タグ

mathに関するhirose504のブックマーク (15)

  • 藤井四段で学ぶ最尤推定、MAP推定、ベイズ推定 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 藤井四段の連勝が止まらないですね。 21日の対局に勝利して、連勝記録を1位タイの28連勝まで伸ばしてきました。26日の対局で勝利すれば単独トップになります。 そんな藤井四段の対戦成績は28勝0負。勝率でいうと1.000です。クラクラするような成績ですが、この「勝率」とは何かを少し数学的にみてみましょう。 単純に言葉だけをみると「藤井四段が勝利する確率」ではないかと考えられます。つまり $$P(\text{勝利}\ |\ \text{藤井四段}) = 1.0$$かのように感じます。 ではここで、26日の対局で藤井四段が勝利する確率はどれだ

    藤井四段で学ぶ最尤推定、MAP推定、ベイズ推定 - Qiita
  • 「1001の素数じゃないのかよ具合はそんじょそこらの自然数では太刀打ちできない」「7は野放しにしちゃいけない」「2とか5は独占欲が強い」 - Togetterまとめ

    U @ebleco 76円に対して131円を出すのは、『6に対して11』と『7に対して12』という『直感に反するお釣り算』屈指のキモさを持つ計算を繰り上がらせてるので、最高レベルにキモい。 2017-04-10 19:16:25 U @ebleco そもそも143が『11と13の積』っていう「お前素数じゃないのかよ」界のサラブレッドなので、そこに数多の『素数っぽい数字』を生み出した直感に反するベテラン7をかける事によって、1001の「お前素数じゃないのかよ」具合はそんじょそこらの自然数では太刀打ち出来ないレベルにまで達する。 2017-04-10 19:33:39 リンク Wikipedia 素数 素数(そすう、英: prime number)とは、1 より大きい自然数で、正の約数が 1 と自分自身のみであるもののことである。正の約数の個数が 2 である自然数と言い換えることもできる。1

    「1001の素数じゃないのかよ具合はそんじょそこらの自然数では太刀打ちできない」「7は野放しにしちゃいけない」「2とか5は独占欲が強い」 - Togetterまとめ
  • Dwitter - javascript demos in 140 characters

    Please log in (or register) to post a dweet (copy-paste the code somewhere safe to save it meanwhile) u(t) is called 60 times per second. t: Elapsed time in seconds. S: Shorthand for Math.sin. C: Shorthand for Math.cos. T: Shorthand for Math.tan. R: Function that generates rgba-strings, usage ex.: R(255, 255, 255, 0.5) c: A 1920x1080 canvas. x: A 2D context for that canvas.

    hirose504
    hirose504 2017/02/22
    C🤓🤓🤓🤓🤓L!
  • 結局、機械学習に必要な数学ってなに?

    前置き# 記事がはてぶ炎上して恥ずかしい思いをしたので、結構書き直しました。 この記事よりも良質な記事を参考記事に列挙したので、このページをブックマーク集だとして、他のページを参照していただければと思います。 はじめに# 機械学習を勉強するにあたって、 ベースとなる数学を勉強したいというモチベーションが高まってきた。なぜか?それは、今まで数学的な知識なしに勉強を進めていたのたけれども、論文が読めなかったり、少し数式で込み入ってくると、とたんにわけがわからなくなったからだ。 しかし、一番のモチベーションは、やっぱり機械学習を勉強するものとしての登竜門、PRML(パターン認識と機械学習)を読みたいというものがある。 参考記事# そこで、機械学習のために必要な数学を調べてみたのだが・・・どのサイトをみてもこれはというものがみつからないのだ。 2017年現在で、有益な記事をできるかぎり集めてみた。

    結局、機械学習に必要な数学ってなに?
  • 「一様乱数の平均値を正規乱数として代用する」という話をゆるふわ統計的に検証する

    「一様乱数を足し合わせて平均値をとった値は正規分布っぽくなるよ」というツイートを見かけて、「それって統計的にどうなんだろう?」という疑問が湧いたので検証してみました。 はじめに 昨日・一昨日ぐらいに Twitter 上でちょっとした話題になっていた アニメーションの監修で、「 Random();の代わりに、(Random()+Random()+Rrandom()+Random()+Random())/5.0f; を使うと、動きにコクが出る」と言ったら、ピュアオーディオ扱いされるのですが・・・これは根拠のあるアルゴです。 — 深津 貴之 (@fladdict) 2016年11月3日 というツイートに関連して、「一様乱数の平均値を正規乱数として代用する」的なツイートをちらほら見かけて気になっていたので、統計的に検証してみましたよ、というブログエントリです (このツイート自体に対して揶揄するつも

    「一様乱数の平均値を正規乱数として代用する」という話をゆるふわ統計的に検証する
    hirose504
    hirose504 2016/11/06
    ゆるふわしてない
  • NHKみんなのうた「算数チャチャチャ」 完全に高校数学で衝撃が走る

    喬田 @_katari_c 算数チャチャチャとかいうみんなのうた流れてて へ~算数か~子供も歌に乗せてならわかりやすいよな~ とか思ったけどいきなり分母に平方根が含まれてる分数出てきてびびったし二番は三角比の話いきなり出てきたし解説が雑すぎてわかるわけないし数学デスメタルとかにかえた方がいい 2016-06-22 11:07:06 リンク Wikipedia 算数チャチャチャ 「算数チャチャチャ」(さんすうチャチャチャ)は、日の歌。作詞・作曲:山口和義。NHKの番組『あなたのメロディー』の入選曲で、1973年6月から、NHKの歌番組『みんなのうた』で放送された。 『あなたのメロディー』ではペギー葉山、『みんなのうた』ではペギー葉山&ヤング101によって歌われた。『みんなのうた』での映像は、当時の最先端技術を使用したスキャニメイトアニメーションであった。 作詞・作曲を担当したのは山口和義。

    NHKみんなのうた「算数チャチャチャ」 完全に高校数学で衝撃が走る
    hirose504
    hirose504 2016/06/23
    あとで聴く
  • とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス

    「アラブ世界では代数学が発展した」とはよく聞くけど、どうも自分の中でしっくりきていなかったというか、要するにあんな難しいものがどうやって始まり発展したのだろう? と気になっていたのですが、最近思うのです。代数学の始まりとは、「イコールの学問」だったのではないか? と。 つまり、「ある数を2乗して1引いたら元の数と同じになるような数はあるかな?」とか、「1引いてから2乗したら元の数の2倍になるような数があったら面白そうじゃない?」みたいな素朴な疑問から始まったのではないかと思うのです。なにかの操作をした数と別の操作をした数が「同じ」、すなわちイコールの学問ではないかと。 これは現代の言葉で言えば前者は「」、後者は「」のことになります。これはまさに方程式です。「代数学が発展した」「方程式の学問が発展した」っていきなり言われても実感がわかないけど、こういう素朴な疑問から始まったとしたら、最初期の

    とりあえずだまされたと思って-((-1)^(1/7))を2乗してみてくれ - アジマティクス
  • Swiftで代数学入門 〜 1. 数とは何か? - Qiita

    これが何のことか分からなくても、最後の1行を見てください… a * a == 2 となっています! a は自乗して 2 になる数なんだから、これは $\sqrt{2}$ そのものです。同じように虚数単位 $i$ や $1$ の原始 $n$ 乗根 $\zeta_n$ も、近似ではない「その数そのもの」をプログラムで実現できてしまうのです。 このシリーズでは 「数を作る = 代数拡大」 を実装することをゴールとしつつ、その過程で代数学における「群・環・体」などの基礎的な概念についても解説していきたいと思います。 シリーズの狙い: 抽象的で難しい代数学を、プログラムを通して身近に感じられるようにしたい。 関数型やプロトコル指向に対する数学的な視点を展開してみたい。 「なるほど、分からん」ではなく「なるほど、すごい!」を目指す。 ちなみに僕は代数学はあまり得意ではないので、間違いなどあればご指摘下

    Swiftで代数学入門 〜 1. 数とは何か? - Qiita
  • 0の0乗が1でないと困る - Qiita

    である。 $x^y$ は、$(0,0)$ で不連続になっているので、極限を根拠に $0^0$ を定めるとすると、不定とか定義されないとか、そういうことになる。 これは未定義のほうが好ましいかもしれない理由のひとつにはなるけれど、決して決定的ではない。 連続性を根拠にするのは、一見未定義であっても連続性を保つように定義できれば幸せになるからだと思う。 とはいえ。 $x^y$ の $(0,0)$ における連続性と、$0^0$ の値は、別の話だ。 どうやっても連続性が保てないからといって、よい定義が存在しないという事にはならない。 というわけで、$0^0$ が時折現れる世界をより住みやすくするためにはどうすればいいのかを考える。 ゼロ除算のように未定義にするのがよいのか、${0!}$ のように、よい値を定義するのがよいのか。 #指数法則 $0^0$ をどうするかにあたって、指数法則は大事だ。 連

    0の0乗が1でないと困る - Qiita
  • 【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita

    %matplotlib inline import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import seaborn as sns import numpy.random as rd m = 10 s = 3 min_x = m-4*s max_x = m+4*s x = np.linspace(min_x, max_x, 201) y = (1/np.sqrt(2*np.pi*s**2))*np.exp(-0.5*(x-m)**2/s**2) plt.figure(figsize=(8,5)) plt.xlim(min_x, max_x) plt.ylim(0,max(y)*1.1) plt.plot(x,y) plt.show() この図は、平均$\mu$、標準偏差$\sigma$

    【統計学】尤度って何?をグラフィカルに説明してみる。 - Qiita
  • 手続き型のダンジョン生成アルゴリズム | プログラミング | POSTD

    この投稿では、以前に TinyKeepDev が こちら で述べたランダムなダンジョンを生成する技法について説明しようと思います。元の投稿に比べて、もう少し具体的に話を進めるつもりです。まずは、以下に示したアルゴリズムの一般的な動作をご覧ください。 部屋の生成 はじめに、幅と高さを持つ部屋を円の中にランダムに配置しましょう。TKdevのアルゴリズムは、各部屋のサイズを生成するのに正規分布を用いています。これは一般的にとてもいいアイデアです。なぜかと言うと、これによってより多くのパラメータを扱うことができるようになるからです。幅/高さの平均と標準偏差間の異なる比率を選ぶと、通常は見た目の違うダンジョンとなります。 ここで実行すべき関数は getRandomPointInCircle です。 function getRandomPointInCircle(radius) local t = 2

    手続き型のダンジョン生成アルゴリズム | プログラミング | POSTD
  • 数学を避けてきた社会人プログラマが機械学習の勉強を始める際の最短経路 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 巷ではDeep Learningとか急に盛り上がりだして、機械学習でもいっちょやってみるかー、と分厚くて黄色い表紙のに手をだしたもののまったく手が出ず(数式で脳みそが詰む)、そうか僕には機械学習向いてなかったんだ、と白い目で空を見上げ始めたら、ちょっとこの記事を最後まで見るといいことが書いてあるかもしれません。 対象 勉強に時間が取れない社会人プログラマ そろそろ上司やらお客様から「機械学習使えばこんなの簡単なんちゃうん?」と言われそうな人 理系で数学はやってきたつもりだが、微分とか行列とか言われても困っちゃう人 この記事で行うこと

    数学を避けてきた社会人プログラマが機械学習の勉強を始める際の最短経路 - Qiita
  • 裏サンデー

    義娘が悪役令嬢として破滅することを知ったので、めちゃくちゃ愛します~契約結婚で私に関心がなかったはずの公爵様に、気づいたら溺愛されてました~@comic

    裏サンデー
    hirose504
    hirose504 2013/09/11
    なんとも言えないシュールさがある
  • 数式を綺麗にプログラミングするコツ #spro2013

    8. 対象とする「数式」 • 行列やその要素の掛け算が出てくる数式 – 機械学習などの手法には、行列を使って表さ れているものが多い – 強力な線形代数ライブラリをうまく使えば楽 に実装できる • 数式の例はC.M.ビショップ「パターン認 識と機械学習」(以降 PRML)から採用 – ただし機械学習の知識は一切要求しない 9. 方針 • 「楽に」「確実に」実装しよう – 間違いにくく、可読性が高い – 最速は必ずしも目指していない • 動くものを確かに作れるようになってから • Python/numpy と R での実装例を紹介 – 基的な行列計算しか使わないので、その他 の環境(Eigen など)にも参考になる(はず)

    数式を綺麗にプログラミングするコツ #spro2013
  • 1