タグ

algorithmとmathに関するf99aqのブックマーク (2)

  • UUID(v4) がぶつかる可能性を考えなくていい理由 - Qiita

    お手軽にランダムなIDを取得したい時にUUIDはとても重宝します。 でもたまに、 「このID(UUID)ってぶつかることない?対策しなくて大丈夫?」 と聞かれることがあります。 それに対して、 「ウィキペディア先生がぶつからねえって言ってたから大丈夫だよ!(#゚Д゚)」 で切り抜けるのもそろそろ限界のような気がするのでちゃんと調べました。 (もちろんウィキペディア先生を頼りました!) 2つの理論 UUIDの衝突確率について考える上で次の2つの理論が重要になります。 鳩の巣原理 誕生日のパラドクス 鳩の巣原理 鳩の巣原理とは、 m個の入れ物にn個のものを入れるとき、n > m ならば少なくとも1個の箱には2個以上のものが入る 9個の巣箱に10羽の鳩が入る場合、必ずどれかの巣箱には2羽以上入ることになるということです!(ウィキペディア先生) 考えれば当たり前のことですが同様にして考えれば、 「

    UUID(v4) がぶつかる可能性を考えなくていい理由 - Qiita
  • 良い乱数・悪い乱数

    C言語標準ライブラリの乱数rand( )は質に問題があり、禁止している学会もある。 他にも乱数には様々なアルゴリズムがあるが、多くのものが問題を持っている。 最も多くの人に使われている乱数であろう Visual Basic の Rnd の質は最低である。 そもそも乱数とは 乱数とは、来サイコロを振って出る目から得られるような数を意味する。 このような乱数は予測不能なものである。 しかし、計算機を使って乱数を発生させた場合、 次に出る数は完全に決まっているので、予測不能とはいえない。 そこで、計算機で作り出される乱数を疑似乱数(PRNG)と呼び区別することがある。 ここでは、特にことわらない限り乱数とは疑似乱数のことを指すとする。 計算機でソフト的に乱数を発生させることの最大のメリットは、 再現性があることである。 初期状態が同じであれば、発生する乱数も全く同じものが得られる。 このことは

  • 1