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Motivations

Challenges for statisticians

Most statistical procedures require us to solve:

min
θ
f(θ) =

n∑
i=1

fi(θ).

Challenges:
n is large
dim(θ) is large
time is limited
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Motivations

Scale of the Challenge

Learn a recommendation model from
1.1 million users, 386K songs, and 49 million records
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Motivations

Scale of the Challenge

Complete a 50 million × 40K matrix with 2.7 billion entries
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Motivations

Scale of the Challenge

Learn a classification model from
8.4 million data points and 20 million features
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Motivations

Limitations of Batch Optimization

Gradient Descent Algorithm:
Start with some θ
Calculate the negative gradient −∇θf(θ)

Move towards the direction: θ ← θ − η · ∇θf(θ))

θ

Challenge: ∇θf(θ) =
∑n
i=1∇θfi(θ)
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Motivations

Attractiveness of Stochastic Gradient Descent

Stochastic Gradient Descent Algorithm:
Start with some θ
Choose i from 1, 2, . . . , n

Calculate the negative gradient −n · ∇θfi(θ)
Move towards the direction: θ ← θ − η · n · ∇θfi(θ))

θ(1)

Rational: ∇θf(θ) = E [n · ∇θfi(θ)]
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Motivations

Comparison of GD and SGD

Asymptotic analysis of Bottou and Bousquet (2011):

GD 2GD SGD
Time per iteration: n n 1

Time to error ε: 1
ε1/α

log2 1
ε

1
ε1/α

log 1
ε log log 1

ε
1
ε

Empirical results:
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Motivations

Another Perspective: Parallelism

(Image from https://www.jlab.org/news/releases/jefferson-lab-boasts-virginias-fastest-computer)
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Motivations

Parallelization of Gradient Descent

Master

Slave 2Slave 1 Slave 3 Slave 4

S1 =∑
i∈I1 ∇θfi(θ)

S2 =∑
i∈I2 ∇θfi(θ)

S3 =∑
i∈I3 ∇θfi(θ)

S4 =∑
i∈I4 ∇θfi(θ)

S1 S2 S3 S4

∇θf(θ) = S1 + S2 + S3 + S4θ ← θ − η · ∇θf(θ)
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Motivations

Difficulty for Stochastic Gradient Descent

Recall:
Start with some θ
Choose i from 1, 2, . . . ,m

Calculate the negative gradient −m · ∇θfi(θ)
Move towards the direction: θ ← θ − η ·m · ∇θfi(θ)
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Motivations

Our Approach

For the matrix completion problem, efficient parallel SGD is known
(Gemulla et. al, 2011)
Question 1: Can it be genearlized for larger class of problems?
Question 2: Is the class interesting?
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Double Separability Definition and Properties

Separability

The nicest situation occurs when the objective function is separable:

f(θ1, θ2, . . .) = f1(θ1) + f2(θ2) + · · ·

However, this is too much to hope for.
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Double Separability Definition and Properties

Double Separability

A function is doubly separable if it can be written:

f(w1, w2, . . . , wm, h1, h2, . . . , hn︸ ︷︷ ︸
θ

) =
∑

(i,j)∈Ω

fij(wi, hj).

It is easy to see that this is a weaker condition.
Separable⇒ Doubly Separable
Doubly Separable 6⇒ Separable
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Double Separability Definition and Properties

Double Separability
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Double Separability Definition and Properties

Minimization Problem

Solve:

min
θ
f(θ) =

∑
(i,j)∈Ω

fij(wi, hj).

Gradient Descent executes:

θ ← θ − η · ∇θ
∑

(i,j)∈Ω

∇θfij(θ)

Stochastic Gradient Descent (SGD) samples (i, j) ∈ Ω and executes:

θ ← θ − η · |Ω| · ∇θfij(wi, hj)

This can be simplified as:

wi ← wi − η · |Ω| · ∇wifij(wi, hj)
hj ← hj − η · |Ω| · ∇hjfij(wi, hj)
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Double Separability Definition and Properties

Saddle-point Problem

Solve:

min
w

max
h

f(w,h) =
∑

(i,j)∈Ω

fij(wi, hj).

Stochastic Saddle-point Optimization (SSO) samples (i, j) ∈ Ω and executes:

wi ← wi − η · |Ω| · ∇wifij(wi, hj)
hj ← hj + η · |Ω| · ∇hjfij(wi, hj)
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Double Separability Definition and Properties

Low Dependency of Updates
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If i 6= i′ and j 6= j′,{
wi ← wi − η · |Ω| · ∇wifij(wi, hj)
hj ← hj − η · |Ω| · ∇hjfij(wi, hj)

and{
wi′ ← wi′ − η · |Ω| · ∇wifi′j′(wi′ , hj′)
hj′ ← hj′ − η · |Ω| · ∇hj′ fi′j′(wi′ , hj′)

can be run simultaneously.
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Double Separability Regularized Risk Minimization

Original Formulation

In statistics and machine learning, we often solve: given data x1,x2, . . . ,xn,

min
w

P (w) = λ

m∑
i=1

φi (wi) +
1

n

n∑
j=1

`j (〈w,xj〉) ,

where each `j is convex.
Important examples:

Generalized Linear Model
• Linear Regression
• Logistic Regression
• Poisson Regression

Support Vector Machines
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Double Separability Regularized Risk Minimization

Problem reformulation

min
w

λ

m∑
i=1

φi(wi) +
1

n

n∑
j=1

`j(〈w,xj〉)

⇔ min
w,u

λ

m∑
i=1

φi(wi) +
1

n

n∑
j=1

`j(uj)

subject to uj = 〈w,xj〉 {j = 1 . . . n}

⇔ min
w,u

max
h

λ

d∑
i=1

φi(wi) +
1

n

n∑
j=1

`j(uj) +
1

n

n∑
j=1

hj(uj − 〈w,xj〉)

⇔ max
h

min
w,u

λ

d∑
i=1

φi(wi) +
1

n

n∑
j=1

`j(uj) +
1

n

n∑
j=1

hj(uj − 〈w,xj〉)
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Double Separability Regularized Risk Minimization

Problem reformulation

⇔ max
h

min
w,u

λ
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1

n

n∑
j=1

`j(uj) +
1

n

n∑
j=1

hj(uj − 〈w,xj〉)

⇔ max
h

min
w

λ

d∑
i=1

φi(wi)−
1

n

n∑
j=1

hj 〈w,xj〉+
1

n

n∑
j=1

min
uj

(`j(uj) + hjuj)

⇔ max
h

min
w

λ
m∑
i=1

φj(wi)−

〈
w,

1

n

n∑
j=1

hjxj

〉
+

1

n

n∑
j=1

`∗j (−hj)

⇔ max
h

min
w

f(w,h) :=
∑

(i,j)∈Ω

(
λ∣∣Ω̄i∣∣φi(wi)− 1

n
hjwixij +

1

n |Ωj |
`∗j (−hj)

)
︸ ︷︷ ︸

fij(wi,hj)
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⇔ max
h

min
w

λ
m∑
i=1

φj(wi)−

〈
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1

n

n∑
j=1

hjxj

〉
+

1

n

n∑
j=1

`∗j (−hj)

⇔ max
h

min
w

f(w,h) :=
∑

(i,j)∈Ω

(
λ∣∣Ω̄i∣∣φi(wi)− 1

n
hjwixij +

1

n |Ωj |
`∗j (−hj)

)
︸ ︷︷ ︸

fij(wi,hj)
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Double Separability Additional Examples

Matrix completion

A

≈
w

h
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Double Separability Additional Examples

Matrix completion

min
w ∈ Rm×k
h ∈ Rn×k

f(w,h),

f(w,h) =
1

2

∑
(i,j)∈Ω

{(
Aij − w>i hj

)2
+ λ

(
‖wi‖2 + ‖hj‖2

)}
.
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Double Separability Additional Examples

Other Examples

Matrix Factorization Models
• Singular Value Decomposition
• Nonnegative Matrix Factorization

Item Response Theory Model

J(w1, w2, . . . , wm, h1, . . . , hn) :=
m∑
i=1

n∑
j=1

−yij · (wi − hj) + log (1 + exp (wi − hj)) .

Multinomial Logistic Regression (Gopal and Yang, ICML 2012)
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Parallel Algorithms Synchronous Approach

Distributed SGD/SSO

Gemulla et al. (KDD 2011) proposed Distributed Stochastic Gradient
Descent (DSGD) algorithm
We extend it for saddle-point problems as Distributed Stochastic
Saddle-point Optimization (DSSO) algorithm
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Parallel Algorithms Synchronous Approach

Distributed SGD/SSO
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Parallel Algorithms Synchronous Approach
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Parallel Algorithms Synchronous Approach

Distributed SGD/SSO

w(4)

w(3)

w(2)

w(1)

h(1) h(2) h(3) h(4)

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

x

xx

x

x

x

x

x

x

x

x

x

Ω

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014 36 / 65



Parallel Algorithms Synchronous Approach
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Parallel Algorithms Synchronous Approach

Convergence Guarantee

Gemulla et al., 2011 showed that DSGD converges to local optimum of
the original function with probability one, using ODE method of Kushner
and Yin, 2003.
The proof can be adapted for DSSO.
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Parallel Algorithms Synchronous Approach

Scaling

Suppose p is the number of processors.

Space complexity for storing w, h, Ω: O
(

1
p

)
Amount of communication for each iteration: O(p)
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Parallel Algorithms Synchronous Approach

Experiments: Logistic Regression (Serial)

kdda: 8.4 M data points and 20 M features
λ = 0.00001
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Parallel Algorithms Synchronous Approach

Experiments: Logistic Regression (Parallel)

kdda: 8.4 M data points and 20 M features
λ = 0.00001, machines=4, cores=8
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Parallel Algorithms Asynchronous Approach

Some observations

The good

Updates are decoupled and easy to parallelize
Easy to implement using map-reduce

The bad
Communication and computation are interleaved

• When network is active then CPU is idle
• When CPU is active then network is idle

Question: Can we keep CPU and network simultaneously busy?
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Parallel Algorithms Asynchronous Approach

Frequent synchronization harms scaling
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Parallel Algorithms Asynchronous Approach

Illustration of NOMAD communication
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Parallel Algorithms Asynchronous Approach
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Parallel Algorithms Asynchronous Approach

Eventually . . .
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Parallel Algorithms Asynchronous Approach

Experiments: Scaling on a single machine

2M users, 17K movies, 99M ratings
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Parallel Algorithms Asynchronous Approach

Experiments: Scaling across multiple machines

2M users, 17K movies, 99M ratings
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Extension: Collaborative Retrieval

Problem setting

Users and Items

X = {x1, x2, . . . , xn}: set of users
Y = {y1, y2, . . . , ym}: set of items
Ω ⊂ X × Y: set of transactions

Learning to Rank

f : X × Y → R function which induces a ranking

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

Objective function:

L(f) :=
∑

(x,y)∈Ω

rankf (x, y)
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Extension: Collaborative Retrieval

Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

rankf (x, y)
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rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

∑
y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)
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Extension: Collaborative Retrieval

Zero-One loss
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Extension: Collaborative Retrieval

Zero-One loss
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Extension: Collaborative Retrieval

Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

∑
y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)
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Extension: Collaborative Retrieval

Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

∑
y′∈Y,y′ 6=y

σ0 (f(x, y)− f(x, y′))

where σ0(t) = log2 (1 + 2−t).
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Extension: Collaborative Retrieval

Bending the loss

−6 −4 −2 0 2 4 6

0

1

2

3

margin

lo
ss

0-1 loss
logistic loss σ0(t)

ρ1(σ0(t))

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014 54 / 65
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Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

∑
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where σ0(t) = log2 (1 + 2−t).

Hyokun Yun (Purdue University) Doubly Separable Models April 23rd, 2014 55 / 65



Extension: Collaborative Retrieval

Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

ρ1

 ∑
y′∈Y,y′ 6=y

σ0 (f(x, y)− f(x, y′))


where σ0(t) = log2 (1 + 2−t) and ρ1(t) = log2(t+ 1)
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Extension: Collaborative Retrieval

Rewriting the rank

rankf (x, y) =
∑

y′∈Y,y′ 6=y

I (f(x, y)− f(x, y′) < 0)

L(f) :=
∑

(x,y)∈Ω

ρ1

 ∑
y′∈Y,y′ 6=y

σ0 (〈Ux, Vy〉 − 〈Ux, Vy′〉)


σ0(t) = log2 (1 + 2−t), ρ1(t) = log2(t+ 1)
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Extension: Collaborative Retrieval

Stochastic gradients

L(f) :=
∑

(x,y)∈Ω

ρ1

 ∑
y′∈Y,y′ 6=y

σ0 (〈Ux, Vy〉 − 〈Ux, Vy′〉)



∇Lx,y(f) := |Ω| ∇ρ1

 ∑
y′∈Y,y′ 6=y

σ0 (〈Ux, Vy〉 − 〈Ux, Vy′〉)


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Extension: Collaborative Retrieval

Bounding ρ1 (see Gopal and Yang, 2012)

ρ1(t) = log2(t+ 1) ≤ − log2 ξ +
ξ · (t+ 1)− 1

log 2
.

L(f) :=
∑

(x,y)∈Ω

ρ1

 ∑
y′∈Y,y′ 6=y

σ0 (〈Ux, Vy〉 − 〈Ux, Vy′〉)


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Extension: Collaborative Retrieval

Bounding ρ1 (see Gopal and Yang, 2012)

ρ1(t) = log2(t+ 1) ≤ − log2 ξ +
ξ · (t+ 1)− 1

log 2
.

L(f) :=
∑

(x,y)∈Ω

− log2 ξxy +
ξxy

(∑
y′ 6=y σ0(〈Ux, Vy〉 − 〈Ux, Vy′〉) + 1

)
− 1

log 2
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Extension: Collaborative Retrieval

Alternate minimization

(U, V )-step

∇U,V L(U, V, ξ) :=
1

log 2

∑
(x,y)∈Ω

ξxy

∑
y′ 6=y

∇U,V σ0(〈Ux, Vy〉 − 〈Ux, Vy′〉)


Sample (x, y) uniformly from Ω
Sample y′ uniformly from Y \ {y}
Estimate the gradient by

|Ω| · (|Y| − 1) · ξxy
log 2

· ∇U,V σ0(〈Ux, Vy〉 − 〈Ux, Vy′〉)
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Extension: Collaborative Retrieval

Alternate minimization

ξxy-step

If U and V are fixed then

ξxy =
1∑

y′ 6=y σ0(〈Ux, Vy〉 − 〈Ux, Vy′〉) + 1
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Extension: Collaborative Retrieval

Experiments: Million song dataset

1,129,318 users, 386,133 songs, and 49,824,519 records
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Extension: Collaborative Retrieval

Experiments: Million song dataset

1,129,318 users, 386,133 songs, and 49,824,519 records
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Extension: Collaborative Retrieval

Summary

Conclusion
Double separability can be found in many statistical models
It can be exploited to parallelize stochastic optimization

Future Goals
Finding more applications
Further generalizations (separability of finite order?)
Support other inference methods
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Extension: Collaborative Retrieval

Collaborators
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Extension: Collaborative Retrieval

Q & A

Thanks!
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