幸か不幸か、ビジネス系のデータの多くは時系列データです。売上データもホームーページのアクセスログもセンサーデータも時系列データです。 時系列データを手にしたとき、どのようなデータなのか見てみたい、ということは多々あります。 多くの場合、折れ線グラフを描き傾向を掴む、ということをやります。 折れ線グラフを眺めると、トレンド(上昇傾向や下降傾向)や季節性などが見て取れるケースがあります。 そこで、サクッとトレンドや季節性などを掴む手法がSTL分解(Seasonal Decomposition Of Time Series By Loess)です。 STL分解(Seasonal Decomposition Of Time Series By Loess)を実施することで、元データをトレンド、季節性、残差に分解することができます。 元データ = トレンド + 季節性 + 残差 STL分解(Seas
前回からだいぶ間が空いた上に、要は{dlm}パッケージで遊ぼう!という大袈裟なタイトルの割に中身のないこのシリーズ記事ですが(笑)、取るものもとりあえずちょっと例題をやってみようと思います。参考文献はまずこちらのPetris本。 Rによるベイジアン動的線形モデル (統計ライブラリー) 作者: G.ペトリス,S.ペトローネ,P.カンパニョーリ,和合肇,萩原淳一郎出版社/メーカー: 朝倉書店発売日: 2013/05/08メディア: 単行本この商品を含むブログを見る あと、以前買ったけどまだ全部読み切ってないこちらのCommandeur*1本も。 状態空間時系列分析入門 作者: J.J.F.コマンダー,S.J.クープマン,Jacques J.F. Commandeur,Sime Jan Koopman,和合肇出版社/メーカー: シーエーピー出版発売日: 2008/09メディア: 単行本購入: 2
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く