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Motivations

Challenges for statisticians

Most statistical procedures require us to solve:
min f(o) = 7z:;fz(@)
Challenges:
m n is large

m dim(0) is large
m time is limited
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Motivations

Scale of the Challenge

Learn a recommendation model from
1.1 million users, 386K songs, and 49 million records
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Motivations

Scale of the Challenge

Complete a 50 million x 40K matrix with 2.7 billion entries

machines=64, cores=4
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Motivations

Scale of the Challenge

Learn a classification model from
8.4 million data points and 20 million features
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:
m Start with some 6
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:

m Calculate the negative gradient —V, f ()
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:

m Move towards the direction: 8 < 6 — 7 - V,£(6))
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:

Challenge: Vo f(0) =Y 1, Vafi(0)
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:

Challenge: Vo f(0) = Y"1, Vafi(0)
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Motivations

Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:
m Start with some 6
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Motivations

Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:

m Choose i from1,2,...,n
m Calculate the negative gradient —n - Vj f(0)
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Motivations

Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:

m Move towards the direction: 6 «+ 0 — 5 - n - Vg fi(6))
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Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:
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Motivations

Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:

Rational: Vo f(0) = E[n- Vafi(0)]
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Motivations

Comparison of GD and SGD

Asymptotic analysis of Bottou and Bousquet (2011):

GD 2GD S

Time per iteration: n n

Time to error ¢: % log? % 1= log é log log%

o= = Q)
O
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Motivations

Another Perspective: Parallelism
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(Image from https://www.jlab.org/news/releases/jefferson-lab-boasts-virginias-fastest-computer)
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Motivations

Parallelization of Gradient Descent

‘ Slave 1 \ ‘ Slave 2 \ ‘ Slave 3 \ ‘ Slave 4 \
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Motivations

Parallelization of Gradient Descent

‘ Slave 1 \ ‘ Slave 2 \ ‘ Slave 3 \ ‘ Slave 4 \
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Motivations

Parallelization of Gradient Descent

S1 So S3 Sy
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Motivations

Parallelization of Gradient Descent

Vof(0) =S1+ S+ S3+ 54

‘ Slave 1 \ ‘ Slave 2 \ ‘ Slave 3 \ ‘ Slave 4 \
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Motivations

Parallelization of Gradient Descent

0 60—n-Vof(h)

‘ Slave 1 \ ‘ Slave 2 \ ‘ Slave 3 \ ‘ Slave 4 \
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Motivations

Difficulty for Stochastic Gradient Descent

Recall:
m Start with some 6
m Chooseifrom1,2,....,m
m Calculate the negative gradient —m - Vg f;(6)
m Move towards the direction: § <— 8 —n-m - Vg f;(0)
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Motivations

Our Approach

m For the matrix completion problem, efficient parallel SGD is known
(Gemulla et. al, 2011)

m Question 1: Can it be genearlized for larger class of problems?
m Question 2: Is the class interesting?
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Double Separability Definition and Properties

Separability

The nicest situation occurs when the objective function is separable:

f(61,02,...) = f1(61) + f2(02) + - -

However, this is too much to hope for.
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Double Separability Definition and Properties

Double Separability

A function is doubly separable if it can be written:

f(wi,wa, .o, wim, by hoy oo by ) = Z fij(wi, hj).
0 (i,7)€Q

It is easy to see that this is a weaker condition.
m Separable = Doubly Separable
m Doubly Separable - Separable
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Double Separability Definition and Properties

Double Separability

A function is doubly separable if it can be written:

f(wl,wg,...,U}m,,hl,hg,...,hn): Z fij(wi,hj).
w h (i,7)€Q

It is easy to see that this is a weaker condition.
m Separable = Doubly Separable
m Doubly Separable - Separable
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Double Separability Definition and Properties

Minimization Problem

Solve:

mln.f Z .fv] wu

(4,5)€Q

Gradient Descent executes:

0 0-n-Vo Y Vofi;(0)

(1,5)EQ
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Double Separability Definition and Properties

Minimization Problem

Solve:

mln.f Z .fv] wu

(3,5)€Q

Gradient Descent executes:

0 0-n-Vo Y Vofi;(0)

(i,5)eQ
Stochastic Gradient Descent (SGD) samples (i, j) € 2 and executes:

0« 60— n- |Q| . ngij(wi, h7)

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014

19/65



Double Separability Definition and Properties

Minimization Problem

Solve:

mln.f Z .fv] wu

(3,5)€Q

Gradient Descent executes:

0 0-n-Vo Y Vofi;(0)

(i,5)eQ
Stochastic Gradient Descent (SGD) samples (i, j) € 2 and executes:
0«6 —n-1Q- Vo fij(wi, hy)
This can be simplified as:

w; < wi — 1 - |Q -V, fij(wi, hy)
hj < hj—n- Q|- Vi, fij(wi, hy)

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014

19/65



Double Separability Definition and Properties

Saddle-point Problem

Solve:

mmm}ile w, h) Z fij(wi, b

(1,7)€Q
Stochastic Saddle-point Optimization (SSO) samples (i, j) € 2 and executes:

w; = w; —n - Q- Vi, fij(wi, hy)
hj < hj+n-|Q| -V, fij(wi, hy)
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Double Separability Definition and Properties

Low Dependency of Updates

) ‘ Ifi £ and j # j,
- 7 7
[ X { w; < w; — 0 |Qf -V, fij(w;, hy)
/ XXX hj < hj—n-|Q -V, fij(wi, hy)
’ N e and
w " Q ” { wy = wi =0+ Q- Vo, firj (wir, hyr)
* . ol hjr <= hjr =0 [Q - Vi, firy (wir, hyr)
/
x x x can be run simultaneously.
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Double Separability Regularized Risk Minimization

Original Formulation

In statistics and machine learning, we often solve: given data x;,xs, ..., x,,

n}"i,nP(w) = )\Zcﬁz’ (w;) + %Zgj ((w,x;)),

where each ¢; is convex.
Important examples:
m Generalized Linear Model

e Linear Regression
o Logistic Regression
¢ Poisson Regression

m Support Vector Machines
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Double Separability Regularized Risk Minimization

Problem reformulation

min A 6 (w) 1 3 6w, x)

i=1
m 1
S 2> el + 5]2
subject to  u; = (w,x;) {j=1...n}
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Double Separability Regularized Risk Minimization

Problem reformulation

min A 6 (w) 1 3 6w, x)

=1

< 7 7 -
i 2D ¢i(w) nZ
=1 Jj=
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d n
. 1 1
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Double Separability Regularized Risk Minimization

Problem reformulation

min A 6 (w) 1 3 6w, x)

i=1
m 1
S 2> el + 5]2
subject to  u; = (w,x;) {j=1...n}
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Double Separability Regularized Risk Minimization

Problem reformulation

d n

1 1
e maxmin Ay di(wi) +— > i(u;) + — > hylu; — (w,x;))
’ i=1 j=1 j=1
d 1 n 1 n
& m}?xn‘lni]n /\; oi(w;) — - ; hj (w,x;) + - 2 Hqin (4 (uj) + hjuj)
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Double Separability Regularized Risk Minimization

Problem reformulation

d n

© max min A dilwi) + % D () + % D hilus = (w,x;))

i=1 =1 j=1

d n n
. 1 .
© maxmin A g oi(w;) — - g hj (w,x;) + - g Hqin (4 (uj) + hjuj)

i=1 j=1 =1
n

. “ 1 & 1 .
€ maxmin )\Zqﬁj(wi) - <w, - .Z:lthj> + - zjlgj(—hj)
j= j=
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Double Separability Regularized Risk Minimization

Problem reformulation

d n

€ max min A dilwi) + % D () + % D hilus = (w,x;))
, =

i=1 j=1

d n
. 1 1
= i 236w - - ;:f By ;) + = > min (¢ () + hyu;)
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Double Separability Additional Examples

Other Examples

m Matrix Factorization Models

¢ Singular Value Decomposition
¢ Nonnegative Matrix Factorization

m ltem Response Theory Model

J(wi,wa, ... Wy, by, .. hy) =
ZZ —Yij - h;) +log (1 + exp (w; — h;)) .
=1 j5=1

m Multinomial Logistic Regression (Gopal and Yang, ICML 2012)
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Parallel Algorithms Synchronous Approach

Distributed SGD/SSO

m Gemulla et al. (KDD 2011) proposed Distributed Stochastic Gradient
Descent (DSGD) algorithm

m We extend it for saddle-point problems as Distributed Stochastic
Saddle-point Optimization (DSSO) algorithm
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Parallel Algorithms Synchronous Approach

Convergence Guarantee

m Gemulla et al., 2011 showed that DSGD converges to local optimum of
the original function with probability one, using ODE method of Kushner
and Yin, 2008.

m The proof can be adapted for DSSO.
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Parallel Algorithms Synchronous Approach

Scaling

Suppose p is the number of processors.

m Space complexity for storing w, h, Q: O (%)
m Amount of communication for each iteration: O(p)

h(D) w2 KB K@)

N ~t///////

7777777
7777777
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Parallel Algorithms Synchronous Approach

Experiments: Logistic Regression (Serial)

kdda: 8.4 M data points and 20 M features

0.36
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objective value
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Parallel Algorithms Synchronous Approach

Experiments: Logistic Regression (Parallel)

kdda: 8.4 M data points and 20 M features
A = 0.00001, machines=4, cores=8

— DSSO
-=-=- BMRM

0.8

0.6

objective value

0.4

0 500 1,000 1,500 2,000 2,500 3,000
seconds elapsed

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014

41/65



1 Motivations

2 Double Separability
Definition and Properties
Regularized Risk Minimization
Additional Examples

3 Parallel Algorithms
Synchronous Approach
= Asynchronous Approach

4 Extension: Collaborative Retrieval



Parallel Algorithms Asynchronous Approach

Some observations

The good

m Updates are decoupled and easy to parallelize
m Easy to implement using map-reduce

The bad

m Communication and computation are interleaved

¢ When network is active then CPU is idle
e When CPU is active then network is idle

Question: Can we keep CPU and network simultaneously busy?

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014

43/65



Parallel Algorithms Asynchronous Approach

Frequent synchronization harms scaling

n) n(2) h3) h4)
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Parallel Algorithms Asynchronous Approach

Frequent synchronization harms scaling
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Asynchronous Approach

Illustration of NOMAD communication
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Asynchronous Approach

Illustration of NOMAD communication
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.~ PalelAgorittms  Asynchronous Approach
Illustration of NOMAD communication
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Asynchronous Approach

Illustration of NOMAD communication
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Asynchronous Approach

Illustration of NOMAD communication
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Parallel Algorithms Asynchronous Approach

Experiments: Scaling on a single machine

2M users, 17K movies, 99M ratings
Netflix, machines=1, cores=30, A\ = 0.05, &£ = 100

0.95 T
. —o— NOMAD
. — FPSGD**
0.94(] --- CCD++
L
2
o 093
1]
2
0.92
91
0-9 0 100 200 300 400
seconds
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Parallel Algorithms Asynchronous Approach

Experiments: Scaling across multiple machines

2M users, 17K movies, 99M ratings
Netflix, machines=32, cores=4, A\ = 0.05, & = 100

1
—e— NOMAD
—— DSGD
0.98 DSGD++
) CCD++
W
2 .96
o
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o
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0 20 40 60 80 100 120
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Extension: Collaborative Retrieval

Problem setting

Users and ltems
B X ={x,29,...,2,}: Set of users
m Y ={y1,Yy2-..,Ym}: Set of items
m Q C X x Y: set of transactions

Learning to Rank
m f: X x )Y — R function which induces a ranking

ranks(z,y) = > I(f(z,y) - f(z,9) <0)

y' €V Y #y

m Objective function:

L(f)= ) ranke(z,y)

(z,y)€N
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ranks(z,y) = > I(f(z,y) - f(z.y) <0)

y' €V, y' #y

L(f):= ) ranks(z,y)

(z,y)€Q



ranks(z,y) = > I(f(z,y) - f(z.y) <0)

y' €V, y' #y

L(f)= > > I(f(@y) ~flzy)<0)

(z,9)€QY €YV, Y #Y



2
1]
(%]
o
1
0

-3 -2 -1 0 1 2 3
margin



. —  O0-1loss
* - - = logistic loss
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2 AN
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rankg(z,y) = > I(f(z,y) = f(z,¢) <0)

Yy €V, Y #Y

L(f):== Y > I(f(z.y)— f(z,y) <0)

(z,y)EQ Y €V, Y #y



rankg(z,y) = > I(f(z,y) = f(z,¢) <0)

Yy €V, Y #Y

L= > > oolfl@y) —flzy))

(z,9)€Qy' €Y,y #y

where o (t) = log, (1 +277).



loss

0-1 loss
. - logistic loss o ()
pi(oo(t))

margin




ranks(z,y) = > I(f(z,y) - f(z.y) <0)

y' €V, y' Ay

f(.f) = Z Z g0 (f(x7y)_f($’y,))

(z,y)eQ Y €EVY' #y

where o (t) = log, (1 +271).



ranks(z,y) = > I(f(z,y) - f(z.y) <0)

y' €V, y' Ay

L(f Z P1 ( Z g0 (f(x,y) - f(x,y')))

(z,y)€Q y' €Y,y #y

where o (t) = log, (1 4+ 27%) and p; () = log, (¢t + 1)



ranks(z,y) = > I(f(z,y) - f(z.y) <0)

y' €V, y' Ay

L(f Z Pl( Z UO(<Uw7Vy>_<vaVy/>))

(z,y)€Q y' €V #y

oo(t) =logy (1 +277), p1(t) = log,(t + 1)



Extension: Collaborative Retrieval

Stochastic gradients

L= > m| X oo(UsV,) = (Us,Vy))

(z,y)€Q Yy EVY' FyY

vzz,y(f) = [QVp Z 00 ((Us, Vy) — (Us, Vi)

Yy €V, Y #y
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Extension: Collaborative Retrieval

Bounding p; (see Gopal and Yang, 2012)

E(trn—1

p1(t) =logy(t+1) < —log, &+ Tog 2

L= > ol Y oo(UnVy)— (U, Vy))

(z,9)€Q Yy EV,Y Ay

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014 57 /65



Extension: Collaborative Retrieval

Bounding p; (see Gopal and Yang, 2012)

E(trn—1

p1(t) = logy(t +1) < —logy € + Tog 2

Eay (Zy’;ﬁy oo((Us, Vi) = (Us, Vi) + 1) -1
log 2

Z(f) = Z_log2 gzz:y +

(z,y)€2
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Extension: Collaborative Retrieval

Alternate minimization

(U, V)-step

1
log 2

VuvL({U,V,§) = Zga:y Z Vuyoo((Uz, Vy) = (Uz, Vyr))

(z,y)EQ y'#yY

m Sample (x,y) uniformly from Q
m Sample ¢’ uniformly from Y\ {y}
m Estimate the gradient by

Q- (Y[-1)
log 2

. fzy . VU,VCTO(<U:1:7 ‘/y> - <UT7 ‘/y/>)
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If U and V are fixed then

1
oy = S (U V) = (Ua V) + 1




Extension: Collaborative Retrieval

Experiments: Million song dataset

1,129,318 users, 386,133 songs, and 49,824,519 records

0.3 o RoBiRank 4
' + RoBiRank 16
/ e RoBiRank 32
®
c
oS 0.2
@
(6]
e
o
&
(0]
2 0.1
0

0 05 1 15 2 25 3
# machines x seconds elapsed -10°
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Extension: Collaborative Retrieval

Experiments: Million song dataset

1,129,318 users, 386,133 songs, and 49,824,519 records

0.3 -®- Weston et al. (2012)
’ - - RoBiRank 1
-— RoBiRank 4

é) ——  RoBiRank 16
S 02 —  RoBiRank 32
@
[$]
e P
o e
5
) ="
2 0.1
O ==0-==0-=-0
£ Jae ___.-"
o¢==""
0.2 0.4 0.6 0.8 1

seconds elapsed -10°
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Extension: Collaborative Retrieval

Experiments: Million song dataset

1,129,318 users, 386,133 songs, and 49,824,519 records

0.2

Mean Precision@10

-e®- Weston et al. (2012)
- - RoBiRank 1
-— RoBiRank 4
—_ RoBiRank 16
—_ RoBiRank 32

0 0.2 0.4 0.6 0.8 1
seconds elapsed -10°
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Extension: Collaborative Retrieval

Summary

Conclusion
m Double separability can be found in many statistical models
m It can be exploited to parallelize stochastic optimization

Future Goals
m Finding more applications
m Further generalizations (separability of finite order?)
m Support other inference methods
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Extension: Collaborative Retrieval

Collaborators
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Thanks!
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