Ask questions, find answers and collaborate at work with Stack Overflow for Teams. Explore Teams Collectives™ on Stack Overflow Find centralized, trusted content and collaborate around the technologies you use most. Learn more about Collectives

As per the Spark 2.1.0 documentation, Both HashingTF and CountVectorizer can be used to generate the term frequency vectors. HashingTF HashingTF is a Transformer which takes sets of terms and converts those sets into fixed-length feature vectors. In text processing, a “set of terms” might be a bag of words. HashingTF utilizes the hashing trick. A raw feature is mapped into an index (term) by apply
You call various methods on the RDD that accept functions as parameters. // set up an example -- an RDD of arrays val sparkConf = new SparkConf().setMaster("local").setAppName("Example") val sc = new SparkContext(sparkConf) val testData = Array(Array(1,2,3), Array(4,5,6,7,8)) val testRDD = sc.parallelize(testData, 2) // Print the RDD of arrays. testRDD.collect().foreach(a => println(a.size)) // Us
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く