タグ

状態空間モデルに関するp_tanのブックマーク (5)

  • 時系列分析のためのブックガイド | Logics of Blue

    新規作成:2018年03月05日 最終更新:2018年03月06日 この記事は、時系列分析をこれから学ぼうとされる方のためのブックガイドです。 書籍によってカバーされている範囲、R言語などのプログラミング言語を援用しているかしていないか、そして書籍の難易度などをまとめています。 また、私自身、「時系列分析と状態空間モデルの基礎」という時系列分析の入門書を執筆しており、このがどのような立ち位置にあるのかも説明しています。 目次 書籍紹介 時系列分析のトピック 状態空間モデルの分類 古典的な時系列モデルを学ぶことの意義 書籍で扱われている内容の比較 隼時系列の立ち位置 1.書籍紹介 Rによる実装なし 沖(2010)『計量時系列分析』 以下「沖」と略します。 実用的でバランスも良く、当サイトでも強く推している書籍です。 ARIMA・GARCH・見せかけの回帰などが丁寧に説明されています

  • [R] 非ガウシアン状態空間対応パッケージ, KFAS の使い方 - ill-identified diary

    概要 まだ日語情報の少ない KFAS を一連の状態空間モデルネタの続きとして紹介する. KFAS には一番良く使われている dlm パッケージよりも優れた点がいくつもある. 前回のように, パッケージの理念・構文・具体例を用いた実験を順に紹介していく. 状態空間モデルを扱う Rパッケージの中では dlm が最も有名だが, これは名前の示すように動的線形モデル dynamic linear model, すなわちノイズが正規分布になる, ガウシアン線形状態空間モデルしか扱うことができない. これに対して KFAS の長所はいくつもあり, 特に正規分布いがいの分布も扱うことができるという点は特筆すべきである. なお, KFAS を日語で紹介している文献は, 伊東先生の発表スライド, Rパッケージ“KFAS”を使った時系列データの解析方法 from Hiroki Itô 伊東 (2017,

    [R] 非ガウシアン状態空間対応パッケージ, KFAS の使い方 - ill-identified diary
  • カルマンフィルタと最尤法 | Logics of Blue

    新規作成:2017年04月16日 最終更新:2017年04月16日 カルマンフィルタを実行するには、パラメタを事前に与える必要があります。 そのパラメタを推定する方法が、今回紹介する最尤法です。 この記事では、尤度の説明をしたのちに、ローカルレベルモデルを例とした、状態空間モデルにおける尤度の計算方法を説明します。 またライブラリを使わない自作の尤度計算・最尤法実行メソッドを作って状態空間モデルを推定してみます。 この記事はカルマンフィルタの考え方の続編にあたるものです。 あらかじめこちらの記事を読んでおいた方が理解が深まるかと思います。 ソースコードはまとめてこちらに載せてあります。 スポンサードリンク 目次 尤度と最尤法の考え方 状態空間モデルにおける尤度計算 尤度計算プログラムの実装 最尤法の実装 1.尤度と最尤法の考え方 尤度とは、「パラメタを指定したときに、今手持ちのデータを再現

  • 二つの時系列データの間に「差」があるか判断するには - StatModeling Memorandum

    詳しい経緯はこのまとめを参照してください。時間軸でぶった切って各時点で検定を使う手法は、百歩譲って「差があるかどうか」は判定できるかもしれないけど、「どれほど異なるのか」については何も言えない。「どの時刻から異なるか」についても言えるか分からない。そこでベイズ統計モデリングで判断しようと思います。ベイズ統計モデリングでは多くの事前知識を仮定としてモデルに組み込みますが、検定も多くの仮定を前提にしている点は同様と思います。 データは雰囲気だけ似せて自作しました。野生型100個体、変異体10個体で1~24まで1時間ずつ測定して24時点としました。まとめを見ると144時間みたいですが24時間に簡略化します。データの構成は以下です。 typeX1X2…X23X2400.0710.555…-0.236-0.59700.4450.483…-0.1490.23100.2250.764…-0.116-0.

    二つの時系列データの間に「差」があるか判断するには - StatModeling Memorandum
  • http://homepage3.nifty.com/first_physics/ctrltheory/ctrltheory.html

  • 1