タグ

数学に関するwthirowのブックマーク (12)

  • 自分のような専門外の人間が「数学書」を読む時のメモ|きぬいと

    2024/04/30追記 投稿後2年以上経つが、未だに「いいね」を頂戴することを嬉しく思っている。これだけ読まれると読みにくい箇所や誤字が存在することはやや誠実さに欠けるように思われたので、適宜修正した。 また、ヘッダーを追加した(@dharmazeroalpha 氏より拝借)。 さらに、参考文献を追加した(Polya, 竹内)。 導入:執筆の背景修士(文学)が数学を勉強する必要性に駆られている。 数学の書籍を読む方法について、学生時代の講義や自主ゼミによる遠い記憶と、数学徒の見よう見真似でしか理解できていないので、参考のために各大学の教員の方針がまとめられた情報も組み合わせて整理し共有する。 なお、基的には僕の僕による僕のためのメモなので、他の人の参考になるかどうかは知ったことではない。 目的統計検定1級のために以下の書籍を理解を伴って「読了」するための方法として、数学書の読み方の基

    自分のような専門外の人間が「数学書」を読む時のメモ|きぬいと
  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

    クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
  • コロナが変えた『数学科』 - 宇宙の始まり、その確率。

    新学期が始まってから はや2ヶ月半,私達はいまコロナと共に生きる方法を身に着けつつあるのではないでしょうか. 私は今年からゼミに所属し,確率論を学び始めました.しかしコロナが大学に及ぼした影響は非常に大きく,『数学科』の今までの環境も変えてしまいました. 今回はその環境の変化について,内部から詳しく述べたいと思います. 2020年6月30日 追記 東大数理科学の院試について新たな情報が得られたので追記しました. 『私の結論』 数学科はコロナの影響が少ない学科の1つであることは間違いないが,数学科のオンライン化はあまり良い影響を生まないだろう. 以下,詳しく述べたいと思います. ゼミ 数学科のゼミは1週間に2,3時間程度というのが一般的かと思います.他の理系学科に比べると恐ろしく少ないですが,数学のゼミというのは準備に何より時間がかかります.次のゼミの準備のために1週間勉強し続けるというのは

    コロナが変えた『数学科』 - 宇宙の始まり、その確率。
    wthirow
    wthirow 2020/06/28
    板書が学習スピードのボトルネックだったのでは。 新しいツールに慣れて将来はこのスピードが当たり前の世代が台頭して来ると予想します。
  • 頭の体操(IQ130):二つの円と直線に触れる円はいくつ?|中島聡

    この問題は、数年前にブログに書いたのネタですが、その後、実際のエンジニアの採用面接の際の問題として大いに活用した問題です。私はエンジニアを採用する際には、経験や知識よりも、「自頭の強さ」とコミュニケーション・スキルを何よりも重視しますが、その意味で、この問題は最適なのです。 問題は以下の通りです。 半径の異なる二つの円と、直線(長さは無限大)が下図のような関係になっている時に、両方の円と直線に接する円はいくつ存在しますか? 数学が強いと自負する人は、ここで読むのをストップして自分なりの回答を見つけようと試みても良いと思いますが、とても難しい問題なので覚悟してください。私が、実際に面接でこの問題を出した相手は100人以上いますが、ヒントなしで答えにたどり着いた人は一人もいません。 特に、入社面接のように心理的プレッシャーがかかる状況で、この問題を出して、全くヒントを与えないのはフェアではない

    頭の体操(IQ130):二つの円と直線に触れる円はいくつ?|中島聡
  • 【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる

    こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式

    【画像45枚あり】フーリエ変換を宇宙一わかりやすく解説してみる
  • 標準偏差とは何か!その求め方と意味を図解で徹底解説

    ここでは高校数学で登場し、統計学を学ぶ上でとても重要な役割を担う「標準偏差」について、図解を駆使し、その求め方と意味について解説していきます。 標準偏差の求め方や意味を理解するには、以下の4つのSTEPを踏めば簡単に理解することができます。 標準偏差は「式を覚える」のではなく「イメージ化」することがとても重要です。 4つのSTEPを質的なイメージで捉えることで「標準偏差とは何か」や「標準偏差はどうやって求めるのか」がスッキリ頭に入ってきますので、ぜひ最後までお付き合い下さい。 標準偏差の求め方 標準偏差を求める式がこちらになります。 いきなりかなり難しい式が登場してきました(汗 この式を覚えることはなかなか厳しいですよね。 ただ、この式の記号のひとつひとつをイメージ化しながら読み解くことで、この難しい式が実はとてもストーリー性のある面白い構造をしていることが分かってきます。 ここではその

    標準偏差とは何か!その求め方と意味を図解で徹底解説
  • 超簡単!Pythonを使って中学・高校レベルの数学問題を解いてみた - paiza times

    秋山です。 PythonはNumpyとかSympyとか、数値計算が得意なライブラリが充実しています。もちろん中学・高校の数学で習うレベルの計算もすぐにできちゃいます。 というわけで今回はPythonでプログラミングをして、中学・高校で習う数学の問題を解いてみました。 Pythonが使えるようになれば、中学・高校レベルの数学では困らずに済む。かもしれない。 ■中学2年生レベル ◆連立方程式 ◇問題 x + y = 3 x + 3y = 13 のとき、xとyを求めよ。 Numpyを使って、連立方程式を行列計算で解いてみました。 ■中学3年生レベル ◆2次方程式 ◇問題 x^2 - 10x + 24 = 0 のとき、xを求めよ。 昔の授業では (x - 4)(x - 6) = 0 x = 4 , 6 このような解法を習ったと思います。 この問題は、NumpyのPolynomialを使って式を作り

    超簡単!Pythonを使って中学・高校レベルの数学問題を解いてみた - paiza times
  • Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習

    このブログをはじめてから2年8か月と少し(ちょうど1000日くらい)が経った。 これまでに公開したエントリの数は299。 つまり、このエントリは記念すべき第300号!というわけ。 ブログとしてある程度の存在を認められるには300記事が1つの目安であるという説があるので[要出典]、 この300回目のエントリは当ブログにとって大きな節目と言える。 前回299号のエントリでは「なぜWikioediaはわかりにくいのか(数学とか)」という内容を書いた。 そこで言いたかったことを3行でまとめると次の通り。 ■ Wikipediaの説明は理工系の初学者にはわかりにくいね。 ■ そもそも説明のアプローチ(思想とも言う)が違うので、わかりにくくて当然だね。 ■ もっとわかりやすい説明の仕方がありそうだね。特に図を使った説明は直観的な理解を助ける力があるね。 まぁ、だいたいこんな感じ。 そして、その記事につ

    Wikipediaがわかりにくいので(数学とか)、わかりやすいサイトを作ってみた - 大人になってからの再学習
  • 計算の裏技(速算術)@受験の月

    速算術について 願望 わずかな工夫で計算式を見る目が変わる強力な計算技巧があるにもかかわらず、何故学校で教わらないのか。まだ基計算能力が固まっていない小学生低学年には早いかもしれないが、中学生以上の日人には常識であって欲しい。 意義 数学の試験では最終的には計算スピードがものを言う。速算術は計算そのものの時間を短縮する以上に、筆算を書く必要がなくなることによる時間短縮効果が大きい。複雑な計算を避け、計算回数を減らすことで、計算ミスの減少にも貢献する。受験で役立つのはもちろん、実生活でも役立つ。 訓練 速算術は単に方法を知っているだけでは実戦で使えない。気に入ったものを普段から意識して使うようにして、少しずつ使えるものを増やしていく。慣れてきたら、複数の技巧を組み合わせて使うこともできるようになる。 原理 原理はほとんど省略した。特に掛け算の速算の原理は展開・因数分解が背景にあるので、中

  • TechCrunch | Startup and Technology News

    Finbourne, founded out of London’s financial center, has built a platform to help financial companies organize and use more of their data in AI and other models. Even as quick commerce startups are retreating, consolidating or shutting down in many parts of the world, the model is showing encouraging signs in India. Consumers in urban cities are embracing the convenience of having groceries delive

    TechCrunch | Startup and Technology News
  • サービス提供終了のお知らせ

    日頃より、Momoたろうインターネットクラブをご愛顧いただきまして誠にありがとうございます。 「ホームページサービス」のサービス提供は2015年11月30日をもちまして終了させていただきました。 これまで長らくご利用いただき、誠にありがとうございました。 今後も、皆様によりよいサービスをご提供させていただけるよう、サービス品質向上に努めて参りますので、何卒、ご理解いただけますようお願 い申し上げます。 <Momoたろうインターネットクラブをご契約のお客様へ> 後継サービスとして「userwebサービス」を提供させていただいております。 詳しくは、以下のリンクをご参照ください。 ▼「userwebサービス」のご案内 http://www.ejworks.info/userhp/mmtr/index.html 今後ともMomoたろうインターネットクラブをご愛顧いただけますようお願い申し上げます

    wthirow
    wthirow 2011/12/08
    「ギャンブルで必ず勝てる方法を見つけたよ。」「倍プッシュだ!」
  • 「6÷2(1+2)=?」という小学生レベルの問題? 大勢の人が「1」と答え半分以上が不正解 - ガジェット通信

    台湾のfacebookコミュニティにて算数の簡単な式を出題したところ多くの人が間違った解答をしたという。その問題は次の通り。 6÷2(1+2)= この問題の正解はわかるだろうか? この式に対して大勢の人が「1」と答えたのだ。何故そのような解答になったのか。それは式の書き方にカラクリがあった。四則演算は優先順位があるのはご存じの通り。カッコの中を先に計算しその後に乗算(かけ算)、除算(割り算)を計算する(カッコの中に乗算、除算がある場合はそちらも優先)。しかしこの書き方だと、1+2で計算後に前の2を掛けて6に。最後に先頭の6と割って「1」という解答になってしまうのだ。 つまりこういうことだ。 <間違った解答> 6÷2(1+2)= 6÷2(3)= 6÷2×3= 6÷6=1 しかしこれは間違った解答。正しい答えは「9」となる。先ほども書いたとおり四則演算は乗算と除算を先頭から行う必要がある。正し

    「6÷2(1+2)=?」という小学生レベルの問題? 大勢の人が「1」と答え半分以上が不正解 - ガジェット通信
    wthirow
    wthirow 2011/05/11
    記事で正解と断言されると自分の判断に自信を持てなくなる。たとえその根拠が脆弱なものでも。
  • 1