タグ

関連タグで絞り込む (0)

  • 関連タグはありません

タグの絞り込みを解除

データサイエンスに関するtotoronokiのブックマーク (1)

  • SHAPで因果関係を説明できる? - Qiita

    はじめに 予測モデル(機械学習モデル)を解釈するのに有用なSHAPを用いて因果関係を説明することができるか、についてPythonによるシミュレーションを交えてまとめました。内容に誤り等ございましたら、ご指摘いただけますと幸いです。 結論 基的に、SHAPで因果関係は説明できません。これは、SHAPが予測モデルの因果ではなく相関を明らかにするものであるからです。 そこで今回は、予測モデルをSHAPで解釈する上でありがちなミスリーディングや、それに関連する因果効果を推定するためのアプローチについて記載しています。 そもそもSHAPとは SHAPとはSHapley Additive exPlanationsの略で、協力ゲーム理論のShapley Valueを機械学習に応用した手法です。「その予測モデルがなぜ、その予測値を算出しているか」を解釈するためのツールとしてオープンソースのライブラリが開

    SHAPで因果関係を説明できる? - Qiita
  • 1