タグ

Physicsに関するgogatsu26のブックマーク (149)

  • 「シュレーディンガーの猫状態」を23分維持── 量子物理学で新記録報告

  • “熱力学第二法則の例外”発見か 熱が「冷たい→熱い」場所に流れる状況とは? 米研究者らが発表

    このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 米カリフォルニア大学サンディエゴ校に所属する研究者らが発表した論文「Second law of thermodynamics: Spontaneous cold-to-hot heat transfer in a nonchaotic medium」は、「熱は高温から低温へ流れる」という物理学の基原理が、特殊な条件下では異なる振る舞いを示すことを明らかにした研究報告である。 熱力学第二法則によれば、熱は常に高温の場所から低温の場所へと自然に流れる。長年にわたって物理学の基法則として確立されてきた熱力学第二法則について、特殊条件下での新たな現象が見つ

    “熱力学第二法則の例外”発見か 熱が「冷たい→熱い」場所に流れる状況とは? 米研究者らが発表
  • 移動する方向で「質量を持つ/持たない」が変わる“奇妙な粒子”発見 国際チームが研究発表

    このコーナーでは、2014年から先端テクノロジーの研究を論文単位で記事にしているWebメディア「Seamless」(シームレス)を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 X: @shiropen2 米コロンビア大学や米ペンシルベニア州立大学などに所属する研究者らが発表した論文「Semi-Dirac fermions in a topological metal」は、物質中で特異な性質を持つ新しい粒子の存在を確認した研究報告である。この粒子は、ある方向に動くときは質量がゼロとなり、別の方向に動くと大きな質量を持つという、直感に反する奇妙な性質を示す。 この特殊な粒子は「Semi-Dirac fermions」と呼ばれ、16年前に理論的に予測されていたが、これまでは人工的に作られた環境でしか観測されていなかった。今回、研究チームはジルコニウム、シリコ

    移動する方向で「質量を持つ/持たない」が変わる“奇妙な粒子”発見 国際チームが研究発表
  • 四つの力

    学習レベルで探す 小学生 中学生 高校生 五十音で探す あ行 あ い う え お か行 か き く け こ さ行 さ し す せ そ た行 た ち つ て と な行 な に ぬ ね の は行 は ひ ふ へ ほ ま行 ま み む め も や行 や ゆ よ ら行 ら り る れ ろ わ行 わ アルファベット 数字 カテゴリーで探す 太陽 太陽内部 太陽表面 太陽外部 その他 太陽系 惑星 衛星・環 隕石 小天体 地球 地球環境 その他 太陽系外惑星 恒星 恒星の種類と性質 大気とスペクトル 超新星 その他 星間物質と星形成 星間物質 星形成 星団 その他 銀河・銀河団 天の川銀河 銀河 活動銀河 局所銀河群 銀河団 その他 宇宙の進化 大規模構造 高赤偏移銀河 宇宙論的観測 その他 高エネルギー現象 原子・分子過程 理論 天体物理学基礎理論 星形成・構造・進化論 宇宙論 天体力学 シミュレー

    四つの力
    gogatsu26
    gogatsu26 2024/10/06
    “電磁気力の大きさを1とすると、強い力は100、弱い力は1/1000、重力は桁違いに弱く10^(-38)である”
  • What is a collision?

    2D Rigid Body Collision Resolution Part 1: Defining the problemFrom Mario bouncing off a Goomba to two cars bumping into each other in a racing game, dealing with collisions is such an integral part of most video games that we often take it for granted. In this series of blog posts, I want to show you what actually goes on behind the scenes in a physics simulation like the one above. While we're g

    What is a collision?
    gogatsu26
    gogatsu26 2024/05/25
    “物理シミュレーションの舞台裏で実際に何が起こっているのかをお見せしたいと思います。ビデオ ゲームというレンズを通してこれを見ていきますが、この投稿の本当の目的は衝突の実際の数学と物理学についてです”
  • 世界は「関係」でできている 美しくも過激な量子論 | NHK出版

    世界の当の姿とは? 天才物理学者が”真実”を明かす ”ホーキングの再来”と評される天才物理学者が”真実”を明かす イタリアで12万部を売り上げ、世界20か国で刊行予定の話題作! 科学界最大の発見であり、最大の謎とされる量子論。 はたして量子論の核心とは何か、 それはどんな新しい世界像をもたらしたのかを、 研ぎ澄まされた言葉で明快に綴る。 量子は私たちの直感に反した奇妙な振る舞いをする。 著者によれば、この量子現象を理解するためには、 世界が実体ではなく、関係にもとづいて構成されていると 考えなくてはならないという。 さらにこの考え方を踏まえれば、現実や意識の質は何か、 といった哲学的な問いにも手がかりが得られるのだ――。 深い洞察と詩情豊かな表現にいろどられ、 私たちを“真実”をめぐる旅へといざなう興奮の書! 竹内薫氏の解説付き。 7万部突破の『時間は存在しない』著者の最新作! 【推薦

    gogatsu26
    gogatsu26 2024/01/29
    “カルロ・ロヴェッリ 著 理論物理学者。1956年、イタリアのヴェローナ生まれ。”
  • 量子の謎「シュレーディンガーの猫」現象を〝肉眼で見えるサイズ〟で再現する装置 | AppBank

    粒子が「重なりあった状態」を再現 スイス連邦工科大学チューリッヒ校の物理学者は、量子コンピュータでよく使われる超伝導回路に共振器を結合し、エルヴィン・シュレーディンガーの有名な思考実験「シュレーディンガーの」を前例のないスケールで再現しました。重ね合わせの状態は、私たちの日常的な経験にはないものです。サッカーボールが落ちるのを見れば、ストップウォッチでその落下速度を追跡することができます。最終的な落下位置も明確で、飛行中の回転も一目瞭然です。サッカーボールが落下するときに目をつぶっても、これらの位置や挙動が異なるとは考えられません。しかし、量子物理学では、ボールが地面に落ちているのを見るまでは、位置、スピン、運動量などの特徴は確定しないのです。 これは量子物理学のコペンハーゲン解釈と呼ばれるもので、目に見えないシステムは、最終的な状態が観測されるまで、あらゆる可能性を秘めた状態で存在する

    量子の謎「シュレーディンガーの猫」現象を〝肉眼で見えるサイズ〟で再現する装置 | AppBank
  • 特集「ミテ ヨンデ カミオカンデ」 | ハイパーカミオカンデ

    ニュートリノ? 陽子? 宇宙の謎??? 「どれも難しそうだけど、ハイパーカミオカンデの ことがちょっと気になる」 そんなあなたのために、いろんな角度から ミテ・ヨンデ楽しめる記事をご用意しました。 この巨大実験装置、かなりおもしろいんです ガイド 早戸 良成 准教授 Yoshinari Hayato 武長 祐美子 Yumiko Takenaga (東京大学宇宙線研究所神岡宇宙素粒子研究施設)

    特集「ミテ ヨンデ カミオカンデ」 | ハイパーカミオカンデ
  • アインシュタインの「一般相対性理論」が、物理学者たちにもたらした「大混乱」を振り返る(現代ビジネス) - Yahoo!ニュース

    「宇宙検閲官仮説」 なんとも不可思議で魅惑的な響きです。この文字の並びを見ているだけで、つぎつぎと疑問が湧いてきます。宇宙を検閲する? 誰が? 何を? いったいどうやって? ここでは、この仮説の前提となる「一般相対性理論」が「光と影」の両面を持つこと、そして、それゆえ様々な混乱を物理学者たちの間に巻き起こしたことについて、大阪工業大学教授の真貝寿明さんがわかりやすくご説明します。 【図を見る】文中で触れた「図」はこちらから見られます! (この記事は、真貝寿明『宇宙検閲官仮説』を抜粋・編集したものです) 無限に潰れていく星は現実に存在するのか 一般相対性理論は、ブラックホールや膨張する宇宙、そして重力波の伝播という新しい物理現象を次々に導きましたが、いずれのトピックに対してもアインシュタイン自身は、一度は拒絶反応を示しています。彼自身をもってしても、どれも受け入れがたい結論であったのでしょ

    アインシュタインの「一般相対性理論」が、物理学者たちにもたらした「大混乱」を振り返る(現代ビジネス) - Yahoo!ニュース
    gogatsu26
    gogatsu26 2023/03/03
    “(この記事は、真貝寿明『宇宙検閲官仮説』を抜粋・編集したものです)”
  • シュワルツシルト解 - Wikipedia

    アインシュタインによる一般相対性理論において、シュワルツシルト解(シュワルツシルトかい、英: Schwarzschild solution)は、シュワルツシルト計量 Schwarzschild metric、シュワルツシルト真空 Schwarzschild vacuum とも呼ばれる。(なお、シュワルツシルトでなくシュヴァルツシルトとも呼ばれる)とは、アインシュタイン方程式の厳密解の一つで、球対称で静的な質量分布の外部にできる重力場を記述する。ただし、電荷や角運動量、宇宙定数はすべてゼロとする。この解は太陽や地球など、十分に自転の遅い恒星や惑星が外部の真空空間に及ぼす重力を近似的に表わすことができ、応用されている。名称については、この解を1916年に初めて発表したカール・シュヴァルツシルトに由来する。 バーコフの定理により、シュワルツシルト計量は球対称性をもつアインシュタイン方程式の真空解

    シュワルツシルト解 - Wikipedia
    gogatsu26
    gogatsu26 2023/02/27
    “名称については、この解を1916年に初めて発表したカール・シュヴァルツシルトに由来”
  • 事象の地平面 - Wikipedia

    事象の地平面(じしょうのちへいめん、(英: event horizon)は、物理学・相対性理論の概念で、情報伝達の境界面である。シュバルツシルト面や事象の地平線(じしょうのちへいせん)ということもある。 情報は光や電磁波などにより伝達され、その最大速度は光速であるが、光などでも到達できなくなる領域(距離)が存在し、ここより先の情報を我々は知ることができない。この境界を指し「事象の地平面」と呼ぶ。 重力が大きく、光でさえも脱出不可能な天体をブラックホールという。従って、ブラックホールの存在は、ブラックホールに落ち込む物質が放つ放射や、ブラックホール近傍の天体の運動など、間接的な観測事実に頼ることになる。ブラックホールは、一般相対性理論が予言する産物であり、M87および銀河系の中心にあるブラックホールは既に直接観測された。 一般相対性理論において、ブラックホールを厳密に定義すると、「情報の伝達

    事象の地平面 - Wikipedia
  • 光の速度より速い物体が存在する可能性――超光速の視点から特殊相対性理論を拡張 - fabcross for エンジニア

    超光速の視点から特殊相対性理論を拡張し、量子力学の基原理を取り入れることが可能になるという理論の研究が発表された。超光速の世界は、3つの時間次元と1つの空間次元からなる時空で説明され、さらには超光速の物体が当に存在する可能性もあるとしている。この研究は、ポーランドのワルシャワ大学と英オックスフォード大学によるもので、2022年12月30日付で『Classical and Quantum Gravity』に掲載された。 1905年に発表された特殊相対性理論によって、3次元空間に時間が4つ目の次元として加わり、これまで別々に扱われてきた時間と空間の概念がまとめて扱われるようになった。特殊相対性理論は、ガリレオの相対性原理と光速の不変性という2つの仮定に基づいている。 この2つのうち重要なのはガリレオの相対性原理だ。この原理では、全ての慣性系において物理法則は同じであり、全ての慣性観測者は同

    光の速度より速い物体が存在する可能性――超光速の視点から特殊相対性理論を拡張 - fabcross for エンジニア
  • https://twitter.com/ST_phys_bot/status/1619919134002741248

  • ライデンフロスト効果 - Wikipedia

    ライデンフロスト効果(ライデンフロストこうか、Leidenfrost effect)とは、液体をその沸点よりも高温に熱した固体の上に垂らしたときに、液体の下部から蒸発した蒸気の層が固体と液体との間に介在して両者間の熱伝導を阻害するために、液体が瞬時に蒸発してしまうのを妨げる効果のことである。 この現象はライデンフロスト現象と呼ばれ、例えば熱したフライパンに水滴を落とした時に観察することができる。 固体の温度が液体の沸点以上であれば両者の種類は特に限定されないが、以下の説明を簡単にするためにフライパンと水を例に挙げて説明する。 フライパンの温度が摂氏100度近くか又はそれ以上になった時、その表面に水滴が垂らされると、水滴のうちフライパンに接する部分が蒸発して薄い蒸気の層を作り、この蒸気の層は水滴の残りの部分がフライパンと直接接触するのを阻むことになる。また、蒸気の層は水滴がフライパンに接触す

    ライデンフロスト効果 - Wikipedia
  • 現実を説明するには虚数が必要であることが最新の研究で示される

    現実を正確に説明するには「来存在しないはずの数」である虚数が必要であることが、最新の2つの研究により示されました。 Quantum theory based on real numbers can be experimentally falsified | Nature https://www.nature.com/articles/s41586-021-04160-4 Physical Review Letters - Accepted Paper: Testing real quantum theory in an optical quantum network https://journals.aps.org/prl/accepted/0907bY08X531687d3971977071a6d5f742cb036ed Imaginary numbers could be neede

    現実を説明するには虚数が必要であることが最新の研究で示される
  • AIに物理法則を学習させたら、未知の物理変数で現象を表現し始めた! - ナゾロジー

    AIには人類が知覚できない何かがみえているようです。 米国のコロンビア大学(Columbia University)で行われた研究によれば、AIに物理法則を学習させ、それを表現するために必要な「変数」の数を考えさせたところ、現在の人類には理解できない要素が含まれることが判明した、とのこと。 ありふれた振り子運動や回転運動でも、AIは人類とは異なる独自の変数を用いて物理法則を理解し、正確な運動予測まで成功させていました。 研究者たちは、AIは人類がまだ発見できていない未知の方程式と「変数」を用いて、物体の運動法則を理解している可能性があると述べています。 もし研究者たちの予測が正しければ、誰もが知る振り子運動や円運動などには誰も知らない「裏の方程式」が存在することになります。 研究内容の詳細は2022年7月25日に『Nature Computational Science』にて掲載されました

    AIに物理法則を学習させたら、未知の物理変数で現象を表現し始めた! - ナゾロジー
    gogatsu26
    gogatsu26 2022/07/28
    “今回の研究によって、私たち人類が唯一無二と信じていたいくつかの物理法則が、複数の表現方法の1つでしかない可能性が示されました。”
  • 熊本城下の鼻繰り井手 - 構造計画研究所 SBDプロダクツサービス部・SBDエンジニアリング部

    gogatsu26
    gogatsu26 2022/07/06
    “加藤清正公によって作られたといわれています。… この用水路は、実は流体力学的に絶妙な構造になっていることが、 実験的または理論的にも検証されています”
  • ポアソン比 - Wikipedia

    単軸応力が負荷する2次元板 例として、最も単純な2次元板に1方向のみに応力 σx(単軸応力)が負荷する場合を挙げると、この板中の応力とひずみの関係は、ポアソン比 ν とヤング率 E より以下のようになる[3]。 上記の関係をフックの法則と呼ぶ。 材料が等方均質の場合の、3次元一般状態での関係式については、 フックの法則#フックの法則のテンソル表現 平面応力状態#平面応力状態でのフックの法則 平面ひずみ状態#平面ひずみ状態でのフックの法則 を参照。 材料が等方性の場合、単位体積当たりのひずみエネルギーであるひずみエネルギ関数 U0 は以下のように示される[4]。 ここで、E:ヤング率、G:剛性率、ε:垂直ひずみ、γ:せん断ひずみである。なお、この式は、ヤング率やポアソン比に方位依存性があるような異方性材料には適用できない。 ひずみエネルギ関数は正値形式を取るので、 を満たすにはポアソン比 ν

    gogatsu26
    gogatsu26 2022/02/18
    “物体に弾性限界内で応力を加えたとき、応力に直角方向に発生するひずみと応力方向に沿って発生するひずみの比”
  • 世界中の頭脳を翻弄し続ける量子力学、深遠なる世界へのいざない 「この分野を研究する覚悟はあるか」と天才物理学者は必ず聞いた | JBpress (ジェイビープレス)

    量子力学の誕生からおよそ100年。今日、半導体をはじめ、LED、レジの精算用スキャナーなど、我々の日常生活を支える様々な技術やツールに応用されている。しかし、その質はいまだ謎に満ちている。 コペンハーゲン解釈を生み出し、物理学史に輝くニールス・ボーアと、孤高の天才アルベルト・アインシュタインの巨匠が挑み、後続の天才物理学者たちが次々と研究に人生を捧げた量子力学──。第二次大戦を背景に物理学はいかに変わったのか。『実在とは何か 量子力学に残された究極の問い』を上梓した、サイエンスライターのアダム・ベッカー氏に話を聞いた。(聞き手:尾形 和哉、シード・プランニング研究員) ※記事の最後にアダム・ベッカー氏の動画インタビューが掲載されていますので、是非ご覧下さい。 ──「実在とは何か」。書は量子力学の変遷を描いたサイエンス・ヒストリーですが、そのタイトルには哲学のような響きもあります。ベッカ

    世界中の頭脳を翻弄し続ける量子力学、深遠なる世界へのいざない 「この分野を研究する覚悟はあるか」と天才物理学者は必ず聞いた | JBpress (ジェイビープレス)
  • ニールス・ボーア - Wikipedia

    英語版記事を日語へ機械翻訳したバージョン(Google翻訳)。 万が一翻訳の手がかりとして機械翻訳を用いた場合、翻訳者は必ず翻訳元原文を参照して機械翻訳の誤りを訂正し、正確な翻訳にしなければなりません。これが成されていない場合、記事は削除の方針G-3に基づき、削除される可能性があります。 信頼性が低いまたは低品質な文章を翻訳しないでください。もし可能ならば、文章を他言語版記事に示された文献で正しいかどうかを確認してください。 履歴継承を行うため、要約欄に翻訳元となった記事のページ名・版について記述する必要があります。記述方法については、Wikipedia:翻訳のガイドライン#要約欄への記入を参照ください。 翻訳後、{{翻訳告知|en|Niels Bohr|…}}をノートに追加することもできます。 Wikipedia:翻訳のガイドラインに、より詳細な翻訳の手順・指針についての説明があります

    ニールス・ボーア - Wikipedia
    gogatsu26
    gogatsu26 2022/02/05
    “アインシュタインが書いた手紙("Der Alte würfelt nicht." 神はサイコロを振らない)に反論した名言("Einstein, schreiben Sie Gott nicht vor, was er zu tun hat." アインシュタインよ、神が何をなさるかを貴方が語るなかれ)がある”