
コレステロールは最低摂取基準量はないので0としています(実はこれが伏線になっている)。 そして目的は、一日必要な栄養素を満たす最もカロリーの低い商品の組み合わせとします。金に糸目はつけません。健康第一! 解く 商品の数が96個、栄養素の数が16個なので、とても人間の手では解けません。そこでコンピューターの力を借ります。幸いPuLPというPythonで無料で利用できるソルバーがあるので、これで計算します。ちなみにExcelにもソルバーが搭載されていますが、この程度の数の決定変数でもエラーになって計算できませんでした。 # Import PuLP modeler functions from pulp import * # A new LP problem prob = LpProblem(name="mac", sense=LpMinimize) # Variables AA = LpVar
背景と概要 マクドナルドが大好きである。 しかし、ジャンクフード、健康に悪い、 などという話は以前よりよく見かける。 では本当にマクドナルドを食べ続けると、 健康に悪いのだろうか? マクドナルドだけで生活する場合本当に、 栄養の偏りやカロリー過剰などが発生するのだろうか? 本稿は、マクドナルドだけで 一日に必要なすべての栄養素を摂取する食事 をする場合に、どのようなメニューを選ぶべきで、 その結果どのような栄養問題が生じるのか、 PuLPというPythonの線型計画ライブラリを用いて 研究した結果をまとめたものである。 すなわち、マクドナルドだけで 完全栄養食としてのメニューを組み立てるには 何をどれだけ食べればいいの? そしてその時何カロリーになるの? という 世の中の0.001%くらいの人が一度は疑問に 思ったことがある問題に対して解を与える。 また、栄養食的な代表選手ということで、
この記事は ナーススケジューリング問題という最適化の問題を遺伝的アルゴリズムで解いてみたらまあまあの精度が出たので記録です pythonのdeapというライブラリを使っています 前提 ナーススケジューリング問題 ナーススケジューリング問題というものがあります 病院等の医療施設に勤める看護師の勤務スケジュールを決定する問題のことであり,シフトスケジューリング問題の代表例である.日勤・夕勤・夜勤等の複雑なシフト勤務や多岐に渡る制約の考慮のため,実際にスケジュールを求めるのは人手では手間のかかる困難な作業であり・・・ 要するにシフト勤務のスケジュールを自動的に最適に組むというものです 制約が色々あって、必要人数を満たすような基本的なものから、公平性、必須な資格/役割、この2人は(仲が悪いから?)一緒に入れないなど、いくらでも複雑になりうる問題て感じで、完璧な解答を作るのは困難なので、近似解を求め
Googleが無料で提供する「最適化問題」ソルバー 本日は、Googleが無料で公開(Apache License 2.0)している最適化問題ソルバー「Google Optimization Tools」を取り上げます。こちら、昨今話題の pokemon GO でも、このRouting使えるんじゃないか、と(ごく一部の特定層の間で)盛り上がっていたりもします。 Google Optimization Tools (=or-tools)は、「software suite」と表現されています。「Problem Solver(ソルバー)」の集合体と考えるのが良いかなと思います。※少し長いのですが、以下にOverviewを引用しておきます。(英語です。読み飛ばしてもOKです。)色々書かれてますが、要は「いろんな最適化問題を解く為のソルバーだよ」「簡単に使えて、オープンソースだよ」という感じです。
モチベーション 「あたらしい数理最適化 python言語とGurobiで解く」 を教科書として、数理最適化の基本となるところを、肌感覚で理解したい。そのために、 基礎的な内容 その例題演習 を書くことで、自身の理解と、新たな仕事の確保を目指します。私の大本のモチベーションはここを参照してください。 この記事を読むとできること Google OR-Toolで制約条件付きの簡単な問題を解けるようにする を目指します。 ステップ1: 写経 例の如く、Python用のStart Guideから、写経をしていきます。以下、引用。 from __future__ import print_function from ortools.linear_solver import pywraplp def main(): solver = pywraplp.Solver( 'SolveSimpleSystem
直感的かつ短いコードでアイデアを形にできるKerasはTensorFlowのラッパーとして大人気のライブラリです。本書でもTensorFlowをバックエンドとして使用し、自然言語処理、画像識別、画像生成、音声合成、テキスト生成、強化学習、AIゲームプレイなどさまざまなモデルをPythonとKerasで実装します。対象読者は、各種のディープラーニングを素早く実装したいプログラマー、データサイエンティスト。ディープラーニングを支える技術の速習にも好適です。数式はなるべく使わずにコードと図で説明します。ニューラルネットワークおよびPython 3の基本を理解している人であれば誰でも始めることができます。 目次 訳者まえがき まえがき 1章 ニューラルネットワークの基礎 1.1 パーセプトロン 1.1.1 最初のKerasのコードの例 1.2 多層パーセプトロン:最初のネットワークの例 1.2.1
はじめに 初級編 ゼロから作るDeep Learning 中級編 scikit-learnとTensorFlowによる実践機械学習 PythonとKerasによるディープラーニング 上級編 Pro Deep Learning with TensorFlow Deep Learning はじめに ディープラーニングに関する書籍は山ほど出てきています。 その中でどれを読めば良いのか分からない、というのは初心者にとって最初の問題でもあるでしょう。まずはブログなどのネットの情報を参考に勉強をする人が多いかと思われますが、私のブログも含め、大抵は個人の興味に沿ってバラバラに話題が提供されるため、できれば1つ1つ順を追って解説してくれる物が欲しいと感じるのが本音と思われます。 今回は、数ある書籍の中でも私自身が所持していておすすめできるディープラーニングの書籍を載せたいと思います。 初級編 ゼロから作
プログラム問題としてあまりにも有名になってしまったので、今ではあらゆる言語のFizzBuzzがそろっています。面白いですね。 深層学習 で FizzBuzz この記事の読まれている大半の方は、FizzBuzzを書くのにあまり苦労しないでしょう。 しかし、あなたが何かの拍子でプログラムの書き方を忘れてしまったらどうでしょう? 心配する必要はありません。そういうときこそAIの出番です。 最近は空前の人工知能ブームで、猫も杓子もDeep Learningです。 実際、Deep LearningによるFizzBuzzは、いくつも先例があります。 Fizz Buzz in Tensorflow TensorFlowコトハジメ Fizz-Buzz問題 Kerasでfizzbuzz問題を解いてみる 実装方法にはバリエーションがありますが、基本的には 入力は直前の数値 or 文字列 出力は「数値」「Fiz
2000年代にニューラルネットワークの研究が再び活発になりました。現在、ディープラーニングは近代的な機械学習の道を切り開いている非常に活発な研究領域となっています。Google、Microsoft、Facebookなどの企業では、社内のディープラーニングチームが急成長しています。しかし、多くの人にとってディープラーニングはまだまだとても複雑で困難な課題です。本書ではサンプルのPython 3プログラムと簡潔な説明を通してこの複雑な分野の主要な概念を紹介します。微積分、行列演算、Pythonの基礎があれば誰でも本書を始めることができます。 監訳者まえがき まえがき 1章 ニューラルネットワーク 1.1 知的な機械を作るということ 1.2 従来のプログラムの限界 1.3 機械学習のしくみ 1.4 ニューロン 1.5 線形パーセプトロンをニューロンとして表現する 1.6 フィードフォワードニュー
はじめに TensorFlow はなかなかとっつきにくい部分があるかと思います。書き方が独特なので、慣れるまでに時間がかかるかと思います。公式の MNIST は一通りやったけど、自分で考えたディープニューラルネットワーク (DNN) をどう書いたらいいかわからない……なんてこともあるのではないでしょうか。 この記事では、シンプルな問題を題材にして、 TensorFlow をコピペに頼らず、自分の書きたい DNN を 低レベル API を使ってどのように書くかを最小構成で説明していきます(今さら感はありますが。。)。ベースは公式ドキュメントの Low Level APIs のあたり です。 内容としては: TensorFlow の最小構成要素 TensorFlow で線形関数のフィッティング TensorFlow で DNN を実装 のようになっています。また、以下のような方を対象としており
このドメインは お名前.com から取得されました。 お名前.com は GMOインターネットグループ(株) が運営する国内シェアNo.1のドメイン登録サービスです。 ※表示価格は、全て税込です。 ※サービス品質維持のため、一時的に対象となる料金へ一定割合の「サービス維持調整費」を加算させていただきます。 ※1 「国内シェア」は、ICANN(インターネットのドメイン名などの資源を管理する非営利団体)の公表数値をもとに集計。gTLDが集計の対象。 日本のドメイン登録業者(レジストラ)(「ICANNがレジストラとして認定した企業」一覧(InterNIC提供)内に「Japan」の記載があるもの)を対象。 レジストラ「GMO Internet Group, Inc. d/b/a Onamae.com」のシェア値を集計。 2023年5月時点の調査。
青空文庫で作者っぽさ判定 青空文庫のテキストを利用して、任意の日本語文の作者っぽさを判定するモデルを作ってみました。 https://github.com/shibuiwilliam/aozora_classification 動機 2017/02のTFUG #3に参加したのですが、Rettyの中の方がcharacter-level convolutional neural networkをしていて、これで火がつきました。 https://tfug-tokyo.connpass.com/event/49849/ 元ネタとなったQiitaの記事はこちらです。 とても勉強になりました。ありがとうございます。 http://qiita.com/bokeneko/items/c0f0ce60a998304400c8 なおcharacter-level cnnの論文はこちらです。 https://p
目次 イントロ ← 今ココ Scikit-learn・Keras モデルの性能指標・評価方法 データの前処理・データ拡張 早期終了(early stopping) 転移学習 ハイパーパラメータのチューニング モデル圧縮 応用 はじめに 大学3年生のとき、小林雅一『AIの衝撃 人工知能は人類の敵か』という本をなんのきなし読んだことがあります。その本の中で「最先端のAIを実装できるのは世界でも50人くらいの研究者・大学院生くらいだ」といった文章を読み、なんだかすごそうという動機で機械学習に触れ始めました。そのころちょうど、TensorFlow 0.0.5が公開されて騒がれていたことを覚えていますが、当時ディープラーニングとは何かすらまったく分かりませんでした。それから約2年の月日が経ちますが、TensorFlowをはじめとしたフレームワークの普及もあってか「最先端のAI」というものを研究し実装
エンジニアの和田と大串です。 イタリアのRiminiという場所で開催されたEuroPython2017というイベントで登壇したので、そのレポートを書きます。 記事の概要 記事の構成は下記のようになっています。 EuroPythonとは 弊社発表内容 OpenAPI development with Python: 和田 How to apply deep learning for 3D object: 大串 カテゴリ別発表 Python系: 7件 A Python for Future Generations Type Annotations in Python 3: Whats, whys & wows! Write more decorators (and fewer classes) Programming in Parallel with Threads Pythonic Refa
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く