You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
注意:この記事は大好評放送中のハロー!!きんいろモザイクと最近話題のDeep learning をかぶせて話題沸騰!!にしたかったけれども、きんいろモザイクに出ている声優のサンプルボイス(東山奈央)が入手できず、DNNについても結局実装が間に合わずにrandom forestとか多項ロジスティック回帰でごまかしてるじゃんェ…と思ったらなんとかDNNできたので半分タイトル詐欺です。 感動した。 ご注文はDeep Learningですか? - kivantium活動日記 ここではOpenCV を用いて顔認識をして、そのデータをDNNに流して主要キャラ+その他判定をしている。 ならば、声優統計を修める者としては、音声解析の技術を用いて 誰が今歌っているのかを識別したい。 これをDNNの技術を用いてやってみる。 やり方としては、 サンプルボイスの収集→統計量の作成→学習→学習器の性能評価→推定→動
Sirius is an open end-to-end standalone speech and vision based intelligent personal assistant (IPA) service similar to Apple’s Siri, Google’s Google Now, Microsoft’s Cortana, and Amazon’s Echo. Sirius implements the core functionalities of an IPA including speech recognition, image matching, natural language processing and a question-and-answer system. Sirius is developed by Clarity Lab at the Un
このところDeep Learningが相当流行っているようで、ほとんど至るところで話題になっているのを見ます。 Deep Learningは深層学習とも呼ばれ、ニューラルネットワークの層をこれまでより深くして機械学習を行う技法です(だそうです)。 画像認識コンテストで他の方法と比べて非常に高い精度を示しており、以前は人の手で行っていた特徴の抽出まで行えます。 以前であれば車を認識するには車はどのような特徴を持っているかを人がモデル化して入力していたわけですが、この特徴を入力画像と与えられたラベルからニューラルネットワークが捉えてくれます。詳しいことはDeep Learningで検索して出てくる記事やスライドを参照のこと。 Deep Learning自体は容易に実装可能なものではなさそうですが、多くの研究グループがDeep Learningを行うためのソフトウェアをオープンソースにしているた
What is Torch? Torch is a scientific computing framework with wide support for machine learning algorithms that puts GPUs first. It is easy to use and efficient, thanks to an easy and fast scripting language, LuaJIT, and an underlying C/CUDA implementation. A summary of core features: a powerful N-dimensional array lots of routines for indexing, slicing, transposing, … amazing interface to C, via
9. まずは元となったパーセプトロンや3層NN… 2014/12/6 8 参考:http://www.slideshare.net/nlab_utokyo/deep-learning-40959442 f x1 x2 x3 単純パーセプトロン 単層&線形識別関数 3層ニューラルネットワーク フィードフォワード バックプロパゲーション
とりあえず読んでみたい、という方は:「ニューラルネットワークと深層学習」日本語訳のページをご覧ください。 Deep Learningってのがマジヤバイらしい・・・でも、取っかかりがつかめない・・・ ここ最近、Deep Learningの盛り上がりが凄いですね。私の中でも、深層学習を覚えなきゃ、置いてかれてしまい、ついには自分の仕事までAIに奪われるのでは、という危機感と、逆に今Deep Learningを使えるようになれば未来の発明者になれるのでは、という期待感が高まり、Deep Learningを勉強しなくては、と思い続けていました。 しかしながら、私はDeep Learningがどうしても理解できませんでした。これまで何十種類ものDeep Learningの教材を試してきました。しかし、Deep Learningがどうしても理解できませんでした。しかし、世の中にある文書で、なかなかとっ
2. ⾃自⼰己紹介 l 得居 誠也 (Seiya Tokui) l Preferred Networks リサーチャー l Jubatus のアルゴリズム開発 – Jubatus: NTTとPFIで共同開発しているオープンソースの分散 リアルタイム機械学習基盤 http://jubat.us/ l 現在は映像解析とディープラーニングの研究開発に従事 2 3. ニューラルネットの基礎、実装、実験について話し ます l ニューラルネットの道具 – 全体の構成、⾏行行列列による表現、損失関数、誤差逆伝播、SGD l 主要な実装 – Pylearn2, Torch7, Caffe, Cuda-‐‑‒convnet2 l フレームワークの基本的な設計 – テンソルデータ、レイヤー、ネット、最適化ルーチン – アーキテクチャの記述⽅方法(宣⾔言的、スクリプティング) l 実験の進め⽅方
Advanced Research Seminar I/III Graduate School of Information Science Nara Institute of Science and Technology January 2014 Instructor: Kevin Duh, IS Building Room A-705 Office hours: after class, or appointment by email ([email protected]aist.jp where x=kevinduh) Course Description Deep Learning is a family of methods that exploits using deep architectures to learn high-level feature representations from d
⾃ࠞ然⾔ࢠ語処理ྞ分野における ディープラーニングの現状 渡邉 ̀陽太郎ྒ 東北ྖ⼤֒学⼤֒学院情報科学研究科 IBIS2013 企画セッション2:ディープラーニング 2013/11/12 NLPにおけるディープラーニング 2 ⾔ࢠ語モデル の構築 ⾔ࢠ語の構成性 のモデル化 構成的意味論ྔ ⾔ࢠ語解析 (構造予測) Recursive Neural Networks Autoencoders (Socher et al., 2011, 2012, 2013) RBM (Minh and Hinton 2007) Feed-forward Deep NN (Bengio et al., 2003, Arisoy et al., 2012) Recurrent NN (Mikolov et al., 2010) (Wang and Manning 2013) (Mansur et al.,
自然言語処理まわりのDeep Learningを自分なりにまとめてみた “自然言語処理のためのDeep Learning”というスライドを公開しました. 自然言語処理のためのDeep Learning from Yuta Kikuchi カジュアルな感じで自然言語処理まわりのDeep Learningの話題をまとめた感じになっています. きっかけは,勉強会をしていることを知ったOBのbeatinaniwaさんにお願いされたことで, 株式会社Gunosyの勉強会の場で,発表の機会を頂きました. それが,9/11で,その後9/26に研究室内で同じ内容で発表しました. どちらも思った以上に好評を頂け,公開してはと進めて頂いたので,公開することにしました. もちろん間違いが含まれている可能性も多分にあるので.気づいた方はご指摘頂けると幸いです. 内容ざっくり 前半は,ニューラルネットワークを図を使
こんにちは.Machine Learning Advent Calendar (MLAC) 2013の14日目を担当します,[twitter:@kisa12012]です.普段は博士学生として,各地を放浪しながら機械学習の研究をしてます.今回の記事はボストンで執筆しています.現地時間(EST)での締切は守ったのでセーフ…ですよね? 本日は機械学習の技術的な内容の話ではなく,筆者が実践している機械学習関連の情報収集方法について纏めます*1.大きく分けて,学会情報の管理・論文情報の収集・その他の三種について述べたいと思います.今回のトピックの多くは他の分野にも通用する話になっているかと思います.他の分野の方がどのように情報収集されているのかも気になるところです. 学会情報の管理 まずは学会情報の管理についてです.機械学習に関連するカンファレンスは(特に近年乱立気味で)非常に沢山あります.全てをチ
Deep Learning for Natural Language Processing (without Magic) A tutorial given at NAACL HLT 2013. Based on an earlier tutorial given at ACL 2012 by Richard Socher, Yoshua Bengio, and Christopher Manning. By Richard Socher and Christopher Manning Slides NAACL2013-Socher-Manning-DeepLearning.pdf (24MB) - 205 slides. Abstract Machine learning is everywhere in today's NLP, but by and large machine lea
Deep learning with COTS HPC systems Adam Coates [email protected] Brody Huval [email protected] Tao Wang [email protected] David J. Wu [email protected] Andrew Y. Ng [email protected] Stanford University Computer Science Dept., 353 Serra Mall, Stanford, CA 94305 USA Bryan Catanzaro [email protected] NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050 Abstract
今回は、Deep Learningに用いられているDenoising Autoencoders (DA))のコードを紹介したいと思います。 細かな説明や数式の導出については前回の記事で紹介してありますのでそちらも参考にしてください。 今回も、Pythonで実装しており、numpyのみを使っています。(sysはstderrへの出力に用いているのみなので、なくてもよい) コードは以下。 DAは、Deep Belief Nets(DBN)で言うところの、制約付きボルツマンマシン(Restricted Boltzmann Machine, RBM)の部分に対応しています。 (DBNの記事はこちら、RBMの記事はこちら。) DAの層を積み重ねたDeepなニューラルネットワークは、Stacked Denoising Autoencodersとなりますので、そちらも近々、実装してみたいと思います。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く