3. Yahoo! JAPANのRDB環境 • 11g RAC Enterprise Edition • 約200DB • サーバ 200台, Exadata もあるよ • MySQL 5.1 (RR,Mixed) Percona 5.5 (RR,Mixed) Percona 5.6 (RC,RBR,GTID) • 約500DB • サーバ 300台 Oracle Database MySQL Percona
先週金曜日、BPStudy#25で、「パフォーマンスとスケーラビリティのためのデータベースアーキテクチャ」という題目で話をさせていただきました。その際に使用した発表資料は以下のとおりです。 1. Happy Optimization 最初に、最適化の考え方として、上限値を予測し、それを元にリソース配分を考える、という手法を説明しました。
MySQL のチューニング、と言った場合には、サーバーパラメータの調整や EXPLAIN コマンドを利用したクエリ実行計画の最適化が話題に上ることが多いです。しかし、発行する全ての SQL について、いちいち EXPLAIN コマンドを使って確認していては、いくら時間があってもたりません。チューニングを効率的に進めるには、まず、ボトルネックとなっている SQL クエリを特定し、次にその最適化を行うべきです。 ではどのようにして、ボトルネックを特定するのか。MySQL Conference & Expo 2009 のキーノートにおいて Mark Callaghan 氏は、Google では SHOW PROCESSLIST コマンドを使った統計的アプローチを使っていると述べていらっしゃいます (参照: MySQLConf 09: Mark Callaghan, "This is Not a
ここのところ、javaccとawsに魅了されている米林です。 よく使うDB(Oracle/MySQL/PostgreSQL/SQLServer)における設計時のサイズ見積もりで使うサイトの備忘録。 あとは、OracleからのPython情報。 Oracle Oracle 物理設計 http://www.oracle.com/technology/global/jp/columns/skillup/oracle9i/index.html 領域サイズ見積もり http://otn.oracle.co.jp/document/estimate/index.html OTNにログインする必要ありますがオンラインで見積もりが出来ます。 アカウント持っていない人は、この見積もりツールを使う目的でアカウントを作ってみてはいかがでしょうか。 OLTP系とDWH系においてブロックサイズを考慮し、DWH系はブ
いつも「MySQLを使うときはこうするべき」という観点から記事を書いているが、今日は逆に犯してはいけない過ちをリストアップしようと思う。 1. 全てのカラムにインデックスをつけるデータベース初心者がもっともやってしまいがちな間違いはコレではないだろうか。インデックスはいい。検索がとても速くなるから。しかし、それと引き替えにインデックスは更新するときにコストがかかるし、その分多くのディスクスペースを消費する。特に更新にかかるコストは時に甚大で、該当するインデックスのページがキャッシュ上にない場合はディスクからいったんそのページを読み込まなければいけない。ディスクアクセスは動作にとても時間がかかるので、インデックスが多数、例えば全てのカラムに付いていたりすると「あれ?固まったか?」というような状態になってしまうことがあるだろう。インデックスは必要なカラムにだけつけるようにテーブルを設計しよう。
以前、MySQLを高速化する10の方法という投稿で「EXPLAINの見方についてはいずれ解説しようと思う」と書いてしまったので、今日はその公約?を果たそうと思う。 MySQLのチューニングで最も大切なのは、クエリとスキーマの最適化である。スキーマの設計は一度決めてしまうとそのテーブルを利用する全てのクエリに影響してしまうためなかなか変更することは出来ないが、クエリはそのクエリだけを書き直せば良いので変更の敷居は低い。そして遅いクエリをなくすことは、性能を大幅に向上させるための最も有効な手段である。従って、アプリケーションの性能を向上させたいなら、まず最初にクエリのチューニングを検討するべきなのである。 最適化するべきクエリはスロークエリログやクエリアナライザで見付けられるが、ではそのようなクエリが見つかった場合にはどのように最適化すればいいのか?そのためにはまず現在どのようにクエリが実行さ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く