最近simhashの実装を行っていて、データの次元が高いとsimhashを計算するのに必要なランダムなベクトルをメモリ上に乗らないという事態が生じたのでad hocな方法で回避していたけど、論文[1]をよく見直すとほぼ同じ方法でより計算コストが少ない方法が紹介してあったので少し解説を行ってみる。ちなみに以下の解説では低次元のビットベクトルに縮約した後にハミング距離が近いものをどうやって探索するかについては述べないです、それに関しては[1],[2]を参照してください。 ちなみに自分が実装したのは各ビットごとに次元に対するハッシュ関数を定義して計算する方法でした。この方法だと以下で開設する手法よりもf倍の回数ハッシュ関数を計算する必要があるので実行時間が割とかかる。 解説 simhash[3](文献によってはLSHと呼ぶこともある[2])は次元削減の手法の一つで、高次元のデータを低次元のビット