380 691 90T | HINNSHO
0T 1—0T 70T 97660 8166°0 L966°0 666 6L ¥00¢ dH
70T 1—0T ¢—0T 18660 L266°0 0966°0 786 | 06T €00¢ dH
70T 0T 6—0T 72980 9¢180 £906°0 LT | 0€€9 G iO0UBA
70T ¢0T 60T 1,80 096.°0 12680 Ve | 126'6C T jooqeA
70T 1—0T 90T 8¥96°0 7806°0 80L6°0 686 GL 700¢ d.L
1-0T ¢—0T ¢—0T 1¢L6°0 612670 61L6°0 186 04 €00g d.L
URYST | INASHURY | UeyIgoy | ueysT | INASTURY | ueyrgoy | [“(|
IojoueIR J UOI)RZLIR[NTOY DN URSIN "3AR ] PN




93

7.6.1 Standard Learning to Rank

We will try to answer the following questions:

e What is the benefit of transforming a convex loss function into a non-
covex loss function ? To answer this, we compare our algorithm against
RankSVM [45], which uses a formulation that is very similar to (7.8), and is a
state-of-the-art pairwise ranking algorithm.

e How does our non-convex upper bound on negative NDCG compare against
other convex relaxations? As a representative comparator we use the algorithm
of Le and Smola [44], mainly because their code is freely available for download.
We will call their algorithm LSRank in the sequel.

e How does our formulation compare with the ones used in other popular algo-
rithms such as LambdaMART, RankNet, etc? In order to answer this ques-
tion, we carry out detailed experiments comparing RoBiRank with 12 dif-
ferent algorithms. In Figure RoBiRank is compared against RankSVM,
LSRank, InfNormPush [60] and IRPush [5]. We then downloaded RankLib [
and used its default settings to compare against 8 standard ranking algorithms
(see Figur - MART, RankNet, RankBoost, AdaRank, CoordAscent, Lamb-
daMART, ListNet and RandomForests.

e Since we are optimizing a non-convex objective function, we will verify the sen-

sitivity of the optimization algorithm to the choice of initialization parameters.

We use three sources of datasets: LETOR 3.0 [16] , LETOR 4.0f]and YAHOO LTRC
[54], which are standard benchmarks for learning to rank algorithms; Table |7.1| shows
their summary statistics. Each dataset consists of five folds; we consider the first
fold, and use the training, validation, and test splits provided. We train with dif-
ferent values of the regularization parameter, and select a parameter with the best

NDCG value on the validation dataset. Then, performance of the model with this

Thttp://sourceforge.net /p/lemur /wiki/RankLib
Zhttp:/ /research.microsoft.com/en-us/um/beijing/projects/letor /letorddataset.aspx



94

parameter on the test dataset is reported. For a fair comparison, every algorithm
follows exactly the same protocol and uses the same split of data. All experiments
in this section are conducted on a computing cluster where each node has two 2.1
GHz 12-core AMD 6172 processors with 48 GB physical memory per node. We used
an optimized implementation of the L-BFGS algorithm provided by the Toolkit for
Advanced Optimization (TAO)H for estimating the parameter of RoBiRank. For the
other algorithms, we used the implementations provided by the authors. Our main
goal is to compare the performance of the models, and not the speed of parame-
ter estimation. However, we note that the training time is very comparable for all
three algorithms, with RoBiRank being at most two to three times slower than other
algorithms on some datasets.

We use values of NDCG at different levels of truncation as our evaluation metric
[50]; see Figure While RoBiRank outperforms its competitors on most of the
datasets, of particular interest is the result on TD 2004 dataset. The performance
of RankSVM is a bit insensitive to the level of truncation for NDCG. On the other
hand, RoBiRank, which uses non-convex loss function to concentrate its performance
at the top of the ranked list, performs much better especially at low truncation
levels. It is also interesting to note that the NDCG@k curve of LSRank is similar to
that of RoBiRank, but RoBiRank consistently outperforms at each level. RobiRank
dominates Inf-Push and IR-Push on all datasets except TD 2003 and OHSUMED
where IRPush seems to fare better at the top of the list. Compared to the 8 standard
algorithms, again RobiRank either outperforms or performs comparably to the best
algorithm except on two datasets (TD 2003 and HP 2003), where MART and Random
Forests overtake RobiRank at few values of NDCG. We present a summary of the
NDCG values obtained by each algorithm in Table [7.1]

We also investigated the sensitivity of parameter estimation to the choice of initial
parameter. We initialized w randomly with 10 different seed values. Blue lines in

Figure [7.4] show mean and standard deviation of NDCG values at different levels of

3http://www.mcs.anl.gov/research /projects/tao/index.html



95

TD 2003 TD 2004 Yahoo Learning to Rank - 1
1 : 1 T 1 T
-o- RoBiRank
—— RankSVM
-e- LSRank »
o 08 ~&- [nfNormPush v 08§ B L 08} j:
é 4 = JRPush g g q
: . =
“ 0.69 T 7 06) | cod 0G| :
4 | . . 4 | . | 4 . | |
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
k k k
Yahoo Learning to Rank - 2 HP 2003 HP 2004
1 T 1 T
3
A < =
@ €] ©
&) &) ©]
| O Q
a a a
Z Z Z
04 5 10 15 20 04 5 10 15 20
k k
OHSUMED MSLR30K MQ 2007
1 T 1 T 1 T
0.8} B
= 081 1 o 4
Q A o &)
a a a
“ 06 \M - -
: .
04 5 10 15 20 0 5 10 15 20 04 5 10 15 20
k k k
MQ 2008
1 T
-y
©
&)
O
a
“ 06 :
04 5 10 15 20
k

Figure 7.2.: Comparison of RoBiRank, RankSVM, LSRank [44], Inf-Push and IR-
Push



96

TD 2003 TD 2004 Yahoo Learning to Rank - 1
1 1 T
RoBiRank
- MART
-=-  RankNet
w 081 RankBoost ™ e
€] —+  AdaRank ) ©
8 CoordAscent 8 8
2 —— LambdaMART 2 2
“ 0.6 —_ ListNet - ~
—e— RandomForests
[
04 5 10 15 20 04 5 10 15 20
k k
HP 2004
1 T
2 4 . 038
© S €]
O ] Y]
Q o &)
% a a
“06) 17 06
0.4 - L - 0.4 L L I
5 10 15 20 5 10 15 20
k k
OHSUMED
1 T
s 0.8} B
9
O
a
“ 06] :
MQ 2008
1 T
g v
© c)
¥] O
&) O
a a
Z Z 0.6 B
04 5 10 15 20
k

Figure 7.3.: Comparison of RoBiRank, MART, RankNet, RankBoost, AdaRank,
CoordAscent, LambdaMART, ListNet and RandomForests



97

truncation; as can be seen, even though our objective function is non-convex, L-BFGS
reliably converges to solutions with similar test performance. This conclusion is in
line with the observation of Ding [22]. We also tried two more variants; initialization
by all-zeroes (red line) and the solution of RankSVM (black line). In most cases it
did not affect the quality of solution, but on TD 2003 and HP 2004 datasets, zero

initialization gave slightly better results.

7.6.2 Latent Collaborative Retrieval

In this subsection, we ask the following question: Given large amounts of com-
putational resources, what is the best latent collaborative retrieval model (in terms
of predictive performance on the test dataset) that one can produce within a given
wall-clock time? Towards this end, we work with the parallel variant of RoBiRank de-
scribed in Section [7.4.3] As a representative dataset we use the Million Song Dataset
(MSD) [9], which consists of 1,129,318 users (|X]), 386,133 songs (|)V|), and 49,824,519
records (|€2]) of a user z playing a song y in the training dataset. The objective is to
predict the songs from the test dataset that a user is going to listen tcﬁ.

Since explicit ratings are not given, NDCG is not applicable for this task; we
use precision at 1 and 10 [50] as our evaluation metric. Squared frobenius norm of
matrices U and V were added to the objective function for regularization, and
the entries of U and V were independently sampled uniformly from 0 to 1/\/8 We
performed a grid-search to find the best step size parameter.

This experiment was run on a computing cluster where each machine is equipped
with 2 Intel Xeon E5 processors (16 cores) and 32GB of RAM. Our algorithm is imple-
mented in C++ and uses Intel Thread Building Blocks (TBB) to handle thread-level
parallelization, and MVAPICH2 was used for machine-to-machine communication.
Due to a limitation of the job scheduler on the cluster all experiments had to be

stopped after 100,000 seconds.

4the original data also provides the number of times a song was played by a user, but we ignored
this in our experiment.



NDCG@k

NDCG@k

Figure 7.4.: Performance of RoBiRank based on different initialization methods

0.55

0.86
0.84
0.82

0.8

0.46

TD 2003

A/
—e—  random initialization
—— zero initialization

—e~ initialization by RankSVM

5 10 15 20
k
Yahoo Learning to Rank - 2
T
b —e— random initialization b
\ —— zero initialization
[ 94 —e— initialization by RankSVM [
T T T
5 10 15 20
k
OHSUMED

random initialization

——

—— zero initialization

-~ initialization by RankSVM | |
T

5 10 15
k

20

NDCG@k

0.95

Q
a
Z

=
©
&}
Q
(=)
Z

0.4

0.9

0.85

0.8

TD 2004
T T T
—e— random initialization
—— zero initialization 4

—e— initialization by RankSVM

IS
-
S}
—
ot
)
S

HP 2003

—e— random initialization
—— zero initialization B
—e~ initialization by RankSVM
T T T
5 10 15 20
k
MSLR30K
T
—e—  random initialization

zero initialization
—e— initialization by RankSVM

———

5 10 15 20
k
MQ 2008

random initialization
zero initialization
—e~ initialization by RankSVM
T

—.—

———

T
5 10 15
k

20

k

@

NDCG

NDCG@k

@k

NDCG

0.86
0.84
0.82

0.8
0.78
0.76

()'7'14;-/ —e- initialization by RankSVM |

0.8

0.7

Yahoo Learning to Rank - 1

random initialization
zero initialization

—.—

———

5 10 15
k
HP 2004

—e—  random initialization B
—— zero initialization
t  |=e=initialization by RankSVM | |
T T T
5 10 15 20
k
MQ 2007
T
>
[ |- random initialization i
yabs zero initialization
L —e~ initialization by RankSVM
T T T
5 10 15 20
k

98



99

In our first experiment we study the scaling behavior of RoBiRank as a function
of number of machines. RoBiRank p denotes the parallel version of RoBiRank which
is distributed across p machines. In Figure (left) we plot mean Precision@1 as a
function of the number of machines x the number of seconds elapsed; this is a proxy
for CPU time. If an algorithm linearly scales across multiple processors, then all lines
in the figure should overlap with each other. As can be seen RoBiRank exhibits near
ideal speed up when going from 4 to 32 machineﬂ

In our next experiment we compare RoBiRank with a state of the art algorithm
from Weston et al. [76], which optimizes a similar objective function (7.24). We
compare how fast the quality of the solution improves as a function of wall clock
time. Since the authors of Weston et al. [76] do not make available their code, we
implemented their algorithm within our framework using the same data structures
and libraries used by our method. Furthermore, for a fair comparison, we used the
same initialization for U and V and performed an identical grid-search over the step
size parameter for both algorithms.

Figure (center, right) shows the results of the experiment. It can be seen that
on a single machine the algorithm of Weston et al. [70] is very competitive and out-
performs RoBiRank. The reason for this might be the introduction of the additional
¢ variables in RoBiRank, which slows down convergence. However, RoBiRank train-
ing can be distributed across processors, while it is not clear how to parallelize the
algorithm of Weston et al. [76]. Consequently, RoBiRank 32 which uses 32 machines
for its computation can produce a significantly better model within the same wall

clock time window.

7.7 Conclusion

In this chapter, we developed RoBiRank, a novel model on ranking, based on

insights and techniques from the literature of robust binary classification. Then, we

5The graph for RoBiRank 1 is hard to see because it was run for only 100,000 CPU-seconds.



0.3
0.2

0.1

Mean Precision@1

®

o RoBiRank 4
+RoBiRank 16 | |
eRoBiRank 32 | |
o RoBiRank 1

O !

0 05 1 15 2 25 3

number of machines x seconds elaps@él

0.3

0.2}

Mean Precision@1

-o- Weston et al. (2012) 2

-©=
——

RoBiRank 1
RoBiRank 4

RoBiRank 16
RoBiRank 32

seconds elapsed -10°

0.2

NMean Precision@10

0.15|

-eo- Weston et al. (2012) |

——

RoBiRank 1

RoBiRank 4 /
RoBiRank 16
RoBiRank 32

seconds elapsed -10°

100

Figure 7.5.: Top: the scaling behavior of RoBiRank on Million Song Dataset. Middle,

Bottom: Performance comparison of RoBiRank and Weston et al. [76] when the same

amount of wall-clock time for computation is given.



101

proposed a scalable and parallelizable stochastic optimization algorithm that can be
applied to the task of latent collaborative retrieval which large-scale data without
feature vectors and explicit scores have to take care of. Experimental results on
both learning to rank datasets and latent collaborative retrieval dataset suggest the
advantage of our approach.

We are currently investigating how to extend our method to the more general con-
text of collaborative retrieval tasks in which additional side information is available,

as discussed in Weston et al. [70].



102



103

8. SUMMARY
8.1 Contributions

We provide a summary of our contributions and discuss directions for future re-

search.

Optimization of Doubly Separable Functions We have identified double sep-
arability as a useful property of a function that can be used to efficiently parallelize
stochastic optimization algorithms. We have proposed DSSO, an adaptation of DSGD
for saddle-point problems which has similar convergence guarantees, and NOMAD,
an asynchronous algorithm that utilizes fine-grained partitioning of the problem for

efficient scaling in massive distributed computing environment.

Reformulating Existing Statistical models as Doubly Separable Functions
We have shown that a large class of statistical models can be formulated as doubly
separable functions. In the case of matrix completion and item response theory, the
original formulations were readily in doubly separable form; on the other hand, for
regularized risk minimization and multinomial logistic regression, we had to introduce

different parameter expansion techniques to achieve double separability.

Formulation of Ranking as Robust Binary Classification We have argued
that metrics for information retrieval such as NDCG can be understood as general-
ization of robust classification, and proposed RoBiRank, a novel algorithm for learning
to rank. Then, we have identified that when RoBiRank is applied for latent collab-
orative retrieval, a feature-free version of the ranking problem, it can be efficiently

parallelized with a simple extension of techniques for doubly separable functions.



104

8.2 Future Work

The idea of double separability can be further generalized for more than two
dimensions. For example, one may define triple separability, or even separability of an
arbitrary order. Tensor factorization problems will be naturally fit into this extended
framework, but are there any other statistical models which can be formulated in
this extended notion of separability? Also, can optimization algorithms for doubly
separable functions be generalized for this more general setting? These are interesting
questions that remain unanswered yet.

Furthermore, although we have confined our interest to optimization problems in
this thesis, double separability might be found useful in Bayesian models as well to
efficiently parallelize MCMC sampling or variational inference algorithms. We are
currently investigating how the NOMAD framework can be used for Latent Dirichlet
Allocation (LDA).



LIST OF REFERENCES



1
2
3

[
[
[
[4

]
]
]
]

[5]

[14]
[15]

[16]

105

LIST OF REFERENCES

Apache hadoop, 2009. http://hadoop.apache.org/core/.
Graphlab datasets, 2013. http://graphlab.org/downloads/datasets/.
Intel thread building blocks, 2013. https://www.threadingbuildingblocks.org/.

A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A reliable effective terascale
linear learning system. CoRR, abs/1110.4198, 2011.

S. Agarwal. The infinite push: A new support vector ranking algorithm that
directly optimizes accuracy at the absolute top of the list. In SDM, pages 839—
850. SIAM, 2011.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and
risk bounds. Journal of the American Statistical Association, 101(473):138-156,
2006.

R. M. Bell and Y. Koren. Lessons from the netflix prize challenge. SIGKDD
Ezplorations, 9(2):75-79, 2007. URL http://doi.acm.org/10.1145/1345448.
1345465.

M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point prob-
lems. Acta numerica, 14:1-137, 2005.

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The million song
dataset. In Proceedings of the 12th International Conference on Music Informa-
tion Retrieval (ISMIR 2011), 2011.

D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical
Methods. Prentice-Hall, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Nu-
merical Methods. Athena Scientific, 1997.

C. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

L. Bottou and O. Bousquet. The tradeoffs of large-scale learning. Optimization
for Machine Learning, page 351, 2011.

G. Bouchard. Efficient bounds for the softmax function, applications to inference
in hybrid models. 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, England, 2004.

O. Chapelle and Y. Chang. Yahoo! learning to rank challenge overview. Journal
of Machine Learning Research-Proceedings Track, 14:1-24, 2011.


http://doi.acm.org/10.1145/1345448.1345465
http://doi.acm.org/10.1145/1345448.1345465

[17]

[18]

[19]

[27]

[28]
[29]

[30]

[31]

106

O. Chapelle, C. B. Do, C. H. Teo, Q. V. Le, and A. J. Smola. Tighter bounds
for structured estimation. In Advances in neural information processing systems,
pages 281288, 2008.

D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Appli-
cations, 2:199-222, 1969.

C.-T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski, A. Y. Ng, and K. Olukotun.
Map-reduce for machine learning on multicore. In B. Scholkopf, J. Platt, and
T. Hofmann, editors, Advances in Neural Information Processing Systems 19,
pages 281-288. MIT Press, 2006.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. CACM, 51(1):107-113, 2008. URL http://doi.acm.org/10.1145/
1327452.1327492.

C. DeMars. Item response theory. Oxford University Press, 2010.

N. Ding. Statistical Machine Learning in T-Ezponential Family of Distributions.
PhD thesis, PhD thesis, Purdue University, West Lafayette, Indiana, USA, 2013.

G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The yahoo! music dataset
and kdd-cup’ll. Journal of Machine Learning Research-Proceedings Track, 18:
8-18, 2012.

R.-E. Fan, J.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR:
A library for large linear classification. Journal of Machine Learning Research,
9:1871-1874, Aug. 2008.

J. Faraway. Extending the Linear Models with R. Chapman & Hall/CRC, Boca
Raton, FL, 2004.

V. Feldman, V. Guruswami, P. Raghavendra, and Y. Wu. Agnostic learning of
monomials by halfspaces is hard. SIAM Journal on Computing, 41(6):1558-1590,
2012.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support
vector machines. In A. McCallum and S. Roweis, editors, ICML, pages 320-327.
Omnipress, 2008.

J. Friedman, T. Hastie, H. Hofling, R. Tibshirani, et al. Pathwise coordinate
optimization. The Annals of Applied Statistics, 1(2):302-332, 2007.

A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Compu-
tational and Applied Mathematics, 123:201-216, 2000.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix fac-
torization with distributed stochastic gradient descent. In Proceedings of the
17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 69-77. ACM, 2011.

R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factor-
ization with distributed stochastic gradient descent. In Conference on Knowledge
Discovery and Data Mining, pages 69-77, 2011.


http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

[32]

[33]

[42]

[43]
[44]
[45]
[46]

[47]

107

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph:
Distributed graph-parallel computation on natural graphs. In Proceedings of

the 10th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2012), 2012.

S. Gopal and Y. Yang. Distributed training of large-scale logistic models. In
Proceedings of the 30th International Conference on Machine Learning (ICML-
13), pages 289-297, 2013.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, New York, 2 edition, 2009.

J.-B. Hiriart-Urruty and C. Lemaréchal. Conver Analysis and Minimization
Algorithms, I and II, volume 305 and 306. Springer-Verlag, 1996.

T. Hoefler, P. Gottschling, W. Rehm, and A. Lumsdaine. Optimizing a conjugate
gradient solver with non blocking operators. Parallel Computing, 2007.

C. J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with vari-
able selection for non-negative matrix factorization. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining(KDD), pages 1064-1072, August 2011.

C. J. Hsieh, K. W. Chang, C. J. Lin, S. S. Keerthi, and S. Sundararajan. A dual
coordinate descent method for large-scale linear SVM. In W. Cohen, A. McCal-
lum, and S. Roweis, editors, ICML, pages 408-415. ACM, 2008.

C.-N. Hsu, H.-S. Huang, Y.-M. Chang, and Y .-J. Lee. Periodic step-size adapta-
tion in second-order gradient descent for single-pass on-line structured learning.
Machine Learning, 77(2-3):195-224, 2009.

P. J. Huber. Robust Statistics. John Wiley and Sons, New York, 1981.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for rec-

ommender systems. [EEE Computer, 42(8):30-37, 2009. URL http://doi.
ieeecomputersociety.org/10.1109/MC.2009.263.

T. Kuno, Y. Yajima, and H. Konno. An outer approximation method for mini-
mizing the product of several convex functions on a convex set. Journal of Global
Optimization, 3(3):325-335, September 1993.

J. Langford, A. J. Smola, and M. Zinkevich. Slow learners are fast. In Neural In-
formation Processing Systems, 2009. URL http://arxiv.org/abs/0911.0491.

Q. V. Le and A. J. Smola. Direct optimization of ranking measures. Technical
Report 0704.3359, arXiv, April 2007. http://arxiv.org/abs/0704.3359.

C.-P. Lee and C.-J. Lin. Large-scale linear ranksvm. Neural Computation, 2013.
To Appear.

D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale
optimization. Mathematical Programming, 45(3):503-528, 1989.

J. Liu, W. Zhong, and L. Jiao. Multi-agent evolutionary model for global numer-
ical optimization. In Agent-Based FEvolutionary Search, pages 13-48. Springer,
2010.


http://doi.ieeecomputersociety.org/10.1109/MC.2009.263
http://doi.ieeecomputersociety.org/10.1109/MC.2009.263
http://arxiv.org/abs/0911.0491
http://arxiv.org/abs/0704.3359

[48]

[49]

[50]

[52]
[53]

[54]

[55]

[58]
[59]

[60]

108

P. Long and R. Servedio. Random classification noise defeats all convex potential
boosters. Machine Learning Journal, 78(3):287-304, 2010.

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Distributed graphlab: A framework for machine learning and data mining in the
cloud. In PVLDB, 2012.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Re-
trieval. Cambridge University Press, 2008. URL http://nlp.stanford.edu/
IR-book/.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approx-
imation approach to stochastic programming. SIAM J. on Optimization, 19(4):
1574-1609, Jan. 2009. ISSN 1052-6234.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics
of Computation, 35:773-782, 1980.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Oper-
ations Research. Springer, 2nd edition, 2006.

T. Qin, T.-Y. Liu, J. Xu, and H. Li. Letor: A benchmark collection for research
on learning to rank for information retrieval. Information Retrieval, 13(4):346—

374, 2010.

S. Ram, A. Nedic, and V. Veeravalli. Distributed stochastic subgradient projec-
tion algorithms for convex optimization. Journal of Optimization Theory and
Applications, 147:516-545, 2010.

B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to
parallelizing stochastic gradient descent. In P. Bartlett, F. Pereira, R. Zemel,
J. Shawe-Taylor, and K. Weinberger, editors, Advances in Neural Information
Processing Systems 24, pages 693-701, 2011. URL http://books.nips.cc/
nips24.html.

P. Richtarik and M. Takac. Distributed coordinate descent method for learning
with big data. Technical report, 2013. URL "http://arxiv.org/abs/1310.
2059".

H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22:400-407, 1951.

R. T. Rockafellar. Convexr Analysis, volume 28 of Princeton Mathematics Series.
Princeton University Press, Princeton, NJ, 1970.

C. Rudin. The p-norm push: A simple convex ranking algorithm that concen-
trates at the top of the list. The Journal of Machine Learning Research, 10:
2233-2271, 2009.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

N. N. Schraudolph. Local gain adaptation in stochastic gradient descent. In
Proc. Intl. Conf. Artificial Neural Networks, pages 569-574, Edinburgh, Scot-
land, 1999. IEE, London.


http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://books.nips.cc/nips24.html
http://books.nips.cc/nips24.html
"http://arxiv.org/abs/1310.2059"
"http://arxiv.org/abs/1310.2059"

[63]

[64]
[65]

[66]

[68]

[69]

[70]

[76]

7]

109

S. Shalev-Shwartz and N. Srebro. Svm optimization: Inverse dependence on
training set size. In Proceedings of the 25th International Conference on Machine
Learning, ICML ’08, pages 928-935, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-
gradient solver for SVM. In Proc. Intl. Conf. Machine Learning, 2007.

A. J. Smola and S. Narayanamurthy. An architecture for parallel topic models.
In Very Large Databases (VLDB), 2010.

S. Sonnenburg, V. Franc, E. Yom-Tov, and M. Sebag. Pascal large scale learning
challenge. 2008. URL http://largescale.ml.tu-berlin.de/workshop/.

S. Suri and S. Vassilvitskii. Counting triangles and the curse of the last reducer.
In S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra, E. Bertino, and
R. Kumar, editors, Conference on World Wide Web, pages 607-614. ACM, 2011.
URL http://doi.acm.org/10.1145/1963405.1963491.

M. Tabor. Chaos and integrability in nonlinear dynamaics: an introduction, vol-
ume 165. Wiley New York, 1989.

C. Teflioudi, F. Makari, and R. Gemulla. Distributed matrix completion. In Data
Mining (ICDM), 2012 IEEE 12th International Conference on, pages 655-664.
IEEE, 2012.

C. H. Teo, S. V. N. Vishwanthan, A. J. Smola, and Q. V. Le. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research, 11:

311-365, January 2010.

P. Tseng and C. O. L. Mangasarian. Convergence of a block coordinate descent
method for nondifferentiable minimization. J. Optim Theory Appl, pages 475—
494, 2001.

N. Usunier, D. Buffoni, and P. Gallinari. Ranking with ordered weighted pair-
wise classification. In Proceedings of the International Conference on Machine
Learning, 2009.

A. W. Van der Vaart. Asymptotic statistics, volume 3. Cambridge university
press, 2000.

S. V. N. Vishwanathan and L. Cheng. Implicit online learning with kernels.
Journal of Machine Learning Research, 2008.

S. V. N. Vishwanathan, N. Schraudolph, M. Schmidt, and K. Murphy. Accel-
erated training conditional random fields with stochastic gradient methods. In
Proc. Intl. Conf. Machine Learning, pages 969-976, New York, NY, USA, 2006.
ACM Press. ISBN 1-59593-383-2.

J. Weston, C. Wang, R. Weiss, and A. Berenzweig. Latent collaborative retrieval.
arXiwv preprint arXw:1206.4603, 2012.

G. G. Yin and H. J. Kushner. Stochastic approzimation and recursive algorithms
and applications. Springer, 2003.


http://largescale.ml.tu-berlin.de/workshop/
http://doi.acm.org/10.1145/1963405.1963491

110

(78] H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent
approaches to parallel matrix factorization for recommender systems. In M. J.
Zaki, A. Siebes, J. X. Yu, B. Goethals, G. I. Webb, and X. Wu, editors, I[CDM,
pages 765-774. IEEE Computer Society, 2012. ISBN 978-1-4673-4649-8.

[79] Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel sgd for
matrix factorization in shared memory systems. In Proceedings of the 7th ACM
conference on Recommender systems, pages 249-256. ACM, 2013.

[80] M. Zinkevich, A. J. Smola, M. Weimer, and L. Li. Parallelized stochastic gradient
descent. In nips23e, editor, nips23, pages 2595-2603, 2010.



APPENDIX



111

A. SUPPLEMENTARY EXPERIMENTS ON MATRIX
COMPLETION

A.1 Effect of the Regularization Parameter

In this subsection, we study the convergence behavior of NOMAD as we change
the regularization parameter A (Figure [A.1)). Note that in Netflix data (left), for
non-optimal choices of the regularization parameter the test RMSE increases from
the initial solution as the model overfits or underfits to the training data. While
NOMAD reliably converges in all cases, on Netflix the convergence is notably faster
with higher values of A; this is expected because regularization smooths the objective
function and makes the optimization problem easier to solve. On other datasets,

the speed of convergence was not very sensitive to the selection of the regularization

parameter.
Netflix, machines=8, cores=4, k = 100 Yahoo!, machines=8, cores=4, k = 100 Hugewiki, machines=8, cores=4, k = 100
T T T T - ; : T T T T - - ; T T T T - ; :
115 =\ = 0.0005 || 30 -\ =0.25 || 110 —— )\ = 0.0025 |
: L A = 0.005 A=05 A =0.005
11l —— A=0.05 H - A=1 1r —— A =001 f|
= - A\=05 H m 28 1] - \=2 [ = - )\ =0.02
= ) Z 09} 4
= 1.05 |- = =
/~ ~ o961 ~
T f 3 08
21} H
0.95 0.7
L il 22+ = 0.6 =
0.9 | | | | | | . | | | | | | . | | | | | | .
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
seconds seconds seconds

Figure A.1.: Convergence behavior of NOMAD when the regularization parameter A

is varied.



112
A.2 Effect of the Latent Dimension

In this subsection, we study the convergence behavior of NOMAD as we change
the dimensionality parameter k (Figure . In general, the convergence is faster
for smaller values of k£ as the computational cost of SGD updates and
is linear to k. On the other hand, the model gets richer with higher values of k, as
its parameter space expands; it becomes capable of picking up weaker signals in the
data, with the risk of overfitting. This is observed in Figure with Netflix (left)
and Yahoo! Music (right). In Hugewiki, however, small values of k were sufficient to
fit the training data, and test RMSE suffers from overfitting with higher values of k.
Nonetheless, NOMAD reliably converged in all cases.

Netflix, machines=8, cores=4, A = 0.05 Yahoo!, machines=8, cores=4, A = 1.00 Hugewiki, machines=8, cores=4, A = 0.01
T : : 25 : : : 0.8 T
- k=10 - k=10 - k=10
k=20 k=20 k=20
—— k=50 || —— k=50 —— k=50
-k =100 241 ==/ =100 ] 0.7 == =100 f

test RMSE
test RMSE
test RMSE

23 -

22

| | | | | | | B | | I | | = 5 | | .
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 ) 500 1,000 1,500 2,000
seconds seconds seconds

Figure A.2.: Convergence behavior of NOMAD when the latent dimension k is varied.

A.3 Comparison of NOMAD with GraphLab

Here we provide experimental comparison with GraphLab of Low et al. [49].
GraphLab PowerGraph 2.2, which can be downloaded from https://github.com/
graphlab-code/graphlab was used in our experiments. Since GraphLab was not
compatible with Intel compiler, we had to compile it with gcc. The rest of experi-
mental setting is identical to what was described in Section [£.3.1]

Among a number of algorithms GraphLab provides for matrix completion in its
collaborative filtering toolkit, only Alternating Least Squares (ALS) algorithm is suit-
able for solving the objective function (4.1]); unfortunately, Stochastic Gradient De-


https://github.com/graphlab-code/graphlab
https://github.com/graphlab-code/graphlab

113

scent (SGD) implementation of GraphLab does not converge. According to private
conversations with GraphLab developers, this is because the abstraction currently
provided by GraphLab is not suitable for the SGD algorithm. Its biassgd algorithm,
on the other hand, is based on a model different from and therefore not directly
comparable to NOMAD as an optimization algorithm.

Although each machine in HPC cluster is equipped with 32 GB of RAM and we
distribute the work into 32 machines in multi-machine experiments, we had to tune
nfibers parameter to avoid out of memory problems, and still was not able to run
GraphLab on Hugewiki data in any setting. We tried both synchronous and asyn-
chronous engines of GraphLab, and report the better of the two on each configuration.

Figure shows results of single-machine multi-threaded experiments, while Fig-
ure [A-4] and Figure shows multi-machine experiments on HPC cluster and com-
modity cluster respectively. Clearly, NOMAD converges orders of magnitude faster
than GraphLab in every setting, and also converges to better solutions. Note that
GraphLab converges faster in single-machine setting with large number of cores (30)
than in multi-machine setting with large number of machines (32) but small number
of cores (4) each. We conjecture that this is because the locking and unlocking of
a variable has to be requested via network communication in distributed memory
setting; on the other hand, NOMAD does not require a locking mechanism and thus
scales better with the number of machines.

Although GraphLab biassgd is based on a model different from (4.1]), for the
interest of readers we provide comparisons with it on commodity hardware cluster.
Unfortunately, GraphLab biassgd crashed when we ran it on more than 16 machines,
so we had to run it on only 16 machines and assumed GraphLab will linearly scale up
to 32 machines, in order to generate plots in Figure [A.5] Again, NOMAD was orders

of magnitude faster than GraphLab and converges to a better solution.



Netflix, machines=1,

1.1 =
-~ NOMAD
— GraphLab ALS
1.05 - :
<5
wn
=
=) i
%
]
0.95¢ B
. . . . .
0 500 1,000 1,500 2,000 2,500 3,000

seconds

cores=30, A = 0.05, & = 100

test RMSE

Yahoo!

30

28

26

24

22

114

, machines=1, cores=30, A = 1.00, & = 100

NOMAD
Graph

ALS

I I I I I
0 1,000 2,000 3,000 4,000 5,000 6,000

seconds

Figure A.3.: Comparison of NOMAD and GraphLab on a single machine with 30

computation cores.

Netflix.

, machines=32, cores=4, A = 0.05, & = 100

2.5

test RMSE

L L L L L ]
100 200 300 400 500 600
seconds

Yahoo!

test RMSE

80

, machines=32, cores=4, A = 1.00, k& = 100

70

60

-

40

3OL

501

0

| | | |
100 200 300 400 500
seconds

600

Figure A.4.: Comparison of NOMAD and GraphLab on a HPC cluster.

Netflix, machines=32, cores=4, A = 0.05, k = 100

test RMSE

Yahoo!, machines=32, cores=4, A = 1.00, k = 100

——

NOMAD

—  GraphLab ALS
GraphLab biassgd

Figure A.5.: Comparison of NOMAD

ter.

500 1,000 1,500 2,000 2,500
seconds

40

35

test RMSE

——

N(‘)I\IAD‘

—  GraphLab ALS
GrpahLab biassgd ||

500 1,000 1,500 2,000 2,500 3,000
seconds

and GraphLab on a commodity hardware clus-



VITA



115

VITA

Hyokun Yun was born in Seoul, Korea, on February 6, 1984. He was a software
engineer in Cyram(c) from 2006 to 2008, and he received bachelor’s degree in In-
dustrial & Management Engineering and Mathematics at POSTECH, Republic of
Korea in 2009. Then, he joined graduate program of Statistics at Purdue University
in US; under supervision of Prof. S.V.N. Vishwanathan, he earned master’s degree
in 2013 and doctoral degree in 2014. His research interests are statistical machine
learning, stochastic optimization, social network analysis, recommendation systems

and inferential model.



	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Introduction
	Collaborators

	Background
	Separability and Double Separability
	Problem Formulation and Notations
	Minimization Problem
	Saddle-point Problem

	Stochastic Optimization
	Basic Algorithm
	Distributed Stochastic Gradient Algorithms


	NOMAD: Non-locking, stOchastic Multi-machine algorithm for Asynchronous and Decentralized optimization
	Motivation
	Description
	Complexity Analysis
	Dynamic Load Balancing
	Hybrid Architecture
	Implementation Details

	Related Work
	Map-Reduce and Friends
	Asynchronous Algorithms
	Numerical Linear Algebra
	Discussion


	Matrix Completion
	Formulation
	Batch Optimization Algorithms
	Alternating Least Squares
	Coordinate Descent

	Experiments
	Experimental Setup
	Scaling in Number of Cores
	Scaling as a Fixed Dataset is Distributed Across Processors
	Scaling on Commodity Hardware
	Scaling as both Dataset Size and Number of Machines Grows
	Conclusion


	Regularized Risk Minimization
	Introduction
	Reformulating Regularized Risk Minimization
	Implementation Details
	Existing Parallel SGD Algorithms for RERM
	Empirical Evaluation
	Experimental Setup
	Parameter Tuning
	Competing Algorithms
	Versatility
	Single Machine Experiments
	Multi-Machine Experiments

	Discussion and Conclusion

	Other Examples of Double Separability
	Multinomial Logistic Regression
	Item Response Theory

	Latent Collaborative Retrieval
	Introduction
	Robust Binary Classification
	Ranking Model via Robust Binary Classification
	Problem Setting
	Basic Model
	DCG and NDCG
	RoBiRank

	Latent Collaborative Retrieval
	Model Formulation
	Stochastic Optimization
	Parallelization

	Related Work
	Experiments
	Standard Learning to Rank
	Latent Collaborative Retrieval

	Conclusion

	Summary
	Contributions
	Future Work

	LIST OF REFERENCES
	Supplementary Experiments on Matrix Completion
	Effect of the Regularization Parameter
	Effect of the Latent Dimension
	Comparison of NOMAD with GraphLab

	VITA

