エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
本当に必要なN-gramは2割しかない - nokunoの日記
Entropy-based Pruning of Backoff Language Modelsを読んだ.単語N-gramはとてもよくできていて言語モ... Entropy-based Pruning of Backoff Language Modelsを読んだ.単語N-gramはとてもよくできていて言語モデルとしての性能はかなりのものなのだが,なんの枝刈りもせずに中規模〜大規模なデータに適用しようとするとサイズが馬鹿でかくなってしまう.そのための対策としてよくあるのが語彙のサイズを制限する方法と,N-gramの頻度が一定以下のものを切り捨てるという方法(後者の場合は語彙も自動的に制限される).Google 日本語N-gramなども頻度20以上のものが配布されており,効率よくデータサイズを減らすためには頻度でカットオフする方式がよく使われていると思う(語彙だけだとかなり制限しないとサイズが減らない).しかしカットオフしすぎると性能はかなり落ち込むので,うまい方法はないものかと考えられたのがこの論文の手法である.N-gramのデータには頻度の高い
2011/10/27 リンク