コグニカルは、足りない知識を掘り下げて理解する学習サイトです。
「数学記号」はこの項目へ転送されています。ウィキペディアにおける数式の書き方については「m:Help:Displaying a formula/ja|ヘルプ:数式の書き方」をご覧ください。 数学的概念を記述する記号を数学記号という。数学記号は、数学上に抽象された概念を簡潔に表すためにしばしば用いられる。 数学記号が示す対象やその定義は、基本的にそれを用いる人に委ねられるため、同じ記号に見えても内容が異なっているということがあれば、逆に、異なって見える記号が同じ対象を示しているということもある[注 1]。従って本項に示す数学記号とそれに対応する数学的対象は、数多くある記号や概念のうち、特に慣用されうるものに限られる。
Wolframの画期的なアルゴリズム,知識ベース,AIテクノロジーを使って, 専門家レベルの答を計算しましょう数学 ›ステップごとの解説高等学校 数学中学数学小学校算数初歩的な計算代数プロットとグラフィックス微積分と解析その他 »科学・テクノロジー ›Units & MeasuresPhysicsChemistryEngineeringComputational SciencesEarth SciencesMaterialsTransportationその他 »社会・文化 ›PeopleArts & MediaDates & TimesWords & LinguisticsMoney & FinanceFood & NutritionPolitical GeographyHistoryその他 »日常生活 ›Personal HealthPersonal FinanceSurprisesEn
October 21, 2024 — The Great Internet Mersenne Prime Search (GIMPS) has discovered a new Mersenne prime number, 2136279841-1. At 41,024,320 digits, it eclipses by more than 16 million digits the previous largest known prime number found by GIMPS nearly 6 years ago. Luke Durant, GIMPS most prolific contributor using free GIMPS software, proved the number prime on October 12. After notifying the GIM
正規分布における偏差値の分布。T scoresが偏差値を示す。 偏差値(へんさち、英: T-score)とは、データの値を、平均50、標準偏差10のデータに変換(標準化)した値である。個々のデータに対して平均からどれだけ離れているか感覚的に現す方法である。データの単位を消して一律の指標として表すことを目的とするので、結果的に無次元数となる。 計算方式から、偏差値50のデータは平均である。偏差値50±5以内とは以内を意味するので、全体のうち平均に近い68.26%分のデータに含まれることを意味する。同様にして右の図のような分布に従うと考えて、平均からの離れ具合を求める。 学力試験・テストに導入されている学力偏差値は、受験者の得点が受験者全体の中でどの程度高い(低い)位置を知ることができる指標である。一般的なテストでは通常、偏差値は25(下位0.62%)前後から75(上位0.62%)の範囲に収ま
平均は同じであるが標準偏差が大きく異なるデータのヒストグラムの例。赤で示されたデータの方が青で示されたデータよりも標準偏差が小さい。 平均 0, 標準偏差 σ の正規分布の確率密度関数。この分布に従う確率変数が 0 ± σ の間に値をとる確率はおよそ 68% であることが読み取れる。 標準偏差(ひょうじゅんへんさ、(英: standard deviation, SD)とは、データや確率変数の、平均値からの散らばり具合(ばらつき)を表す指標の一つである。偏差ベクトルと、値が標準偏差のみであるベクトルは、ユークリッドノルムが等しくなる。 標準偏差を2乗したのが分散であり、従って、標準偏差は分散の非負の平方根である[1]。標準偏差が 0 であることは、データの値が全て等しいことと同値である。 母集団や確率変数の標準偏差を σ で、標本の標準偏差を s で表すことがある。 二乗平均平方根 (RMS
ある集団についてのデータがどのように分布しているかを表すものとして、その集団の代表値★(中心の値)を示す平均値及びそのばらつき具合を示す散布度がある。平均には算術平均が、散布度には標準偏差がよく用いられている。 1.度数分布表・ヒストグラム データがどのように分布しているかその実態を把握するには、データをその大きさによりいくつかの階級に区分し、その階級ごとの個数 (度数) をカウントして表にした度数分布表、あるいは、それを棒グラフにして表わしたヒストグラムが適している (表1、図1) 。 例えば、年齢別人口や従業者規模別事業所数など多くの統計表は度数分布表の形で作成され、また、年齢別人口をヒストグラムにした人口ピラミッドは人口構造の分析等によく用いられている。 2.平均値★ 一般に平均値には、単純平均 が多く使われている。平均値は通常μ(ミュー) と表示される。 3.標準偏差
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く