You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window. Reload to refresh your session. Dismiss alert
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 背景 仕事をしているとき、業務に関係ない情報を閲覧していることって誰でもありますよね? そんなときに背後にボスが忍び寄っていると気まずい思いをします。もちろん急いで画面を切り替えれば良いのですが、そういう動作は逆に怪しまれることになりますし、集中しているときは気がつかないこともあります。そこで怪しまれずに画面を切り替えるために、ボスが近づいてきたことを自動的に認識して画面を隠すシステムを作ってみました。 具体的にはKerasを用いてボスの顔を機械学習し、カメラを用いて近づいてきたことを認識して画面を切り替えています。 ミッション ミッシ
皆さまこんちにちは 今回は遺伝的アルゴリズム(GA)でAA自動生成してみたので、コードと資料を共有 コードは以下に公開しています。 github.com 今回のお題 左の画像を、右のようなAAにするのが今回のお題。右は2chのAA職人さんによるものです。 詳細は、下記の資料をご覧下さい。 *1 やっぱ人間スゲー 先に結果から、遺伝的アルゴリズムで最適化されていくGIFの共有 やはり人間には勝てないか・・・ただGAは評価関数次第なので 我こそは神の評価関数を設計出来るという方は是非ご一報お願いします。 ちょっと前にLTしてきた 実は少し前に、リブセンスさんの勉強会でLTして来たネタです。 LTって分量では無いですが・・・ LTじゃなくて、もう少しちゃんとした勉強会で話そうと思ってたが、 時間だけが過ぎて、自分自身忘れかけてきたのでブログでの共有にしました。 AAをつくろう! from Tak
こんにちは、得居です。最近は毎晩イカになって戦場を駆けまわっています。 本日、Deep Learning の新しいフレームワークである Chainer を公開しました。 Chainer 公式サイト GitHub – pfnet/chainer Chainer Documentation Chainer は、ニューラルネットを誤差逆伝播法で学習するためのフレームワークです。以下のような特徴を持っています。 Python のライブラリとして提供(要 Python 2.7+) あらゆるニューラルネットの構造に柔軟に対応 動的な計算グラフ構築による直感的なコード GPU をサポートし、複数 GPU をつかった学習も直感的に記述可能 ニューラルネットをどのように書けるか 次のコードは多層パーセプトロンの勾配を計算する例です。 from chainer import FunctionSet, Vari
動機 前々からtwitterのデータを使って何かやってみたいな、と思っていました。そこで、MeCabとcabochaを入れるところから、SQLiteを活用した簡単な分類器を作るってみた次第です。 (遊びでやってみただ(ry ) 以下、やったことを適当にまとめていきます。 インストールしたもの MeCab 0.996 mecab-python-0.996 Virtual C++ 2008 Express Edition(vcvarsall.batが必要なためです) Cabocha(今回は使いませんので説明も全くしませんが、今後のために...) インストール方法などに関してはWindowsにmecab-pythonを導入を参考にして下さい。 このサイトでも太字で書いてあるのですが、mecab.hを書き換える時は必ず管理者権限で開いて変更を行って下さい。でないと、変更されたと認識されません。僕も
いしたーです。アルバイトで機械学習やってます。こんにちは。 とある勉強会に出席したときに、「機械学習をやりたいけどわからないことが多い」という意見を聞いたので、いくつかアドバイスを載せておきます。 ##読む前の注意 研究についてのアドバイスは書いていません。趣味で機械学習をやろうと思っている方が対象です。 この記事は他の方の意見をまとめたものではありません。私個人の経験に基づいて書いたものです。よって、この記事の内容はほとんど「私の意見」です。 以上2つの注意点を踏まえた上でお読みください。 ##「機械学習で何をしたいのか」を決めてほしい 機械学習を学ぶ前に、機械学習を使って何をしたいのかを決めてください。 機械学習は数式がたくさん登場したり、難しい概念を理解しなければならなかったりすることがあります。 やりたいことを決めてから学ぶと、今自分はある目的を達成するために学んでいるんだと思うこ
photo by Régis Gaidot データセットとかの知見を集めました。 いいデータセットないかと調べる機会があったので、得た知見をまとめてみました。 これについてはすでに良い情報がすでにあったのでそのリンクも紹介します。 奥 健太 - 情報推薦研究ツールボックス grouplensのデータセットは、論文などにも利用されているのを見かけました。 注意点としては ・EachMovieなどは利用できない ・MovieLensやDelicious、Last.fmはdat形式のファイル ・WikiLensはdumpして使うようにされている ・Book-Crossingはcsvとsql ・jesterはExcelファイル ということです。 それ以外だと ようこそ - the Datahub 情報学研究データリポジトリ データセット一覧 livedoor グルメの研究用データセットです。 20
9章のK-meansをPythonで実装してみます。データx_nをあらかじめ指定したK個のクラスタにわけることを考えます。各クラスタの重心をμ_kとします。K個のデータ平均(means)=重心があるからK-meansですね。さらに、2値指示変数r_nkを用意します。これは、データ点x_nがk番目のクラスタに含まれるとき1、それ以外は0になります。各データx_nはただ1つのクラスタに属するという仮定があるためr[n]のK次元ベクトルは1つだけ1であとは0になります。このとき、最小化したい目的関数Jは(9.1)で与えられます。 上の式は各データ点x_nからその点が所属するクラスタの重心までの距離を最小化することを意味しています。ここでの目的は、Jを最小にするr_nkとμ_kを求めることです。r_nkとμ_kの2つともわからないので、r_nkとμ_kをそれぞれ最適化する2つのステップを交互に何度
本日は少し趣向を変えて、機械学習や統計に関する情報収集源についてまとめてみたいと思います。 機械学習 機械学習界隈の情報収集方法 http://d.hatena.ne.jp/kisa12012/20131215/1387082769 いきなりですが上記の記事に機械学習に関する有力な情報源がまとまっています。まずはここを参考にするのが良いかと思います。ただ情報が多すぎですので、筆者は Wikicfp と arXiv.org あたりの論文、それにはてなブックマークをチェックしています。 また論文については機械学習の論文を探すにも良い情報がまとまっています。こちらも参考になります。 機械学習は日進月歩の世界ですので、最新の査読済み論文を追って概略だけでも理解する能力を身に付けると良いかと思います。 書籍としては次の 2 冊が聖書とも言える必読書で、本気で機械学習をやりたければ必ず参考になるかと思
ブログ投稿の続きとして、スライドに書けなかったTheanoの細かい部分についてもう少しまとめておこうと思います。 まず、Theano 解説 はTheano特徴を簡潔に表現されているので、一読をオススメします。 ここでも書かれていますが、Theanoの特徴として、 実行時にCコードを生成してコンパイル GPUでの実行のサポート(要CUDA) 自動微分 などがあげられると思います。 Theanoの超簡略チュートリアル http://deeplearning.net/software/theano/tutorial/index.html#tutorial の乱暴な要約です。 まず常にImportしておく3つ この3つはお約束です。 これだけ知っておけば概ね大丈夫 以下の事柄がだいたい理解できれば、Deep Learningの実装を読んで理解したり、変更を加えたりすることができると思います。 T.
The machine learning toolbox’s focus is on large scale kernel methods and especially on Support Vector Machines (SVM) * The SHOGUN Machine Learning Toolbox サイトのデザインどうにかしたらいいのにとか将軍ってなんだよとかいろいろあるかと思いますけども、プロダクトとしては素晴らしいという噂を聞くので今回このSHOGUNという機械学習ライブラリを試してみました。目的は一般物体認識における分類タスクでMultiple Kernel Learning(MKL)やLatent SVMの実装を試すことなのですが、まずはインストール方法と簡単な使い方を調べるところから始めます。 また、この記事の内容はQiitaにも投稿しています。 * 機械学習ライブラ
営業・カスタマーサポート・メール配信の機能がひとつになったCRMの活用で、短期間で導入効果とビジネスの成長を実現
「食と機械学習」のコラボレーションをできないかと最近常々考えています。例えば、「地球上に存在する全ての料理本を何らかのアルゴリズムに入力し、人間にとって『美味しい』レシピとはどういう特徴を持つかを学習し、今まで人類が食べたことのないような斬新なレシピを自動生成する」ことが出来たとしたら素晴らしいとは思いませんか? レシピの自動生成はさすがに難しそうなので、今回は人気になるレシピに共通する特徴は何かという問いに答えることを目標とします。具体的には、Cookpadのレシピが与えられたとして、そのつくれぽ数を予測する問題に挑戦してみます。レシピが人気になるか否かの要因としては、どういう材料を使用するか、レシピがどれだけ健康的か、またどれだけ手軽に調理できるかなど様々な要因が考えられますが、今回特に興味があるのはレシピの名前や紹介文などの文章の言葉遣いがそのレシピの人気度にどのような影響を及ぼすか
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く