タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

facebookとdbに関するstealthinuのブックマーク (2)

  • Facebook、分散SQLエンジン「Presto」公開。大規模データをMapReduce/Hiveの10倍効率よく処理すると

    Facebookは、数ペタバイト級の大規模データに対しても、対話的にアドホックな問い合わせを可能にする分散SQLエンジン「Presto」を、オープンソースで公開しました。 PrestoはFacebook社内で大規模データの分析のために開発され、すでに同社社内使われているもの。 FacebookはPrestoを開発した背景として、大量のデータをHadoop/HDFSベースで保存したものの、バッチ指向のMapReduceではなく、リアルタイム性に優れた処理が必要になったためだと、次のように説明しています。 Facebook’s warehouse data is stored in a few large Hadoop/HDFS-based clusters. Hadoop MapReduce [2] and Hive are designed for large-scale, reliabl

    Facebook、分散SQLエンジン「Presto」公開。大規模データをMapReduce/Hiveの10倍効率よく処理すると
    stealthinu
    stealthinu 2013/11/08
    なぜに「Presto」って名前なんだよ…
  • FacebookがHBaseを大規模リアルタイム処理に利用している理由(前編)

    Facebookは大規模なデータ処理の基盤としてHBaseを利用しています。なぜFacebookはHBaseを用いているのか、どのように利用しているのでしょうか? 7月1日に都内で行われた勉強会で、Facebookのソフトウェアエンジニアであるジョナサン・グレイ(Jonathan Gray)氏による解説が行われました。 解説はほぼスライドの内容そのままでした。当日使われた日語訳されたスライドが公開されているので、ポイントとなるページを紹介しましょう。 Realtime Apache Hadoop at Facebook なぜリアルタイムデータの分析に、Hadoop/HBaseを使うのか? MySQLは安定しているが、分散システムとして設計されておらず、サイズにも上限がある。一方、Hadoopはスケーラブルだがプログラミングが難しく、ランダムな書き込みや読み込みに向いていない。 Faceb

    FacebookがHBaseを大規模リアルタイム処理に利用している理由(前編)
    stealthinu
    stealthinu 2013/05/16
    facebookでNoSQLのdbとしてhadoopやcassandraではなくhbaseを採用している理由について。
  • 1