タグ

関連タグで絞り込む (1)

タグの絞り込みを解除

algorithmに関するlabochoのブックマーク (3)

  • スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C ) | 配電盤

    魔方陣の解の列挙は並列化しやすそうな問題ですが、ここでの方針では、探索効率を上げるためには条件分岐が不可欠なので、(「数」を求めるだけだとしても)GPGPUでうまくやる方法がわかりません。そこで、CPUに載っているコアのみで並列化します(Xeon Phiなら簡単なのでしょうか→追記参照)。 一番外側の、0から(1<<25)-1まで変化する変数iのループをOpenMPで並列化します(schedule(guided)では遅くなります。schedule(auto)はVisual C++でサポートされたら試します)。変数iは上の図の緑の部分(カンで5個にしました)を各数5ビットで表現し、つなげたものです。マスに入りうる数は1から25までなので、5ビットというのはちょっと冗長ですが、とりあえずはよしとしましょう。 出力はバイナリ形式で、1つの解に25バイト使います(1つのマスに入る数を1バイトで表現

    スパコンで約2時間36分かかったという、5×5の魔方陣の全解列挙を、パソコンで試す(C ) | 配電盤
  • アルゴリズムの勉強のしかた - きしだのHatena

    この記事で、アルゴリズムの勉強はアルゴリズムカタログを覚えることじゃないよということを書きました。 プログラムの理論とはなにか アルゴリズムの勉強というのは、スポーツで言えば腕立て伏せや走り込みみたいな基礎体力を養うようなもので、「ソートなんか実際に自分で書くことないだろう」とかいうのは「サッカーは腕つかわないのに腕立ていらないだろう」とか「野球で1kmも走ることなんかないのに長距離の走り込みいらないだろう」とか言うようなものです。 Twitterでアルゴリズムの勉強とはなにかと尋ねられて、「アルゴリズムの基的なパターンを知って、それらの性質の分析のしかたをしって、いろいろなアルゴリズムでどのように応用されているか知って、自分が組むアルゴリズムの性質を判断できるようになることだと思います。 」と答えたのですが、じゃあ実際どういうで勉強すればいいか、ぼくの知ってるからまとめてみました。

    アルゴリズムの勉強のしかた - きしだのHatena
  • いつからその方法で偏りのない乱数が得られると錯覚していた? - アスペ日記

    私はつい最近まで勘違いしていました。 ここのページに書いてあるような方法で、一様分布する整数が得られると。 int random(int n) { return (int)(( rand() / (RAND_MAX + 1.0) ) * n); } この方法、一見すると実に一様分布が得られそうに見えるんですよね。 どういう思考回路を通っているかというのを自己分析すると、次のような感じです。 1. rand() では 0〜RAND_MAX のランダムな整数が得られる。 2. それを RAND_MAX + 1 で割ると、[0, 1) に一様分布する実数が得られる。 3. [0, 1) の一様な実数を n 倍して小数点以下を切り捨てたら、0 から n-1 に一様分布する整数が得られる。 これの罠なところは、1 と(特に)3 が正しいというところだと思います。 ただ、2 がダウト。 思いっきりダウ

    いつからその方法で偏りのない乱数が得られると錯覚していた? - アスペ日記
  • 1