タグ

機械学習に関するhtenakhのブックマーク (6)

  • 異常検知プロジェクトを取り巻くtips - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 最近、異常検知に関する案件に関わって、結構苦労しました。 その理由の一つとして、異常検知の手法については一部がでているもののそこまで多くはなく、また、異常検知プロジェクトの進め方という意味では情報があまり見つけられなかったというのがあります。 そこで、プロジェクト実施前に、こんな情報があればよかったなという内容についてまとめました。 自分が関わった案件は、設備のセンサーデータを用いた異常検知だったため、その内容に偏っていますが、全体の流れや考え方としてはあまりドメインや異常検知によらないものと思います。 なお、個別の異常検知

    異常検知プロジェクトを取り巻くtips - Qiita
  • 使える統計モデル10選(後編) | AIdrops

    使える統計モデル10選(後編) 前回の記事では、使える統計モデル10選の前編として、主に回帰モデルに焦点を絞って紹介しました。 今回はその後編に当たる生成モデル編です。生成モデル(generative model)は、端的に言うと、コンピュータシミュレーションによりデータを人工的に作ることができるモデルです。データが作られる過程をうまく表現したモデルを構築することができれば、予測だけではなく異常検知やデータ圧縮など幅広いタスクに応用することができます。 生成系(教師なし系) 回帰モデルと同様、生成モデルも数個のパラメータから構成される簡単なものから、複数のモデルを巧みに組み合わせた複雑なものまで無限に存在します。ここでは、データ圧縮から自然言語処理、ソーシャルネット解析までさまざまなデータ解析のタスクで利用されている代表的な生成モデルを5つ選んで紹介します。また、生成モデルのすべては潜在変

    使える統計モデル10選(後編) | AIdrops
    htenakh
    htenakh 2020/04/23
  • 機械学習モデルの判断根拠の説明(Ver.2)

    【第40回AIセミナー】 「説明できるAI 〜AIはブラックボックスなのか?〜」 https://www.airc.aist.go.jp/seminar_detail/seminar_040.html 【講演タイトル】 機械学習モデルの判断根拠の説明 【講演概要】 講演では、機械学習モデルの判断根拠を提示するための説明法について紹介する。高精度な認識・識別が可能な機械学習モデルは一般に非常に複雑な構造をしており、どのような基準で判断が下されているかを人間が窺い知ることは困難である。このようなモデルのブラックボックス性を解消するために、近年様々なモデルの説明法が研究・提案されてきている。講演ではこれら近年の代表的な説明法について紹介する。Read less

    機械学習モデルの判断根拠の説明(Ver.2)
    htenakh
    htenakh 2020/01/30
  • ゴリゴリの文系がAIをほぼ独学した半年 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? ゴリゴリの文系(偏差値40前半)がAIを学んだ半年 どうも、ゴリゴリの文系です。 商業高校卒業したあと、文系学部にいったので、そこらへんの文系とは格が違います。 文系界のサラブレットです。 肝心な数学力ですが、高校で数学Aまで勉強して、大学で数学入門とっただけです。 つまり、戦闘力0.1ぐらいです。 これから勉強する人に向けてポエムをつらつらと書いていきます。 やってきたこと 実装から始めたい人はある程度参考になるかと。 理論から始めたい人は微積、線形代数、確率統計の基礎を習得してからcouseraに行くのが良いのではないでしょうか。(

    ゴリゴリの文系がAIをほぼ独学した半年 - Qiita
    htenakh
    htenakh 2019/12/28
  • 機械学習の説明可能性(解釈性)という迷宮 - 渋谷駅前で働くデータサイエンティストのブログ

    ちょっと前に、しょうもないことを某所で放言したら思いの外拡散されてしまいました。 機械学習の説明可能性(解釈性)、大半のケースで求められているのは厳密な分類・回帰根拠ではなく受け手の「納得感」なので、特に実ビジネス上は説明可能性に長けたモデルを開発するより、納得できないお客さんを巧みに関係性構築した上で口八丁で完璧に説得できる凄腕営業ピープルを雇う方が重要— TJO (@TJO_datasci) 2019年11月23日 これ自体は与太話なので実際どうでも良い*1のですが、最近色々な研究や技術開発の進展はたまた実務家による考察などを見ていて、「機械学習の説明可能性(解釈性)というのは思った以上に複雑な迷宮だ」と感じることがままあったのでした。 ということで、今回の記事では僕のサーベイの範囲でザッと見て目についた資料などを超絶大雑把にリストアップした上で、主に実務における説明可能性とは何かとい

    機械学習の説明可能性(解釈性)という迷宮 - 渋谷駅前で働くデータサイエンティストのブログ
    htenakh
    htenakh 2019/12/21
  • 1. 機械学習概論と単回帰 (1) | 筑波大学オープンコースウェア|TSUKUBA OCW

    計算機による自律的な学習を目指す機械学習や, 大規模情報源からの知識発見を実現するデータマイニングの理論について, 教師付き学習, 教師なし学習を中心に理解する.

    1. 機械学習概論と単回帰 (1) | 筑波大学オープンコースウェア|TSUKUBA OCW
    htenakh
    htenakh 2019/09/28
  • 1