タグ

deeplearningに関するhirose504のブックマーク (14)

  • ディープラーニングの限界 | POSTD

    (注:2017/04/08、いただいたフィードバックを元に翻訳を修正いたしました。 @liaoyuanw ) この記事は、私の著書 『Deep Learning with PythonPythonを使ったディープラーニング)』 (Manning Publications刊)の第9章2部を編集したものです。現状のディープラーニングの限界とその将来に関する2つのシリーズ記事の一部です。 既にディープラーニングに深く親しんでいる人を対象にしています(例:著書の1章から8章を読んだ人)。読者に相当の予備知識があるものと想定して書かれたものです。 ディープラーニング: 幾何学的観察 ディープラーニングに関して何より驚かされるのは、そのシンプルさです。10年前は、機械認識の問題において、勾配降下法で訓練したシンプルなパラメトリックモデルを使い、これほど見事な結果に到達するなど誰も想像しませんでした。

    ディープラーニングの限界 | POSTD
    hirose504
    hirose504 2018/04/06
    仮説を扱う能力、抽象化と推論を実行する能力が人間の認知の特徴。非常に限られたデータを使用する、または新しいデータを全く使用せずに、未経験の状況に適応する能力。ディープネットの行動とは180度異なる。
  • Google Colaboratoryが便利・高速で凄過ぎる - Itsukaraの日記

    Googleが研究の一環で提供しているColaboratoryを試してみました。 Jupyterと同じようなGUIPythonのプログラムを実行可能で、GPUも使えます。 Jupyterと同様に、先頭に「!」を書くことで、Linuxのコマンドを実行可能であり、「!pip」「!conda」「!apt-get」などで機能を追加できます。 実行結果をファイルシステム上に保管でき、共有リンクを使って取り出せます。 ただし、12時間経過すると強制終了されて、ファイルは失われます。 しかし、Notebookが動いている仮想マシンにGoogleドライブをマウント可能であり、これにより、実行結果をGoogleドライブ上のファイルとして保管できます。 Deep Learningでは、途中の状態をファイルに保管して、そこからResumeできるようにプログラムを書くことが多いので、12時間で一度強制終了しても

    Google Colaboratoryが便利・高速で凄過ぎる - Itsukaraの日記
  • Deep Learning基礎講座演習コンテンツ 公開ページ

    プログラムの最大の特徴の一つは、全てのトピックについて、演習を中心に構成されている点です。実際に手を動かしながら理解を進めることで、効率よく学習することができます。 実際にモデルを学習させながら技術を習得する格的な演習内容となっています。Deep Learningは、モデルが実際に学習する様子を観測し、パラメータを調整することでアプリケーションに応じたパフォーマンス最大化を行うことが非常に重要な技術ですが、この一連の流れを全ての演習で経験しながら重要な要素を身につけることが可能です。

  • 深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita

    オーソドックス な アプローチ(一般的手法) まず は、以下 が よくまとまっている。 株式会社クロスコンパス・インテリジェンス(2016.10.5)「NVIDIA GPU TECHNOLOGY CONFERENCE JAPAN 2016 Industry Deep Learning」 異常値予測 を 行う アプローチ としては、以下 が 一般的な考え方 の ようだ。 (データ量の多い)正常時のデータ挙動の特徴パターンを学ばせて、 新規データが上記の特徴パターンから乖離している場合を、異常とみなす 上記のアプローチをとる理由 は、「異常発生時のデータ」の取得可能件数 は、「正常時のデータ」 に 比べて、取得できるデータの件数 が 圧倒的に少ない から である。 上記のスライド で 挙げられている AutoEncoderモデル や LSTMモデル を 採用し、 AutoEncoderモデル

    深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita
  • 人工知能本読みすぎて飽きたけどその中でも記憶に残っている本を紹介する - 基本読書

    この数年人工知能バブルかってぐらい人工知能関連が出まくっていて、最初の頃は律儀に一冊一冊読んでいたもんだが、だんだん飽きてきた(そりゃ読みまくってるんだからそうだ)。やれ人工知能仕事が奪われるだとか奪われない仕事はなんだとかの話は定番だが、定番すぎてそうそう新しい解釈が出てくるわけではない。消える仕事は消えるし、残る仕事の分野もだいたい明らかになってきている。 とはいえそれでも読んでいると「おお、これは視点が良いな」と思えるものもあり、そういうのは読んでいて楽しい。その書き手はやっぱり基的には専門的な知識を持っている人たちだ。認知ロボット工学者であったり、AI研究所に勤めていたり、機械学習の専門家だったりする。最後のはまた特殊事例といえるが、稿ではそうした人工知能飽きた僕の中で記憶に残っているをいくつか紹介してみようと思う。 まずは基的なところを教えてくれる一冊 シンギュラリ

    人工知能本読みすぎて飽きたけどその中でも記憶に残っている本を紹介する - 基本読書
  • TensorFlowによるDCGANでアイドルの顔画像生成 その後の実験など - すぎゃーんメモ

    memo.sugyan.com の続編。 あれから色々な変更しつつ実験してみたりしたのでその記録。 結論を先に書くと、これくらい改善した。 DCGAN ざっくりおさらい Generator: 乱数の入力から画像を生成する Discriminator: 入力した画像がGeneratorが生成したものか学習データのものかを判別する という2種類のネットワークを用意し、お互いを騙す・見破るように学習を行うことで Generatorが学習データそっくりの画像を生成できるようになる、というもの 学習用画像の増加 前回の記事では90人の顔画像データから生成していたけど、あれから収集を続けて もう少し多く集まったので、今回は260人から集めた顔画像100点ずつ、計26,000件を学習に使用した。 Feature matching openai.com の記事で紹介されている "Improved Tech

    TensorFlowによるDCGANでアイドルの顔画像生成 その後の実験など - すぎゃーんメモ
    hirose504
    hirose504 2016/10/12
    この方法で身体作れないかな
  • Web開発におけるコンピュータサイエンス - 機械学習編1 - Hatena Developer Blog

    この教科書は、はてなサマーインターンの講義資料として作成されたものです: https://github.com/hatena/Hatena-Textbook この章では機械学習について、Webサービスの開発で必要とされる知識を中心に、とくに自然言語処理にフォーカスしながら解説します。 Webサービス開発と機械学習 実現困難な機能の例 闇雲な実装 もう少しましな実装 機械学習によるパラメータ決定 分類問題のための機械学習手法 パーセプトロン 判別アルゴリズム 学習アルゴリズム 特徴量のとり方 形態素解析 量をともなう特徴 組み合わせ特徴量 モデル 機械学習の種類 教師あり学習 分類 (質的変数の予測) 回帰 (量的変数の予測) 教師あり学習でのデータセット 教師なし学習 クラスタリング 次元削減(次元圧縮) 頻出パターンマイニング 異常値検出 アルゴリズムの評価 訓練データとテストデータ 学

    Web開発におけるコンピュータサイエンス - 機械学習編1 - Hatena Developer Blog
  • グーグル、見出しを自動生成するアルゴリズムを開発

    記事に見出しをつけることは一部の人間が習得する技能であり、機械が学習するのは特に難しい技術だ。 Googleはコンピュータが文章の内容をまとめる際に遭遇する難関を乗り越え、「非常に良い」見出しをつけられる機械学習アルゴリズムを開発したと発表した。 Googleの「TensorFlow」ソフトウェアライブラリに基づいてGoogle Brain Teamが開発したこのモデルは、記事から抜粋した内容を元に、まずまずの見出しを作成した。 同ソフトウェアは「metro-goldwyn-mayer reported a third-quarter net loss of dlrs 16 million due mainly to the effect of accounting rules adopted this year」(主に今年採用した会計規則の影響によって、Metro-Goldwyn-May

    グーグル、見出しを自動生成するアルゴリズムを開発
  • 講義まとめ:自然言語処理のための深層学習(CS224d) - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? CS224d(自然言語処理のための深層学習)はスタンフォード大のRichard Socherが2015年から教えている講義で、動画やスライドなどの講義資料と演習問題がウェブ上で無料で公開されています。 [CS224d: Deep Learning for Natural Language Processing] (http://cs224d.stanford.edu/) 会社の勉強会で週1回半年程度かけて講義動画と演習を終えたため、勉強したことを簡単にまとめてみたいと思います。 なぜ今なのか? 深層学習(Deep Learning)は2

    講義まとめ:自然言語処理のための深層学習(CS224d) - Qiita
  • シモセラ エドガー ラフスケッチの自動線画化

    研究では、畳込みニューラルネットワークを用いてラフスケッチを線画に自動変換する手法を提案する。既存のスケッチ簡略化手法の多くは単純なラフスケッチのベクター画像のみを対象としており、スキャンした鉛筆画など、ラスター形式の複雑なラフスケッチを線画化するのは困難であった。これに対し提案手法では、3種類の畳込み層から構成されるニューラルネットワークモデルによって複雑なラフと線画の対応を学習することで、ラスター形式の様々なラフスケッチを良好に線画化することができる。提案モデルでは、任意のサイズやアスペクト比をもつ画像を入力として扱うことが可能であり、出力される線画は入力画像と同じサイズになる。また、このような多層構造をもつモデルを学習させるため、ラフスケッチと線画がペアになった新しいデータセットを構築し、モデルを効果的に学習させる方法を提案した。得られた結果についてユーザテストを行い、提案手法の性

    シモセラ エドガー ラフスケッチの自動線画化
  • TensorFlowによるディープラーニングで、アイドルの顔を識別する - すぎゃーんメモ

    以前は MNISTの例を使って画像識別を試してみた けど、次はカラー画像についての識別を試してみる。 「アイドルなんてみんな同じ顔に見える」って 最近も言われてるのかどうか知らないけど、自分もつい5年前くらいまではそう思っていたわけで。その識別を機械学習でやってみよう という試み。 最近はほとんどライブに行かなくなってしまったけど大好きなももいろクローバーZちゃんを題材にしてみることに。 5人のメンバーの顔は機械学習によってどれくらい分類できるようになるのか?? CIFAR-10 CIFAR-10 という、32×32サイズのカラー画像を10種類のクラスに分類する識別課題があり、そのデータセットが公開されている。これを実際にTensorFlowで学習するための畳み込みニューラルネットワークのモデルや関数などがtensorflow.models.image.cifar10パッケージに同梱されて

    TensorFlowによるディープラーニングで、アイドルの顔を識別する - すぎゃーんメモ
  • JavaScript で実装してみる Deep Learning

    ヤフー株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。LINEヤフー Tech Blog はじめに はじめまして、安藤義裕と申します。ヤフー株式会社データ&サイエンスソリューション統括部ソリューション部でプログラマーをしております。趣味はカミさんの手料理です。 機械学習で用いられるアルゴリズムの一つにニューラルネットワークがあります。ニューラルネットワークは脳細胞の働きにヒントを得て考えられたものです。今回扱う多層ニューラルネットワークはニューラルネットワークの中間層と呼ばれる部分を多層化したものです。近年話題に上ることの多い Deep Learning ではこの多層ニューラルネットワークが利用されています。 多層ニューラルネットワークは用途に応じて異なるネットワークが利用されます。画像処理では畳込みニューラルネッ

    JavaScript で実装してみる Deep Learning
    hirose504
    hirose504 2015/12/09
    ガチすぎる
  • 二次元画像を拡大したいと思ったことはありませんか? - デー

    うまくできましたか? ボヤけたり、ギザギザになったりしませんでしたか? waifu2xをお試しください。 (ブラウザの処理に影響されないようクリックで拡大おねがいします) waifu2xは、二次元画像を2倍に拡大するソフトウェアです。多くの二次元画像についてスゴイ級のクオリティで拡大できます。 waifu2xは、最新鋭の人工知能技術 Deep Convolutional Neural Networks を使って開発されました。 waifu2xの人工知能は、次の問に答えます。 いまから与える画像はある画像を半分に縮小したものである。縮小される前の画像を求めよ。 画像を拡大するのではなく、縮小される前の状態に戻します。 縮小されてないオリジナル画像を与えた場合も、やはり縮小される前の画像を答えます。 その画像は来存在しないものですが、waifu2xはそれを想像で創ります。 二次元画像のJPE

    二次元画像を拡大したいと思ったことはありませんか? - デー
  • 機械学習アルゴリズムまとめ | 株式会社フルスピード - Growth Seed

    みなさんこんにちは。アナリストの荒木です。近い将来さまざまな仕事がロボットに置き換わっていくと多くの人が予想しており、そのコアテクノロジーの一つが機械学習です。GoogleがDeepMindを買収したことで機械学習という言葉も身近になりつつありますが、すでにamazonレコメンドや画像認識などで活躍しています。 そこで今回は、ウェブ担当者が「機械学習ってどんなことをやっているのだろう?」という場合に勉強できるスライドをまとめました。 ↓【無料DL】「SEO内部対策チェックシート」を無料ダウンロードする 機械学習によるデータ分析まわりのお話機械学習でどんなことをしているのかをまとめたスライドです。データのこと・機械学習のこと・評価のこと・分析のことの4部構成で、データマイニングの一連の流れを学ぶことができます。 Deep LearningGoogle認識例で有名になった手法を紹介したスラ

    機械学習アルゴリズムまとめ | 株式会社フルスピード - Growth Seed
  • 1