タグ

bigqueryとdbtに関するmichael-unltdのブックマーク (5)

  • dbt-bigquery-monitoring: Monitoring BigQuery compute and storage with dbt

    dbt-bigquery-monitoring helps you to monitor your BigQuery compute and storage assetsIntroductionI’ve been using BigQuery for eight years, and it’s been an incredible platform for working with data at scale using SQL. Running queries and creating tables for analytics and data products is remarkably easy. The advent of dbt has further simplified creating complex workflows for many data practitioner

    dbt-bigquery-monitoring: Monitoring BigQuery compute and storage with dbt
  • デジタル庁のデータ分析基盤「sukuna」|デジタル庁

    はじめまして。デジタル庁ファクト&データユニット所属、データエンジニアの長谷川です。 記事ではデジタル庁内でデータ活用を推進するための組織と分析基盤についてご紹介します。 これまでのデジタル庁noteと比べると、技術寄りの話題が多い記事となりますが、庁内のデータ活用に興味のある方はぜひご覧ください。 デジタル庁のデータ活用組織「ファクト&データユニット」ファクト&データユニットとはデジタル庁の特徴の一つに、デジタル分野において各種の専門性をもつ「民間専門人材」が多く所属していることが挙げられます。 民間の専門人材は、デザイン、プロダクトマネジメント、エンジニアリングなど、領域ごとに「ユニット」と呼ばれる組織を構成しており(参考:デジタル庁 - 組織情報)、必要に応じてさまざまなプロジェクトにアサインされて業務を遂行する、人材プールのような役割を果たしています。 ファクト&データユニットも

    デジタル庁のデータ分析基盤「sukuna」|デジタル庁
  • dbtを触ってみた感想 - yasuhisa's blog

    データエンジニア系の勉強会で最近dbtがぱらぱらと話題に出てくるようになった & 4連休ということで、夏休みの自由研究がてらdbtを触ってみました。書いてる人のバックグラウンドは以下の通り。 DWHやデータマートの構築のためのETLツールを模索中(特にTの部分) プライベートではDataformを使っている 前職でも仕事の一部で使っていた 開発効率を計測するデータ基盤の管理にDataformを使ってみた - yasuhisa's blog 定期バッチ処理はArgo Workflows on GKEでやっている 触ってみないと肌感とか自分で運用できるかのイメージが湧かないのでね。 Dataformとの比較 細かいノウハウ 手元や番環境での動作 Argo Workflowとの連携 環境によってDWHの提供するバージョンを差し替える DWHやデータマートの外の情報をデータリネージに加える 既存

    dbtを触ってみた感想 - yasuhisa's blog
  • データ基盤で動いているSQLに手を加えることなく dbt を導入する

    サマリ データ基盤の運用に便利な dbt ですが、既存のSQLを拡張SQL記法で書き換えるのが難しく、移行できずにいるチームも多いと思います。そこで、テスト機能とメタデータ管理機能のみを、既存データ基盤に手を加えることなく、導入する方法を解説します。 *dbt cloud ではなく、OSS 版の dbt を利用します。 記事では、データ基盤の運用課題に有効な手段の一つである dbt を紹介しつつ、実際にBigQuery 上のデータ基盤に導入する方法をデモします。既存の基盤に手を加えずに、以下に示すようなテーブルに対する自動テストや、メタデータを統一して公開するwebサービスを立ち上げることができます。 テスト実行結果のイメージ Found 4 models, 2 tests, 0 snapshots, 0 analyses, 156 macros, 0 operations, 0 see

    データ基盤で動いているSQLに手を加えることなく dbt を導入する
  • タイミーのデータ基盤品質。これまでとこれから。 - Timee Product Team Blog

    はじめに 以前のデータ基盤 3つの問題解決と振り返り 問題1: データパイプラインの更新遅延 解決策 実装 振り返り 問題2: 分析チームへのクエリ修正依頼の増加 解決策 実装 振り返り 問題3: ETLパイプラインにおける加工処理の負債 解決策 実装 振り返り これからの品質に関する改善 はじめに 初めまして、タイミーのDRE (Data Reliability Engineering) チームの土川(@tvtg_24)です。 記事ではデータ品質の保守に着目してここ1年くらいで試行錯誤したことを振り返っていきたいと思います。 対象にしている読者は以下の方々です。 データ品質について考えている方 データ分析の品質担保に困っている方 ETLからELTへの基盤移行を考えている方 この記事は Data Engineering Study #11「6社のデータエンジニアが振り返る2021」 -

    タイミーのデータ基盤品質。これまでとこれから。 - Timee Product Team Blog
    michael-unltd
    michael-unltd 2022/03/24
    “dbt Cloudにより今までETL構成だったデータパイプラインをELT構成に変更し、EL処理はEmbulkやtrocco、T処理はdbt Cloudと、役割を分担することができます。”
  • 1